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Abstract 
We study relational contracts as a means to govern transactions across firm boundaries. 
We focus on the airline industry, where real-time adaptation of flight schedules under bad 
weather is not formally contractible, and yet is essential for performance and long-term 
profitability. While outsourcing reduces the operating costs of major airlines, it increases 
their risk of failed adaptation due to a loss of control in favor of the regional partners. We 
theoretically show that majors and regionals can implement efficient rescheduling 
through self-enforcing relational contracts if their partnership’s present discounted value 
(PDV) outweighs the total adaptation cost. Using the beginning of the 2008 crisis as an 
exogenous shock, we find that, consistent with the centrality of relational contracts in 
governing airline partnerships, outsourced routes in networks with higher total adaptation 
cost, and hence higher PDV, were more likely to remain outsourced to the same partner 
after the crisis.  
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1. Introduction 

A large and growing share of production in developed economies occurs across 

organizational boundaries – that is, via contracts between firms and their independent 

suppliers, distributors, and allies. While the strong incentives created by asset ownership 

enable independent partners to achieve efficiency gains (e.g., Grossman and Hart, 1986; 

Holmstrom and Milgrom, 1991, 1994)1, economists have noted that due to decentralized 

control rights and externalities, inter-firm relationships are plagued by coordination and 

adaptation problems. These arise because negotiating and contracting with independent 

partners ex post is costly (Klein et al., 1978; Hart and Moore, 2008; Hart and Holmstrom, 

2010), especially for decisions that must be frequently and rapidly adapted to market 

conditions (Simon, 1951; Williamson, 1971, 1991; Gibbons, 2005). 2  Due to the 

pervasiveness of these frictions, how an “institutional structure of production” (Coase, 

1992) based on inter-firm contracting is governed remains a continuing object of study.  

A prominent theoretical literature has argued that relational contracts – self-enforcing 

agreements rooted in the parties’ repeated interaction – are a solution to inter-firm 

frictions, as they can be used to coordinate, adapt and govern decisions that are too 

complex and elusive to be specified ex ante or negotiated ex post (e.g., Macauley, 1963; 

Williamson, 1991; Klein, 1996; Holmstrom and Roberts, 1998; Board, 2009; Baker et al., 

2002, 2011).3 In particular, relational contracts allow to implement management practices 

that make not only a firm’s employees, but also its independent suppliers, distributors and 

partners more productive, leading to persistent performance differences among 

technologically similar organizations (Gibbons and Henderson, 2013; Helper and 

Henderson, 2014). Yet, empirical evidence on the relevance and scope of inter-firm 

relational contracts is still scant and largely anecdotal. This paper contributes to fill the 

gap by providing one of the first in-depth empirical investigations in a developed 

                                                 
1 See Lafontaine and Slade (2007) for a comprehensive review of the empirical evidence. 
2 See Bajari and Tadelis (2001) for a model where the parties can facilitate ex post negotiation of well 
adapted decisions by appropriately specifying the default price terms.  
3 A parallel literature studies relational incentive contracts – that is, how an employer can commit to pay 
discretionary bonuses contingent on non-verifiable performance measures (see the review by Malcomson, 
2013).  
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economy of the importance of relational contracts for governing inter-firm transactions 

that require coordination and timely adaptation.    

We focus on the U.S. airline industry, which is an ideal setting for several reasons. 

First, as shown in Figure 1 below, major airlines have been outsourcing a large and 

growing share of flights and routes to independent regional partners over the last two 

decades.4 As discussed in section 2, this trend towards outsourcing is largely due to the 

cost advantage of independent regional airlines. Second, adverse weather and other 

unexpected contingencies threaten the viability of outsourcing because they require rapid 

adaptation and coordination of flight schedules that is costly to regional airlines and hard 

to specify contractually (for the sake of brevity, we will hereafter simply refer to this 

problem as “adaptation”). The difficulty of contracting for adaptation in this industry is 

most vividly illustrated by Forbes and Lederman (2009), who have shown that major 

airlines tend to vertically integrate the routes with more severe adaptation problems.  

 

 
  

                                                 
4 In parallel, the extent of vertical integration has diminished. See Figure A1 in appendix for the details for 
evidence on the evolution of the number of routes and flights operated by major airlines. 



   

4 
 

Figure 1. Major-Regional Relationships between 1993 and 2013. 

 

 

1.1. Overview of the empirical strategy and results 

We begin our study of relational contracting in airline outsourcing by documenting 

that managed adaptation occurs within partnerships rather than in arm’s-length 

transactions. We explore detailed data on landing slot exchanges following a slot 

rationing by the NYC airport authorities, and show that major airlines almost exclusively 

adapt to the rationing by exchanging slots with regional airlines in their network, despite 

the availability of slots from airlines outside the network. Moreover, slot exchanges 

within partnerships do not appear to be simple transactions but rather the product of 

complex coordination decisions taken by major airlines. In particular, the majors identify 

all slots that need to be moved to guarantee optimal adaptation of flight schedules 

following the slot rationing, and rapidly get their regional partners to exchange slots both 

with the major and with each other as needed. 

In the second part of our study we investigate how differences in the strength of 

relational contracting affect the stability of otherwise similar outsourcing networks. 
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Guided by a simple theoretical model, we show that when a major outsources a given 

route to multiple regionals before the 2008 industry-wide shock, the major is more likely 

to continue outsourcing that route after the shock to those regionals whose relationship 

with the major had a higher present discounted value (hereafter, PDV). As a placebo test, 

we replicate our study around the 2003-2006 period and find that absent a negative shock, 

routes in high and low PDV networks are equally likely to stay outsourced to the same 

partner. These results are robust to the inclusion of a rich set of fixed effects (at the 

airline, route, and airline-in-route levels), alternative measures of PDV, controls for 

relationship length, and alternative definitions of the majors’ post-shock outsourcing 

continuation decisions. Altogether, our results suggest that relationship PDV – as 

opposed to transaction/route characteristics, which are emphasized by previous studies 

(Forbes and Lederman, 2009, 2010) – is a key driver of outsourcing as an organizational 

form in this industry.  

An important contribution of our study is the measurement of the PDV of major-

regional partnerships before the 2008 shock. To measure the PDV, we rely on the general 

theoretical result that if two parties enter a relational contract, the self-enforcement 

incentive constraint requires that the PDV of their relationship be at least as large as their 

maximum present gains from reneging – that is, the reneging temptation is a lower bound 

for PDV (see MacLeod and Malcomson, 1989, Baker et al., 1994, 2002, and Levin, 2003, 

for classic theoretical statements of this principle, and Macchiavello and Morjaria, 2015, 

for an empirical application in a different context). In our setting, the maximum reneging 

temptation is given by a regional airline’s cost of adapting flight schedules as requested 

by the major in the worst case scenario where bad weather strikes all routes in the 

network. As shown by Forbes and Lederman (2009), average bad weather conditions on a 

route are an exogenous proxy for the regional airline’s adaptation costs on that route. 

Accordingly, we construct a proxy for pre-shock adaptation costs on all routes in the 

major-regional network by aggregating route-level weather conditions across the 

network’s routes. Relying on the incentive constraint lower bound condition discussed 

above, we then use this variable as a proxy for the partnership’s pre-shock PDV.  
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1.2. Contribution to the literature 

Early empirical works on governing inter-firm adaptation have focused on formal 

contractual provisions rather than relational contracts.5 For instance, Masten and Crocker 

(1985), and Crocker and Reynolds (1993), study how price adjustment provisions 

facilitate adaptation in procurement contracts. More recently, Arruñada et al. (2001), and 

Zanarone (2013), show that automobile distribution contracts allocate more control rights 

to manufacturers when the dealers have an incentive to free ride on the brand. 

There are few recent empirical papers exploring relational contracts between firms. 

We briefly discuss here those that are closest to ours in terms of objective or 

methodology, while referring readers interested in a more detailed review to Gil and 

Zanarone (2017a,b). Barron et al. (2017) study contracts between a movie exhibitor and 

multiple distributors, and show that the exhibitor is more likely to keep high-risk movies 

on screen when the PDV of its relationship with the distributor is higher. Similarly to us, 

they measure PDV through the distributor’s reneging temptation (proxied by the 

maximum discount ever granted to the exhibitor). Macchiavello and Miquel-Florensa 

(2017) study contracts between coffee buyers and mills in Costa Rica. They show that 

when good weather unexpectedly increases production, mills allocate the additional 

coffee to vertically integrated buyers and “relational” buyers – defined as those that have 

traded repeatedly with the mill – but not to “spot”, non-repeat buyers. Finally, Gil and 

Marion (2013) analyze subcontracting in California highway procurement, and show that 

when more future project auctions are announced by local authorities – and hence 

contractors and their subcontractors face a longer time horizon for their partnerships – 

contractors are able to post lower bids in current auctions. These papers focus on how 

relational contracts affect decisions and performance within a relationship, whereas we 

measure the importance of relational contracts to sustain outsourcing as a mode for 

organizing production. In terms of measurement and empirical methodology, we differ 

from Macchiavello and Miquel-Florensa in that we analyze variations in the actual PDV 

of relationships, rather than in past interactions. Moreover, we differ from Barron et al. 

                                                 
5 A parallel empirical literature studies revenue sharing and other formal contractual provisions that aim to 
create ex ante effort incentives in inter-firm agreements, rather than solving ex post coordination and 
adaptation problems. See Lafontaine and Slade (1997, 2013) for extensive reviews of this literature. 
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(2017) in that we exploit an exogenous shock to the value of relational contracts in 

outsourcing partnerships – namely, the 2008 financial crisis.  

Our paper also relates to empirical studies of self-enforcing agreements in developing 

countries. For instance, McMillan and Woodruff (1999) find evidence consistent with 

long-term informal relationships facilitating trade credit in Vietnam. More recently, in a 

study of Kenyan flower exports Macchiavello and Morjaria (2015) show that increases in 

the spot market price of flowers – a measure of the Kenyan exporter’s temptation to 

renege on its client – prompt the client to reduce the contracted quantity so that its 

agreement with the exporter remains self-enforcing. These studies analyze simple 

commercial transactions that require self-enforcement solely because they occur in weak 

judicial systems. In contrast, we focus on a country with reliable court enforcement (the 

U.S.), and analyze how self-enforcing informal agreements are nevertheless necessary to 

sustain complex inter-firm transactions (adaptation and coordination), as predicted by the 

theoretical literature on relational contracting.  

The rest of the paper is organized as follows. Section 2 describes the US airline 

industry and presents our descriptive evidence on the importance of informal 

relationships for solving coordination and adaptation problems in major-regional 

partnerships. Section 3 develops the theoretical model and derives our test for how 

relational contracts are necessary to sustain outsourcing. Section 4 describes our data. 

Section 5 presents the empirical methodology and the main results. Section 6 discusses 

robustness checks. Section 7 concludes. 

2. Contracting and governance in the U.S. airline industry 

2.1. The importance of outsourcing 

Major airlines fly routes using either their own planes or those of regional airlines. 

Regional airlines operate small planes, and may be independent or owned by a major 

airline. In our sample period, the relationships between major airlines and independent 

regional partners are governed by “capacity purchase agreements” (Forbes and Lederman, 

2007). Under such agreements, the regional supplies the planes and crews, while the 
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major sets flight schedules, sells tickets, and buys the fuel. The major is residual claimant 

of all revenues, while the regional receives a “rental” fee per flight from the major and is 

residual claimant of plane maintenance and labor costs. Outsourcing to independent 

regionals allows major airlines to save on labor costs because the regionals are not 

unionized, and their pilots and crew earn significantly lower wages than those at the 

major airlines. As a result, outsourcing is widespread in the industry. For instance, in a 

recent Wall Street Journal article, Carey (2016) reports that regional carriers operated 

44% of passenger flights in 2015, and were the sole providers of commercial flights with 

scheduled service to 65% of US airports. The increasing importance of outsourcing is 

also illustrated by Figure 1, as discussed earlier. 

2.2. Contracting frictions: the importance of adaptation 

Major airlines invest considerable efforts into designing flight schedules that allow 

passengers to reach their destinations on time. However, exogenous disruptions 

occasionally make it necessary to change the initial schedules. For instance, mechanical 

problems or local strikes may cause delays in connection flights. Most importantly, bad 

weather conditions may reduce the number of landing slots available to airlines, as airport 

authorities ration slots through Ground Delay Programs (GDPs hereafter). Under these 

disruptions, major airlines need to rearrange flight schedules to maximize the network’s 

profitability, which requires the cooperation of their regional partners under several 

dimensions. If landing of a flight operated by the major is delayed, the major may want 

the regional to delay a local flight used by the major’s passengers to connect to their final 

destinations. Relatedly, the major may want some regional partners to exchange landing 

slots (with the major or with each other) in order to allow the most profitable flights to 

land on time. Slots are exchanged through a centralized mechanism called SCS (Slot 

Credit Substitution), under which the major asks for an immediate time slot from any 

airline (including its partners), in exchange for a later slot (Schummer and Vohray, 2013). 

If an airline accepts the exchange request, it foregoes a landing slot and thus it delays or 

cancels one of its flights. 

These rescheduling and slot exchange decisions generate a potential conflict of 

interest between majors and their independent regional partners. On one hand, delayed 
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flights distort the schedules of airline employees, resulting in higher labor and logistics 

costs of which the regionals are residual claimants (Forbes and Lederman 2009). On the 

other hand, delaying flights operated for one major negatively affects the official 

performance record of regional airlines, and this may damage their future attempts to 

operate routes for other majors.  

Most importantly for our purposes, the conflicts between major and independent 

regional partners over adaptation decisions do not appear to be resolved via formal 

contracts, either ex ante or ex post. As a matter of fact, the SCS mechanism described 

above is purely voluntary – that is, it does not involve ex post monetary compensation 

between airlines. More broadly, efficient adaptation decisions may require ongoing 

cooperation by the regional’s employees, such as prompt removal of an aircraft, which is 

hard to contractually define and verify. Regarding the limitations of ex ante contracts, on 

one hand, it is prohibitively costly for major airlines to specify adaptation decisions 

contingent on all possible combinations of in-route bad weather, strikes, and other 

adverse conditions. On the other hand, allocating decision rights ex ante may also fail to 

elicit efficient adaptation. While capacity purchase agreements may assign to majors the 

formal right to reschedule their regionals’ flights,6 these rights cannot be used to enforce 

the non-contractible dimensions of the regional partner’s cooperation, as discussed above. 

Moreover, contracts do not appear to allocate to the majors the right to demand slot 

exchanges on in-network flights, and even if some contracts did so, the regionals may 

breach hoping that a court will “excuse” non-performance in the light of the unforeseen 

environmental changes (e.g., Schwartz, 1992; Bernstein, 1996).  

2.3. The importance of informal agreements 

Despite the conflicts of interests and contractual frictions discussed above, both 

anecdotal (through interviews with FAA officials) and quantitative evidence suggests that 

independent regionals informally cooperate with their major partners. On one hand, 

conversations with industry practitioners suggest that the majors informally compensate 

                                                 
6 See, for instance, the capacity purchase agreement between Continental Airlines and Express Jet Airlines 
signed on November 18, 2010, available at: http://agreements.realdealdocs.com/Purchase-and-Sale-
Agreement/CAPACITY-PURCHASE-AGREEMENT-2801133. 
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their regional partners for implementing schedule changes and supplying slots. In 

particular, majors informally count the flights cancelled by their regional partners as a 

consequence of requested slot exchanges as valid for the yearly minimum number of 

flights that, based on the outsourcing agreements, the regionals have to reach in order to 

receive the fixed operation fee. In other words, the major’s selective choice not to enforce 

the minimum clause in the contract ex-post seems to serve as an informal performance 

“bonus”.  

On the other hand, we provide systematic evidence consistent with informal 

contracting of adaptation decisions by examining the population of slot exchanges among 

U.S. commercial airlines under a GDP in the three NYC airports (La Guardia, Newark 

and JFK) on February 24th, 2016. Table 1 cross-tabulates the airlines receiving slots (top 

horizontal axis) against those supplying slots (left vertical axis), and details how often an 

airline in the vertical axis supplies a slot to an airline in the horizontal axis. In this table, 

airlines under a grey area in the horizontal axis are owned by a major (AAL, ENY, JIA 

and PDT are owned by American; DAL and FLG are owned by Delta; and UAL is 

United), so the grey areas represent slots received by a major-owned airline. Then, 

numbers in bold font denote slots exchanges under integration because they indicate how 

many times an airline supplies slots to itself. For instance, AAL supplied slots 195 times 

(far right total number) – 84 times to itself; 2, 6 and 7 times to its owned regionals ENY, 

JIA, and PDT, respectively; and 18, 25 and 37 times to its independent regional partners 

AWI, LOF, and RPA, respectively. AAL also supplied some slots to other major airlines 

– specifically, 9 times to Southwest, 6 times to Delta and its regional partners, once to Jet 

Blue, and never to United. On the receiving end, AAL benefited 120 times from slots 

yielded by other airlines – 84 times by AAL itself, 7, 8 and 2 by its fully owned regionals, 

23 by AWI, 10 by LOF, 32 by RPA, 12 by Delta and its partners, 4 by United and its 

partners, and once by Jet Blue. 

Consistently with Forbes and Lederman (2009, 2010), we observe that vertical 

integration facilitates adaptation, as slot exchanges within a major airline are more 

common than between majors or between majors and regionals that are not the major’s 

partners. However, in contrast with Forbes and Lederman’s (2010) view that “reputations 

for cooperation in this setting may be difficult to establish”, Table 1 suggests that 



   

11 
 

relationships with outsourcing partners are also a key source of adaptation under adverse 

weather. In particular, most slot exchanges are located in the large-box diagonal 

composed by the American Airlines network, Delta network, and United network, 

implying that most of the slots supplied by independent regional airlines (the numbers not 

in bold) go to their major partners (and vice versa), or to other regional partners of those 

majors.7 

<<Place Table 1 here>> 

The institutional features and evidence presented above document the existence of 

important contracting frictions (i.e., adaptation) in airline outsourcing, and the importance 

of relationships for governing such frictions. In the next sections, we formally model 

relational contracting as a solution to the adaptation problem, and use the model’s 

predictions to test for the importance of relational contracts in sustaining outsourcing 

agreements between major and regional airlines. 

3. A model of relational contracting in the airline industry 

There are a major airline, M, and an independent regional airline, R, which may 

operate up to ܰ routes on M’s behalf. Both M and R are risk-neutral, live forever, and 

discount next-period payoffs by the factor ߜ ∈ ሾ0,1ሿ. Time evolves in discrete periods. 

We begin by describing the stage game in the first period, ݐ ൌ 1.  

Outsourcing. M decides which of the ܰ routes to outsource to R. We write ݄௜ଵ ൌ 1 if 

route ݅ is outsourced in period 1, and ݄௜ଵ ൌ 0 otherwise. If ݄௜ଵ ൌ 1, M offers to R a fixed 

fee, ݎ௜ଵ ∈ Թ, in exchange for operating the route. If R accepts, M pays the fee, and the 

game moves to the next stage of period 1. If ݄௜ଵ ൌ 0, or if R rejects M’s offer, M receives 

payoff ߨ௜ଵ ≡ ݉௜
଴, R receives zero, and the game moves to the next period, ݐ ൌ 2. We 

may interpret ݉௜
଴  as the maximum between M’s payoffs from not serving the route, 

                                                 
7 Table A1 in Appendix C provides a detailed description of how slot exchanges occur by reporting 
examples of slot exchange requests’ processing during a GDP that took place on February 26th, 2016, at the 
NYC airport of La Guardia (LGA).  
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operating the route itself 8, or outsourcing the route to an unmodeled suboptimal partner 

(R being the most efficient available outsourcing partner).  

State. After the outsourcing decisions have been made, M and R observe on any given 

route ݅  the weather, ݓ௜ଵ ∈ ሼ0,1ሽ, where ݓ௜ଵ ൌ 1 denotes bad weather, ݓ௜ଵ ൌ 0 denotes 

good weather, the probability of bad weather is ݌௜ ∈ ሾ0,1ሿ, and we assume for simplicity 

that weather realizations are independent across routes and periods. A “state” is a joint 

realization of weather on all the ܰ routes, that is, a ሼݓଵ, ,ଶݓ …  ௡ሽ ܰ-uple out of the setݓ,

of all possible joint weather realizations. 

Adaptation. After observing the state, R chooses the adaptation decision (for instance, 

giving a slot to M), denoted as ݀௜ଵ ∈ ሼ0,1ሽ, at cost ݀௜ଵܿ௜. If ݀௜ଵ ൌ 1, M may pay a bonus, 

ܾ௜ଵ ∈ Թ, to compensate R’s adaptation cost.  

Payoffs. Finally, M receives gross profit ݉௜ሺ݀௜ଵ, ௜ଵሻݓ  from any given outsourced 

route ݅, given the realized in-route weather and R’s adaptation decision. 

At the beginning of the subsequent period, ݐ ൌ 2, M and R may observe a negative 

shock, ݖ ∈ ሼ0,1ሽ, where ݖ ൌ 1 denotes the shock, and ݖ ൌ 0 its absence. If ݖ ൌ 0, the 

stage game from period 1 is repeated identically forever after. If ݖ ൌ 1, the stage game is 

also repeated, except that now M’s gross profit from outsourcing route ݅ permanently 

drops to ሺ1 െ ,ሻ݉௜ሺ݀௜௧ߙ ௜௧ሻݓ , and M’s outside option permanently drops to ߨ௜௧ ≡

ሺ1 െ ሻ݉௜ߙ
଴, ݐ ൒ 2.9 To derive testable predictions, we assume the size of the shock, ߙ ∈

ሺ0,1ሻ, is a random variable with pdf ݂ሺ∙ሻ and cdf ܨሺ∙ሻ that M and R observe before 

making the period 2 outsourcing decisions.10 Consistent with the unexpected nature of the 

2008 crisis we analyze in the empirical section, we assume the shock ݖ is unlikely, in the 

sense that ܲݎሺݖ ൌ 0ሻ ൎ 1, and ܲݎሺݖ ൌ 1ሻ ൎ 0. Accordingly, we refer to the no-shock 

scenario, ݖ ൌ 0, as “normal times”. 

                                                 
8 In this case, ݉௜

଴ may include the higher labor costs under integration (the outsourcing labor costs being 
normalized to zero). 
9 The model’s predictions would be unchanged if we also allowed the shock to reduce the discount factor ߜ. 
10 In practice, some major airlines may sign multi-year outsourcing agreements with their regionals, which 
would prevent discretionary termination of a route for a certain number of years. Our model captures that 
scenario provided that ݐ is not interpreted as a year, but rather as the duration of an outsourcing agreement. 
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Let ܹ௜ be the set of states where bad weather occurs on route ݅ (ݓ௜ ൌ 1), and let ߣ௛ 

be the probability that a particular state ݄ ∈ ܹ௜ is realized, such that ∑ ௛ߣ ൌ ௜௛∈ௐ೔݌ . In 

particular, let ݇ be the state where bad weather strikes route ݅ and all the other routes 

௜ݓ) ൌ ௝ݓ ൌ 1 for all ݆ ് ݅ ). We maintain the following assumptions throughout the 

model: 

A1: ሺ1 െ ሻ݉௜ሺ1,1ሻݖߙ െ ܿ௜ ൐ ሺ1 െ ሻ݉௜ሺ0,1ሻݖߙ and ሺ1 െ ሻ݉௜ሺ0,0ሻݖߙ ൐ ሺ1 െ

ሻ݉௜ሺ1,0ሻݖߙ െ ܿ௜ for all ݅,  .ݖ

A2: ߣ௞݉௜ሺ0,1ሻ ൅ ∑ ௛ሾ݉௜ሺ1,1ሻߣ െ ܿ௜ሿ௛∈ௐ೔

௛ஷ௞
൅ ሺ1 െ ௜ሻ݉௜ሺ0,0ሻ݌ ൏ ݉௜

଴ for all ݅. 

A3: ݓ௜௧,݉௜ሺ݀௜௧, ,௜௧ሻݓ ܿ௜ are observable but non-verifiable for all ݅ and ݐ. 

A4: ݀௜௧ is observable but non-verifiable, for all ݅ and ݐ. 

 A1 implies that both in normal times and after a shock, adaptation is efficient if, and 

only if weather on the route is bad. A2 implies that the probability of having bad weather 

on all routes is high enough, so if adaptation cannot be secured in such a state, it is 

efficient not to outsource a route. As discussed later on, this assumption will play a role 

in characterizing the optimal relational contract. We interpret A2 as the joint result of the 

intense competition M may face from other airlines, and to the well documented fact that 

major airlines vertically integrate into poorly performing routes (Forbes and Lederman 

2009). A3 is standard in the incomplete contracting literature, and implies that state-

contingent adaptation is ex ante non-contractible. Finally, A4 implies that consistent with 

the institutional features discussed in section 2, efficient adaptation is formally non-

contractible even ex post, after weather is observed (e.g., Baker et al. 2011). 

Before proceeding with the analysis, it is useful to write M’s and R’s expected 

payoffs on a given route ݅ at the beginning of period ݐ, gross of any monetary payments, 

and conditional on no shock occurring, and on efficient adaptation decisions: 

ெ௜ሺ݄௜௧ሻߨ ≡ ݄௜௧ሾ݌௜݉௜ሺ1,1ሻ ൅ ሺ1 െ ௜ሻ݉௜ሺ0,0ሻሿ݌ ൅ ሺ1 െ ݄௜ሻ݉௜
଴,   (1) 

ோ௜ሺ݄௜௧ሻߨ ≡ െ݄௜௧݌௜ܿ௜.        (2) 
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Accordingly, the contribution of route ݅ to total expected surplus in period ݐ is: 

௜ሺ݄௜௧ሻݏ ≡ ெ௜ሺ݄௜௧ሻߨ ൅  ோ௜ሺ݄௜௧ሻ.       (3)ߨ

3.1. Relational contracts 

If M and R relied on a formal, spot market contract, M would pay no bonus, and 

hence R would never adapt (ܾ௜௧ ൌ ݀௜௧ ൌ 0 for all ݅ and ݐ), because adaptation decisions 

and bonuses contingent on such decisions are non-contractible. But then, our assumption 

A2 implies that M would not outsource any routes to R, and as a result, M’s profit from 

route ݅ would be ݉௜
଴ in period ݐ ൌ 1 and ሺ1 െ ሻ݉௜ݖߙ

଴ in subsequent periods, while R’s 

profit would be zero in all routes and periods. 

M and R may improve on the spot market by entering a relational contract, whereby 

R promises to execute the efficient state-contingent decision schedule, ݀௜௧
∗ ሺݓ௜௧ሻ ≡  ௜௧, onݓ

all the outsourced routes and in all periods, in exchange for the quasi-rents from 

continuing the relationship with M. Formally, a relational contract is a complete plan for 

the relationship between M and R, which specifies, for any history of play up to any 

given period: (i) outsourcing decisions and upfront fees as a function of whether a shock 

has occurred, (ii) adaptation decisions as a function of weather, and (iii) the discretionary 

bonuses M has to pay R conditional on adaptation decisions. We say that a relational 

contract is self-enforcing if it describes a SPE of the repeated game. Following Levin 

(2002), we assume that if M and R enter a relational contract, deviations on one route 

(that is, an unexpected outsourcing decision or fee, R’s failure to adapt in the presence of 

bad weather, or M’s failure to pay the bonus after R adapts) are punished through 

reversion to the spot market on all the outsourced routes, as that is the worst credible 

punishment. Given perfect public monitoring and the absence of liquidity constraints, the 

optimal contract is stationary, in the sense that conditional on the state, outsourcing and 

adaptation decisions and payments on a route are the same in every period (MacLeod and 

Malcomson 1989; Levin 2003). Accordingly, we hereafter drop all time subscripts. 
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3.2.1. Normal times (ࢠ ൌ ૙) 

Consider M’s outsourcing decision at time ݐ ൌ 1 , or in any subsequent period 

provided that no shock has occurred at time ݐ ൌ 2 . Given assumption A2 (that is, 

outsourcing of a route is optimal only if efficient adaptation is expected in all states), it is 

straightforward to prove the following result. 

Lemma 1: M’s optimal relational contract is given by a vector of stationary 

outsourcing decisions, ݄∗ሺݖ ൌ 0ሻ ≡ ൫݄ଵ
∗ሺݖ ൌ 0ሻ, … , ݄௡∗ ሺݖ ൌ 0ሻ൯, which solves: 

∑୦ሼݔܽ݉ ௜ሺ݄௜ሻ௜ݏ ሽ,  

subject to the following self-enforcement constraint: 

∑ ݄௜ܿ௜௜ ൑ ఋ

ଵିఋ
∑ ሾݏ௜ሺ݄௜ሻ െ ݉௜

଴ሿ௜ .       (SE) 

Proof: in Appendix A. 

If the relationship’s PDV on the right hand side of (SE) is too small, efficient 

adaptation on the outsourced routes cannot occur, so M will need to outsource fewer 

routes to R in order to keep the relational contract within its self-enforcing range. 

Inefficient outsourcing at low PDV levels is the cost of the limited enforcement of 

adaptation: M does not outsource a route despite the potential efficiency gains, because if 

M outsourced the route, its profits would be even lower than under alternative solutions 

(for instance, vertical integration) due to low adaptation.11 The fact that outsourcing may 

reduce adaptation is consistent with the evidence in Forbes and Lederman (2010).  

To further facilitate our analysis we define the “stress” that outsourcing route ݅ 

imposes on condition (SE), which we label as “price” of outsourcing the route: 

௜ݍ ≡ ܿ௜ െ
ఋ

ଵିఋ
∑ ሾݏ௜ሺ1ሻ െ ݉௜

଴ሿ௜ . 

We make the following assumption on the distribution of prices across routes. 

                                                 
11 In a richer model, there may be additional costs of limited enforcement. For instance, if adaptation were 
privately monitored, so that M cannot perfectly assess R’s compliance with the scheduled adaptation 
decisions, there may be costly temporary breakdowns of the major-regional relationship even at high levels 
of the PDV (e.g., Li and Matouschek, 2013). 
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A5: A route’s surplus decreases in price: ݏ௜ሺ1ሻ െ ݉௜
଴ ൐ ௝ሺ1ሻݏ െ ௝݉

଴ ↔ ௜ݍ ൏ ݅ ,௝ݍ ് ݆. 

Assumption A5 ensures that the distribution of routes is “non-degenerate,” in the 

sense that there are no extreme inconsistencies between expected and actual adaptation 

costs. Given A5, the optimal relational contract has a very intuitive structure: M begins 

by outsourcing the lowest price route (which is assumed to have negative price), then 

continues outsourcing additional routes moving up the price ranking until either (SE) 

binds, or the first best is achieved (that is, all routes with positive surplus are outsourced). 

3.2.2. A negative shock (ࢠ ൌ ૚) 

Suppose now that a negative shock occurs at time ݖ ൌ 2, so that the value of routes 

drops permanently, and consider M’s post-shock outsourcing decision. Denote the post-

shock reduction in the net expected profits from outsourcing route ݅ as: 

݇௜ሺߙሻ ≡ ௜݉௜ሺ1,1ሻ݌ሾߙ ൅ ሺ1 െ ௜ሻ݉௜ሺ0,0ሻ݌ െ ݉௜
଴ሿ. 

Then, replicating the previous analysis, M’s post-shock outsourcing decision vector, 

݄∗ሺݖ ൌ 1ሻ ≡ ൫݄ଵ
∗ሺݖ ൌ 1ሻ, … , ݄௡∗ ሺݖ ൌ 1ሻ൯, solves:  

∑௛ሼݔܽ݉ ሾݏ௜ሺ݄௜ሻ െ ݉௜
଴ െ ݇௜ሺߙሻሿ௜ ሽ, 

subject to a tighter self-enforcement constraint than prior to the shock: 

∑ ݄௜ܿ௜௜ ൑ ఋ

ଵିఋ
∑ ሾݏ௜ሺ݄௜ሻ െ ݉௜

଴ െ ݇௜ሺߙሻሿ௜ .      (SE’)  

Because (SE’) is tighter than (SE), M may have to stop outsourcing some routes that 

were optimally outsourced before the shock—that is, the pre-shock outsourcing decision, 

݄∗ሺݖ ൌ 0ሻ, may violate (SE’). Below we analyze under what conditions M’s outsourcing 

decisions survive a shock. 

3.2.3. Survival of route outsourcing decisions after a shock  

Suppose a shock occurs. If it has low intensity (ߙ ൎ 0 ), there is no change in 

outsourcing decisions: ݄∗ሺݖ ൌ 0ሻ ൌ ݄∗ሺݖ ൌ 1ሻ. As ߙ grows, SE’ becomes tighter until 

eventually, the pre-shock outsourcing decisions are no longer self-enforcing, and M is 

forced to stop outsourcing some routes. In that case, given A5, M will stop outsourcing 
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the highest price route, and then drop additional routes moving down the price ranking 

until (SE’) is satisfied. At the limit, if ߙ ൎ 1, M will stop outsourcing all the pre-shock 

routes. Since the shock is proportional and hence does not affect the price ranking of 

routes, this analysis implies that by continuity, for any given route outsourced before the 

shock, there is a critical shock intensity such that M stops outsourcing that route after the 

shock if, and only if ߙ is above the critical level.  

(SE’) also implies that under reasonable conditions, the pre-shock outsourcing 

decisions are more likely to be self-enforcing after the shock the larger the relationship’s 

pre-shock value: ܸ∗ ≡ ఋ

ଵିఋ
∑ ௜൫݄௜ݏൣ

∗ሺݖ ൌ 0ሻ൯ െ ݉௜
଴൧௜ . Define a proportional variation in 

ܸ∗ as one that preserves the price ranking across routes (for instance, a variation in ߜ; or 

a variation in the value, or in the adaptation cost, of all routes by a common factor). Our 

analysis above implies that given a proportional increase in ܸ∗ , the critical shock 

intensity that would force M to stop outsourcing route ݅ will also increase, for every ݅. 

These results are summarized by the following lemma. 

Lemma 2: For any route outsourced to R in normal times, ݄௜
∗ሺݖ ൌ 0ሻ ൌ 1, there is 

critical shock intensity ߙ௜
∗ , such that M continues outsourcing the route after the 

shock, ݄௜
∗ሺݖ ൌ 1ሻ ൌ 1, if, and only if ߙ ൑ ௜ߙ

∗. Moreover, proportional increases in the 

network’s pre-shock value ܸ∗ increase the route survival threshold, ߙ௜
∗, for all ݅. 

Since ߙ is a random variable, it immediately follows from Lemma 2 that proportional 

increases in ܸ∗ increase the probability that a given outsourced route survives the shock. 

Lemma 3: Proportional increases in the network’s pre-shock value ܸ∗ increase the 

probability that M’s decision to outsource route ݅  survives the shock: 

௜ሻ݈ܽݒ݅ݒݎݑሺܵݎܲ ≡ ሺ݄௜ݎܲ
∗ሺݖ ൌ 1ሻ ൌ 1|݄௜

∗ሺݖ ൌ 0ሻ ൌ 1ሻ ൌ ௜ߙሺܨ
∗ሻ.  

The empirical literature has found it challenging to test predictions like Lemma 3 

because typically, the present discounted value of a partnership (ܸ∗ in our model) cannot 

be observed (Gil and Zanarone, 2017a). In our context, however, (SE) implies that if M 

and R have entered a relational contract, there is a close link between ܸ∗ , the 
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relationship’s PDV, and ܥ∗ ≡ ∑ ݄௜
∗ܿ௜௜ , R’s aggregate adaptation cost before the shock, 

which is potentially observable. In particular, it follows directly from (SE) that ܥ∗ is a 

lower bound for ܸ∗, that is: ܸ∗ ൒ ∗ܸ) Thus, if (SE) binds in equilibrium .∗ܥ ൌ  any ,(∗ܥ

increase in the pre-shock aggregate adaptation cost ܥ∗  must be matched by a 

corresponding increase in the relationship’s value, ܸ∗. Given Lemma 3, this implies that 

the larger ܥ∗, the larger the probability that a route outsourced before the shock will be 

still outsourced after the shock. 

Proposition: If M and R enter a relational contract in normal times and the self-

enforcement constraint of such contract is binding (ܸ∗ ൌ  the probability that an ,(∗ܥ

outsourced route ݅ will remain outsourced after the shock, ܲݎሺ݈ܵܽݒ݅ݒݎݑ௜ሻ, increases 

in ܥ∗, for every ݅. 

In the next sections, we take this testable prediction to the data. 

4. Data Description 

4.1. Data  

Our data is the result of combining several data sets. We obtained airline ticket and 

flight information from DB1B, and ticket, market, and coupon data from RITA. Both 

data sets are provided by the Bureau of Transportation Statistics, and contain information 

on the ticketing carriers, as well as on the operating carriers and reporting carriers of each 

flight.12 We complement these data with information on aircraft type, operators, flight 

frequency and other route and flight characteristics (seats, number of flights,  group of 

aircraft, distance flown, number of total passengers, and dummy for freighter flights), 

which we obtained from the T100-B41 and T100-B43 airline-aircraft data from the U.S. 

Department of Transportation. To merge the T100 and DB1B databases, we checked the 

identity of the ticketing, operating and reporting carrier of each flight. 

We drop the freighter flights and the flights that have zero passengers from our data. 

We take the ticketing carrier identifier from DB1B market data for two reasons: first, to 

                                                 
12 A ticketing carrier is the airline that sells airtickets to customers, whereas operating and reporting carriers 
are those operating the flight and reporting flight characteristics to the Bureau of Transportation Statistics. 
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identify and match with the operator from other data sets like DB1B ticket, coupon, and 

T100-B43, and second, to avoid overlooking code-sharing between airlines. We correctly 

identify contracts between major and regional airlines by combining the merged DB1B 

and T100 datasets described above with data from the Regional Airline Association 

(RAA), which provides the ownership type of each regional airline as well as the list of 

regional airlines, distinguished from charter airlines. We then merge this information 

with weather data on rainfall, snowfall and the number of freezing months per year-

quarter (aggregated to the year-quarter level) from the National Oceanic & Atmospheric 

Administration.  

By combining all these data sources, we obtain a rich data set that contains 

information at the major/regional/route/quarter and major/regional/quarter levels, 

respectively. Following Forbes and Lederman (2009), we define a route as a set of one or 

more nonstop flights connecting the same two airports, irrespective of the flights’ 

direction. 

4.2. Measures 

The purpose of our empirical analysis is to test our model’s proposition—that is, 

whether following a negative economic shock that reduces the PDV of major-regional 

partnerships and hence puts relational contracts under stress, U.S. major airlines were 

more likely to continue outsourcing routes to regional networks with higher pre-shock 

aggregate adaptation cost, and hence higher PDV.  

We focus on the exogenous shock represented by the financial crisis following the 

collapse of Lehman Brothers in September 2008. Accordingly, we define as our main 

dependent variable a dummy named “Survival,” which takes value 1 if a given route 

operated by a regional airline on behalf of a major in the fall quarter of 2006 (two years 

before the shock) was still operated by the same regional, on behalf of the same major, in 

the fall of 2010 (two years after the shock), and value zero otherwise.13 Note that if a 

regional did not operate a given route in 2006, our survival variable excludes that route 

from the data. 

                                                 
13 See the Data Appendix for details on our treatment of airline mergers and exits during the 2006-10 period.  
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We provide graphical evidence on how the industry adjusted to the shock in Figure 1 

above. Figure 1 shows that after the shock in 2008, the number of major-regional 

outsourcing relationships in the U.S. decreased sharply, while the number of routes and 

flights outsourced to regionals clearly increased. This evidence suggests that while the 

2008 shock did not stop the trend towards outsourcing, as opposed to vertical integration, 

as the preferred mode for organizing regional air transportation, it did push the majors to 

revise their outsourcing decisions and concentrate outsourced routes and flights into 

fewer regional partners. 

<<Place Table 2 here>> 

Table 2 provides summary statistics for both the dependent and independent variables 

used in our study. Statistics are reported for both our full sample (6516 major-regional-

route observations), and a restricted sample of 2008 RAA major-regional relationships 

(3593 observations). While the former captures all routes in which a major airline uses a 

regional except for code-sharing agreements, the latter restricts attention to major-

regional agreements that were classified as such by the Regional Airline Association 

(RAA) in 2008. Note that survival probability is much higher in the RAA sample, with 

76.5% routes staying outsourced to the same partner after the shock (relative to 59.3% in 

the full sample). 

To construct our key explanatory variables (measures of pre-shock adaptation costs in 

a regional network), we proceed in three steps. First, we construct measures of adaptation 

costs on a route. Following Forbes and Lederman (2009), we use the historical average of 

adverse weather conditions on a route – namely, inches of snow (Route snow), inches of 

precipitation (Route rain), and the number of freezing months (Route # freezing months) 

as a proxy for the lack of clear skies, all computed at the route’s airport for which they 

are maximum – as exogenous proxies for the adaptation costs faced by the regional when 

bad weather hits that route.14 The underlying idea is that in routes characterized by more 

severe weather conditions, the major airline will more often require the regional to 

reschedule flights and exchange slots, thus inflating the regional’s delays and 

                                                 
14 Following Forbes and Lederman (2009), we take the historical average of precipitation and the number 
of freezing months between 1971 and 1995, and the historical average of snowfall between 1971 and 2000.  
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cancellations and hence its personnel and maintenance costs. As a second step, we add 

each of our three weather variables across all the routes flown by a regional for a major 

airline in 2006, obtaining total network weather measures. Finally, we decompose these 

network measures into their averages (Avg. network snow, Avg. network rain, and Avg. 

network # freezing months, respectively), and the number of routes in each network. This 

decomposition will allow us to empirically analyze variations in the value of relationships 

across networks of equal size.  

As network-level control variables we include measures of the depth of major-

regional relationships—namely, the number of routes outsourced by a major to a regional 

in 2006 (#routes in network), and the average dollar value of each route outsourced (Avg. 

value route). Additionally, we include route-level controls that may drive outsourcing 

decisions regardless of network-level adaptation costs. Specifically, following Forbes and 

Lederman (2009), we include a dummy for whether either of the endpoints in a route is a 

hub for the major airline (Hub), and a dummy for whether either airport is slot-controlled 

(Slot-controlled airport).15 These variables may capture the extent to which a given route 

is embedded in the major’s network. In turn, a route’s embeddedness increases its 

strategic importance and the need for adaptation on the route, both of which may affect 

outsourcing decisions. We also include the total number of flights operated by regional j 

in route r for major i (# flights), and the average value of those flights (Avg. value flight).  

In the appendix we complement Table 2 by providing information on the thickness 

and spread of the outsourced regional networks of major airlines (Table A2), and on 

differences in average weather across networks (Table A3). Table A2 tabulates the 

number of routes outsourced by each of the major airlines to each of the regional airlines 

in our data set. Note that the number of regional partners, as well as the number of 

outsourced routes, varies across major airlines. The same pattern appears to be true from 

the regional perspective. While most regionals work for all majors, some regionals tend 

to concentrate their operations on one or two major airlines.16  

                                                 
15 Forbes and Lederman (2009) also control for the number of flights at the route’s largest and smallest 
endpoints. While we do not show these results here for space reasons, we have run all regressions in the 
paper with those controls. The results, available upon request, are similar to those presented in the paper. 
16 See Figure A2 in appendix for an illustration of the networks of outsourced routes recently operated by 
regional airline SkyWest for several major airlines. 
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Table A3 presents summary statistics for the average network weather variables for 

each major airline in 2006. The table shows that variation in network weather variables 

(snow, rain, and number of freezing months) exists even within a major airline across its 

different regional networks. We exploit this variation in our empirical analysis. 

5. Empirical Methodology and Main Results 

5.1 Empirical Methodology 

Our model predicts that the likelihood that a relational contract outsourcing a given 

route was still self-enforcing after the 2008 shock – and hence that the major could keep 

outsourcing that route to the same regional partner – should increase in the network’s pre-

shock PDV, which under a binding enforcement constraint equals its pre-shock total 

adaptation cost. 

The baseline specifications testing our hypothesis are linear probability models, 

estimated by OLS, such that:17 

௜௝௥݈ܽݒ݅ݒݎݑܵ ൌ ߙ ൅ ௜௝ݐݏ݋ܥܹܶܰߚ ൅ ߛ ௜ܺ௝௥ ൅ ௜ߜ ൅ ௥ߠ ൅  ,௜௝௥ߝ

where ܹܰܶݐݏ݋ܥ௜௝ is the aggregate adaptation cost across all routes jointly operated by 

major i and regional j in 2006, before the shock. As discussed earlier, we decompose the 

aggregate adaptation cost into the number of routes per network and the avg. adaptation 

cost per route, as measured by the average weather conditions per route. Moreover, since 

we do not directly observe ௜௝ݐݏ݋ܥܹܶܰ	 , we use our measures of aggregate network 

weather as a proxy for ܹܰܶݐݏ݋ܥ௜௝. Xijr is a vector of observable characteristics of the ij 

relationship in route r in 2006, which includes relationship-level characteristics, route-

level adaptation cost, and even regional airline, major*route, and regional*route fixed 

effects. The specification above also explicitly includes ߜ௜ and ߠ௥ as major airline, and 

route fixed effects, respectively. As discussed below, this rich set of fixed effects allows 

us to control for key potential sources of endogeneity and selection bias resulting from 

                                                 
17 We choose to test our prediction with linear probability model and OLS because the number of fixed 
effects increases rapidly and so we want to avoid changes in methodology throughout the empirical results. 
We use probit models for these specifications in Table A6 in Appendix C with no or few fixed effects. Our 
results are qualitatively similar. 
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unobservable components that are common across routes and across airlines within a 

route. Finally, ߝ௜௝௥ is a normally distributed and iid error term. 

Under the relational contracting hypothesis, we expect ߚ ൐ 0. In contrast, if there 

were no relational contracting on adaptation decisions, or if the U.S. airline industry and 

the 2008 shock significantly departed from our model’s assumptions, a network’s 

adaptation cost would not be a lower bound for its PDV, and thus we would expect ߚ ൎ 0. 

We are consistently estimating ߚ if the impact of the 2008 financial crisis on the survival 

of route outsourcing decisions is uncorrelated with route characteristics that determined 

the formation of major-regional networks prior to the shock, in 2006. Formally, let 

௜௝ݎ݄݁ݐܹܽ݁  be our vector of network weather variables. Then, under the relational 

contracting hypothesis and our specification above, our identification assumption is that 

௜௝൯ݎ݄݁ݐܹܽ݁,௜௝௥ߝ൫ݒ݋ܿ ൌ 0.  

While there is no apparent reason to believe that routes in regional networks with 

worse weather were less likely to be affected by the financial crisis relative to routes in 

networks with better weather, we can think of three potential reasons why it may be that 

௜௝൯ݎ݄݁ݐܹܽ݁,௜௝௥ߝ൫ݒ݋ܿ ് 0. The first reason is selection. Our model suggests that major-

regional relationships with high PDV are more likely to select bad weather routes. While 

this endogenous selection enables us to use adaptation costs, proxied by bad weather, as a 

measure of the PDV of major-regional relationships, it may also bias our estimates if it 

occurs in anticipation of the 2008 financial crisis shock. Our specification deals with this 

potential problem by focusing on outsourcing relationships two years before the shock, so 

that observed regional networks are unlikely to be formed in the anticipation of the 2008 

financial crisis. An additional source of selection is that majors that have developed more 

efficient protocols for coordinating adaptation – and hence whose routes are more likely 

to stay profitable and self-enforcing after a shock – may also tend to select the worst 

weather routes. We control for this problem by including major airline fixed effects in 

our regressions.18 A last source of selection is the fact that our sample is only composed 

                                                 
18 In this industry, regional airlines specialize in transportation and plane and crew management, while 
major airlines design and coordinate flight schedules. Thus, it is highly unlikely that coordination protocols 
depend on the regional partner (but see our regional fixed effect specifications) or on the specific major-
regional dyad. 
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by outsourcing relationships in 2006, and therefore leaves out the routes that majors 

chose not to outsource because of strategic market-specific characteristics or the lack of 

valuable partners. As discussed in section 5.3, we use major*route and regional*route 

fixed effects to deal with such concerns. 

The second potential reason why it may be that ܿݒ݋൫ߝ௜௝௥,ܹ݁ܽݎ݄݁ݐ௜௝൯ ് 0 is that our 

measures of network-level weather may be correlated with route-level weather. In turn, a 

route with worse weather may be more likely to be cut after the shock because it has 

higher adaptation costs and hence it is less profitable. To control for this second source of 

endogeneity, we include route-level weather, as well as route fixed effects, in our 

baseline regressions. 

A third and final reason for ௜௝൯ݎ݄݁ݐܹܽ݁,௜௝௥ߝ൫ݒ݋ܿ ് 0  is measurement error. 

௜௝ݎ݄݁ݐܹܽ݁  is a proxy for ܹܰܶݐݏ݋ܥ௜௝ , the total cost of adaptation in the network of 

major i and regional j, which according to our relational contracting model is bounded 

above by the PDV of the relationship between i and j (ܲܦ ௜ܸ௝ hereafter). This means that 

ܦܲ ௜௝ is measuringݎ݄݁ݐܹܽ݁ ௜ܸ௝ with error. However, as long as the measurement error 

associated with the gap between ܹ݁ܽݎ݄݁ݐ௜௝ and ܹܰܶݐݏ݋ܥ௜௝, and with the gap between 

ܦܲ ௜௝ andݐݏ݋ܥܹܶܰ ௜ܸ௝, is orthogonal to and uncorrelated with other observed network 

characteristics, it merely biases our estimates toward zero. Thus, statistically significant 

coefficients on ܹ݁ܽݎ݄݁ݐ௜௝ would be a lower bound of the true estimate, and hence would 

support our hypothesis. 

Summing up, our identification assumption is that conditional on route and network 

characteristics in 2006, in the absence of a shock the profitability of routes should be 

unrelated to differences in adaptation costs across the networks to which those routes 

belong. After the 2008 negative shock, and if relational contracting matters, we should 

find that major airlines are more likely to preserve outsourced routes that belong to 

regional networks with higher average adaptation costs, and hence higher PDV, because 

the relational contracts that enable outsourcing are more likely to stay self-enforcing in 

those routes.  
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5.2. Main Results 

Table 3 below reports the effect of pre-shock network weather conditions—our key 

explanatory variable – on the survival of route outsourcing decisions following the 2008 

shock. Our independent variables are divided by their standard deviation in order to 

facilitate the interpretation of coefficients. We report the results without fixed effects in 

column 1, those with major airline fixed effects in column 2, and those with regional 

airline fixed effects in column 3. Since our theoretical predictions on post-shock 

outsourcing decisions hold the route constant, in columns 4, 5 and 6 we add route fixed 

effects to the regressions from the former three columns. Finally, in column 7 we replace 

major airline and route fixed effects with major-in-route fixed effects, and in column 8 

we replace regional airline and route fixed effects with regional-in-route fixed effects. In 

these last two specifications we exploit the fact that a given major may outsource the 

same route to multiple regionals, and a given regional may operate the same route for 

multiple majors. All standard errors are clustered at the major-regional dyad and route 

level. 

<<Place Table 3 here>> 

 The results are largely consistent with our relational contracting hypothesis. 

Routes outsourced to regional partners whose network is characterized by higher 

precipitation and more abundant snow, and by a lower number of freezing months and 

hence less clear skies, are more likely to stay outsourced to the same partner after the 

2008 financial crisis. The effect of network weather is economically significant. Take, for 

example, column 2 in Table 3, which includes major airline fixed effects. A one standard 

deviation increase in pre-shock average snow (14 inches of snow) or rain (123 inches) 

across the outsourced networks of a given major increases the survival probability of 

route outsourcing decisions by 15 and 14 percentage points, respectively. Similarly, a one 

standard deviation decrease in the number of freezing months (half a month) increases 

the probability of survival by 7 percentage points. Altogether, these results indicate that 

major airlines are more reluctant to revise their pre-shock outsourcing decisions the more 

valuable their long-term relationship with the regional partner. 
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Notice that the results are consistent regardless the fixed effects and controls included 

in the specification, indicating that our hypothesis is supported across major and regional 

airlines, within major airlines and routes across the outsourced regional airlines operating 

those routes, and within regional airlines and routes across the major airlines outsourcing 

those routes. It is especially interesting that our results on the effect of network-wide 

weather on route survival are robust to the inclusion of route fixed effects. This allows us 

to rule out that the positive effect of network weather on survival be driven by a 

correlation between network weather and route weather and/or unobserved heterogeneous 

effects of the shock across different routes and airline-route dyads. 

When looking at the control variables, we find additional interesting results. On the 

one hand, the number of flights in a route, and whether an airport in the route is slot 

controlled, are associated with higher survival probabilities. On the other hand, a route’s 

average value and the distance between its endpoints decrease its likelihood of survival. 

These results may be due to the fact that more valuable routes are more likely to be 

vertically integrated after the shock (see Appendix C for an exploration of post-shock 

vertical integration decisions), and that passengers may dislike longer flights on small 

regional aircrafts. Finally, if anything, routes with a hub at an endpoint are less likely to 

survive. This may be due to the fact that, as shown by Forbes and Lederman (2009), hub 

routes are strategically more important and thus more likely to be integrated after the 

shock. 

5.3. A note on selection 

As discussed before, a potential concern about the results in section 5.2 is that they 

may be affected by selection bias because our sample conditions on the existence of an 

outsourcing relationship in 2006. To explore the impact of sample selection, we provide a 

formal model of selection in Appendix B, where a major airline endogenously chooses to 

outsource a route to an independent regional airline instead of flying the route itself. 

Below we discuss the key intuition underlying our strategy to control for selection bias.  

As explained in section 2, a major’s choice between outsourcing routes to 

independent regional partners or integrating them solves a tradeoff between adaptation 
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revenues (maximized by integration) and labor costs (maximized by outsourcing). Thus, 

a major airline i will outsource flights on a given route r if outsourcing to the best 

regional partner available on that route, as opposed to integrating the route, generates 

labor cost savings sufficiently above the loss of adaptation revenues. This means that the 

probability that a major chooses outsourcing as a governance form for the route is a 

function of major-route-specific characteristics – in particular, who is the major’s best 

potential outsourcing partner.  

Our estimates of ߚ (the effect of network weather on the survival of route outsourcing 

decisions) based on the sample of outsourced routes will be biased if network weather is 

correlated with the major-route characteristics that determine outsourcing decisions. Thus, 

selection bias can be corrected by including major-route fixed effects in the survival 

regression. We do so in column 7 of Table 3. Interestingly, while the coefficients on the 

network-level rain and number of freezing months in column 7 are rather similar to those 

in columns 1 through 6, the coefficients on network snow are significantly larger. A one 

standard deviation increase in average network snow (roughly 14 inches) is now 

associated with an increase of 19.3 percentage points in survival probability. The change 

in coefficients, and the change in R-squared, is evidence that sample selection is a valid 

concern (Oster, 2016), and that the major-route fixed effects attenuate the bias it 

generates.19 

6. Robustness Checks and Additional Results  

6.1. A more conservative definition of regional partnerships 

A potential concern with our results is that we may be classifying as outsourcing 

agreements between major ݅  and regional ݆  some routes that major ݅  codeshares with 

another major of which regional ݆  is a partner. While there may well be relational 

agreements between ݅  and ݆  on those routes, the lack of an underlying explicit 

                                                 
19 Tables A4 and A5 in the appendix show the extent of variation in the number of regionals used by a 
given major within a route, and the number of majors served by a regional in a route. This variation is what 
allows us to use major*route and regional*route fixed effects to control for selection concerns, while still 
identifying the effect of average network weather on the survival of route outsourcing decisions. 
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outsourcing partnership potentially complicates the interpretation of our main results as 

evidence of our model’s predictions. 

As explained above in our data section, we address this potential issue by replicating 

our baseline analysis using a restricted sample that classifies a route as outsourced by 

major ݅  to regional ݆ only if ݅  and ݆ are partners according to the 2008 official major-

regional relationship list of the Regional Airlines Association (RAA). Not surprisingly, 

when using this conservative sample (RAA sample hereforth), the number of 

observations at the major-regional-route level decreases from 6516 to 3593. See Tables 2, 

A2, and A3 for summary statistics of the variables used in the empirical analysis for the 

RAA sample. 

Table 4 replicates the regression specifications of Table 3 using the RAA sample, and 

dropping observations from major-owned regionals20 – namely, American Eagle, PSA 

Airlines and Continental Micronesia. We find qualitatively similar results. If anything, 

the coefficients of the effect of network weather on the survival of route outsourcing 

decisions increase relative to the full sample. This indicates that most of the major-

regional relationships that are dropped in the RAA sample were adding noise to our 

initial regressions, and therefore were biasing our estimated coefficients toward zero. See 

for example our results in column 2 of Table 4. A one standard deviation increase in 

network snow (14 inches) and rain (112 inches) is associated with an increase in survival 

probability of 39 percentage points and 29.5 percentage points, respectively (as opposed 

to 15 and 13 points in the full sample). A one standard deviation decrease in the number 

of freezing months (half a month) is associated with an increase survival probability of 

24.4 percentage points (as opposed to 7 points in the full sample). 

<< Place Table 4 here >> 

6.2. Alternative measures of network weather 

Another potential concern is that our results may be driven by the way we measure 

network weather, our proxy for network-wide adaptation costs. So far, we have followed 

                                                 
20  In our full sample, some of these airlines were either not fully owned by a major, or were the 
combination of fully-owned companies and independent companies. We attenuate this concern when we 
restrict our sample to only 2008 RAA major-regional partnerships. 
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Forbes and Lederman (2009) and constructed the weather variables at a given route by 

taking the historical average rain, snow and number of freezing months at the two 

endpoint airports, and picking the endpoint with maximum value. We have then 

aggregated these route weather variables into our network weather variables, as discussed 

above.  

These network weather variables may suffer from two potential shortcomings. First, 

they contain weather in the focal route. Second, they may not capture the extreme climate 

circumstances that trigger flight rescheduling and slot exchanges between majors and 

their regional partners and call for relational contracts to implement those decisions. We 

address these problems in Table 5. Regarding the first concern, in columns 1 to 3 we add 

route weather to the specifications used in Table 3. We find that route weather does not 

matter, and most importantly, the effect of the average network weather variables is 

robust to its inclusion. Additionally, in columns 4 to 6 we recalculate the average network 

weather variables without including the focal route. Again, the impact of average network 

weather is robust. 

<< Place Table 5 here >> 

To address the second concern, in columns 7 to 9 we use alternative measures of 

network weather that capture extremely adverse weather conditions. First, we redefine 

weather on a route by computing the historical average of the maximum yearly snow and 

rain precipitation, and number of freezing months at the two endpoints, and taking the 

highest value. Then, we compute network weather following the usual procedure – that is, 

by averaging route weather across all routes in a given network.21 While the coefficients 

are smaller than those in Table 3, our main result is robust. The higher the average 

network snow and rain, and the lower the average network number of freezing months, 

the higher the probability that majors’ outsourcing decisions survive the shock. In these 

columns, a one standard deviation increase in the average network snow (66 inches) and 

rain (177 inches) are associated with an increase in 2 and 4 percentage points in the 

survival probability of outsourcing decisions, respectively. 

                                                 
21 As expected, the summary statistics of the new variables are much higher. The average network snow is 
278 inches, the average network rain is 2532 inches and the average number of freezing months is 7.8. 
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6.3. Placebo test and additional robustness checks 

Because the 2008 financial crisis does not seem to have differentially affected 

different groups of routes, we cannot use a traditional difference-in-difference estimation 

approach in our study.22 To test for whether the observed effects of network adaptation 

costs on the survival of route outsourcing decisions are really driven by the 2008 shock, 

we construct an equivalent survival dependent variable taking as the initial and final 

years 2003 and 2006 – respectively, two years after the 9/11 terrorist attacks and two 

years prior to the 2008 shock. Because no shock occurred between 2003 and 2006, we 

would expect our network weather variables, and hence the PDV of major-regional 

relationships, not to affect the survival of route outsourcing decisions around those dates. 

Columns 1 to 3 of Table 6 below present our placebo test. 

<< Place Table 6 here >> 

While routes in larger networks and routes including a hub are more likely to be 

outsourced in 2006 to the same partner as in 2003, we find no significant relationship 

between weather conditions in the major-regional network in 2003 and the survival of 

route outsourcing decisions in 2006. If anything, we find a mild negative (positive) 

relationship between rain precipitation levels and survival in column 2 (column 3), as 

well as a mild positive correlation between freezing months and route survival (column 

3). Therefore, our placebo test suggests that absent an exogenous shock, there is no 

statistical correlation between network weather and the survival of route outsourcing 

decisions over time. This evidence corroborates our hypothesis that the 2008 financial 

crisis unexpectedly forced major airlines to revise their route outsourcing decisions, and 

is therefore an appropriate “stress test” for assessing the importance of relational 

contracts as a means to sustain outsourcing partnerships. 

A second robustness check regards the choice of dependent variable. To ensure that 

the results are not sensitive to such choice, we create an alternative measure of post-

shock route outsourcing decisions named “Termination,” which takes value 1 if a route 

that was outsourced in 2006 sees its number of flights reduced by 2010, and 0 otherwise. 

                                                 
22 See Appendix C for additional analyses that aim to get our exercise closer to the traditional difference-in-
difference structure. 
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Columns 4 to 6 in Table 6 show the results from using Termination as the dependent 

variable, which are qualitatively similar to those in Table 3 and elsewhere.23  

Another concern is that our proxy for relationship value, network adverse weather, 

may be correlated with the past duration of major-regional relationships (for instance, 

because majors assign bad weather routes to partners that have proved to be trustworthy 

over time). If that is the case, relationship length, and not relationship value, may be 

driving the survival of outsourcing decisions. To control for this alternative explanation, 

in columns 7 to 9 we add to our main specification indicators for whether the major-

regional relationships have been in place since 1999. Our findings show that irrespective 

of whether a major and a regional have worked together in the past, in any route or in the 

focal route, average network snow and rain are still positively associated with the 

survival of outsourcing decisions, and the average network number of freezing months is 

negatively associated with survival.  

Finally, while our model is agnostic about the major’s outside option, one may ask 

what happens to routes that are no longer outsourced to the same partner after the shock. 

In particular, one may wonder whether major airlines stop operating those routes, 

reallocate them to another partner, or vertically integrate them. We examine these 

questions in Appendix C, and obtain findings that confirm the importance of relationships 

in governing adaptation in this industry. On one end, Table A8 shows that when major 

airlines reallocate a route, they always choose a partner that was already used by the 

major, albeit on different routes, before the shock. On the other end, the findings in Table 

A9 suggest that among the routes that are no longer fully outsourced to the same partner 

after the shock, those that used to be outsourced to regional networks with better weather, 

and hence lower PDV, are more likely to become vertically integrated after the shock. 

Weather in the route, as opposed to weather in the network, does not seem to drive the 

majors’ post-shock vertical integration decisions. These results suggest that the more the 

shock constrains the informal enforcement of adaptation decisions under outsourcing, the 

                                                 
23  We have run all specifications with Termination as the dependent variable and including route, 
major/route, and regional/route fixed effects. We have also run the equivalent placebo test with survival 
and termination as the dependent variable with all possible combinations of FEs. All our findings are 
qualitatively equivalent to those in Table 6. These results are available from the authors upon request.  
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more major airlines switch to a governance structure that enables formal enforcement of 

those decisions – that is, vertical integration.       

7. Conclusion 

In this paper we have investigated the importance of relational contracts for 

governing and sustaining outsourcing agreements, using data from the U.S. airline 

industry. Our theoretical model shows that if a major and a regional airline use self-

enforcing agreements to solve their key contracting problem – adaptation of flight 

schedules under bad weather – the PDV of their relationship must be at least as large as 

the regional’s total adaptation cost across joint routes. Thus, relational contracts in 

networks with high adaptation cost, and hence high PDV, are less severely affected by a 

proportional value shock, implying that those networks are less likely to revise 

outsourcing decisions after the shock. In our empirical analysis, we analyze the evolution 

of major-regional airline networks in the U.S. around the 2008 financial crisis, and we 

find that consistent with the centrality of relational contracts in outsourcing agreements, 

the majors’ decisions to outsource routes in networks with worse aggregate weather, and 

hence higher pre-shock adaptation cost and PDV, were more likely to survive after the 

shock. 

A natural extension of our study would document relational contracts under vertical 

integration, and compare them to those under outsourcing as analyzed here. In particular, 

Baker et al. (2002) argue that while relational contracts can be used to improve 

cooperation under both integration and outsourcing, their role may differ under these two 

governance structures because reallocating control rights shifts the reneging temptations 

across parties. Thus, in our context, relational contracts may prevent major airlines from 

forcing too much adaptation on the managers of regional fully-owned subsidiaries under 

integration, whereas they may prevent the regionals from ignoring the majors’ requests 

for adaptation under outsourcing. Investigating when relational contracts are more 

effective at securing adaptation under integration or outsourcing will be an important task 

for future research.  
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Data Appendix 

We made a few assumptions in order to assemble our data when facing instances of 

missing information and the various mergers and exits that occurred in the US airline 

industry between 1999 and 2010. 

To create our main dependent variables, Survival  (between 2006 and 2010) as well 

as the dependent variables in our placebo test (Survival between 2003 and 2006), we 

code major-regional airline outsourcing agreements based on the ticketing carrier code 

(major airline) and the operating carrier code. Because about 20% of the observations in 

the DB1B data matched with T100 do not have an operating carrier code, we replace the 

operating carrier code with the reporting carrier code for those observations. According 

to the Bureau of Transportation Statistics,24 the reporting carrier is usually the operating 

carrier of the first segment of an itinerary. Because we only use nonstop flights, this 

substitution should not be problematic. 

During the 2006-10 period covered by our main analysis, we encountered the 

following airline mergers and exits: 

(1) Majors Delta (DL) and Northwest (NW) merged in 2008 and were operating only 

under DL in 2010. We assume that a route outsourced by NW to a given regional 

in 2006 survived to 2010 if we observe DL outsourcing that route to the same 

regional in 2010. 

(2) Regionals Republic AL (RW) and Midwest AL (YX) merged in 2009. Even 

though Republic AL remained a separate entity, it changed its airline code to 

Midwest AL (YX) after the merger. We therefore apply same assumption as for 

the DL and NW merger. 

(3) Majors United (UA) and Continental (CO) announced their merger in 2010 but 

they were not able to close it until 2012. Hence, this merger does not affect our 

data and empirical analysis. 

                                                 
24 
https://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/subject_areas/airline_information/accounting_and_r
eporting_directives/number_224.html 
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(4) Regionals Pinnacle AL and Colgan AL merged in 2008 but operated separately 

through 2010.  

(5) Regionals Pinnacle AL and Mesaba AL merged in 2008 but operated separately 

through 2010. 

(6) Regionals Skywest, AS AL and ExpressJet AL merged in 2008 but operated 

separately through 2010. 

(7) A number of regional airlines declared bankruptcy but continued operating 

afterwards. These are Sky Airlines in 2008, Mesa Airline in 2010, Skybus Airline 

in 2008, Arrow Air in 2010, Sun country Air in 2008, AirMidwest in 2008, and 

Big sky in 2008. 

(8) Regional airlines AirMidwest (used by US Airways), and Big Sky (used by Delta) 

ceased operations and exited the industry in 2008. All the routes they operated for 

major airlines in 2006 are coded as “not surviving” in our sample.  

During the 2003-06 period covered by our placebo test, we encountered the following 

airline mergers and exits: 

(1) Regionals Republic AL (RW) and Shuttle America (S5) merged in 2005 into 

Republic AL. S5 appeared only once in 2003. We classified a route that was 

outsourced by a given major to S5 in 2003 and to RW in 2006 as a route 

outsourced to S5 in 2006. 

(2) Regionals Skywest and Atlantic Southeast Airline merged in 2005. Despite that, 

both operated separately through 2006. 

(3) US Airways acquired America West Airlines (HP) in 2005. While America West 

officially ceased operations in 2005, the HP code still appears in the data (not US 

Airways) in 2006. 
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Appendix A: proof of Lemma 1 

Given assumption A2, M’s optimal relational contract in normal times can be 

characterized as choosing a vector of stationary outsourcing decisions, ݄∗ሺݖ ൌ 0ሻ ≡

൫݄ଵ
∗ሺݖ ൌ 0ሻ, … , ݄௡∗ ሺݖ ൌ 0ሻ൯, a vector of upfront fees, ݎ∗ሺݖ ൌ 0ሻ ≡ ൫ݎଵ

∗ሺݖ ൌ 0ሻ, … , ݖ௡∗ሺݎ ൌ

0ሻ൯ , and a vector of bonuses, ܾ∗ሺݖ ൌ 0ሻ ≡ ൫ܾଵ
∗ሺݖ ൌ 0ሻ, … , ܾ௡∗ሺݖ ൌ 0ሻ൯ , to solve the 

following problem: 

∑୦,୰,ୠሼݔܽ݉ ெ௜ሺ݄௜ሻ௜ߨ െ ∑ ݄௜ሺ݌௜ܾ௜ ൅ ௜ሻ௜ݎ ሽ,  

subject to the following participation and incentive constraints: 

∑ ሾߨெ௜ሺ݄௜ሻ െ ݄௜ሺ݌௜ܾ௜ ൅ ௜ሻሿ௜ݎ ൒ ∑ ݉௜
଴

௜ ,      (PCM) 

∑ ሾߨோ௜ሺ݄௜ሻ ൅ ݄௜ሺݎ௜ ൅ ௜ܾ௜ሻሿ௜݌ ൒ 0,       (PCR) 

∑ ݄௜ሺܾ௜ െ ܿ௜ሻ௜ ൅ ఋ

ଵିఋ
∑ ሾߨோ௜ሺ݄௜ሻ ൅ ݄௜ሺݎ௜ ൅ ௜ܾ௜ሻሿ௜݌ ൒ 0, and   (ICR) 

െ∑ ݄௜ܾ௜௜ ൅ ఋ

ଵିఋ
∑ ሾߨெ௜ሺ݄௜ሻ െ ݄௜ሺ݌௜ܾ௜ ൅ ௜ሻሿ௜ݎ ൒ ఋ

ଵିఋ
݉௜
଴.    (ICM) 

Conditions (PCM) and (PCR) are M’s and R’s participation constraints, respectively. 

Conditions (ICR) and (ICM) are R’s and M’s incentive constraints, which ensure, 

respectively, that R be willing to supply slots to M under bad weather (condition ICR), 

and M be willing to pay the promised contingent bonuses (condition ICM), in the highest-

temptation state—that is, in case bad weather occurs on all the outsourced routes.25 To 

understand conditions (ICR) and (ICM), note that: (i) given assumption A2, a route will be 

outsourced only if efficient adaptation is expected in all states, and (ii) if efficient 

adaptation is self-enforcing in the highest-temptation state, it will also be self-enforcing 

in the other states. 

Summing up (ICR) and (ICM), we obtain a necessary condition for the relational 

contract to be self-enforcing:  

∑ ݄௜ܿ௜௜ ൑ ఋ

ଵିఋ
∑ ሾݏ௜ሺ݄௜ሻ െ ݉௜

଴ሿ௜ .       (SE) 

                                                 
25 We omit the constraint that R be willing to accept the contingent bonus if negative because this constraint 
is looser than (ICR), and hence redundant. 
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Suppose now that (SE) holds, and M offers the following payments to R: ݎ௜ ൌ 0, and 

ܾ௜ ൌ ܿ௜, for all ݅ such that ݄௜ ൌ 1. These payments satisfy (PCR) and (ICR), and leave R 

with zero rents, thereby maximizing P’s payoff. Substituting the proposed payments into 

(ICM) yields (SE), which is satisfied by assumption. Finally, substituting the payments 

into (PCM), and multiplying both sides by  
ఋ

ଵିఋ
, yields the following condition: 

0 ൑ ఋ

ଵିఋ
∑ ሾݏ௜ሺ݄௜ሻ െ ݉௜

଴ሿ௜ . 

Since the above condition is looser than (SE), we have shown that (SE) is both 

necessary and sufficient for self-enforcement, and M’s program simplifies to: 

∑୦ሼݔܽ݉ ௜ሺ݄௜ሻ௜ݏ ሽ, subject to (SE). ■ 
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Appendix B: selection model 

Consider an airline industry composed by a set of major airlines and a set of regional 

airlines to which the majors may outsource routes. Let ܪ௜௥ be the set of regional partners 

of major ݅ that are potentially available to operate route ݎ. Also, let ߨ௜௝௥
௢  be the profit of 

major ݅ if it outsources the route to regional ݆, let ߨ௜௥
ூ  be the major’s profit if it integrates 

the route, and let ߟ௜௥ be a normally iid shock to the major’s profit under outsourcing. 

Then, assuming that integration is the best alternative to outsourcing, the major chooses 

outsourcing as the governance structure for route ݎ if, and only if:  

max௝∈ு೔ೝ൛ߨ௜௝௥
௢ ൟ ൅ ௜௥ߟ ൐ ௜௥ߨ

ூ . 

Consequently, the probability that the major outsources the route is: 

݊݅ܿݎݑ݋ݏݐݑሺܱܾ݋ݎܲ ௜݃௥ሻ ൌ 1 െ ௜௥ߨሺߔ
ூ െ max௝∈ு೔ೝ൛ߨ௜௝௥

௢ ൟሻ. 

Consider one of our regression specifications that condition on the sample of 

outsourced routes – for instance, the one with major and route fixed effects: 

௜௝௥݈ܽݒ݅ݒݎݑܵ ൌ ߙ ൅ ௜௝ݐݏ݋ܥܹܶܰߚ ൅ ߛ ௜ܺ௝௥ ൅ ௜ߜ ൅ ௥ߠ ൅  ,௜௝௥ߝ

Sample selection does not bias our estimation of ߚ as long as the distributions of ߟ௜௥ 

and ߝ௜௝௥  are independent. If their distributions are not independent, then the expected 

post-shock survival of major ݅’s decision to outsource route r to regional j becomes:   

௜௝௥ሿ݈ܽݒ݅ݒݎݑሾܵܧ ൌ ߙ ൅ ௜௝ݐݏ݋ܥܹܶܰߚ ൅ ߛ ௜ܺ௝௥ ൅ ௜ߜ ൅ ௥ߠ ൅ Eൣߝ௜௝௥|ߟ௜௥ ൐ ൫ߨ௜௥
ூ െ

max௝∈ு೔ೝ൛ߨ௜௝௥
௢ ൟ൯൧. 

Our estimation of ߚwill be biased if ܹܰܶݐݏ݋ܥ௜௝  is correlated with Eൣߝ௜௝௥|ߟ௜௥ ൐

൫ߨ௜௥
ூ െ max௝∈ு೔ೝ൛ߨ௜௝௥

௢ ൟ൯൧. Once we take into account the correlation ߩ between ߟ௜௥  and 

௜௝௥ߝ , and calculate the Mills ratio, ߣ௜௥ ൌ
థሺగ೔ೝ

಺ ି୫ୟ୶ೕ∈ಹ೔ೝቄగ೔ೕೝ
೚ ቅሻ

ଵିఃሺగ೔ೝ
಺ ି୫ୟ୶ೕ∈ಹ೔ೝቄగ೔ೕೝ

೚ ቅሻ
, we can modify the 

original regression specification such that: 

௜௝௥݈ܽݒ݅ݒݎݑܵ ൌ ߙ ൅ ௜௝ݐݏ݋ܥܹܶܰߚ ൅ ߛ ௜ܺ௝௥ ൅ ρߪఌߣ௜௥ ൅ ௜ߜ ൅ ௥ߠ ൅  ,௜௝௥ݑ
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where ݑ௜௝௥  is a zero mean, normally iid error term uncorrelated with all independent 

variables in our regression equation. The crucial point is that because ߣ௜௥ varies at the 

major airline and route level, including major-route fixed effects in our specification is 

equivalent to including ߣ௜௥, and therefore corrects the potential selection bias.    

 



Table 1. Exchange of Slots on February 24, 2016, in the 3 NYC Airports (LGA, EWR, JFK), during a Ground Delay Program

AIRLINE RECEIVING SLOTS

SWA  JBU  NKS VRD  TOTAL
AAL ENY JIA PDT AWI LOF RPA DAL FLG ASQ CPZ GJS LOF SKW TCF UAL ASH ASQ GJS RPA SKW TCF UCA SWA JBU NKS VRD
120 3 13 14 34 31 68 137 93 43 1 72 1 1 121 18 3 20 1 3 1 4 4 57 45 2 4 914

AAL 84 2 6 7 18 25 37 1 0 0 1 1 1 0 2 0 0 0 0 0 0 0 0 9 1 0 0 195
ENY 7 1 0 0 0 3 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 16
JIA 8 0 2 3 7 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 30
PDT 2 0 0 10 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20
AWI 23 0 5 6 10 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 61
LOF 10 0 0 0 0 9 4 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 2 0 0 0 28
RPA 32 0 6 6 15 11 36 0 0 0 0 1 1 0 0 4 0 13 0 2 0 2 3 5 0 0 0 137
SKV 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 3
DAL 3 0 0 0 0 2 0 90 71 32 1 54 0 1 86 0 0 0 0 0 0 0 0 5 0 0 0 345
FLG 0 0 0 0 1 0 0 41 34 9 1 24 0 1 39 0 0 0 0 0 0 0 0 1 0 0 0 151
DPJ 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 4
ASQ 4 1 0 1 0 0 1 21 21 13 0 15 0 1 22 12 1 15 0 3 0 2 2 8 1 0 0 144
GJS 1 0 0 0 0 1 1 31 32 13 0 22 0 0 33 0 0 1 0 0 0 0 0 5 0 0 0 140
SKW 1 0 0 0 0 0 0 1 0 3 1 0 0 0 0 4 1 0 0 0 0 0 0 0 1 0 0 12
TCF 3 0 0 1 0 0 2 53 48 17 0 38 0 1 59 10 2 15 1 3 0 1 4 5 0 0 0 263
UAL 2 0 0 1 0 0 1 0 0 1 0 0 0 0 0 18 2 16 1 3 1 4 4 6 0 0 0 60
ASH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 2 0 0 0 0 0 1 0 0 0 9
UCA 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 7 0 2 0 2 3 2 0 0 0 21
SWA 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 0 0 0 53
JBU 1 0 0 1 0 2 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 2 45 0 0 56
NKS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2
VRD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3

183 4 19 37 58 53 110 242 208 88 5 157 3 4 244 55 7 70 2 13 1 11 16 108 49 2 4 1753

Note: This table shows the total number of slots received by American (AAL), Delta (DAL), United (UAL), Southwest (SWA), Jet Blue (JBU), Spirit (NKS) and Virgin America (VRD), top 
horizontal line, on 2/24/2016 under a GDP in the three airports of NYC metropolitan area (LGA, EWR, JFK). These seven airlines received landing slots from other airlines for
flights operated by themselves, subsidiary regional airlines, or independent outsourcing regional partners airlines. While the second horizontal line from the top accounts 
for the airline receiving the slot and the number of slots received on 2/24/2016, the vertical dimension depicts the procedence of those slots by airline. Note that in many
instances several airlines must accommodate several flights in order to create one landing slot for a flight. For this reason, while 914 slots were received (demand),
 1753 suppliers were involved in these exchanges. 
Finally, the data is organized so that airlines are ordered by whether slot was received for a flight on behalf of AAL, DAL and UAL. Within these classification, airlines are 
ordered by whether they are owned subsidiaries of a major (in slight grey shade color) or independent partner regionals. 
Envoy (ENY), PSA, and Piedmont (PDT) are owned by American; Pinnacle‐Endeavor (FLG) and Delta Private Jets (DPJ) are owned by Delta; United did not exchange slots with any
 subsidiary. Air Wisconsin (AWI), Trans States (LOF), Republic (RPA), Sky Regional (SKV), ExpressJet (ASQ), GoJet (GJS), SkyWest (SKW), Shuttle America (TCF), Mesa (ASH), and 
 CommutAir (UCA) are all independently owned regionals. This sample does not include exchanges with foreign airlines or Cargo/Shipping carriers.

UALDALAALAIRLINE 
SUPPLYING 
SLOTS



Table 2. Summary Statistics

Full Sample, N = 6516 RAA Sample, N = 3593
Variable Mean St. Dev. Min Max Mean St. Dev. Min Max

Survival 0.593 0.491 0 1 0.765 0.424 0 1

Avg. network snow 20.683 14.145 0 88.963 23.093 14.517 0 49.901

Avg. network rain 809.102 123.293 353.659 1423.167 809.652 112.112 594.206 966.77

Avg. network # freezing months 2.434 0.531 0.7 6 2.427 0.488 1.452 3.943

# routes in network 155.542 116.819 1 409 236.675 97.021 2 409

Avg. value route 23770.8 145407 0 5661580 6432.94 56955.7 0 2809457

Route snow 38.82 79.838 0 343.167 43.041 84.009 0 343.167

Route rain 1047.72 372.526 75.333 1994.444 1031.97 353.824 75.333 1994.444

Route # freezing months 2.434 1.577 0 8 2.427 1.592 0 8

Hub 0.738 0.44 0 1 0.704 0.456 0 1

# flights 35.307 99.319 1 920 58.718 126.367 1 920

Avg. value flight 499079 1374571 0 29520468 240489 862539 0 27024422

Distance 1137.5 746.233 36 4962 1081.72 734.408 36 4962

Slot-controlled airport 0.225 0.418 0 1 0.21 0.408 0 1

Notes:
This table provides summary statistics for all variables used in our empirical analysis and for both samples. The full sample
contains 6516 major/regional/route observations, and the RAA sample contains 3593 observations.



Table 3. The Impact of Network Weather on the Survival of Route Outsourcing Decisions (Full Sample)

Dep. var. = survival (1) (2) (3) (4) (5) (6) (7) (8)

Avg. network snow 0.111*** 0.154*** 0.047** 0.140*** 0.186*** 0.055*** 0.193*** 0.072***
(0.026) (0.043) (0.022) (0.009) (0.014) (0.011) (0.014) (0.015)

Avg. network rain 0.148*** 0.141*** 0.068*** 0.136*** 0.126*** 0.046*** 0.132*** 0.117***
(0.025) (0.041) (0.019) (0.009) (0.012) (0.015) (0.012) (0.024)

Avg. network # freezing months -0.112*** -0.068** -0.144*** -0.107*** -0.081*** -0.119*** -0.084*** -0.119***
(0.014) (0.031) (0.015) (0.009) (0.014) (0.011) (0.014) (0.017)

# routes in network 0.152*** 0.143*** 0.152*** 0.160*** 0.154*** 0.170*** 0.155*** 0.180***
(0.014) (0.016) (0.015) (0.006) (0.007) (0.008) (0.007) (0.015)

Avg. value route 0.034*** 0.034*** 0.036*** 0.035*** 0.034*** 0.030*** 0.037*** 0.040***
(0.007) (0.009) (0.007) (0.007) (0.007) (0.007) (0.007) (0.006)

Hub 0.043** 0.056*** 0.056*** 0.088*** 0.130*** 0.113*** 0.090***
(0.018) (0.016) (0.015) (0.027) (0.027) (0.026) (0.031)

# flights 0.038*** 0.038*** 0.034*** 0.033*** 0.031*** 0.025*** 0.031*** -0.020**
(0.009) (0.008) (0.007) (0.005) (0.005) (0.005) (0.005) (0.009)

Avg. value flight -0.016** -0.018** -0.027*** -0.017** -0.017** -0.024*** -0.016* -0.022*
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.009) (0.012)

Distance -0.025** -0.017* -0.015
(0.011) (0.009) (0.009)

Slot-controlled airport 0.057** 0.060*** 0.039*
(0.025) (0.022) (0.023)

Observations 6516 6516 6516 6178 6178 6178 6013 1499
R-squared 0.29 0.31 0.35 0.46 0.47 0.51 0.50 0.74
Major fixed effects N Y N N Y N N N
Regional fixed effects N N Y N N Y N N
Route fixed effects N N N Y Y Y N N
Major-route fixed effects N N N N N N Y N
Regional-route fixed effects N N N N N N N Y

Notes:
The dependent variable is a dummy that takes value 1 if a major outsourced same route wto the same regional both in
2006 and 2010, and value 0 if the route was outsourced to a regional in 2006 and not outsourced to that regional in 2010.
All explanatory variables, except for dummies "Hub" and "Slot-controlled airport", are standardized by their own standard
deviation. The differences in number of observations across columns are due to the fixed effects perfectly absobing
variation in major-regional outsourcing at the route level.
Standard errors clustered at 1) major-regional and 2) route level. *** p < 0.01; ** p < 0.05; * p < 0.1.



Table 4. The Impact of  Network Weather on the Survival of Route Outsourcing Decisions (RAA Sample)
(Dropping major-owned regionals: American Eagle, PSA Airlines, and Continental Micronesia)

Dep. var. = survival (1) (2) (3) (4) (5) (6) (7) (8)

Avg. network snow 0.097* 0.390*** 0.103 0.132*** 0.430*** 0.226*** 0.440*** -0.039
(0.056) (0.089) (0.065) (0.022) (0.044) (0.047) (0.045) (0.075)

Avg. network rain 0.138** 0.295*** 0.131** 0.088*** 0.267*** 0.361*** 0.279*** -0.192
(0.059) (0.084) (0.061) (0.020) (0.043) (0.097) (0.042) (0.153)

Avg. network # freezing months -0.164*** -0.244** -0.182*** -0.188*** -0.321*** -0.136*** -0.337*** -0.496***
(0.028) (0.119) (0.033) (0.017) (0.054) (0.045) (0.054) (0.047)

# routes in network 0.069** 0.083** 0.055 0.068*** 0.085*** -0.030 0.091*** 0.021
(0.029) (0.033) (0.038) (0.014) (0.016) (0.026) (0.017) (0.061)

Avg. value Route 0.443*** 0.581*** 0.530*** 0.388*** 0.475*** 0.270** 0.619*** -0.234*
(0.167) (0.138) (0.154) (0.114) (0.113) (0.109) (0.151) (0.131)

Hub 0.037 0.049*** 0.031* 0.046 0.116*** 0.068 0.070
(0.023) (0.018) (0.017) (0.042) (0.041) (0.041) (0.079)

# flights 0.035*** 0.031*** 0.038*** 0.046*** 0.036*** 0.041*** 0.044*** 0.012
(0.010) (0.008) (0.010) (0.006) (0.006) (0.006) (0.006) (0.016)

Avg. value flight -0.085*** -0.096*** -0.085*** -0.069*** -0.070*** -0.043* -0.061** 0.020
(0.025) (0.024) (0.026) (0.025) (0023) (0.023) (0.025) (0.055)

Distance -0.011 -0.013 -0.005
(0.015) (0.013) (0.015)

Slot-controlled airport 0.031 0.044 0.030
(0.034) (0.036) (0.034)

Observations 3003 3003 3003 2513 2513 2513 2316 184
R-squared 0.31 0.34 0.34 0.54 0.57 0.58 0.61 0.81
Major fixed effects N Y N N Y N N N
Regional fixed effects N N Y N N Y N N
Route fixed effects N N N Y Y Y N N
Major-route fixed effects N N N N N N Y N
Regional-route fixed effects N N N N N N N Y

Notes:
The dependent variable is a dummy that takes value 1 if a major outsourced same route to the same regional both in
2006 and 2010, and value 0 if the route was outsourced to a regional in 2006 and not outsourced to that regional in 2010.
All explanatory variables, except for dummies "Hub" and "Slot-controlled airport", are standardized by their own standard
deviation. The differences in number of observations across columns are due to the fixed effects perfectly absobing
variation in major-regional outsourcing at the route level.
The sample in this table and specifications are restricted to the RAA sample of major-regional relationships, while dropping
three major-owned regionals, American Eagle, Continental Micronesia and Piedmont Airlines.
Standard errors clustered at 1) major-regional and 2) route level. *** p < 0.01; ** p < 0.05; * p < 0.1.



Table 5. Robustness checks: Alternative Measures of Network Weather 

Dep. var. = survival (1) (2) (3) (4) (5) (6) (7) (8) (9)

Avg. network snow 0.115*** 0.157*** 0.051** 0.111*** 0.154*** 0.053** 0.020** 0.019** 0.024**
(0.024) (0.043) (0.022) (0.025) (0.042) (0.022) (0.009) (0.008) (0.011)

Avg. network rain 0.145*** 0.137*** 0.061*** 0.152*** 0.145*** 0.084*** 0.048** 0.044* 0.036**
(0.026) (0.041) (0.019) (0.025) (0.041) (0.020) (0.024) (0.024) (0.016)

Avg. network # freezing months -0.115*** -0.070** -0.147*** -0.113*** -0.072** -0.137*** -0.076** 0.048 -0.143***
(0.014) (0.030) (0.015) (0.013) (0.031) (0.015) (0.038) (0.049) (0.043)

# routes in network 0.152*** 0.143*** 0.152*** 0.146*** 0.134*** 0.154*** 0.175*** 0.162*** 0.191***
(0.014) (0.016) (0.015) (0.014) (0.015) (0.015) (0.019) (0.018) (0.019)

Avg. value route 0.034*** 0.034*** 0.036*** 0.042*** 0.048*** 0.027*** 0.034*** 0.033*** 0.033***
(0.007) (0.009) (0.007) (0.009) (0.010) (0.008) (0.008) (0.009) (0.006)

Route snow -0.013 -0.012 -0.012
(0.010) (0.009) (0.010)

Route rain 0.010 0.012 0.015
(0.011) (0.010) (0.010)

Route # freezing months 0.006 0.006 0.007
(0.007) (0.007) (0.007)

Hub 0.043** 0.056*** 0.056*** 0.042*** 0.056*** 0.054*** 0.027 0.052*** 0.049***
(0.018) (0.016) (0.016) (0.018) (0.016) (0.015) (0.020) (0.016) (0.017)

# flights 0.038*** 0.037*** 0.034*** 0.038*** 0.037*** 0.034*** 0.052*** 0.042*** 0.035***
(0.009) (0.008) (0.007) (0.009) (0.008) (0.007) (0.012) (0.010) (0.009)

Avg. value flight -0.016** -0.017** -0.027*** -0.019** -0.023*** -0.023*** -0.019** -0.018** -0.022***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.007) (0.029) (0.022) (0.025)

Distance -0.027** -0.020** -0.018* -0.024** -0.018* -0.016* -0.008 -0.009 -0.016*
(0.011) (0.009) (0.010) (0.011) (0.009) (0.009) (0.020) (0.013) (0.010)

Slot-controlled airport 0.049** 0.051** 0.029 0.055** 0.058*** 0.039* 0.095*** 0.045** 0.082***
(0.024) (0.021) (0.022) (0.025) (0.022) (0.023) (0.011) (0.008) (0.007)

Observations 6516 6516 6516 6516 6516 6516 6516 6516 6516
R-squared 0.29 0.31 0.35 0.29 0.31 0.35 0.20 0.30 0.30
Major fixed effects N Y N N Y N N Y N
Regional fixed effects N N Y N N Y N N Y

Notes:
The dependent variable is a dummy that takes value 1 if a major outsourced same route wto the same regional both in
2006 and 2010, and value 0 if the route was outsourced to a regional in 2006 and not outsourced to that regional in 2010.
All explanatory variables, except for dummies "Hub" and "Slot-controlled airport", are standardized by their own standard
deviation. The differences across specifications are as follows: columns 1 to 3 add route-level weather to specifications in 
previous tables, columns 4 to 6 use network weather averages that do not compute the focal route's weather,  and columns
7 to 9 compute network weather using the historical yearly maximum values of snow, precipitation and number of freezing months 
computed at the route endpoint for which they are highest (as opposed to the  historical average of yearly average values).
Standard errors clustered at 1) major-regional and 2) route level. *** p < 0.01; ** p < 0.05; * p < 0.1.



Table 6. Robustness checks: Placebo Test and Alternative Specifications

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dep. var. Survival Placebo Termination Survival 

Avg. network snow -0.021 -0.030 -0.011 -0.087*** -0.118*** -0.039* 0.099*** 0.145*** 0.047**
(0.050) (0.036) (0.014) (0.032) (0.044) (0.022) (0.023) (0.038) (0.022)

Avg. network rain -0.053 -0.073* 0.056** -0.092*** -0.074** -0.053*** 0.135*** 0.128*** 0.068***
(0.062) (0.044) (0.027) (0.024) (0.036) (0.018) (0.026) (0.038) (0.019)

Avg. network # freezing months -0.060 -0.069 0.027** 0.078*** 0.042 0.099*** -0.115*** -0.071** -0.146***
(0.059) (0.066) (0.013) (0.011) (0.028) (0.015) (0.013) (0.032) (0.015)

# routes in network 0.189*** 0.129*** 0.169*** -0.070*** -0.064*** -0.066*** 0.153*** 0.143*** 0.147***
(0.044) (0.047) (0.022) (0.016) (0.017) (0.014) (0.014) (0.015) (0.016)

Avg. value route 0.004 0.003 -0.014 -0.014* -0.014* -0.013 0.036*** 0.035*** 0.039***
(0.007) (0.007) (0.009) (0.008) (0.007) (0.009) (0.007) (0.008) (0.006)

Old partnership any route -0.074* -0.071** 0.326
(0.045) (0.036) (0.253)

Old partnership focal route 0.025 0.039 0.059*
(0.044) (0.037) (0.032)

Hub 0.106** 0.136*** 0.092*** 0.042** 0.034* 0.030 0.040** 0.052*** 0.049***
(0.046) (0.035) (0.035) (0.020) (0.020) (0.019) (0.017) (0.016) (0.015)

# flights -0.001 0.013 0.013 0.062* 0.067* 0.084** 0.037*** 0.037*** 0.034***
(0.033) (0.018) (0.015) (0.036) (0.035) (0.035) (0.010) (0.009) (0.007)

Avg. value flight -0.014 -0.035*** -0.005 -0.025*** -0.025*** -0.018** -0.017** -0.018** -0.028***
(0.017) (0.013) (0.010) (0.008) (0.008) (0.008) (0.008) (0.008) (0.007)

Distance 0.009 0.019 -0.028* 0.024** 0.022** 0.017 -0.024** -0.017* -0.015
(0.027) (0.022) (0.015) (0.012) (0.011) (0.012) (0.011) (0.009) (0.009)

Slot-controlled airport 0.041 0.051 0.058** -0.033 -0.042 -0.022 0.054** 0.058*** 0.038*
(0.060) (0.036) (0.028) (0.029) (0.029) (0.029) (0.025) (0.023) (0.023)

Observations 3247 3247 3247 6516 6516 6516 6516 6516 6516
R-squared 0.16 0.23 0.50 0.10 0.10 0.16 0.30 0.31 0.35
Major fixed effects N Y N N Y N N Y N
Regional fixed effects N N Y N N Y N N Y

Notes:
The differences across specifications are as follows:
(1) In columns 1 to 3, the dependent variable is a dummy that takes value 1 if a major outsourced same route to the same regional
both in 2003 and 2006, and value 0 if the route was outsourced to a regional in 2003 and not outsourced to that regional in 2006.
This exercise constitutes our placebo test. Note the number of observations is lower here than Table 3 because the number of 
existing outsourcing relationships in 2003 was lower than 2006.
(2) In columns 4 to 6,  the dependent variable is a dummy that takes value 1 if the number of flights outsourced by a major 
to a regional on a given route has decreased between 2006 and 2010, and 0 otherwise, conditional on the major outsourcing
the focal route to the regional.
(3) In columns 7 to 9, we introduce as control variables two dummies for whether the major and regional had been in a business 
relationship since 1999 in any route or in the focal route, respectively. 
All other explanatory variables, except for dummies "Hub" and "Slot-controlled airport", are standardized by their own standard
deviation. Standard errors clustered at 1) major-regional and 2) route level. *** p < 0.01; ** p < 0.05; * p < 0.1.



FOR ONLINE PUBLICATION  

Appendix C: additional results 

Additional figures and descriptive statistics 

Figure A1 mirrors Figure 1 and reports the evolution of the number of routes and 

flights operated by major airlines between 1993 and 2013. This table shows a clear 

downward sloping trend in both metrics, in sharp contrast with the growing number of 

routes and flights operated by regional airlines as shown in Figure 1. 

 

Figure A1. Flights and routes operated by major airlines between 1993 and 2013 

 

 

Table A1 provides examples of real-time adaptation between airlines during the GDP 

of February 26th, 2016, in the three airports of NYC. The first example (top of the table) 

shows how American Airlines (AAL) and its regional partner Trans States Airlines 

(LOF) delayed two flights so that AAL flight AAL1164 would depart (late) from Dallas 
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Fort-Worth airport (FDW) for Laguardia airport (LGA). The second example shows a 

case in which Delta (DAL) reshuffled seven of its flights so that its independent regional 

partner ExpressJet (ASQ) would be able to initiate its flight ASQ5645 from Atlanta 

(ATL) to LGA. The third example shows an exchange of slots between two non-partner 

airlines: Canadian West Jet (WJA) yielded a slot so that American Airlines flight 

LOF4139, operated by Trans States Airlines, would be able to fly from Saint Louis 

airport (in Missouri) to LGA. The last example (bottom of Table A1) shows a case of 

adaptation via vertical integration: a major airline, United, reshuffled and reorganized the 

schedule of its own planes so that one of them could fly from O’Hare International 

airport (ORD) to LGA. 

 

<<Place Table A1 here>> 

 

Table A2 shows the depth and strength of major-regional networks for both our full 

sample, and the RAA sample, in the fall quarter of 2006. 

 

<<Place Table A2 here>> 

 

Figure A2 shows the networks of routes operated by SkyWest (one of the regionals in 

Table A2) for four major airlines in June 2016. 

 

<<Place Figure A2 here>> 

 

Table A3 shows summary statistics for the major-regional networks of six majors in 

our full sample and in the RAA sample. 

 

<<Place Table A3 here>> 
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Finally, Tables A4 and A5 describe within-route variations in: (1) the number of 

majors and regionals actively operating the route, (2) the number of regionals used by a 

given major to operate the route, and (3) the number of majors for which a given regional 

operates the route. These tables show that there is substantial variation both in our full 

sample and in the RAA sample. This variation allows us to use major*route and 

regional*route fixed effects in Tables 3 and 4.  

 

<<Place Tables A4 and A5 here>> 

 

Probit regressions and different specifications 

We use linear probability models throughout the paper. This is due to the fact that 

some of our specifications use a large number of dummies that non-linear regressions 

may not be able to identify. As a robustness check, Table A6 shows the results of probit 

regressions reproducing the same specifications as the OLS regressions in columns 1 to 3 

of Tables 3 and 5 – that is, using major and regional airline fixed effects but no route or 

airline*route fixed effects.  The results are qualitatively similar.  

 

<<Place Table A6 here>> 

 

Robustness Checks Driven by Sample Composition 

Table A7 replicates the results of Table 4 on the RAA sample including the routes 

operated by American Eagle, PSA Airlines and Continental Micronesia. The results do 

not change. 

 

<<Place Table A7 here>> 
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Quasi-diff-in-diff 

In addition to the placebo test, we present here a different type of evidence that aims 

to get our exercise closer to the traditional diff-in-diff structure. We re-run the 

specification in columns (1) of Table 3 (post-2008-shock survival) and Table 6 (placebo 

survival) without the network-specific variables (number of routes, average route value, 

average network snow and rain, and average number of freezing months). Then, we 

compute the average residual for each major-regional network, and we plot these 

residuals against the average network weather variables (average network snow and rain, 

and the average number of freezing months). We show the results of this exercise in 

Figure A3.  

<<Place Figure A3 here>> 

Panel A plots the network-level average residuals of post-shock survival (crosses) and 

placebo-survival (green dots) against the network-level average snow. We fit a 

polynomial through the dots and show that while the network residual appears to be 

unrelated to network snow in the placebo (red solid line), there is a positive relationship 

between network residual and network snow in the treated sample (transition between 

2006 and 2010). This finding is consistent with our main result that the decisions to 

outsource routes that belonged to major-regional networks with higher adaptation costs 

were more likely to survive to the 2008 financial crisis.     

Panels B and C plot network residuals against network rain and number of freezing 

months, respectively. While we see that (aside outliers) network residuals are positively 

correlated with network rain in Figure A3-B, and negatively correlated with network 

freezing months in Figure A3-C, we do not observe significant differences in these 

relationships between the treatment and placebo samples. Altogether, Figure A3 seems to 

suggest that the effect is mainly driven by the allocation to valuable regional partners of 

routes with higher snow precipitation, not so much by the allocation to those partners of 

routes with heavier rain precipitation or lower number of freezing months.   
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Route Reallocation  

While outsourcing decisions do not survive the 2008 shock in 40% of the routes, 

Figure 1 shows that the use of outsourcing as a governance mode has been steadily 

increasing since the late 1990s and through the 2008 financial crisis. We explore here 

whether following the shock major airlines reallocated some routes to other regional 

partners, and whether these are new partners (not used in other routes prior to the shock) 

or “relational” partners (already used before the shock, albeit on different routes). The 

logic (if not the letter) of our theoretical model suggests that after the shock, relational 

partners should have received more of the routes for which reallocation (as opposed to 

route termination or integration) was the major’s best outside option. 

For this purpose, we classify routes by the number of regional partners to which the 

major outsourced them in 2006, and we compute: (1) survival—that is, the probability 

that the major outsources the route to the same airline that was operating it before the 

shock, as in our previous tables; (2) the probability that the major reallocates the route to 

an existing regional partner that was not operating that particular route before the shock, 

conditional on survival = 0; and (3) the probability that the major reallocates the route to 

a new partner (that is, a regional airline that was not operating any route for the major 

prior to the shock), conditional again on  survival = 0. We provide the results of this 

exercise in Table A8. 
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Table A8. Route Reallocation After the 2008 Financial Crisis Shock 

 
Notes: 
This table provides descriptive statistics per major airline and number of regionals used in a route on the 
probability of survival, the probability of continuation conditional on an outsourcing relationship being 
terminated, and the probability of relying on a new partner to operate the focal route conditional on the 
previous relationship being terminated. These data are based on the 4th quarter of 2006, and after dropping 
data on flights with unknown carriers. 

 

We find that with the sole exception of Northwest1, the likelihood of reallocation to 

another existing partner is high in all types of non-surviving routes and for all majors, 

while the probability of reallocation to a new partner is close to zero. This evidence 

documents that, consistently with our relational adaptation hypothesis, majors preferred 

to reallocate routes to “relational” partners. In addition, the evidence in Table A8 

suggests that our main findings are unlikely to be driven by network-specific post-shock 

changes in the majors’ product market strategies. In particular, Table A8 indicates that 

most routes where the major reversed pre-shock outsourcing decisions were not 

discontinued, and were reallocated to existing partners rather than to new partners with 

possibly different product market specialization. 

 

 

                                                 
1 This discrepancy appears to be mainly driven by the merger of Delta and Northwest, and the fact that 
Delta may have reallocated Northwest routes to its own pre-existing partners. See the Data Appendix for a 
detailed description of how we treat in our data the Delta-Northwest merger. 
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Vertical Integration 

Our empirical analysis sheds light on the relationship between network-level 

adaptation costs and the survival of route outsourcing decisions in response to the 2008 

financial crisis. Our analysis in Table A8 above also sheds light on the reallocation of 

routes among alternative regional partners. In this section of the appendix, we investigate 

a third margin of post-shock network adjustment—namely, the possibility that the major 

airline may operate a previously outsourced route with its own planes or through a 

vertically integrated regional company, as documented by Forbes and Lederman (2009).  

It is important to emphasize that the implications of our relational adaptation model 

for vertical integration are not as clear-cut as those for survival, because it is not clear a 

priori whether and when integration is a major airline’s best alternative governance for 

non-outsourced routes. In particular, while integration guarantees timely adaptation, it 

also tends to increase a regional airline’s labor costs because of the unionization of major 

airlines (Forbes and Lederman, 2009). It is also unclear how the shock affects the costs 

and benefits of integrating a route. In particular, while the shock may not affect the 

enforceability of adaptation under vertical integration, it may force major airlines to 

integrate some previously outsourced routes that were downsized after the shock, because 

no other independent regional could profitably operate those routes below a minimum 

number of flights. Thus, the net effect of the pre-shock PDV of major-regional 

relationships, as proxied by our network weather variables, on post-shock vertical 

integration, appears to be an open empirical question. 

Before analyzing post-shock integration decisions, we check whether the same 

patterns of integration found in Forbes and Lederman (2009) are at play in our pre-shock 

2006 cross-section. For that purpose, we create a dummy variable that takes value 1 if a 

major uses either its own planes or those of a vertically integrated regional company to 

operate some flights on a route, and 0 if the major outsources all the route’s flights to 

independent regionals. We estimate linear probability models for the major’s integration 

decision. To control for the fact the major is more likely to use its own larger planes in 

longer hauls, we break our sample into the two subsamples of routes longer and shorter 

than 1500 miles, respectively (the results are robust to the alternative cutoffs of 1800 and 
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2000 miles).2 The results are reported in columns 1 to 3 of Table A9, with the full sample 

in column 1, the restricted sample of routes shorter than 1500 miles in column 2, and the 

sample of routes longer than 1500 miles in column 3. The results are consistent with 

those in Forbes and Lederman (2009) in that routes with more snow, more rain, and a 

lower number of freezing months are more likely to be integrated, and more so for shorter 

hauls.  

<<Place Table A9 here>> 

We now turn to our main integration analysis, which incorporates two alternative new 

dependent variables into the specifications used in Table 3. First, we create a dummy 

variable, called Integration (ΔVI in Table A9), that takes value 1 if, conditional on a route 

being fully outsourced to a regional airline in 2006, at least a flight in the route is 

operated by the major airline itself, or by a major-owned regional airline, in 2010. We 

also create a second dependent variable, named Integration2 (ΔVI_b in Table A9), which 

conditions “Integration” to at least one flight in the route being terminated after the shock. 

While the Integration variable checks whether any flight has been integrated, Integration2 

restricts the analysis to those routes where pre-shock outsourcing decisions were reversed. 

Results in columns 4 to 9 of Table A9 report the effect of network-level weather 

conditions (our PDV proxies) on a route’s probability of being integrated after the 2008 

shock.  

The results indicate that routes that were fully outsourced in 2006 to regionals with 

worse network weather conditions, and hence higher PDV, are less likely to be integrated 

after 2008. This is true within major airlines across outsourced regional airlines (columns 

5 and 8), and within regional airlines across major airlines (although more weakly so due 

to conflicting signs of the snowfall and number of freezing months coefficients). The 

effects are significant: according to column 5, a one-standard-deviation increase in 

network average snow decreases the probability of route integration by 9.2 percentage 

                                                 
2 Instead, Forbes and Lederman (2009) estimate a nested logit model where the first stage is the major’s 
decision to use its own large planes versus a (vertically integrated or outsourced) regional’s small planes on 
a route, while the second stage is the major’s decision to use a vertically integrated versus outsourced 
regional, conditional on small planes being used. 
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points, and a one-standard-deviation increase in network average rain decreases the 

probability of route integration by 6 percentage points.  

The analysis in Tables A8 and A9, together with our baseline results in Tables 3 and 

4, provides a complete picture of how the financial crisis that began in 2008 induced US 

airlines to redesign their networks of outsourcing relationships. First, major airlines 

terminated their existing outsourcing agreements on routes that were outsourced to 

regionals with low PDV, proxied by the network-level average weather/adaptation cost. 

This result indicates that the value of outsourcing relationships is used as a bond to 

ensure that relational agreements between major and regional airlines are self-enforcing. 

Second, we find that when outsourcing decisions were reversed after the shock due to 

low network PDV and weak self-enforcement, major airlines integrated some of the 

affected routes. Finally, the majors reallocated most of the terminated routes to pre-

existing partners. Altogether, these results are consistent with the importance of relational 

contracting as a means to govern adaptation in the US airline industry. 



Table A1. Examples of Adaptative Slot Exchanges on February 26th 2016  in La Guardia Airport NYC

…
SS PACKET PROCESSED FROM AAL37 (10.182.183.215)
 EDCT RESPONSE:
ACID ASLOT DEP ARR CTD CTA TYPE EX CX SH ERTA IGTD
AAL364 LGA.270028A ORD LGA 262250 270028 SUB - - - 262259 262103
LOF4096 LGA.270040A CLE LGA 262325 270040 SUB - - - 262240 262109
AAL352 LGA.270240A ORD LGA 270102 270240 SUB - - - 270132 262336
AAL2240 LGA.270315A MIA LGA 270047 270315 SUB - - - 270054 262205
AAL2285 LGA.270320A MCO LGA 270114 270320 SUB - - - 270154 262330
LOF4131 LGA.270335A STL LGA 270136 270335 SUB - - - 270120 262301
AAL2415 LGA.270338A MIA LGA 270110 270338 SUB - - - 270153 262305
AAL348 LGA.270408A ORD LGA 270230 270408 SUB - - - 270240 270041
AAL1164 LGA.270426A DFW LGA 270136 270426 SUB - - - 270220 262310
2016/02/26.13:11
***************************************************************************
SS PACKET PROCESSED FROM DAL (10.182.182.246)
 EDCT RESPONSE:
ACID ASLOT DEP ARR CTD CTA TYPE EX CX SH ERTA IGTD
DAL2679 LGA.261957A BOS LGA 261913 261957 SUB - - - - 261800
DAL1488 LGA.262030A MIA LGA 261812 262030 SUB - - - - 261617
DAL2840 LGA.262033A DFW LGA 261755 262033 SUB - - - - 261605
DAL1713 LGA.262035A TPA LGA 261835 262035 SUB - - - - 261645
DAL1486 LGA.262039A ATL LGA 261907 262039 SUB - - - - 261745
DAL2808 LGA.262130A FLL LGA 261915 262130 SUB - - - - 261710
DAL2673 LGA.262139A BOS LGA 262055 262139 SUB - - - - 261900
ASQ5645 LGA.262149A ATL LGA 262016 262149 SUB - Y Y - 261400
2016/02/26.08:27
***************************************************************************
SS PACKET PROCESSED FROM AAL37 (10.182.183.215)
 EDCT RESPONSE:
ACID ASLOT DEP ARR CTD CTA TYPE EX CX SH ERTA IGTD
WJA1202 LGA.261633A CYYZ LGA 261534 261633 SBRG - - - 261616 261435
LOF4139 LGA.261643A STL LGA 261444 261643 SCS - - - 261640 261326
2016/02/26.14:28
***************************************************************************
AC FOR LGA
AC ERROR: NO UNASSIGNED SLOTS FOR ADAPTIVE COMPRESSION. 
TOTAL UNASSIGNED SLOTS EVALUATED: 15
2016/02/26.14:28
***************************************************************************
SS PACKET PROCESSED FROM UAL1 (10.182.183.214)
 EDCT RESPONSE:
ACID ASLOT DEP ARR CTD CTA TYPE EX CX SH ERTA IGTD
UAL556 LGA.262336A DEN LGA 262017 262336 SUB - - - - 261828
UAL509 LGA.262358A ORD LGA 262223 262358 SUB - - - - 261959
UAL533 LGA.270113A ORD LGA 262337 270113 SUB - - - - 262204
UAL406 LGA.270423A DEN LGA 270115 270423 SUB - - - - 262259
UAL2049 LGA.270453A ORD LGA 270318 270453 SUB - - - - 270222
2016/02/26.14:29
…

Note: This table aims to show real-time landing slot exchanges between airlines on Feb 26th 2016 at La Guardia
airport in New York City. In the top example, American Airlines (AAL) and Trans States Airliens (LOF) 
coordinate to offer a spot to an AAL flight. In the second example, Delta (DAL) reshuffles its own slots to offer  
a slot to Atlantic Southeast Airlines (ASQ). In the third example, West Jet Airlines (WJA) yields a slot for LOF
 flying for AAL. The fourth example shows an unmatched demand for a slot, and in the fifth example United 
Airlines (UAL) reshuffles its own slots to offer a slot to one of its own planes. These examples come from an FOIA
filed for the FAA for the month of February of 2016 for all airports in NYC.



Table A2. Major-Regional Networks by Number of Routes Outsourced 

Full Sample, N = 6516 RAA Sample, N =  3593
AA CO DL NW UA US AA CO DL NW UA US

PSA Airlines 24 42 64 11 59 178 178
Aloha Airlines 3 4 21
Trans States Airlines 61 19 31 25 35 3
Continental Micronesia 2 2
Pinnacle Airlines 31 46 336 50 30 30 336 50
GoJet Airlines 21 4 5 5 103 12 103
Ohana Airlines 10 1 7 6
America West Express 72 58 79 26 83 60
American Eagle 409 53 76 35 77 37 410
Comair 73 69 321 96 57 72 321 96
SkyWest Airlines 72 48 159 39 259 22 159 259
Executive Airlines 42 1 3 1 3 42
Horizon Air 26 8 15 21 25
Republic Airlines 29 13 24 13 23 159 159
Shuttle America 41 29 149 29 172 33 149 172
Express Jet 76 273 128 75 49 77 273 49
Mesaba Airlines 4 19 27 193 8 1 27 193
Mesa Airlines 79 65 98 26 224 188 224 188
Midwest Airlines 14 10 15 14 18 4
Air Wisconsin 22 30 45 23 18 203 203

Notes:
This table provides the number of routes outsourced in Fall 2006 to each regional for both samples. 
The full sample contains 6516 major/regional/route observations, and the RAA sample contains 
3593 observations.



 

 

 

 

Figure A2. Networks of Outsourced Routes Operated by SkyWest for Different Major 
Airlines in June 2016. 

 

 



Table A3. Network Weather Summary Statistics Across Major Airlines

Full Sample, N = 6516 RAA Sample, N = 3593
Airline Variable Mean St. Dev. Min Max Mean St. Dev. Min Max

Avg. network snow 10.155 6.498 0.278 24.106 10.703 7.045 5.721 15.684
AA Avg. network rain 768.134 135.711 494.324 922.44 811.44 53.515 773.599 849.281

Avg. network # freezing months 2.061 0.748 0.7 4.25 1.703 0.354 1.452 1.954
# Major‐Regional Relationships 18 2

Avg. network snow 12.952 8.817 0 35.734 7.169 10.138 0 14.337
CO Avg. network rain 989.255 137.047 605.033 1254.14 785.902 255.786 605.033 966.77

Avg. network # freezing months 2.516 0.293 2 3.5 2.163 0.231 2 2.326
# Major‐Regional Relationships 17 2

Avg. network snow 16.761 13.134 0 50.064 20.72 11.445 12.836 40.77
DL Avg. network rain 769.207 144.506 483.615 962.022 778.154 106.449 594.206 865.729

Avg. network # freezing months 2.374 0.408 1.25 2.955 2.514 0.282 2.239 2.955
# Major‐Regional Relationships 18 5

Avg. network snow 19.973 10.42 4.756 41.714 17.195 2.513 13.54 19.243
NW Avg. network rain 708.836 97.195 480.785 881.178 701.287 54.94 623.159 751.89

Avg. network # freezing months 3.614 0.622 2.286 4.8 3.732 0.317 3.26 3.943
# Major‐Regional Relationships 19 3

Avg. network snow 38.328 20.475 0 88.963 46.357 2.769 42.462 49.901
UA Avg. network rain 748.126 221.958 391.576 1423.17 739.144 74.396 628.07 830.359

Avg. network # freezing months 2.25 0.595 0.833 3.125 2.344 0.111 2.166 2.469
# Major‐Regional Relationships 18 5

Avg. network snow 11.536 6.742 3.358 29.103 10.498 2.055 8.121 12.897
US Avg. network rain 876.657 115.541 623.584 968.667 945.14 25.555 907.698 965.355

Avg. network # freezing months 2.617 1.051 1.9 6 2.303 0.029 2.277 2.343
# Major‐Regional Relationships 15 4

Notes:
This table provides summary statistics at the network level for each major airline for both samples.



Table A4. The number of regionals serving a major airline per number of majors in the route

# Regional Airlines Serving Major in Route
1 2 3 4 5 6 7 8 9 10 11 12 Total

# Major Airlines in 
Route

Full Sample

1 338 260 188 144 138 81 28 17 8 2 0 0 1024
2 118 112 85 80 69 52 31 14 8 2 0 1 572
3 31 30 31 26 20 20 10 8 6 1 0 0 183
4 14 4 8 4 2 2 2 0 3 1 0 0 40
5 1 4 5 1 4 0 0 0 0 0 0 0 15
6 1 2 1 0 0 1 0 1 0 0 0 0 6

RAA Sample

1 632 256 163 119 6 0 0 0 0 0 0 0 1176
2 272 92 71 71 14 0 0 0 0 0 0 0 520
3 91 33 26 21 6 0 0 0 0 0 0 0 177
4 16 7 3 4 2 0 0 0 0 0 0 0 32
5 4 1 0 0 0 0 0 0 0 0 0 0 5
6 3 2 0 1 0 0 0 0 0 0 0 0 6

Notes:
This table shows variation in the number of regional airlines serving a major airline in a route given
the number of major airlines serving the route.



Table A5. The number of majors served by a regional per number of regionals in a route

# Major Airlines Served by a Regional in Route
Full Sample RAA Sample

# Regionals 
in Route 1 2 3 4 5 Total 1 2 Total

1 338 2 0 0 0 340 632 1 633
2 549 22 1 0 0 572 640 8 648
3 626 28 0 0 0 654 659 10 669
4 744 54 2 0 0 800 727 25 752
5 888 53 6 1 2 950 329 21 350
6 718 107 9 0 0 834 214 8 222
7 412 91 8 0 0 511 108 11 119
8 335 88 9 0 0 432 76 4 80
9 227 86 11 0 0 324 15 3 18

10 111 53 5 1 0 170 9 1 10
11 55 35 19 1 0 110 0 0 0
12 0 0 0 0 0 0 0 0 0
13 14 7 5 0 0 26 0 0 0

Notes:
This table shows variation in the number of majors served by a regional within a route for both samples.
We order the data by the number of regionals flying in a route regardless of who they may be flying for.



Figure A3: Residual Plot of Main Specification and Placebo Against Network Weather

A. Residuals against Average Network Snow

B. Residuals against Average Network Rain

C. Residuals against Average Network Number Freezing Months



Table A6. Probit Regressions and Marginal Effects of Network Weather

Dep. var. = survival (1) (2) (3) (4) (5) (6)

Avg. network snow 0.124*** 0.174*** 0.054*** 0.130*** 0.179*** 0.060***
(0.009) (0.016) (0.009) (0.009) (0.016) (0.010)

Avg. network rain 0.179*** 0.165*** 0.096*** 0.173*** 0.160*** 0.086***
(0.009) (0.014) (0.012) (0.009) (0.014) (0.013)

Avg. network # freezing months -0.150*** -0.062*** -0.194*** -0.154*** -0.065*** -0.199***
(0.008) (0.018) (0.011) (0.009) (0.018) (0.011)

# routes in network 0.183*** 0.173*** 0.173*** 0.184*** 0.174*** 0.174***
(0.008) (0.008) (0.009) (0.008) (0.008) (0.010)

Avg. value route 0.040*** 0.045*** 0.042*** 0.040*** 0.045*** 0.042***
(0.010) (0.013) (0.010) (0.010) (0.013) (0.010)

Route snow -0.017** -0.017** -0.015**
(0.007) (0.007) (0.007)

Route rain 0.016** 0.018** 0.022***
(0.008) (0.008) (0.008)

Route # freezing months 0.009 0.009 0.009
(0.008) (0.008) (0.008)

Hub 0.059*** 0.079*** 0.078*** 0.061*** 0.081*** 0.080***
(0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

# flights 0.101*** 0.096*** 0.116*** 0.101*** 0.096*** 0.116***
(0.017) (0.017) (0.027) (0.017) (0.017) (0.017)

Avg. value flight -0.017** -0.022*** -0.031*** -0.016** -0.022** -0.030***
(0.008) (0.009) (0.008) (0.008) (0.009) (0.008)

Distance -0.028*** -0.020*** -0.016** -0.031*** -0.024*** -0.019**
(0.007) (0.008) (0.008) (0.007) (0.008) (0.008)

Slot-controlled airport 0.078*** 0.078*** 0.054*** 0.066*** 0.064*** 0.042**
(0.017) (0.018) (0.017) (0.017) (0.018) (0.018)

Observations 6516 6516 6111 6516 6516 6111
Major fixed effects N Y N N Y N
Regional fixed effects N N Y N N Y

Notes:
The dependent variable is a dummy that takes value 1 if a major outsourced same route wto the same regional both in
2006 and 2010, and value 0 if the route was outsourced to a regional in 2006 and not outsourced to that regional in 2010.
All explanatory variables, except for dummies "Hub" and "Slot-controlled airport", are standardized by their own standard
deviation. All the results reported are marginal effects from probit regressions.
The differences in number of observations across columns are due to the fixed effects perfectly absobing
variation in major-regional outsourcing at the route level.
Standard errors clustered at 1) major-regional and 2) route level. *** p < 0.01; ** p < 0.05; * p < 0.1.



Table A7. The Impact of  Network Weather on the Survival of Route Outsourcing Decisions (RAA Sample)

Dep. var. = survival (1) (2) (3) (4) (5) (6) (7) (8)

Avg. network snow 0.095** 0.386*** 0.092 0.129*** 0.414*** 0.200*** 0.431*** -0.039
(0.048) (0.090) (0.057) (0.016) (0.042) (0.043) (0.042) (0.075)

Avg. network rain 0.141*** 0.294*** 0.125** 0.093*** 0.245*** 0.322*** 0.264*** -0.192
(0.049) (0.080) (0.054) (0.018) (0.041) (0.092) (0.039) (0.153)

Avg. network # freezing months -0.170*** -0.244*** -0.191*** -0.190*** -0.285*** -0.172*** -0.309*** -0.496***
(0.022) (0.094) (0.025) (0.013) (0.050) (0.042) (0.047) (0.047)

# routes in network 0.054* 0.077** 0.056* 0.064*** 0.081*** -0.031 0.084*** 0.021
(0.031) (0.030) (0.033) (0.012) (0.015) (0.025) (0.015) (0.061)

Avg. value Route 0.023 0.071** 0.023 0.031 0.074 -0.050 0.028 -0.234*
(0.023) (0.029) (0.025) (0.040) (0.046) (0.080) (0.018) (0.131)

Hub 0.059*** 0.068*** 0.063*** 0.089*** 0.147*** 0.112*** 0.070
(0.021) (0.018) (0.022) (0.034) (0.033) (0.033) (0.079)

# flights 0.031*** 0.027*** 0.035*** 0.38*** 0.028*** 0.032*** 0.037*** 0.012
(0.010) (0.008) (0.010) (0.005) (0.005) (0.005) (0.006) (0.016)

Avg. value flight -0.029*** -0.030*** -0.024** -0.021* -0.020 -0.001 -0.013 0.020
(0.011) (0.011) (0.010) (0.012) (0.012) (0.016) (0.013) (0.055)

Distance -0.015 -0.017 -0.013
(0.014) (0.012) (0.014)

Slot-controlled airport 0.029 0.041 0.032
(0.029) (0.031) (0.027)

Observations 3593 3593 3592 2961 2961 2961 2575 184
R-squared 0.28 0.31 0.31 0.52 0.54 0.56 0.59 0.81
Major fixed effects N Y N N Y N N N
Regional fixed effects N N Y N N Y N N
Route fixed effects N N N Y Y Y N N
Major-route fixed effects N N N N N N Y N
Regional-route fixed effects N N N N N N N Y

Notes:
The dependent variable is a dummy that takes value 1 if a major outsourced same route wto the same regional both in
2006 and 2010, and value 0 if the route was outsourced to a regional in 2006 and not outsourced to that regional in 2010.
All explanatory variables, except for dummies "Hub" and "Slot-controlled airport", are standardized by their own standard
deviation. The differences in number of observations across columns are due to the fixed effects perfectly absobing
variation in major-regional outsourcing at the route level.
The sample in this table and specifications are restricted to the RAA sample of major-regional relationships.
Standard errors clustered at 1) major-regional and 2) route level. *** p < 0.01; ** p < 0.05; * p < 0.1.



Table A9. Propensity of a Route to Be Vertically Integrated in 2006, and to Become Integrated in 2010 if Outsourced in 2006.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Dep. var. VI ΔVI ΔVI_b

Avg. network snow -0.070*** -0.092*** -0.051** -0.076*** -0.091*** -0.058***
(0.019) (0.022) (0.020) (0.020) (0.022) (0.020)

Avg. network rain -0.020 -0.060*** 0.016 -0.027 -0.064*** 0.009
(0.021) (0.019) (0.023) (0.021) (0.020) (0.023)

Avg. network # freezing months -0.067*** 0.036** -0.069*** -0.070*** 0.031* -0.070***
(0.016) (0.017) (0.015) (0.016) (0.017) (0.015)

# routes in network -0.018 -0.038*** -0.017 -0.006 -0.028*** -0.006
(0.012) (0.009) (0.011) (0.012) (0.010) (0.011)

Avg. value route -0.010 -0.014** -0.000 -0.007 -0.012* 0.003
(0.008) (0.006) (0.005) (0.008) (0.006) (0.006)

Route snow 0.008 0.020* -0.023 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001
(0.009) (0.011) (0.016) (0.010) (0.009) (0.010) (0.010) (0.010) (0.011)

Route rain 0.067*** 0.063*** 0.069*** 0.014 0.011 0.011 0.017 0.013 0.012
(0.010) (0.013) (0.015) (0.010) (0.010) (0.010) (0.011) (0.010) (0.011)

Route # freezing months -0.079*** -0.080*** -0.073*** -0.013 -0.011 -0.012 -0.013 -0.010 -0.011
(0.012) (0.012) (0.023) (0.011) (0.010) (0.011) (0.012) (0.011) (0.011)

Hub 0.134*** 0.136*** 0.179*** 0.095*** 0.081*** 0.089*** 0.071** 0.058** 0.066**
(0.020) (0.026) (0.036) (0.026) (0.024) (0.025) (0.031) (0.029) (0.030)

# flights 0.027*** 0.027** 0.022** 0.002 0.006 0.004 0.001 0.005 0.002
(0.009) (0.013) (0.009) (0.008) (0.007) (0.007) (0.009) (0.008) (0.008)

Avg. value flight 0.029*** 0.041*** 0.021*** 0.016** 0.015* 0.018** 0.016* 0.014* 0.018*
(0.009) (0.015) (0.007) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Distance 0.064*** 0.134*** 0.028 -0.005 -0.008 -0.007 -0.004 -0.008 -0.007
(0.009) (0.023) (0.020) (0.011) (0.010) (0.011) (0.011) (0.011) (0.011)

Slot-controlled airport 0.109*** 0.144*** 0.017 -0.083*** -0.080*** -0.079*** -0.078*** -0.076*** -0.075***
(0.023) (0.026) (0.041) (0.027) (0.025) (0.027) (0.028) (0.028) (0.029)

Observations 2113 1513 600 6398 6398 6398 5721 5721 5721
R-squared 0.11 0.11 0.12 0.05 0.12 0.08 0.05 0.12 0.08
Major fixed effects N N N N Y N N Y N
Regional fixed effects N N N N N Y N N Y

Notes:
The differences across specifications are as follows:
(1) In columns 1 to 3, the dependent variable is a dummy that takes value 1 if a major airline operates by itself at least one flight in a route.
Column 1 is the sample of all major/route observations operating in the U.S. Column 2 is constrained to all routes under 1500 miles, and column
3 is constrained to all routes above 1500 miles. Standard errors are clustered at the route level.
(2) In columns 4 to 6,  the dependent variable is a dummy that takes value 1 if, conditional on a route being 100% outsourced to a regional in 2006,
at least one flight is operated by the major airline in 2010.
(3) In columns 7 to 9, the dependent variable is the same as columns 4 to 6, further conditioning on the number of flights of the major in the 
route decreasing by at least one flight.
All explanatory variables, except for dummies "Hub" and "Slot-controlled airport", are standardized by their own standard deviation.
The differences in number of observations across columns are due to the fixed effects perfectly absobing variation in major-regional 
outsourcing at the route level.
Standard errors in columns 4 to 9 clustered at 1) major-regional and 2) route level. *** p < 0.01; ** p < 0.05; * p < 0.1.


