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Abstract

This paper studies markets where buyers and sellers gradually arrive over time, bar-

gain in bilateral encounters and leave the market when they trade. We obtain that, dif-

ferently from big markets with many traders, these markets feature trade delay and price

dispersion even when buyers and sellers are homogeneous and bargaining frictions are

small. Transaction prices are mostly determined by the endogenous evolution of the

number of traders in the market, and not much by the particular bargaining protocol used

in each meeting. We show that the market price drifts towards the price in a balanced

market and, under some conditions, increments on the interest rate generate mean-pre-

serving spreads of its ergodic distribution.
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1 Introduction

This paper studies dynamic thin markets. These are markets where buyers and sellers

gradually and endogenously arrive over time, bargain in bilateral encounters and leave the

market when they trade. Examples include housing/rental markets in given locations, job

markets for specific occupations, or some over-the-counter (OTC) financial markets. In them,

the number of trading opportunities at a given moment in time is limited. Still, each trader has

the possibility of waiting for the arrival of new traders; it is costly but serves her as an outside

option. Hence, in a thin market, the bargaining power of each trader not only depends on

the bargaining protocol or the the current trade opportunities, but also on the endogenous

expectation about the future ones.

Our goal is to characterize the trade outcome of a thin market—i.e., the timing and price

of transactions—and analyze how it differs from those previously obtained for big markets.

To achieve it, we first develop a general tractable model of a thin market. We then analyze

how the bargaining protocol and the endogenous arrival process determine the endogenous

market evolution, the future equilibrium prices and the trade delay. We obtain two main de-

partures from the usual findings in the “big markets” literature (reviewed below). First, thin

markets feature trade delay even when buyers and sellers are homogeneous and do not have

private information. Second, they also feature a significant price dispersion even when the

bargaining frictions are small. We characterize the resulting price dynamics, which are shown

to mostly depend on the evolution of the composition of the market and not much on the

specific features of the bargaining protocol.

We introduce a thin-market version of Gale (1987) model with an endogenously-evolving

market composition. At any given moment in time, it consists of a finite number of sellers

who own one unit of a homogeneous indivisible good, and a finite number of homogeneous

buyers with a unit demand. Once in the market, each trader keeps meeting traders from the

other side of the market. In the base model, within each meeting, one of the traders is ran-

domly chosen to make a take-it-or-leave-it offer. Either the other trader accepts the offer,

and both leave the market, or rejects it, and both continue. The arrival process of buyers and

sellers, the matching rate and the probability of making offers are allowed to depend on the

market composition, that is, the numbers of buyers and sellers in the market. We later show

that our results apply to more general arrival process or bargaining protocols, or to modeling

the outcome of a meeting as a general Nash-bargaining outcome. We focus on Markov perfect

equilibria using the market composition as state variable, where all sellers and all buyers play

the same strategy.

2



Our first result claims that trade delay may occur in equilibrium. In other words, even

though traders are homogeneous and they have no private information, equilibrium offers

may be rejected. To illustrate how trade delay arises, consider a market containing, at a given

moment in time, one buyer and two sellers. Assume that if a transaction occurs before a

trader arrives, it makes the market visible to buyers, so their arrival rate increases afterwards.

If, conversely, a trader arrives before a transaction takes place, it is likely to be a seller. In this

case, the buyer in the market does not accept a high price, since he can wait for the seller’s

competition to increase. Also, each seller obtains high continuation payoff when the other

seller trades. A war of attrition between the sellers arises as a result, where both of them

delay trade hoping that the other seller will trade first. More generally, we obtain that trade

delay will tend to arise when traders on the long side benefit from other traders’ transactions,

while traders on the short side benefit from the arrival of new traders. In this case, the joint

continuation value of a buyer and a seller from not agreeing may be bigger than their joint

surplus from trade, and trade delay may occur. We show that, nonetheless, there is never a

“market breakdown”; as long as there are buyers and sellers in the market, there is a strictly

positive probability that they will trade. Furthermore, at times when the number of buyers

and sellers in the market is the same, equilibrium offers are accepted for sure.

The second result establishes that the price dispersion is sizable even when bargaining

frictions are small. In the limit when traders in the market meet frequently, there is one trans-

action price for each market composition, but the dispersion across different market com-

positions remains. In this limit, trade delay may stay significantly large. We show that when

the numbers of buyers and sellers in the market differ, traders on the long side of the market

Bertrand compete, and the transaction price is close to their endogenous continuation value

from not trading. When, instead, there are the same number of buyers and sellers, the market

clears fast and the transaction price is determined by the stochastic Rubinstein bargaining

game played by a buyer and a seller when they are alone in the market. In this game, the play-

ers’ reservation value is endogenously determined by the stochastic arrival of new traders. We

use these results to show that transaction prices can be approximated by changing the prob-

ability measure that determines the evolution of the market, akin of the use of the so called

risk-neutral measure to study some financial markets. Under such a measure, the market

evolves as if a trader on the long side of the market deviated to not trading. The transaction

price for a given composition of the market is shown to be proportional to the discounted fu-

ture time the market exhibits excess demand under the risk-neutral measure, adjusted by the

bargaining power of the seller when only a buyer and a seller are present in the market.
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We provide conditions for the equilibrium trade delay to shrink to zero as the meeting fre-

quency increases. They take the form of bounds on the effect that current transactions have

on future arrivals. The fact that, under these conditions, the equilibrium outcome—that is,

transaction probabilities and prices—is unique eases obtaining comparative statics results.

The continuation play is determined by the net supply, that is, the difference between the

number of sellers and the number of buyers in the market. We obtain that, even though the

market composition may not drift toward being balanced, the market price always moves, in

expectation, towards the price of a balanced market. On average, it increases when there is

excess supply, and it decreases when there is excess demand. Also, increasing the interest

(or discount) rate increases the price dispersion: for a given size of the excess supply in the

market, a higher interest rate increases the discounted time it takes for the market to clear,

and therefore depresses the price. When, instead, the discount rate becomes low, the distri-

bution of transaction prices degenerates towards a “competitive price”, which is proportional

to the ergodic probability of the market exhibiting excess demand. In this instance, waiting to

trade with future arrivals is cheap, so the effective market accessible to each trader increases

and the equilibrium outcome approaches that of a big market. Nevertheless, differently from

what happens in a large market, the absence of both bargaining and delay frictions does not

necessarily imply that the surplus from trade is fully captured by one side of the market; the

endogeneity of the arrival process prevents the market to become permanently unbalanced.

Our results are robust to some extensions of our model. We first show that they hold for

arrival processes following a general multi-dimensional Markov chain. We allow some com-

ponents to be exogenously-evolving, such as the economic cycle of the economy or legis-

lation changes, and some others to evolve endogenously, such as idiosyncratic demand or

supply shocks. We also consider the effect of changing the bargaining protocol to a general

Nash bargaining. In this case, when bargaining frictions are small, the change only affects

the price through the relative bargaining power of sellers and buyers when the market is bal-

anced. Hence, the bargaining protocol does not affect prices significantly if, for example, the

market is rarely balanced.

The organization of the paper is as follows. After this introduction, we review the literature

related to our paper. Section 2 introduces our model, and Section 3 provides the equilibrium

analysis. In Section 4, we obtain conditions that guarantee that trade delay shrinks as the bar-

gaining frictions disappear and we provide some comparative statics results. Finally, Section

5 discusses general arrival processes and bargaining protocols, and Section 6 concludes. The

Appendix provides the proofs of the results.
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1.1 Literature review

Our paper contributes to the literature on thin markets with stochastic arrival of traders.

The paper closest to ours, Taylor (1995), analyzes a centralized market where buyers and

sellers arrive over time. In every period, traders on the short side of the market make of-

fers, while each side makes an offer with probability 1
2 when the market is balanced. Coles

and Muthoo (1998) consider a similar model where buyers and sellers arrive in pairs, and

they allow for heterogeneity in both buyers and goods. Similarly, Said (2011) studies dynamic

market in which buyers compete in a sequence of private-value second-price auctions for dif-

ferentiated goods. These papers analyze price dynamics under different price mechanisms in

centralized markets with constant arrival rates of traders. Our focus is, instead, on analyzing

decentralized bargaining with an endogenous arrival process. We characterize how the arrival

process and bargaining asymmetries affect price dynamics and trade delay. This allows us to

compare our results with some of the literature on big markets (see below).

Our paper is also related to the extensive literature on bargaining and matching in large

markets, reviewed in Osborne and Rubinstein (1990) and Gale (2000).1 Models in this literat-

ure typically contain a continuum of traders and feature non-stochastic population dynamics,

many times assumed to be in a stationary state. We focus, instead, on how the endogenous

change of the number of traders on each side of the market affects and is affected by the

trade outcome, and how both are also determined by the bargaining protocol. In Section 4.1

we consider the limit where traders become patient, which can be interpreted as the mar-

ket growing by replication, and we compare the results on convergence to the competitive

outcome of this literature.

Finally, there has been some recent interest on thin markets in a network of traders. For

example, Condorelli, Galeotti, and Renou (2016), Talamàs (2016) and Elliott and Nava (forth-

coming) look at bargaining in networks without arrival and with replacement, and allow for

differences in the valuation of the good by sellers and buyers. Our analysis, instead, focuses

on understanding how the dynamics of the population determines the price process and bar-

gaining outcomes in an endogenously-growing complete network.

1Important contributions in this literature are Rubinstein and Wolinsky (1985), Gale (1987), Burdett and Coles

(1997), Shimer and Smith (2000), Atakan (2006), Satterthwaite and Shneyerov (2007), Manea (2011) and Lauer-

mann (2012).
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2 The model

In this section we introduce a model similar to Rubinstein and Wolinsky (1985) and Gale

(1987). The main distinguishing feature of our model is that the market is assumed to be

“small”, that is, the number of traders in the market at each moment in time is a non-negative

integer number—instead of a mass—which endogenously and stochastically changes over

time.

State of the market. Time is continuous with an infinite horizon, t ∈ R+. There is an

infinite number of potential buyers and sellers. At a given moment in time t , there are Bt ∈
{0, ..., B̄} buyers and St ∈ {0, ..., S̄} sellers in the market, for some large B̄ , S̄ > 0. The state (of the

market) at time t is defined to be (Bt ,St ).2

Arrival process. Buyers arrive into the market at a Poisson rate γb ≡ γb(Bt ,St ) ∈ R+, and

sellers arrive into the market at a Poisson rate γs ≡ γs(Bt ,St ) ∈ R+. The total rate at which the

state exogenously changes is denoted γ≡ γb +γs . Section 5.1 considers a more general arrival

process. Note that γb(B̄ , ·) ≡ γs(·, S̄) ≡ 0.

Bargaining. In our base model we focus, for the sake of clarity, on a simplistic (yet canon-

ical) bargaining protocol. As it is pointed in Section 5.2, our results can be straightforwardly

generalized to allowing for general Nash bargaining.

If, at time t , there are buyers and sellers in the market (i.e., Bt ,St > 0), meetings occur at a

Poisson arrival rate λ(Bt ,St ) > 0. When a meeting occurs, nature selects one of the buyers and

one of the sellers in the market uniformly randomly, and also chooses the trader who makes

a price offer. The probability that the seller is chosen is ξ(Bt ,St ) ∈ (0,1).3 The trading counter-

party decides then whether to accept the offer or not. If the offer is accepted, transaction

happens and the traders leave the market, while if it is rejected they continue in the market.

Payoffs. Both buyers and sellers discount the future at rate r > 0. If a buyer and a seller

trade at time t at price p they obtain, respectively, e−r t (1−p) and e−r t p. If they never trade

they both obtain 0. Both buyers and sellers are risk-neutral and expected-utility maximizers.

Even though the formal expressions for the payoffs (and the conditions for the optimality of

a strategy profile) are obtained using standard recursive analysis, their length makes it con-

venient to leave them to Appendix A.1.

2The assumption that the number of traders in the market is bounded is technical and simplifies the intuitions

and the proofs. Standard arguments—that is, taking sequences of models where B̄ and S̄ tend to +∞—permit

showing that our results apply when B̄ = S̄ =∞, requiring arrival rates to be bounded.

3The assumption that ξ(Bt ,St )∉{0,1} avoids the Diamond’s paradox (see Remark 3.2).
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Strategies. To simplify the model setting, we focus directly on Markov strategies, the state

variable being the state of the market. Thus, the strategy of a trader (buyer or seller) maps

each state (B ,S) with B ,S > 0 into a price offer distribution in ∆(R+), and to a probability of

acceptance for each offer received, interpreted to be his/her strategy in the bargaining stage

when he/she is matched and the market state is (B ,S).4

Equilibrium concept. We focus on Markov perfect equilibria in symmetric strategies,

where all traders on each side of the market use the same strategy (see Appendix A.1 for

the formal definition). From now on, we refer to symmetric Markov perfect equilibria as just

“equilibria”.

Remark 2.1. Our specification includes the possibility that the arrival rates of traders de-

pend on their endogenous (equilibrium) continuation values from entering the market. This

could be the case if, for example, buyers and sellers became active at some respective (state-

independent) rates γ̄b and γ̄s instead of directly entering the market. Once a θ-trader would

become activate, he/she would draw a cost c from some distribution Fθ. If, for example, the

trader was a seller and the state was (B ,S), she would enter the market if the net payoff of

doing so, Vs(B ,S+1)− c, was above a fixed outside option (choosing to sell in another market

or keeping the good for herself). This would imply that γs(B ,S) = γ̄s Fs(Vs(B ,S+1)). Given that

our results hold for general arrival rates (further generalized in Section 5.1), any equilibrium

outcome of such a model would correspond to an equilibrium outcome of ours.

3 Equilibrium analysis

3.1 Equilibrium payoff functions and preliminary results

We begin this section by presenting the equations that the continuation values of each

type of trader satisfy in an equilibrium, and stating the existence of an equilibrium. We will

then use these expressions to obtain some preliminary results, as well as to provide some

intuition on why they hold.

4We implicitly assume traders observe the state of the market. Markov perfect equilibria (see the definition

below) remain equilibria independently of the information structure as long as the current state of the market

is known to the traders in the market.
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Equilibrium continuation values and existence of equilibria

Fix an equilibrium. To write the expressions for both types of traders we will sometimes

use Nb and Ns to denote, respectively, B and S. We will some times refer to buyers and sellers

as, respectively, b-traders and s-traders. Also, for a fixed trader’s type θ ∈ {b, s}, we use θ̄ to

denote the complementary type, so {θ, θ̄} = {b, s}. The continuation value of a θ-trader, for

θ ∈ {b, s}, at some state (B ,S) is given by

Vθ =

match︷ ︸︸ ︷
1

Nθ
λ

λ+γ+r V m
θ +

others match︷ ︸︸ ︷
Nθ−1

Nθ
λ

λ+γ+r V o
θ +

arrival︷ ︸︸ ︷
γ

λ+γ+r V a
θ , (3.1)

where we omitted the dependence of all Vθ’s, λ, and γ on the state of the market.5 As we see,

the payoff is divided into the following three pieces:

1. Match: Consider, for example, a seller who is matched with a buyer. If she is chosen to

make the offer, she can make an unacceptable price offer (above 1, for example), which

provides her with a continuation value equal to Vs . The seller can alternatively make

an offer intended to be accepted by the buyer. Since the continuation value of a buyer

from rejecting the offer is Vb , he accepts for sure price offers strictly lower than 1−Vb ,

and rejects offers strictly above 1−Vb . Using the standard argument for take-it-or-leave-

it offers, equilibrium offers by the seller which are accepted with positive probability are

equal to 1−Vb . If the buyer, instead, is chosen to make the offer, the seller receives payoff

is equal to Vs : in equilibrium, if the offer is acceptable, the buyer makes her indifferent

between accepting it or not. Hence, we have

V m
s = ξmax{Vs ,1−Vb}+ (1−ξ)Vs . (3.2)

The analogous equation for the buyers is given by

V m
b = ξVb + (1−ξ) max{Vb ,1−Vs} . (3.3)

2. Others match: The continuation value of a θ-trader if other traders match depends on

the acceptance probability of equilibrium offers. It can be written as

V o
θ (B ,S) =αVθ(B−1,S−1)+ (1−α)Vθ(B ,S) , (3.4)

whereα≡α(B ,S) is the equilibrium probability that there is trade in a meeting between

a buyer and a seller in state (B ,S). It is important to notice that, if the net surplus from

5To keep the expressions simple we will often not write the dependence of some variables on the state of the

market. When we do this the state of the market (B ,S) will be clear.
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trade is positive, 1−Vs−Vb > 0, the equilibrium offer is accepted for sure in any meeting

in state (B ,S) (so α = 1), while if it is negative, 1−Vs −Vb < 0, the equilibrium offer is

rejected for sure (so α= 0).

3. Arrival: An arriving trader is a buyer with probability γb
γs+γb

, and is a seller with prob-

ability γs
γs+γb

. This implies that the continuation value of a θ-trader conditional on the

arrival of a trader in the market can be written as

V a
θ (B ,S) = γb

γb+γs
Vθ(B+1,S)+ γs

γb+γs
Vθ(B ,S+1) (3.5)

for both θ ∈ {b, s}.

We begin stating the existence of equilibria. Its proof follows relatively standard fixed-

point arguments.

Proposition 3.1. An equilibrium exists. The continuation values in an equilibrium are uniquely

determined by the probability of agreement α, and satisfy equations (3.1)-(3.5).

Preliminary results

We continue our analysis with some preliminary results which set some important fea-

tures of equilibrium behavior. The first establishes that there is no equilibrium and state

where equilibrium offers are rejected for sure. Hence, even though we will see that equi-

librium offers may be rejected with a strictly positive probability, there is never a “market

breakdown”. That is, in equilibrium, there are no periods of time where trade happens with

zero probability even though there are both buyers and sellers in the market.

Result 3.1. In any equilibrium, there is a strictly positive probability of trade in every meeting,

that is, α(B ,S) > 0 whenever B ,S > 0.

The proof of the lemma proceeds by contradiction, that is, by assuming that there is an

equilibrium and a state (B ,S) where equilibrium offers are rejected for sure. This implies that

the joint continuation value of a buyer and a seller at state (B ,S) is weakly higher than the

trade surplus:

V (B ,S) ≡Vb(B ,S)+Vs(B ,S) ≥ 1 .

Therefore, there exists a state (B ′,S′) (maybe equal to (B ,S)) satisfying that V (B ′,S′) is maximal

across all states and such that α(B ′,S′) = 0. Nevertheless, in this case we have a contradiction:

V (B ′,S′) = γ(B ′,S′)
γ(B ′,S′)+r V a(B ′,S′) ≤ γ(B ′,S′)

γ(B ′,S′)+r V (B ′,S′) <V (B ′,S′) .
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The next result establishes that when there is a meeting and market is balanced (so B = S),

there is trade with probability one.

Result 3.2. In any equilibrium, if the market is balanced then there is trade for sure.

When the market is balanced, a buyer and a seller “agree” on the relative likelihood of the

three events that potentially change the state (matching, others matching and arrival). Using

that (by Result 3.1) their joint surplus is never higher than 1, we have

V =
1
S λ

λ+γ+r V m︸︷︷︸
≤1

+
S−1

S λ

λ+γ+r V o︸︷︷︸
≤1

+ γ
λ+γ+r V a︸︷︷︸

≤1

≤ λ+γ
λ+γ+r < 1 .

As we see, their joint surplus from not agreeing is strictly lower than 1 since they discount the

time where next event occurs.

Our last result in this section establishes that, if equilibrium offers are rejected with a pos-

itive probability at some state (B ,S), then a trader on the long side of the market benefits from

other traders’ transactions.

Result 3.3. Assume (B ,S) is such that α(B ,S)<1. Then, if the θ-traders are on the long side of

the market, V o
θ

(B ,S)>Vθ(B ,S) and V o
θ̄

(B ,S)<Vθ̄(B ,S).

To shed some light on Result 3.3 consider the case where sellers are on the long side of the

market, that is, S > B . As equation (3.1) shows, the rate at which there is a match involving

other traders is, from a seller’s perspective, S−1
S λ. This rate is lower from a buyer’s perspective,

which equals B−1
B λ. Thus, the weight of the event where other traders match is higher in de-

termining the sellers’ continuation value than in determining the buyers’ (see equation (3.1)).

If state (B ,S) is such that there is a positive probability that the equilibrium offer is rejected

(soα< 1), it is necessarily the case that V (B ,S) = 1. Also, we know from Result 3.1 that the join

continuation value of a buyer and a seller is weakly lower than 1 at any state. Hence, we can

write

1 =V = λ
λ+γ+r

( (∗)︷ ︸︸ ︷
1
S Vs+ S−1

S V o
s + 1

B Vb+B−1
B V o

b

)+ γ
λ+γ+r V a .

Since V m, V o and V a are weakly lower than 1, the previous equation holds only if V o
s > Vs

and V o
b < Vb . In this case, the higher weight that a seller assigns to a meeting involving other

traders occurs makes the term (∗) in the previous expression strictly bigger than 1 (which is

necessary for V to be equal to 1). In fact, it can be written as

1 < (∗) = S−B
B S (V o

s −Vs)︸ ︷︷ ︸
>0

+ 1
B V +B−1

B V o︸ ︷︷ ︸
≤1

= S−B
B S (Vb−V o

b )︸ ︷︷ ︸
>0

+ 1
S V + S−1

S V o︸ ︷︷ ︸
≤1

.
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3.2 An example with trade delay

In our setting, all sellers and buyers are homogeneous and do not have private informa-

tion. Thus, given our focus on symmetric equilibria it is, a priori, unclear whether there exist

equilibria where some equilibrium offers are rejected with a positive probability. In this sec-

tion we illustrate how equilibria with trade delay may arise. In order to keep the example

simple, we focus on a given state of the market, and we exogenously fix the continuation

payoffs when such a state changes without explicitly modeling the continuation play. Con-

sidering this “reduced version” of our model simplifies the expressions and arguments, and

it is easy to verify that there exist full specifications of our model with the same equilibrium

features.

Consider the following reduced version of our model. Initially, there is one buyer and

two sellers in the market. We assume that γs(1,2) > γb(1,2) = 0, and denote γ ≡ γs(1,2) and

λ≡ λ(1,2). If a transaction occurs before the arrival of a seller, the market becomes visible to

other buyers. The remaining seller obtains a high continuation payoff, which for simplicity is

assumed to be equal to 1.6 If, instead, a seller arrives, the strong competition between sellers

gives the buyer a high continuation payoff, which is again assumed to be 1 (see footnote 6),

and the sellers obtain 0.7

We first compute the continuation values of the buyer and sellers under the assumption

that, in each meeting, the price offer is equal to the continuation value of the trader receiving

the offer, and such an offer is accepted for sure (i.e., equations (3.1)-(3.5) hold with α = 1).

They solve the following system of equations:

Vb(1,2) = λ
λ+γ+r

(
ξVb(1,2)+(1−ξ) (1−Vs(1,2))

)+ γ
λ+γ+r 1 ,

Vs(1,2) = λ/2
λ+γ+r

(
ξ (1−Vb(1,2))+ (1−ξ)Vs(1,2)

)+ λ/2
λ+γ+r 1 .

Solving the previous system of equations, and using simple algebra, it is easy to show that

Vb(1,2)+Vs(1,2) = 1+ γ (λ−2r )−2r 2

(γ+λ+r ) (2γ+(1−ξ)λ+2r ) .

6All values can be perturbed while keeping the same features of the example. A continuation payoff for the seller

arbitrarily close to 1 when the state is (0,1) can be supported assuming that γb(0,1) À γs (0,1), that γb(1,1) À
γs (1,1) and that the arrival sellers is very low afterwards. Analogously, a high continuation value for the buyer

in state (1,3) can be supported if, for example, no more buyers arrive afterwards.

7In Section 5.1, using a more general state of the market and arrival process, we argue that trade delay arises in a

wider set of situations where traders on the short side of the market benefit from some events (arrival of traders,

changes in the economic cycle, legislation reforms, etc), while traders on the short side of the market benefit

from transactions of other traders (as they can make the market more visible).
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If λ is big or r is low (so the right hand side of the previous equation is strictly bigger than 1),

an equilibrium where there is trade in every meeting does not exist. Thus, any equilibrium of

this reduced version of our model involves randomization in the acceptance of offers. Using

α to denote the probability of agreement in a meeting in state (1,2), in any equilibrium of the

(reduced) game, we have

α= min
{
1, 2r (γ+r )

γλ

}
.

Notice that the rate at which an agreement occurs in state (1,2) (which equals αλ) converges

to 2r (γ+r )
γ as λ becomes big, that is, a significant trade delay remains even in the limit where

bargaining frictions disappear.

Our example shows that, in some specifications, traders on one side of the market benefit

from other traders’ transactions, while traders on the other side of the market benefit from

the arrival of new traders. In the example, sellers obtain a high continuation payoff if a trans-

action occurs, and the buyer gets a high payoff if a trader arrives. The buyer is unwilling to

accept a price above γ
γ+r , given that he has the option of waiting for the arrival of another

seller and then obtain a high payoff. As a result, immediate agreement is not possible: oth-

erwise, each seller would have the incentive to let the other seller trade at a low price, and

obtain a high continuation payoff afterwards. The equilibrium behavior of the sellers in the

market resembles then a war of attrition: each of them trades at the rate that makes the other

seller indifferent between trading at price γ
γ+r or not. Such delay lowers the value of making

unacceptable offers from each seller’s perspective, since doing so comes at the risk of another

seller arriving. As time passes, either one of the sellers trades (and the remaining seller ob-

tains a high payoff), or another seller arrives (and all sellers obtain a low continuation payoff).

Remark 3.1. Inefficient delay can also be found in other bargaining models with complete

information. For example, Cai (2000) analyzes a model of one-to-many bargaining between

farmers and a railroad company, where the gains from trade are realized only if all farmers

agree. Similar to us, farmers want other farmers to trade, to gain monopsony power. Also, in

models of bargaining in networks such as Elliott and Nava (forthcoming), delay may happen

because traders are heterogeneous. Our example illustrates that trade delay may appear even

when bargaining is decentralized and traders are homogeneous, the reason being that some

traders may benefit from other traders’ trades, while others benefit from arrivals.
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3.3 Small bargaining frictions

We continue with our analysis by focussing on the case where the bargaining frictions

are small, that is, where traders in the market meet frequently. This may be a plausible as-

sumption in some thin markets such as localized housing markets or job markets for specific

occupations, where the rate at which traders (can) meet once they are in the market is much

higher than the arrival rate into the market. As in the large markets literature, studying the

case where frictions are small will allow us to provide a sharper characterization of the equi-

librium outcome.

In order to analyze the case where bargaining frictions are small, we now separate each

state’s meeting rate λ(B ,S) into two parts. The first is a state-independent common factor

k > 0, which will taken to be big. The second is a function `(B ,S), measuring the relative

frequency with which traders meet in each state. Thus, from now on, we use λ(B ,S) and

k `(B ,S) interchangeably.

Given that we will compare equilibria for different values of k, the following notation is

convenient to simplify the presentation of the results. In the expressions below, the notation

“'” indicates that terms on each of the sides are equal in any equilibrium except for terms

that go to 0 as k increases (sometimes, for the sake of clarity, we add “as k →∞”).8 Our first

result establishes that when bargaining frictions are small, the joint continuation value of a

buyer and a seller is close to the joint surplus they obtain from trade.

Result 3.4. As k →∞, Vb(B ,S)+Vs(B ,S) ' 1 for all states (B ,S) with B ,S > 0.

To get an intuition for Result 3.4 note that, for a fixed equilibrium, there are three kinds of

states. The first kind contains all states with B ,S ≥ 1 where equilibrium offers are rejected with

a positive probability, in which case V = 1 and the result holds. The second kind contains all

states where either B = 1 or S = 1 (or both), and there is trade for sure in every meeting. In this

case, if for example there is one buyer, S ≥ B = 1, his continuation value can be approximated

as follows:

Vb ' ξVb + (1−ξ) (1−Vs) ⇒ Vb ' 1−Vs .

Intuitively, given that meetings happen very frequently, the buyer can almost costlessly wait

until he makes the offer and obtain 1−Vs ≥ Vb . Finally, there are states where B ,S > 1 and

there is immediate trade. Simple algebra shows that, in this case, when the meeting frequency

8For example, the statement of Result 3.4 should be read as “For all ε> 0 there is a k̄ > 0 such that if k > k̄ then,

for any equilibrium and state (B ,S), |Vb(B ,S)+Vs (B ,S)−1| < ε.”.
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is high, we can write the net surplus from trade as

1−V ' (B−1)(S−1)
B S−ξS−(1−ξ)B

(
1−V (B−1,S−1)

)
. (3.6)

As we see, if there is immediate trade at state (B ,S) and the net surplus from trade is small

after a transaction occurs, the net surplus is necessarily small in (B ,S). Define then m as

the lowest value m ≥ 1 such that (B−m,S−m) belongs to one of the first two kinds of states.

Since by our previous arguments the net surplus from trade is small in state (B−m,S−m) (so

1−V (B−m,S−m) ' 0), we can iteratively use equation (3.6) to obtain that 1−V (B ,S) ' 0.

An immediate and important consequence of Result 3.4 is that, when bargaining frictions

are low, a seller is approximately indifferent between trading or not in all states (B ,S) with

S > B . This is obviously true if α < 1 (the first kind of states defined before). When, instead,

α= 1 and S > B = 1, the payoff of a seller is

Vs(1,S) ' 1
S Vs(1,S)+ S−1

S Vs(0,S−1) .

Thus, from the previous equation, Vs(1,S) ' Vs(0,S−1), and therefore not trading is close-to-

optimal for a seller. As we argued before, when bargaining frictions are low, the third kind of

states (in this case, states where α = 1 and S > B ≥ 1) change very fast to states of one of the

first two kinds, so the result holds.

Another implication of Result 3.4 is that the price dispersion of the transactions that occur

in a given state is low when the bargaining frictions are small. Indeed, the equilibrium price

in state (S,B) is either Vs(S,B) (if the buyer makes the offer) or 1−Vb(S,B) (if the seller makes

the offer). Since V (S,B) ' 1, we have Vs(S,B) ' 1−Vb(S,B). The following section shows that

the price dispersion across states remains.

Change of measure

As we argue above, Result 3.4 establishes that, when bargaining frictions are small, traders

on the long side of the market are close-to-indifferent on trading or letting other traders trade

as long as there are traders on both sides of the market. We use such indifference to provide

a characterization of the equilibrium price by changing the probability measure that determ-

ines the evolution of the state of the market. This approach is in the same spirit of the use of

risk-neutral measures in the study of financial markets. The main difference, apart from the

thinness of our market, is the fact that the side of the market with more traders changes over

time.

Fix an equilibrium. Consider a measure for which the state of the market (Bt ,St ) evolves

according to a Markov chain as follows. At Poisson rates γb(Bt ,St ) and γs(Bt ,St ) the state
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changes to (Bt +1,St ) and (Bt ,St +1), respectively. Additionally, at rate δ̃(Bt ,St ), the state

changes to (Bt−1,St−1), where

δ̃(Bt ,St ) ≡


Bt−1
Bt

α(Bt ,St )λ(Bt ,St ) if Bt ≥St ,

St−1
St

α(Bt ,St )λ(Bt ,St ) if Bt <St .

With some abuse of language, we call this measure the risk-neutral measure (of the fixed equi-

librium). Notice that the evolution of (Bt ,St ) under the risk-neutral measure corresponds to

the evolution of the state of the market “when, at each time, one trader on the long side of

the market deviates to not trading”. Note also that the dynamics of the state of the market

under the risk-neutral measure can be entirely determined from—and therefore uniquely ob-

tained by an external observer who only observes—the equilibrium dynamics of the state of

the market.

Proposition 3.2. For any t and (B0,S0) we have, as k →∞,

Vs(B0,S0) ' Ẽ
[∫ ∞

0
e−r t (IBt>St +ξ(1,1) IBt=St )r dt

]
, (3.7)

where Ẽ is the expectation using the risk-neutral measure.

Proposition 3.2 gives an approximation of the transaction price at each state (B ,S) (which

is approximately equal to Vs(B ,S)) in terms of the equilibrium dynamics of the state, and the

probability that a seller makes an offer when there is only one buyer and one seller in the

market. As we see, it is a discounted average (under the risk-neutral measure) of the future

time the market exhibits excess supply, adjusted by the times it is balanced.

To obtain some intuition for Proposition 3.2 consider a state (B ,S) where the market is

imbalanced. If there are more sellers than buyers, B < S, sellers are approximately indifferent

on trading or not, and this implies

Vs '
S−1

S αλ
S−1

S αλ+γ+r
V m

s + γ
S−1

S αλ+γ+r
V a

s . (3.8)

A similar equation can be obtained when there are more buyers than sellers in the market

(replacing s by b and S by B). Using Result 3.4 we can write, when B > S,

'Vs︷ ︸︸ ︷
1−Vb ' r

B−1
B αλ+γ+r

+
B−1

B αλ
B−1

B αλ+γ+r
(

'V m
s︷ ︸︸ ︷

1−V m
b )+ γ

B−1
B αλ+γ+r

(

'V a
s︷ ︸︸ ︷

1−V a
b ) . (3.9)

Hence, when the market is imbalanced, the outcome of the market resembles the outcome

typically obtained in models of Bertrand competition. Indeed, in a match, the payoff of a

trader on the long side of the market if he/she trades is very close to his/her continuation
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value from not trading until the state of the market changes. Importantly, in a dynamic mar-

ket, the continuation value is endogenous, and driven by the expectation about the future

trade opportunities.9

When the market is balanced, Result 3.2 establishes that there is trade in every meeting.

Consequently, when S > 1, we have

Vs(S,S) ' 1
S Vs(S,S)+ S−1

S Vs(S−1,S−1) ,

so Vs(S,S) 'Vs(S−1,S−1). Each seller is close-to-indifferent on trading or letting other traders

trade until she is alone in the market with a single buyer. When there are only one buyer and

one seller in the market, the reservation value of the seller (i.e., her value from not trading)

is γ(1,1)
γ(1,1)+r V a

s (1,1). Similarly, the reservation value of the buyer is γ(1,1)
γ(1,1)+r V a

b (1,1). As the bar-

gaining frictions become small, the transaction price is determined by the limit outcome of

a two-player bargaining game á la Rubinstein (1982) with randomly arriving outside options

(given by the potential arrival of other traders). The “size of the pie” over which they bargain

is not 1, but the trade surplus net of the sum of the outside options, which is

1− γ(1,1)
γ(1,1)+r (V a

b (1,1)+V a
s (1,1)) ' r

γ(1,1)+r .

As in the standard Rubinstein bargaining game, the seller obtains, on top of her reservation

value, a fraction of the size of the pie equal to the probability with which she makes offers,

ξ(1,1). Hence, the Rubinstein payoff of the seller, which is approximately equal to the trans-

action price, is given by

Vs ' r
γ(1,1)+r ξ(1,1)+ γ(1,1)

γ(1,1)+r V a
s (1,1) . (3.10)

Equations (3.8)-(3.10) show that Vs approximately follows, under the risk neutral measure,

the same equations as the continuation payoff of a fictitious agent who receives a flow payoff

of 1 when there is excess supply (i.e., Bt > St ), a flow payoff of 0 when there is excess demand

(i.e., Bt < St ) and a flow payoff of ξ(1,1) when the market is balanced (i.e., Bt = St ). The right

hand side of equation (3.7) gives an expression for such a continuation value.

An implication of Proposition 3.2 is that only the evolution of the sign of the net amount of

sellers (or buyers) in the market, which we call balancedness of the market, is relevant for de-

termining the market price. This is because the intensity of the competition between traders

9This result can be interpreted to micro-found, using a decentralized approach, the assumption in Taylor (1995)

that, at any given time where the market is imbalanced, the transaction price is equal to the one corresponding

to a static market with Bertrand-competition in the long side.
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on the long side of the market is irrelevant for determining the price when the market is un-

balanced: the price equals their reservation value independently of their number. Thus, the

price is not directly affected by the expected amount of future transactions, but by the expec-

ted evolution of the balancedness of the market. The only dependence of the price on the

details of the bargaining protocol comes from the relative bargaining powers when there are

only one buyer and one seller in the market.

Remark 3.2 (No Diamond’s paradox). Corollary 3.2 shows that, in the limit where bargaining

frictions disappear, the payoff of each trader in each state is strictly positive as long as there is

a positive probability that his or her side of the market becomes the short side of the market in

the future. This may be surprising since, in bargaining models with one-sided offers (which

in our model would correspond to ξ ≡ 0 or ξ ≡ 1), the side of the market making the offers

obtains all surplus from trade, independently of the degree of balancedness of the market,

usually known as the Diamond’s paradox (see Diamond, 1971). In our model, the order of

limits matters: our claim implicitly takes the takes the limit of small bargaining frictions first,

and the limit of one-sided offers afterwards. This result would not hold if we first assumed that

ξ(·, ·) is constant and equal to either 0 or 1, and then we took the limit where the bargaining

frictions disappear: in this case, the type of traders making all offers would obtain all gains

from trade.

Changes in continuation values

The risk-neutral measure is typically defined as such that “the current value of a financial

asset is equal to its expected payoffs in the future discounted at the risk-free rate”. If B0 < S0 it

is easy to see that, indeed, the transaction price in state (B0,S0) (which is approximately equal

to Vs(B0,S0)) is approximately equal to the discounted price at which, in equilibrium, a seller

at time 0 expects to sell the good (if she follows an optimal strategy). As we argued before, a

close-to-optimal strategy for a seller at time 0 when the bargaining frictions are small consists

on not trading until the market is balanced. It is then easy to see (see the proof of Corollary

3.1) that

Vs(B0,S0) ' Ẽ[er τ0 Vs(1,1)] whenever B0 < S0 , (3.11)

where τ0 is the (stochastic) time it takes for the market to balance. When, instead B0 > S0,

equation (3.11) holds for the continuation value of the buyers instead of the sellers’ one.

Hence, the risk-neutral measure makes “the current continuation value of a trader on the

long side of the market equal to his/her expected surplus from trade in the future, discounted

at the risk-free rate”. This indifference allows us to establish the following result:
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Corollary 3.1. For all t and θ, if θ-traders are on the long side of the market,

lim
∆↘0

Et [Vθ,t+∆−Vθ,t ]

∆
º lim
∆↘0

Ẽt [Vθ,t+∆−Vθ,t ]

∆
' r Vθ,t , (3.12)

where Vθ,t ≡Vθ(Bt ,St ) and “º” means higher except for terms that vanish as k →∞.

As we argued before, the equality in equation (3.12) derives from the definition of the risk-

neutral measure. The inequality derives from Result 3.3. To see this, assume that at time t

there is excess supply, Bt < St . Assume also that there is trade delay at state (Bt ,St ). Thus, the

rate at which transactions happen if all sellers follow the equilibrium strategy is higher than

the one of the sellers deviates and decides not to trade (αλ vs St−1
St

αλ). Given that sellers are

close to approximately indifferent on trading, and by Result 3.3 they benefit from other sellers’

transactions, the equilibrium expected increase on the continuation payoff of the sellers is

higher than under the risk-neutral measure.

Equation (3.11), as well as the converse inequality when buyers are on the long side of the

market, is helpful to set approximate bounds on the transaction prices when bargaining fric-

tions are small. For example, setting an approximate upper bound for the discounted transac-

tion price in a state (B0,S0) with S0 > B0 ≥ 1 only requires knowing the equilibrium dynamics

of the state of the market and the price when the market is balanced, which is approximately

Vs(1,1):10

Vs(B0,S0) ¹ E[er τ0 Vs(1,1)] .

4 No delay

We devote this section to studying equilibrium behavior when trade delay disappears

as the bargaining frictions vanish. When this happens, the limit outcome of the model is

uniquely defined, and this eases obtaining comparative statics results.

We focus on a simple setting where the arrival rates of traders only depend on the net

supply in the market, that is, the difference between sellers and buyers. This assumption

simplifies the analysis, and clarifies the results. We now assume that B̄ = S̄ = ∞ to avoid

constraining the set of arrival processes too much. In Section 4.2 we extend the results to a

more general arrival process.

10Result 3.2 establishes that when the market is balanced (so B = S) there is trade for sure in every meeting. This

implies that, when k is large, Vθ(S,S) ' 1
S Vθ(S,S)+ S−1

S Vθ(S−1,S−1), so Vθ(S,S) ' Vθ(S−1,S−1). Given that

transactions happen fast, it is the case that Vθ(S,S) 'Vθ(1,1).
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Condition 1. We assume, with some abuse of notation, that γθ(B ,S)=γθ(S−B) for all states

(B ,S) and types θ∈{b, s}.

Condition 1 requires that only the net supply is relevant to determine the arrival rates

of the different types of traders. Under this condition, the dynamics of the net supply are

autonomous. The reason is that transactions between traders do not alter the net supply,

and the arrival rates of traders are only a function of it. This implies, in particular, that the net

supply (but not the state of the market) evolves equally under the equilibrium and risk-neutral

measures.

Proposition 4.1. Under Condition 1 there exists some k̄ such that if k > k̄ then there is no equi-

librium with trade delay. There exists an increasing function p :Z→ [0,1] such that Vs(B ,S) '
p(S −B) for all states (S,B).

Proposition 4.1 establishes that Condition 1 is sufficient for trade delay to disappear when

bargaining frictions are low. To see this note that, by Result 3.3, trade delay occurs in a given

state (B ,S) with S > B only if sellers gain from other traders’ transactions, that is, Vs(B−1,S−1)−
Vs > 0. The proof of Proposition 4.1 shows that this difference is bounded away from 0 when

k is large. Furthermore, since the evolution of St −Bt is autonomous under Condition 1, the

right hand of expression (3.7) is only a function of the initial net supply S0 −B0. Therefore,

when bargaining frictions are small, transaction prices are only a function of the net supply

in the market, so Vs(B−1,S−1) 'Vs . This prevents delay to be part of equilibrium behavior.

We will refer to the function p(·) in the statement of Proposition 4.1 as the market price,

and we will interpret p(N ) as the transaction price in a state (B ,S) when the net supply is

N ≡ S −B . Since the sellers’ continuation value is close to p, we can characterize the market

price obtaining expressions analogous to equations (3.8)-(3.10). If N > 0, that is, if there are

more sellers than buyers in the market, sellers are indifferent on trading now (and obtaining a

payoff equal to p(N )), or refusing to trade and waiting for the state to change (and trade then).

Thus, the market price at the net state N > 0 satisfies the following equation

p(N ) = γb (N )
γ(N )+r p(N−1)+ γs (N )

γ(N )+r p(N+1) . (4.1)

If N < 0, the situation is reversed: buyers are indifferent on trading now (obtaining a payoff

equal to 1−p(N )) or letting other buyers trade and waiting for the state to change. Rearranging

some terms in the expression analogous to equation (4.1) for the buyers, we obtain that the

price at net state N satisfies

p(N ) = r
γ(N )+r +

γb (N )
γ(N )+r p(N−1)+ γs (N )

γ(N )+r p(N+1) . (4.2)
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Finally, when the market is balanced, the price is determined by computing the outcome of

the frictionless-bargaining limit of a two-player bargaining game á la Rubinstein (1982) with

randomly arrival outside options (given by the potential arrival of other traders). The resulting

price is equal to

p(0) = r
γ(0)+r ξ(1,1)+ γb (0)

γ(0)+r p(−1)+ γs (0)
γ(0)+r p(1) . (4.3)

One can use equations (4.1)-(4.3) to write the market price as the right hand side of equa-

tion (3.7), that is, as the future expected discounted time the market exhibits excess demand

and, additionally, the future expected discounted time the market is balanced multiplied by

ξ(1,1). Similarly, using τ0 is the (stochastic) time it takes for the market to balance as in equa-

tion (3.11), we can write

p(N ) =
1−E[e−r τ0 |N0=N ] (1−p(0)) if N ≤ 0,

E[e−r τ0 |N0=N ] p(0) if N > 0.
(4.4)

In words, traders on the long side of the market are indifferent on waiting to trade until the

market is balanced. Consequently, when the market is imbalanced, the market price changes,

in expectation, toward the price of a balanced market (recall also Corollary 3.1). Remarkably,

this is the case independently of whether Nt tends in expectation to 0 or not, that is, whether

the market tends towards being balanced.

4.1 Comparative statics

One of the salient questions in the literature on decentralized bargaining in large markets

is whether lowering the frictions in the market leads to a competitive outcome. This exercise

allows analyzing whether and how frictions may be magnified or mitigated by the equilibrium

behavior of the traders in the market, and therefore shed light on how robust the predictions

of models with markets without frictions are.11 This section asks a similar question for a thin

11For example, Gale (1987) characterizes the trade outcome in the large-market version of our model in the

limit where the discount rate converges to 0, and obtains that it converges to that of a competitive market.

In this limit, the price is either 0 (if there are more buyers than sellers) or equal to 1 (if there are more buyers

than sellers). Other papers have identified some reasons for the failure of convergence. It may be caused, for

example, by asymmetric information between traders (Satterthwaite and Shneyerov, 2007; Lauermann and

Wolinsky, 2016), the heterogeneity in each side of the market (Lauermann, 2012), or lack of knowledge about

the state of the market (Lauermann, Merzyn, and Virág, 2017). See also Lauermann (2013) for an analysis of

other causes of delay.
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market, analyzing the role of the friction that remains in the market when the meeting fre-

quency is high: the delay cost that a trader incurs when he or she is on the long side of the

market.

In this section we assume that Nt has an ergodic distribution. More concretely, we assume

that there is some distribution F on Z such that, for each net supply value N , limt→∞ Pr(Nt =
N |N0) = F (N ) independently of N0. Note that, when Condition 1 holds, the ergodic distribu-

tion of Nt in the limit where bargaining frictions are small is independent of the discount rate,

but the ergodic distribution of market prices does.

Corollary 4.1. An increase in r generates a mean-preserving spread of the ergodic distribution

of market prices.

Corollary 4.1 illustrates the effect that an increase in the discount rate (or the interest rate)

has on the trade outcome: it increases the ergodic dispersion of the market price distribution,

while keeping its mean the same. The fact that the average long run price is independent of

the discount rate follows from equation (3.7). Indeed, from time-0 perspective, the expected

price at time t gets increasingly close to the ergodic probability that the market exhibits excess

demand (i.e., Nt < 0) plus the probability that the market is balanced (i.e., Nt = 0) multiplied

by ξ(1,1). The increase in the price dispersion follows from Corollary 3.1. For example, when

Nt > 0, p(Nt ) drifts towards the price in a balanced market at a rate r p(Nt ). This is necessary

to make sellers willing to delay trade instead of trading now when they are on the long side

of the market. For a fixed N > 0, an increase in the discount rate r lowers the discount factor

of the time it takes the market to become balanced. Thus, in the limit where r →∞, we have

p(N ) → 0 for all N > 0, and p(N ) → 1 for all N < 0.

Patient traders

In a thin market there is no natural analogous of a “competitive outcome”, since the num-

ber of traders on each side of the market is, at each given moment in time, finite. Still, when

traders are patient, it becomes less costly for them wait to trade (and compete) with future

traders, enlarging the effective market that each trader faces. As we will see, this implies that,

when traders are patient, the outcome of a thin market shares many features with that of a

competitive market: the price is (approximately) constant, and depends only the (expected)

of balancedness of the market. Nevertheless, the endogenous arrival process in a thin market

implies that, in general, no side of the market obtains the full surplus from trade.

As traders become more patient, the current state of the market becomes progressively

less relevant to determine the price, since each trader in the market can wait for the state
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of the market to change without incurring a big cost. In particular, the delay cost from not

trading and waiting until the net state reaches some given state in the support of the ergodic

distribution of N tends to 0 as r → 0. As a result, as the discount rate r shrinks, it may seem

that, for each given state, the payoff from not trading becomes increasingly attractive to each

of the traders in the market. Nevertheless, this is not possible when bargaining frictions are

small: the sum of the continuation values of a seller and a buyer in the market is always close

to 1, independently of their discount rate. Even though waiting is increasingly cheap, it also

becomes increasingly invaluable, since also the price variation across states becomes increas-

ingly small. The following result characterizes how the waiting options of buyers and sellers

affect the market’s outcome when the discount rate decreases.

Corollary 4.2. As r ↘ 0, the ergodic distribution of transaction prices converges to a distribu-

tion degenerated at price p∗ ≡ limt→∞E[INt<0 +ξ(1,1) INt=0].

Corollary 4.2 establishes that, as traders become more patient, the distribution of trans-

action prices converges to a distribution degenerated at some “competitive” price p∗. This is

intuitive: since waiting for the state to change (instead of trading now) is increasingly cheap

as r → 0, the market price in all states of the market converges to a single price. Such a price

can be obtained using equation (3.7), from which it is clear that when r is small the market

price is close to the ergodic probability of the market having an excess demand, adjusted by

the probability with which the market is balanced. It is then immediate to see that, as r → 0,

the distribution of transaction prices also becomes degenerated to the competitive price p∗.

To provide further intuition on the previous results, let BΣt and SΣt denote, respectively,

the number of buyers and sellers into the market from 0 to t , including the ones “arrived” (or

present) at time 0. Then, trivially, Nt = St −Bt = SΣt −BΣt , so equation (3.7) is valid replacing

Bt and St by BΣt and S̄Σt , respectively. As traders become more patient, the price (at time 0,

for example) approximates the (ergodic) probability that more sellers than buyers arrive in

the future. Hence, as r decreases, the effective market that a trader (at time 0) faces grows

intertemporally. The endogenity of the arrival process implies that, in general (and differently

from the big market case), the price is not degenerated at 0 (when there is excess supply) or

1 (when there is excess demand). Instead, in a thin market, the competitive price is a convex

combination of the two extremes, each of them weighted according to the probability that the

market features excess supply and demand.

Remark 4.1. In our model, making traders more patient (through decreasing r by a factor

1/M < 1) can be reinterpreted as enlarging the market by replication, that is, increasing the

arrival rates (of buyers and sellers) by a factor M > 1. Indeed, increasing the arrival rates
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accelerates the pace of our model: the distribution of (Bt ,St ) under arrival rates (γb ,γs) is

the same as the distribution of (Bt/M ,St/M ) under arrival rates (M γb , M γs). Using equation

(3.7), it is not difficult to see that the value of p(S0−B0) is the same under (r,γb ,γs) and under

(r /M , M γb , M γs). So, replicating the market M times is equivalent (in terms of the ergodic

distribution of prices) to making it M times faster or, equivalently, to multiply its traders’ dis-

count factor by a factor 1/M .

Our interpretation of market replication may correspond, in practice, to the unification of

similar markets into bigger ones. This may be result of, for example, from the introduction

of websites providing information on local rental or housing prices in close locations, or used

durable goods. The introduction of such webpages may make it easier for buyers to compare

prices across markets, which may de facto transform them into a single market. Our result im-

plies that even though the unification of markets may not change the ergodic distribution of

the market composition much, it may make prices fluctuate faster (in the sense that changes

in the market price happen more frequently), and may make their ergodic distribution gets

more concentrated around a given value.

4.2 A more general condition for no delay

Proposition 4.1 shows that, when the net supply evolves following an autonomous process

(Condition 1), there is no trade delay when the bargaining frictions are small enough. We

now show that the same result holds under a more general condition, and we illustrate the

robustness of the results presented above.

Condition 2. For each state (B ,S) with B ,S > 0, γθ(B−1,S−1)
γ(B−1,S−1)+r ≤ γθ

γ+r + r
γ+r

1
2 .

Condition 2 relaxes Condition 1. It requires that single transactions do not delay much

the expected time until th arrival of each type of traders. This limits the possibility that, as in

the example in Section 3.2, traders on the long side of the market benefit significantly from

transactions of other traders. Consequently, as the next result establishes, it prevents trade

delay to occur in equilibrium.

Proposition 4.2. Proposition 4.1 holds under Condition 2.

As k increases, delay disappears and the time it takes the short side of the market to clear

is increasingly small. Consequently, in the limit dynamics of the state of the market, one of the

sides of the market is always empty. The evolution of the net supply can then be approximated

by an autonomous process satisfying a condition similar to Condition 1, now with γθ(N ) =
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γθ(0, N ) if N ≥ 0 and γθ(N ) = γθ(−N ,0) if N < 0, for each θ ∈ {b, s}. Similarly, the net supply

under the risk neutral measure also evolves approximately autonomously when k increases.

It is important to note that the equilibrium and risk-neutral dynamics of the net supply

do not necessarily coincide in the limit where bargaining fictions vanish. When the market

is imbalanced, their law of motion coincides so, for example, equation (4.4) still holds. Nev-

ertheless, when the market is balanced, the arrival rate of θ-traders is γθ(0,0) in equilibrium,

while it is γθ(1,1) under the risk-neutral measure. Consequently, Corollary 4.1 is true for the

ergodic distribution under the risk-neutral measure. Still, if the arrival rates in states (0,0) and

(1,1) are close, or if the likelihood that the market is balanced is low, the result gives a good

approximation of the effects of changes in the interest rate, and the competitive price is close

to that obtained in Corollary 4.2.

Remark 4.2. Note that Conditions 1 and 2 hold trivially in the big markets studied Rubin-

stein and Wolinsky (1985) and Gale (1987), which exhibit not trade delay. Indeed, the equilib-

rium arrival rate of traders—which, in their models, is a discrete-time flow—is independent of

whether a given trader trades or not. Then, delaying trade does not change the continuation

value of the traders and while postpones the realization of the gains from trade. This argu-

ment cannot be applied, in general, to a thin market: as each transaction affects the aggregate

state of the market, traders may have the incentive to let other traders trade, and trade when

his/her bargaining power is higher.

Remark 4.3. Condition 2 ensures that trade delay disappears when bargaining frictions are

small. It is not difficult to find conditions that, on the contrary, ensure that all equilibria

exhibit trade delay. An example is the following. Let p(·) be the solution of equations (4.1)-

(4.3) with γθ(N ) = γθ(0, N ) if N ≥ 0 and γθ(N ) = γθ(−N ,0) if N < 0, for each θ ∈ {b, s}. Then, if

there is some N < 0 such that

p(N ) < γb (1−N ,1)
γ(1−N ,1)+r p(N−1)+ γs (1−N ,1)

γ(1−N ,1)+r p(N+1) .

there is no equilibrium without trade delay if k is high enough. (A similar condition can be

found for N > 0.) This is the case because, if the previous condition holds and there was an

equilibrium without trad delay, a seller would not be willing to trade in state (1−N ,1). By

doing so, she would obtain the right hand side of the expression instead of her payoff from

trading, p(N ).
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5 Generalizations and extensions

5.1 General market process

In our base model we assume that the arrival rates of traders depend only on the cur-

rent number of buyers and sellers in the market. In practice, the arrival of traders in markets

may depend on other factors, like the state of the economy (economic booms or downturns),

changes in similar markets, idiosyncratic demand/supply shocks in the market, changes on

the legislation affecting the bargaining powers of the different types of traders, etc. In this

section, we argue that our results are robust to enriching the arrival process to depend on a

multi-dimensional state.

We now assume that the state of the market at time t is (Bt ,St ,ωt ), where ωt is the value

of a stochastic process taking values in some set Ω ⊂ Rn for some n ∈ N. We call ωt the

market’s cycle at time t . Hence, with some abuse of notation, we use γb ≡ γb(Bt ,St ,ωt ) and

γs ≡ γs(Bt ,St ,ωt ) to denote, respectively, the arrival rates of buyers and sellers of buyers into

the market at time t , and γ= γb +γs as before. The probability that the seller makes an offer

in a meeting when the state of the market is (Bt ,St ,ωt ) is denoted ξ≡ ξ(Bt ,St ,ωt ).

We assume that the market’s cycle ωt changes when there is a transaction, when there is

an arrival, or exogenously at a Poisson rate η ≡ η(Bt ,St ,ωt ), where η : Z+×Z+×Ω→ R+. In

each of these evens, the new state is determined by a random variable ω̃ which depends only

on (Bt ,St ,ωt ) and the type of event. Some components of the market’s cycle can be assumed

to evolve exogenously (like, for example, the state of the economy or regulation changes) and

some may depend on the endogenous variables of the market (such as the number of traders

in the market, its visibility, or regional economic conditions if the market is geographically

located).

Equations (3.1)-(3.5) can be adapted to the general market process. Now, transactions and

arrivals have the potential to change (some components) of the market’s cycle. Also, at each

moment in time, there is the possibility of an exogenous change in the market’s cycle. In an

equilibrium, now the continuation value of a θ-trader at market state (B ,S,ω) satisfies

Vθ =
1

Nθ
λ

λ+γ+r+η V m
θ +

Nθ−1
Nθ

λ

λ+γ+r+η V o
θ + γ

λ+γ+r+η V a
θ + η

λ+γ+r+η V c
θ , (5.1)

where we omitted the dependence of the Vθ’s, λ and γ on the state of the market (B ,S,ω),
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where V m
θ

is defined as in (3.2) and (3.3), and where

V o
θ ≡αEω̃

[
Vθ(B−1,S−1,ω̃)

∣∣trade
]+ (1−α)Vθ ,

V a
θ ≡ γb

γb+γs
Eω̃

[
Vθ(B+1,S,ω̃)

∣∣buyer arrives
]+ γs

γb+γs
Eω̃[Vθ(B ,S+1,ω̃)

∣∣seller arrives] ,

V c
θ ≡ Eω̃

[
Vθ(B ,S,ω̃)

∣∣exogenous change
]

,

are the expected continuation value if the market’s cycle changes (all expectations are condi-

tional on the state (B ,S,ω)).

The same logic as in our base model can be used to show that Results 3.1-3.4 and Corollary

3.1 still hold. Indeed, the additional last two terms on the right hand side of equation (5.1)

play a similar role: they contain, in each state, the effect of exogenous changes of the state

of the market. One can then see that the arguments for Results 3.1-3.4 and Corollary 3.1 are

independent on the particular form of this term. Proposition 3.2, instead, has to be adapted

as follows. Now, when the market is balanced, the flow payoff of the fictitious agent described

in the paragraph following equation (3.10) is equal to ξ(1,1,ωt ), that is, potentially depends

on the market cycle.

The generalized process for the state of the market expands the range of settings where

equilibria feature trade delay. Indeed, as we see in the example in Section 3.2, the crucial

feature for trade delay to occur is that, for a fixed state (B ,S), traders on the short side of the

market benefit from the arrival of traders, while traders on the long side of the market be-

nefit from the endogenously determined transactions. Hence, trade delay may occur when

traders on the short side of the market expect to benefit from exogenous changes in the mar-

ket evolution, such as changes on the economic cycle or on legislation regarding their relat-

ive bargaining power. Conversely, endogenous changes in the market, driven for example by

transactions, may change the arrival rates of new traders, as they may make the market more

visible.

5.2 Nash bargaining

In this section we argue that our results can be straightforwardly generalized to allowing

the outcome of each meeting to be the outcome of a general Nash bargaining problem.

In our base model, the bargaining protocol within each meeting consists on a take-it-or-

leave-it offer by a randomly-chosen trader. In a more general bargaining protocol, such as

Nash bargaining, a meeting results in some (potentially stochastic) transfers, and a probabil-
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ity of agreement. Then, we can write the payoffs for traders when they meet as

V m
s =αE[p|agree]+ (1−α) (Vs +E[p|disagree]) ,

V m
b =αE[1−p|agree]+ (1−α) (Vb −E[p|disagree]) ,

where α ≡ α(B ,S) is an endogenous probability of agreement in state (B ,S). Requiring indi-

vidual rationality by buyers and sellers (that is, assuming that they can opt out from bargain-

ing and obtain their continuation value instead) imposes that V m
θ

≥ Vθ for both θ ∈ {b, s}, so

V m
θ

∈ [Vθ,1−Vθ̄]. Consequently, α = 0 and E[p|disagree] = 0 whenever Vs +Vb > 1. Our res-

ults rely on the fact that α is “high” when Vb +Vs > 1, but not on the fact that is 1. Indeed, if

there is a cap ᾱ to the probability of agreement, the meeting frequency λ can be readjusted

accordingly.

The previous properties make the arguments used to prove the results in Sections 3 and

4 hold for a generalized bargaining protocol. Indeed, we do not use the particular structure

of the bargaining protocol to show Results 3.1-3.4, as well as Corollary 3.1. Now, in Propos-

ition 3.2, ξ(1,1) has to be replaced by the expected fraction of the net surplus captured by a

seller when she is alone with one buyer in the market. Finally, the “size of the pie” over which

traders bargain in every meeting, 1−Vb−Vs , can be shown to shrink when bargaining frictions

disappear, so the results in Section 4 also hold.

6 Conclusions

We have studied decentralized bargaining in a dynamic thin market. Since each trader

has some market power, the outcome of bilateral bargaining not only depends on the current

market conditions, but also on the future expectations about them. We have characterized

how the trade outcome is affected by the bargaining protocol and the arrival process.

Our results highlight that trade outcomes in thin markets differ from those of large mar-

kets in several important dimensions. Even when bargaining frictions are small and traders

are homogeneous, a thin market may feature significant trade delay and price dispersion.

Delay occurs because traders on different sides of the market assign different relative likeli-

hoods to arrivals or other traders trading before them. This may make the joint surplus they

expect from not trading higher than the trade surplus. Additionally, the market exhibits price

dispersion, and this arises from the each trader’s reservation value from the possibility of wait-

ing to trade in the future depends on the current state. The fact that traders slowly arrive over

time makes their reservation value depend on the current market composition in a non-trivial

way even when the bargaining frictions are small.
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We have identified three main features of the price dynamics in the absence of trade delay.

First, market prices drift towards the price of a balanced market. Second, increases on the

interest rate generate mean preserving spreads. Finally, in the limit where traders become

increasingly patient, the distribution of transaction prices degenerates towards a competitive

price. Differently from a big market, such a competitive price is not degenerated, that is, no

side of the market obtains all surplus from trade.

Our model can be generalized in multiple directions. One that may be particularly inter-

esting is allowing buyers and sellers to be heterogeneous, both in terms of the quality of their

goods and their valuation for them. This would make the analysis much more involved, as

it would enlarge the dimensionality of the state of the market. For example, Elliott and Nava

(forthcoming) show that, in a model of bargaining in networks, the outcome of the bargain-

ing is stochastic even in the limit when bargaining frictions vanish, as sometimes transactions

with low gains from trade are realized in the presence of more beneficial trade opportunities.

The analysis of this and other extensions is left to future research.
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A Omitted expressions and proofs of the results

A.1 Payoffs and equilibria

In this section, and in the proofs below, we use B ≡ {0, ..., B̄} and S ≡ {0, ..., S̄} and B∗ ≡
B\{0} and S ∗ ≡ S \{0}. We fix a strategy for the sellers, (πs ,αs), and for the buyers, (πb ,αb),

where, for each type θ ∈ {b, s} and state (B ,S) ∈B∗×S ∗, πθ(B ,S) ∈∆(R) is the distribution of

price offers that type-θ traders make, while αθ(·;B ,S) : R→ [0,1] maps each price offer to a

probability of acceptance.

The continuation values that a strategy profile {(πθ,αθ)}θ∈{b,s} generates are given by equa-

tions (3.1), (3.5), with the expected continuation values conditional on being selected in the

match given by

V m
b (B ,S) ≡ ξEp̃

[
αb(p̃) (1−p̃)+ (1−αb(p̃))Vb(B ,S)

∣∣πs
]

+ (1−ξ)Ep̃
[
αs(p̃) (1−p̃)+ (1−αs(p̃))Vb(B ,S)

∣∣πb
]

, (A.1)

V m
s (B ,S) ≡ ξEp̃

[
αb(p̃) p̃ + (1−αb(p̃))Vs(B ,S)

∣∣πs
]

+ (1−ξ)Ep̃
[
αs(p̃) p̃ + (1−αs(p̃))Vs(B ,S)

∣∣πb
]

(A.2)

instead of equations (3.2) and (3.2), and the continuation value of the type-θ trader condi-

tional on some other traders being selected in the match given by

V a
θ (B ,S) ≡ ξEp̃

[
αb(p̃)Vθ(B−1,S−1)+ (1−αb(p̃))Vθ(B ,S)

∣∣πs
]

+ (1−ξ)Ep̃
[
αs(p̃)Vθ(B−1,S−1)+ (1−αs(p̃))Vθ(B ,S)

∣∣πb
]

(A.3)

instead of by equation (3.4); where, to keep notation short, γ and ξ should be interpreted as

evaluated at (B ,S), and αθ(p̃) should be interpreted as αθ(p;B ,S).

The system of equations has a unique solution by the standard fixed-point argument. In-

deed, one can replace Vb by Ws ≡ 1−Vb and verify that the previous equations can be under-

stood as an operator which maps any pair of functions (Vs ,Ws) : B∗×S ∗ →R2 to another pair

of similar functions, and that such operator satisfies the sufficient Blackwell conditions for a

contraction.

Then, using the principle of optimality, we define {(πθ,αθ)}θ∈{b,s} to be a symmetric Markov

perfect if for each state (B ,S) and θ ∈ {b, s}, fixing the continuation values of both types of

traders in all other states (obtained solving the previous system of equations), as well as the

strategy and continuation value of type θ̄ 6= θ at (B ,S), we have that (πθ(B ,S),αθ(·;B ,S)) max-

imizes the value of Vθ(B ,S).
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A.2 Proofs of the results

Proposition 3.1

Proof. Fix an equilibrium. Standard arguments imply that if there is a positive probability

that offers made by a seller are accepted in state (B ,S), then the equilibrium probability that

such offers are equal to 1−Vb(B ,S) is one. Similarly, an equilibrium offer by a buyer in state

(B ,S) is accepted with positive probability in equilibrium if and only if it is equal to Vs(B ,S).

Since these offers make the receiver of the offer indifferent on accepting it or not, it is without

loss of generality (to prove existence) to focus on equilibria where, at state (B ,S) and for all

θ ∈ {b, s}, buyers offer Vs(B ,S) and sellers offer 1−Vb(B ,S) for sure, and the θ-trader accepts

such an offer with some probability αθ(B ,S). Thus, equations (A.1) and (A.2) can be replaced

by equations (3.2) and (3.3). Note that the continuation values of a seller and a buyer only

depend on αb and αs through

α≡ (1−ξ)αb +ξαs

(see equation (A.3)), with the convention that α(B ,S) = 0 whenever B = 0 or S = 0. Hence,

equations (3.1)-(3.5) determine the continuation payoffs in an equilibrium.

Fix some α ∈ [0,1]B
∗×S ∗

, interpreted as a putative equilibrium probability of trade. We

can compute the equilibrium continuation value by solving equations in (3.1)-(3.5), and let

Vb(·;α) and Vs(·;α) denote the corresponding solutions. Note also that a buyer and a seller

are indifferent on accepting the equilibrium offer at state (B ,S) if and only if Vb(B ,S;α) +
Vs(B ,S;α) = 1. Hence, there is no θ ∈ {b, s} such that the θ-trader has a profitable deviation

at a given state (B ,S) ∈B∗×S ∗ only if

α(B ,S) ∈


{0} if Vb(B ,S;α)+Vs(B ,S;α) > 1,

[0,1] if Vb(B ,S;α)+Vs(B ,S;α) = 1,

{1} if Vb(B ,S;α)+Vs(B ,S;α) < 1.

To see this assume, for example, that Vb(B ,S;α)+Vs(B ,S;α) > 1 and that αs(B ,S) > 0 (if, in-

stead, αs(B ,S) < 1 the argument is analogous). If a buyer makes the equilibrium offer (equal

to Vs(B ,S;α)) at state (B ,S) he obtains

α (1−Vs(B ,S;α))+ (1−α)Vb(B ,S;α)

=Vb(B ,S;α)−α(
Vs(B ,S;α)+Vb(B ,S;α)−1

)<Vb(B ,S;α) .

If, instead, he offers Vs(B ,S;α)− ε, for some ε > 0, the seller rejects the offer for sure, so he

obtains Vb(B ,S;α), which makes him strictly better off.
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To conclude the proof of existence of equilibria we define the correspondence A : [0,1]B
∗×S ∗

⇒

[0,1]B
∗×S ∗

as follows

A(α)(B ,S) =


{0} if Vb(B ,S;α)+Vs(B ,S;α) > 1,

[0,1] if Vb(B ,S;α)+Vs(B ,S;α) = 1,

{1} if Vb(B ,S;α)+Vs(B ,S;α) < 1.

Standard arguments apply to show that A(·) has a closed graph, and that A(α) is, for all α ∈
[0,1], non-empty and convex. Hence, the existence of equilibria follows from Kakutani’s fixed

point theorem.

Proof of Results 3.1-3.4

Proof. The proofs follow from the arguments in the main text.

Proof Proposition 3.2

Proof. Throughout the proof we fix a sequence (kn)n tending to +∞ and, for each n, an equi-

librium for the model where k = kn . For each n and fixed state (B ,S), we let Vθ,n denote the

continuation value of a θ-trader in the n-th equilibrium, for θ ∈ {b, s}, andαn denote the prob-

ability of trade in a meeting.

We now define a function Ṽθ,n : B×S → [0,1] interpreted as the payoff of a θ-trader when

he/she decides to trade only when the market is balanced. It is obtained solving equations

(3.1)-(3.5) (adding tildes to all V ’s) with the exception that, when B 6= S, Ṽθ
m = Ṽθ (no trade

when the market is imbalanced) and, when B = S, Ṽθ
m

satisfies equations (3.2) and (3.3) re-

placing all V ’s with Ṽ ’s (trade for sure when the market is balanced). Note that equation (3.1)

can be rewritten, for θ = s and S 6= B as equation (3.8) (adding tildes to the V ’s and replacing

α by αn), and Ṽb,n follows an analogous equation (replacing s by b). Thus, defining Wn(B ,S)

to be equal to Ṽs,n(B ,S) when B ≤ S, and to be equal to Ṽb,n(B ,S) when B > S, it is clear that

Wn is approximated by the right hand side of equation (3.7) as n →∞. Our goal is then to find

that Wn 'Vs,n for all B ≤ S and Wn 'Vb,n for all B > S .

Fix now a state (B ,S) satisfying that B = S. In this case we have that, for all ε > 0, there is

some n such that
∣∣Ṽs,n(B ,S)−Vs,n(B ,S)

∣∣ < ε for all S ≥ 1. To see this, recall that by Result 3.2

there is immediate trade when the market is balanced. Also, by Result 3.4, V a
s,n 'Vs,n . Hence,

as n →∞, we have

Vs,n(S,S) ' 1
S Vs,n(B ,S)+ S−1

S Vs,n(B−1,S−1)

⇒ Vs,n(B ,S) 'Vs,n(B−1,S−1) ' ... 'Vs,n(1,1) ,
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where, as in the main text, “'” means equal except for terms that go to 0 as n increases. Pro-

ceeding similarly, we have that it is also the case that Ṽs,n ' Vs,n(1,1) because, as n increases,

it is increasingly unlikely that an arrival happens before the market clears. Using then the

standard analysis in Rubinstein (1982), we have that equation (3.10) holds for both Vs,n , and

also for Ṽs,n replacing V a
s,n by Ṽ a

s,n . Indeed, for state (B ,S) = (1,1) we can write, for all θ ∈ {b, s},

Vθ,n = kn `
kn `+γ+r (ξθ (1−Vθ̄,n)+ (1−ξθ)Vθ,n)+ γ

kn `+γ+r V a
θ,n

where ξb = 1−ξ and ξs −ξ. The previous equations coincide with the equations for the con-

tinuation payoffs in a two-player Rubinstein bargaining where the value from not trading for

a type-θ trader is V a
θ,n . Solving for Vb,n and Vs,n , it is easy to show that

lim
n→∞

∣∣ r
γ+r ξθ+

γ
γ+r V a

θ,n −Vθ,n
∣∣= 0 .

For each n, let Ds,n denote the maximum distance between Vs,n and Ṽs,n among all states

where B ≤ S, and let Db,n denote the maximum distance between Vb,n and Ṽb,n among all

states where B > S. Let Dn ≡ max{Db,n ,Ds,n} and assume it is achieved at some state (Bn ,Sn).

We also assume, for the sake of contradiction, that limsupn→∞ Dn > 0 (otherwise the result

holds) and, without loss of generality and for simplicity (considering a subsequence if neces-

sary), assume that limn→∞ Dn > 0. Assume finally, taking a subsequence if necessary, that the

sequence (Bn ,Sn)n is constant at some state (B ,S) such that B ≤ S (the other case is analog-

ous).12 We can then write, for each n,

Dn ≤
1

Sn
kn `

kn `+γ+r |Ṽ m
s,n −V m

s,n |+
Sn−1

Sn
kn `

kn `+γ+r Dn + γ

kn `+γ+r Dn .

If B = S then

Dn ≤ kn `+γ
kn `+γ+r Dn ,

but this implies that Dn = 0 for all n, a contradiction. Assume then that B < S, so Ṽ m
s,n = Ṽs,n

and we can write

Dn ≤
1

Sn
kn `

1
Sn

kn `+r
|Ṽs,n −V m

s,n | .

There are three cases:

1. Assume first that there is a subsequence indexed by (ni )i such that, for each i , there is

trade delay at state (B ,S) in the ni -th equilibrium. In this case, V m
s,ni

= Vs,ni . Neverthe-

less, this implies

Dni ≤
kni `+γ

kni `+γ+r Dni ⇒ Dni = 0 .

This contradicts that limn→∞ Dn > 0.

12Given that the number of states is finite, it is always possible to find a constant subsequence.

32



2. Assume now that B = 0. In this case we have

Dn ' γ
γ+r Dn ⇒ Dn ' 0 .

This is, again, a contradiction.

3. We then have that, without loss of generality, we can assume S > B > 0 and that, in the

n-th equilibrium, there is trade for sure at state (B ,S). Assume, taking a subsequence if

necessary, that αn(B ′,S′)kn tends to some δ̄(B ′,S′) ∈ [0,+∞] for all states (B ′,S′) (with

the convention that αn(B ′,S′) = 0 when B ′ = 0 or S′ = 0). We let m ≤ S̄ denote the min-

imal natural number such that δ̄(B−m,S−m) 6=∞ (note that m > 0 since there is trade

for sure at state (B ,S) and S > B > 0). Then, as n →∞,

Ṽs,n(B ,S) ' Ṽs,n(B−m,S−m) .

Similarly, by Result 3.4, we have that, Vs,n ' 1−Vb,n , and therefore

Vs,n(B ,S) ' 1
S Vs,n(B ,S)+ S−1

S Vs,n(B−1,S−1) .

Thus, Vs,n(Bn ,Sn) 'Vs,n(Bn−1,Sn−1) and, proceeding iteratively, Vs,n(Bn ,Sn) 'Vs,n(Bn−
m,Sn−m). If B −m > 0 then we have

Dn ' ∣∣Vs,n(B−m,S−m)− Ṽs,n(B−m,S−m)
∣∣

¹
1

S−m δ̄

δ̄+γ+r
Dn +

S−m−1
S−m δ̄

δ̄+γ+r
Dn + γ

δ̄+γ+r
Dn ' δ̄+γ

δ̄+γ+r
Dn︸ ︷︷ ︸

=(∗)

,

where δ̄ and γ are evaluated at (B−m,S−m), and where “¹” means that the left hand

side is lower than the right hand side plus terms that go to 0 as n increases.13 Thus,

Dn ' 0, which is a clear contradiction. Therefore, it is the case that B−m = 0, so we have

Dn ' γ
γ+r Dn ⇒ Dn ' 0

where γ is evaluated at (0,S−B), but this is again a contradiction.

13Formally, the equation should be interpreted as meaning that, for all ε> 0, there is an n̄ such that if n > n̄ then

Dn ≤ (∗)+ε in all equilibria.
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Proof Corollary 3.1

Proof. We first show the second equality in equation (3.12). We do this for the case St > Bt ,

and the other case is analogous. Note that, under the risk-neutral measure, we have

Ẽt [Vs,t+∆] ' (
1−(

k `t+γt
)
∆

)
Vs,t +

≡(∗)︷ ︸︸ ︷
1

St
k `t ∆Vs,t + St−1

St
k `t ∆V o

s,t +γt ∆V a
s,t +o(∆)

' (1+∆r )Vs,t −∆
((St−1

St
k `t+γt+r )

)
Vs,t − St−1

St
k `t V o

s,t −γt V a
s,t︸ ︷︷ ︸

≡(∗∗)

)
+o(∆) ,

where functions with a subindex t refer to variables evaluated at the state at time t , (Bt ,St ).

Note that the term (∗∗) shrinks to 0 when as k gets large. Indeed, this follows from equation

(3.1) for θ = s replacing V a
s by Vs (since the seller is indifferent on trading or not) and the fact

that, as it is shown in the proof of Proposition 3.2, Ṽs is close to Vs when k is large.

To obtain the first inequality in equation (3.12), we write

Et [Vs,t+∆] = (
1−(

k `t+γt
)
∆

)
Vs,t +

(∗∗∗)︷ ︸︸ ︷
1

St
k `t ∆V o

s,t + St−1
St

k `t ∆V o
s,t +γt ∆V a

s,t +o(∆) ,

where note that the main difference with respect the expression for Ẽt [Vs,t+∆] is now that the

probability that the state changes due to a transaction is now k `t instead of S−1
S k `t . Hence,

the term (∗∗∗) in the previous expression is weakly higher than the term (∗) because, from

Result 3.3, we have Vs,t ¹V o
s,t whenever there is trade delay, while Vs,t 'V o

s,t otherwise.

Proof of Proposition 4.1

Proof. We assume, for the sake of contradiction, that there is a sequence (kn)n , a correspond-

ing sequence of equilibria and a sequence of states (Bn ,Sn) such that, in the n-th equilibrium,

equilibrium offers are rejected with positive probability. For each state (B ,S), we use Vb,n and

Vs,n to denote the continuation values of buyers and sellers in the n-th equilibrium, and αn

to denote the probability of acceptance of an equilibrium offer (so αn(Bn ,Sn) < 1 for all n).

Taking a subsequence if necessary, assume that, for each state (B ,S) the continuation val-

ues Vb,n(B ,S) and Vs,n(B ,S) converge to some values Vb(B ,S) and Vs(B ,S), and the matching

rates αn kn ` converge to some value δ ∈ [0,+∞]. We further assume, taking again a sub-

sequence if necessary, that for each state (B ,S) with B ,S > 0, either αn < 1 for all n, or αn = 1

for all n.

We first focus on characterizing the limit continuation value of seller, Vs , for states (B ,S) is

such that 0 ≤ B ≤ S. The equations are given by:
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1. Consider first the case where (B ,S) is such that S > B ≥ 1 and αn < 1 for all n. Using

equation (3.1) we have that the limit continuation value for a seller, Vs , satisfies

δ (Vs −Vs(B−1,S−1)) =−r B S
S−B .

It is then clear that there is no state where δ = 0, that is, where the trade rate becomes

arbitrarily small as k increases. (The logic for this result is analogous to that of Result

3.1.) Using this, we can use again equation (3.1) to obtain

Vs = γ
γ+r V a

s + r
γ+r

B (S−1)
S−B =Vs(B−1,S−1)− r

δ
B S

S−B . (A.4)

Note that the second equality implies that, as indicated in Result 3.3, traders on the

long side of the market gain from other’s transactions in states where is trade delay,

Vs(B−1,S−1) >Vs .

2. Consider now the case where (B ,S) is such that B ,S > 0 and αn = 1 for all n. In this case,

if S > 1, we have

Vs =Vs(B−1,S−1) .

Note that, by Result 3.2, this is the case for states with B = S.

3. Finally, for states where B = 0 we have

Vs = γ
γ+r V a

s .

Let, for each state (B ,S) with 0 ≤ B < S, ∆≡Vs(0,S−B)−Vs , and ∆= 0 for each state (B ,S)

with B = S. Since, when B ≥ 1, we have Vs(B−1,S−1) ≥Vs , it is the case that∆≥ 0 for all states.

Let (B ,S) be a state which maximizes∆(B ′,S′) among all states with B ′ ≤ S′ and assume, for the

sake of contradiction, that∆≡∆(B ,S) > 0 (so necessarily 0 < B < S). If there are multiple states

with this property, assume that (B ,S) is such that S is minimal among all of them. Assume first

that (B ,S) is such that αn = 1 for all n. In this case, since Vs(B−1,S−1) =Vs , we have

∆= Vs(0,S−B)−Vs(B−1,S−1) =∆(B−1,S−1) .

This contradicts the assumption that (B ,S) is a state with a minimal number of sellers among

those which maximize ∆. Then, it is necessarily the case that (B ,S) is such that αn < 1 for all

n. In this case, we have that, using equation (A.4),

∆= γb
γ+r (

≤∆(B+1,S)︷ ︸︸ ︷
Vs(1,S−B)−Vs(B+1,S))+ γs

γ+r (

=∆(B ,S+1)︷ ︸︸ ︷
Vs(0,S−B+1)−Vs(B ,S+1))+ r

γ+r
B (S−1)

S−B (A.5)

< γ
γ+r ∆ , (A.6)
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where the inequality holds because Vs(1,S−B) ≤ Vs(0,S−B−1) and B (S−1)
S−B > 0. This is a clear

contradiction. Therefore, we have that, for all states (B ,S), Vs =Vs(0,S−B) and that αn(B ,S) =
1 if n is high enough.

We now prove that p exists satisfying the conditions in the statement. We use p(·) to de-

note the solution of equations (4.1)-(4.3) (which can be proven to be unique using standard

fixed-point arguments similar to those in Section A.1). It is then clear that Vs(B ,S) ' p(S −B)

for all states (B ,S). Furthermore, for each N̄ ≥ 0, one can rewrite equation (4.4) for all N ≥ N̄

as

p(N ) = E[e−r τ̄|N0=N ] p(N̄ )

where τ̄ is the stochastic time it takes the net supply to reach N̄ for the first time. It is then

clear that p(·) is decreasing in {0, ..., S̄}. A similar argument shows that it is also the case that

p(·) is decreasing in {−B̄ , ...,0}. Extending p(·) to the integers by setting p(N ) = 0 for all N > S̄

and p(N ) = 1 for all N <−B̄ completes the proof.

Proof of Corollary 4.1

Proof. Let F the ergodic distribution of N , so the expected price under such a distribution is

E[p(Ñ )|F ] = ∑
N∈Z

F ({N }) p(N ) .

It is also the case that

lim
t→∞E[pt ] = E[p(Ñ )|F ] = lim

t→∞E
[∫ ∞

t
e−r (s−t ) (INs<0+x INs=0)r ds

]
= E[IÑ<0+x IÑ=0

∣∣F ]= F (−N)+ξ(1,1)F ({0}) ,

where −N is the set of strictly negative integers. This proves that the ergodic mean of the

market price is independent of r .

Consider an increase on the discount rate from r1 to r2, with r1 < r2, and let pri (·) denote

the market price function for each ri , i = 1,2. Assume that pr1 (0) ≥ pr2 (0) (the reverse case is

analogous). In this case, for all N > 0 the price pr1 (N ) > pr2 (N ). Indeed, using τ0 to denote

the (stochastic) time it takes for the market to become balanced (which is independent of r )

and using equation (4.4), we can write

pr1 (N ) = E[e−r1 τ0
∣∣N0=N

]
pr1 (0) > E[e−r2 τ0

∣∣N0=N
]

pr2 (0) = pr2 (N ) . (A.7)

Since the mean of the market price under the ergodic distribution is independent of the dis-

count rate, there must be some N < 0 such that pr1 (N ) < pr2 (N ). Let N̄ be the maximum
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satisfying this property. Notice that equation (4.4) can be rewritten, for any N ≤ N̄ < 0 and

i ∈ {1,2}, as

pri (N ) = 1−E[e−ri τ̄
∣∣N0=N

]
(1−pri (N̄ ))

where τ̄ is the first time where Nt = N̄ . It is then clear, using equation (A.7) and pr1 (N̄ ) <
pr2 (N̄ ), that for all N ≤ N̄ we have pr1 (N ) < pr2 (N ). Thus, in fact, N̄ is such that

pr1 (N ) ≥ pr2 (N ) for all N > N̄ and pr1 (N ) < pr2 (N ) for all N ≤ N̄ .

This property (and the fact that the ergodic distribution of N is independent of the discount

rate) ensures that the distribution of pr2 (N ) is a mean-preserving spread of pr1 (N ).

Proof of Corollary 4.2

Proof. If the ergodic distribution F does not have 0 in its support, then the support is either

entirely contained inNor in−N. In this case, it is clear from equation (4.4) that either limr→0 p(N ) =
0 for all N (if the support of F is a subset ofN) or limr→0 p(N ) = 1 for all N (if the support of F

is a subset of −N). Assume then that the support of F contains 0.

For any N0, we have

lim
r→0

p(N0) = lim
t→∞p(Nt ) = Pr(N <0|F̃ )+ξ(1,1) Pr(N =0|F̃ ) .

As we see, the distribution of prices degenerates, as r → 0, to the term on the right hand side

of the previous expression, which proves our result.

Proof of Propositon 4.2

Proof. The proof is analogous to the Proposition 4.1 until equation (A.5). Now, in equation

(A.5), the arrival rate of type-θ traders into the market are γθ ≡ γθ(B ,S) in state (B ,S), and

γθ(0,S − B) in state (0,S − B), which are potentially different. Then, equation (A.5) is now

replaced by

∆= γb
γ+r Vs(B+1,S)+ γs

γ+r Vs(B ,S+1)+ r
γ+r

B (S−1)
S−B

− ( γb (0,S−B)
γ(0,S−B)+r Vs(1,S−B)+ γs (0,S−B)

γ(0,S−B)+r Vs(0,S−B+1)
)

≥ γ
γ+r ∆

+ ( γb
γ+r −

γb (0,S−B)
γ(0,S−B)+r

)
Vs(0,S−B−1)+ ( γs

γ+r −
γs (0,S−B)
γ(0,S−B)+r

)
Vs(0,S−B+1)+ r

γ+r
B (S−1)

S−B︸ ︷︷ ︸
=(∗)
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Hence, a sufficient condition for the statement to hold is that the term (∗) in the previous

equation is positive. Using Condition 2 we have that, for each θ ∈ {s,b},

γθ
γ+r ≥ γθ(0,S−B)

γ(0,S−B)+r − r
γ+r

B
2 .

So

(∗) ≥− r
γ+r B + r

γ+r
B (S−1)

S−B > 0 .

Thus, Condition 2 is sufficient to guarantee that, if k is high enough, there is no equilibrium

with trade delay.
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