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Abstract

Production functions are a central component in a variety of economic ana-
lyzes. However, these production functions often first need to be estimated us-
ing data on individual production units. There is reason to believe that, more
than any other input in the production process, there are severe errors in the
recording of capital stock. Thus, when estimating production functions, we
need to account for the ubiquity of measurement error in capital stock. This
paper shows that commonly used estimation techniques in the productivity
literature fail in the presence of plausible amounts of measurement error in
capital. We propose an estimator that addresses this measurement error, while
controlling for unobserved productivity shocks. Our main insight is that in-
vestment expenditures are informative about a producer’s capital stock, and
we propose a hybrid IV-Control function approach that instruments capital
with (lagged) investment, while relying on standard intermediate input de-
mand equations to offset the simultaneity bias. We rely on a series of Monte
Carlo simulations and find that standard approaches yield downward-biased
capital coefficients, while our estimator does not. We apply our estimator to
two standard datasets, the census of manufacturing firms in India and Slove-
nia, and find capital coefficients that are, on average, twice as large.
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1 Introduction

The measurement of capital is one of the nastiest jobs that economists
have set to statisticians. (Hicks (1981) p. 204)

Production functions are a central component in a variety of economic analyses.
However, these production functions often first need to be estimated using data
on individual production units. Measurement of capital assets poses a problem for
estimation of production functions. There is reason to believe that, more than any
other input in the production process, there are severe errors in the recording of
a producer’s capital stock. These errors are likely to be large, and are extremely
difficult to reduce through improved collection efforts since firms themselves have
difficulty evaluating their capital stock. Thus, when estimating production func-
tions, we need to account for the ubiquity of measurement error in capital stock.
This paper shows that commonly used estimation techniques in the productivity
literature fail in the presence of plausible amounts of measurement error in capi-
tal. We show that using both investment and the book value of capital can correct
the presence of measurement error in the capital stock. This idea follows the stan-
dard insight of relying on two measures of the same underlying (true) variable of
interest, and using one of these measures as an instrument for the other.

The presence, or at least the potential of, substantial measurement error in cap-
ital is reflected in the well-documented fact that when estimating production func-
tions with firm fixed-effects, capital coefficients are extremely low, and sometimes
even negative. Griliches and Mairesse (1995) state, ‘’In empirical practice, the ap-
plication of panel methods to micro-data produced rather unsatisfactory results: low and
often insignificant capital coefficients and unreasonably low estimates of returns to scale.”.
One obvious other interpretation is that capital is a fixed factor of production, and,
therefore, the variation left in the time series is essentially noise. However, this
also implies that changes in capital, which is, by definition, equal to investment
minus depreciation, is heavily contaminated by measurement error. Indeed, in an
in-depth study of measurement issues related to capital, Becker and Haltiwanger
(2006) find that different ways of measuring capital that ought to be equivalent,
such as using perpetual inventory methods or inferring capital investment from
the capital producing sectors, lead to different results for a variety of outcomes,
such as parameter estimates of the production function, and the investment and
capital patterns.
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The recent literature on the estimation of production functions (Olley and Pakes,
1996; Levinsohn and Petrin, 2003; Ackerberg, Caves, and Frazer, 2015), has ex-
ploited control functions to solve the problem of endogenous inputs. However,
these control function approaches are difficult to reconcile with the presence of
measurement error in inputs. We propose an estimator that deals with the mea-
surement error in capital, while controlling for unobserved productivity shocks.

This paper makes two contributions. First we leverage the linearity of the pro-
duction function and the underlying productivity process to deal with both the
simultaneity bias and measurement error in inputs. Using control function tech-
niques allows us to isolate the productivity shock, on which we can form moments
for estimation. The moment conditions can be formed in a very flexible way to ac-
count for both measurement error in inputs, here capital, and various model spec-
ifications including the speed of adjustment of inputs and the market structure of
output and input markets.

Second, we propose to use investment to identify the marginal product of capi-
tal, rather than the year-on-year variation in capital stock, where poorly measured
depreciations attenuate the capital coefficient. In other words, rather than using
the entire within-producer time-series variation in the capital stock to identify the
capital coefficient – i.e., the marginal product of capital, we rather use the instances
where producers invest.

Estimates of the production function are predominantly used for two reasons.
In many applications — say, when looking at misallocation of factors, or computing
structural models of investment — the marginal products of inputs are of direct
interest, and, thus, a bias in the coefficient leads to biased marginal products. In
addition, production function coefficients are also used as an intermediate input in
the construction of productivity, and underestimating the capital coefficient, will
lead to capital-intensive firms appearing more productive than they really are.

Related Literature

There has a been a long literature on the estimation and identification of production
functions when a researcher has access to a panel data set of producers over time (in
a given industry) with information on output and inputs. Olley and Pakes (1996)
(henceforth OP) and Levinsohn and Petrin (2003) (henceforth LP) have renewed
the interest in addressing the simultaneity bias, due to the unobserved productiv-
ity term ωit, when estimating the relationship between output and input. More
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recently,Ackerberg, Caves, and Frazer (2015) (henceforth ACF) refined the precise
conditions under which these production functions are identified, and provided an
alternative estimator.

In a related literature, the focus has moved away from the classic simultaneity
problem to that of unobserved prices, for both output and inputs (De Loecker and
Warzynski, 2012; De Loecker, Goldberg, Khandelwal, and Pavcnik, 2016). In most
settings, we observe firms charging different prices for their output, and paying dif-
ferent prices for inputs, which leads to an additional complication since researchers
typically have access to only (deflated) revenues and expenditures on inputs. We
believe this to be a very important concern, but we abstract away from this issue in
this paper. In other words we start our analysis by having correctly converted the
revenue and expenditure data to the comparable units in a physical sense.1

Van Biesebroeck (2007) evaluates the performance of various production func-
tion estimators, including the so-called control function approaches, in the pres-
ence of measurement error, although not with a specific focus on measurement
error in capital. He compares various methods in the presence of log additive
mean-zero independent and standard normally distributed errors to all inputs,
measurement error in output and input prices. While his focus is on the bias in
the estimated coefficients, we provide an estimator that is robust to the presence of
such measurement error, in the context of endogenous input choices.

Kim, Petrin, and Song (2016) also study the identification of production func-
tion with measurement error in inputs, with an estimator that leverages recent
work on non-linear measurement error models. Their estimator is more complex,
which explains why, to our knowledge, it has not yet been used. In contrast, our
estimator is simple to program and use with standard statistical software packages.

2 Sources of Measurement Error in Capital

In this section, we discuss the potential sources of measurement error in capital,
and how we incorporate measurement error into the estimation of the production
function. This discussion leads us to conclude that investment is a natural instru-
ment for the recorded capital stock.

1This is precisely the setup of Ackerberg, Caves, and Frazer (2015). Of course, to the extent that
input prices vary across firms, and are not correlated with the actual levels of input choices, our
approach is relevant.
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2.1 Construction of Capital Stock: Book Value and Perpetual Inventory
Methods

Capital stock is typically measured in one of two ways, using either book value,
or the so-called perpetual inventory method (PIM, hereafter). The book value of
capital is measured using direct information on the value of capital, as recorded
in a firm’s balance sheet. The PIM requires data on investment, and recorded de-
preciations to construct capital stock. Of course, these approaches are related since
the book value of capital is typically the outcome of firms themselves applying the
PIM in their internal accounting. PIM is the most common approach to construct
capital stock series; see Becker and Haltiwanger (2006) for an excellent overview.
In essence, this approach measures the capital stock of a particular asset Ka using:

Kat =
∞∑
j=0

θajtIat−j , (1)

where θajt is the weight at time t of asset a of vintage j and, thus, captures the
depreciation profile, and Iat−j is the real gross investment of vintage j. Literally
applying equation (1) is virtually impossible, even when we rely on the highest
quality dataset, such as the U.S. Census of Manufacturers. Instead, applied work
typically relies on a more familiar law of motion for capital:

Ke
it = (1− δst)Ke

it−1 + Iit−1, (2)

where we now calculate current capital stock for a more aggregated asset e, such as
equipment and buildings, and rely on an industry-wide depreciation rate for assets
δst, where s indicates the industry. Finally, real gross investment expenditure is
ideally corrected for sales and the retirement of capital assets.

This immediately raises a few measurement issues. First, this approach requires
an initial stock of capital, Ke0, at the date on which production started. Second,
investment price deflators are rarely available at the producer-level — these are
typically computed at the industry level. This is a problem, since asset mix can be
differ considerably across producers within the same industry. Third, depreciation
rates are assumed to not vary across producers and vintage of the capital stock,
which again creates measurement error in capital. Aggregating over heterogeneous
assets with a common depreciation factors is, thus, expected to introduce noise in
the capital stock measure, as well. Moreover, depreciation does not simply follow
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a fixed factor, and this all is further compounded by reported depreciation being
governed by tax treatment of depreciation rather than by economic depreciation.2

In contrast, investment is more precisely recorded through the purchases of var-
ious capital goods and services in a given year. This is in stark contrast to capital
stock, which is accumulated over time, and this further exacerbates the problem.
While, to some extent, every input of the production function, including labor and
intermediate inputs, is subject to measurement error, capital is distinct in this di-
mension.

The use of book value as recorded in a producer’s balance sheet is also subject to
measurement error. In principle, one can rely on both measures — the book value
and the constructed capital stock using PIM — and see how they line up. In the U.S.
Census data on manufacturing, such as the Annual Survey of Manufacturing and
the Census of Manufacturers, these perpetual inventory and direct assets measures
differ by 15 to 20 percent (see Becker and Haltiwanger (2006)). This suggests a
reasonable amount of measurement error in capital that is likely to be persistent
over time. Given that we see measurement error even in the highest-quality data
sources such as the U.S. Census of Manufacturers, capital measurement error may
be more prevalent for datasets covering developing countries. In the latter, we
are often precisely interested in identifying factors driving productivity growth,
and the (mis) allocation of resource; therefore, accurately measuring the marginal
products, and capital growth is of first-order importance.

2.2 Investment as an Instrument

When we turn to the actual solution and implementation of our estimator, we rely
on the commonly assumed errors-in-variable structure, where the observed log of
the capital stock (k) is the sum of the log true capital stock (k∗) and the measure-
ment error (εk):

kit = k∗it + εkit, (3)

where i indexes the producer, and t is time. We will use the ∗ notation to denote
variables measured without error – the one that is typically observed by the firm
– and the unstarred notation to denote the observed value . We refer to this repre-

2For example, when regulators set electricity rates (see, for instance, Progress Energy – Carolinas
(2010)), they often have hundreds of pages of asset-specific depreciations depending on the lifespan
of a boiler, car, truck, or building, and these depreciation rates typically have fairly intricate time
series patterns.
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sentation, loosely, as the reduced form for the various measurement error sources we
have described.3 We assume that εkit is classical measurement error — i.e. it is un-
correlated with true capital stock kit. More precisely, in all that follows, we assume
that E[εkit] = 0. We do, however, allow for εkit to be serially correlated over time
(within a producer). Since capital is constructed using historical information on
the cost of assets, it is unlikely that there is no serial dependence in measurement
error of the value of assets.

Our main premise is that investment (at t − 1) is informative about the capital
stock at time t, conditional on lagged capital, but is not correlated with the mea-
surement error in capital εkit. Formally, this first means that lagged investment is
informative about current capital, and would be a first-stage. Second, this means
that lagged investment is not related to the measurement error in capital, condi-
tional on productivity. Since current capital is just the addition of past investment
choices, our approach leverages the idea that the source of measurement error is
the accumulated errors in depreciation, rather than the new addition to capital.
Throughout we denote (log) investment as iit, which indicates that we observe in-
vestment without error.

3 Estimation in the presence of errors-in-variables

3.1 Setup

We are interested in estimating a standard Cobb-Douglas production function given
in logs by:

y∗it = βll
∗
it + βkk

∗
it + ωit, (4)

where y∗it, l
∗
it, k

∗
it denote true (log) output, labor and capital, respectively. 4

We focus on measurement error in capital, rather than on other inputs, such
as labor or materials, since we believe this is inherently the most difficult input
to measure. Of course, this does not mean that other inputs do not share some
of the same difficulties, but simply that these errors are likely to be considerably
smaller. The measurement of the capital stock is futher complicated by the fact that

3In Appendix D, we discuss a different process for measurement error where Kit = (1 −
δit)Kit−1 + Iit and δit = (δ + εdit); i.e., there is measurement error in depreciation rates. We per-
form similar Monte Carlo simulations. For this process for measurement error, the estimator we
propose still performs fairly well for reasonable amounts of measurement error in capital.

4The restriction to Cobb-Douglas production functions is more substantial than in most papers on
the estimation of production functions, since we require log-linearity of the estimating equation.
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assets accumulate, but depreciate, over a long period of time. The literature has
explicitly allowed for measurement error in output, and we follow this tradition
by relying on measured output yit where yit = y∗it + εyit, where, again εyit is classical
measurement error that is potentially serially correlated.

The question we address is whether we can correctly estimate the coefficients
of the production (β = {βl, βk}) and, also recover productivity (ωit) when we have
data on < yit, kit, lit, dit >, where lit and dit capture labor and intermediate inputs,
which are assumed to be measured without error, d∗it = dit and l∗it = lit.

Therefore, even in the absence of the standard simultaneity problem, we cannot
obtain consistent estimates of β using OLS estimates of the following:

yit = βllit + βkkit + ωit + εyit − βkε
k
it, (5)

due to the error-in-variables problem.

3.2 Solution

We propose a simple IV-strategy to deal with the measurement error in the capital
stock. In particular, we rely on a separate but related measure of the capital stock:
investment. The main advantage is that investment is usually already observed,
and, thus, does not constitute an extra burden on the researcher in terms of data
collection.

Olley and Pakes (1996) propose investment to offset the simultaneity problem,
and we will argue that some of the appealing features of the OP approach — leading
to substantially higher capital coefficients, for example — are related to our insights
of relying on investment as an instrument rather than as a control variable. We do
not, in fact, rely on a dynamic control, such as investment, but rather, exploit the
Levinsohn and Petrin (2003) insight of using a static control (dit) to exploit the (log)
linearity of the production function and the associated first-order conditions.

In particular, throughout the paper, we rely on an intermediate input demand
equation to control for unobserved productivity: ωit = h(dit, kit, zit), where z is
a vector of variables capturing departures from the standard setup considered in
ACF.5 The choice of the specific variable input, dit, to use depends not only on
data availability, but even more so on which production technology is assumed.

5See page 2446 of De Loecker and Warzynski (2012) for a discussion of variables potentially in-
cluded in zit, such as firm-specific output or input prices.
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We follow the literature and consider a value-added production function, but our
approach can equally accommodate a gross output production function.

Our approach leverages the log linear structure of the Cobb-Douglas produc-
tion function, and the associated (variable) input demand equations. Albeit restric-
tive, it is the predominant functional form used in applied work. Under a Cobb-
Douglas production function, we obtain a log-linear intermediate input demand
equation, which, after inverting for productivity, gives us:

ωit = (1− βd)dit − βllit − βkk∗it − ln(βd) + zit, (6)

where lower cases denote logs, and we collect the output and input price terms in
zit.6 Our proposed estimator does not rely on this restriction, but throughout the
Monte Carlo analysis, we do not consider departures from this standard setup.

The second component that preserves the linear structure is the linear produc-
tivity processes — i.e., we consider an AR(1) process for productivity:

ωit = ρωit−1 + ξit. (7)

This is a departure from the literature, which typically assumes a first-order Markov
process, but, in theory, can allow for a non-linear process of the form g(ωit−1).
However, in practice the AR(1) process is often used, and even the properties of
new estimators, such as ACF, are evaluated on data-generating processes with ex-
actly this AR(1) process.7

The insight to rely on lagged investment to instrument the capital stock sug-
gests an IV approach, given the linearity we have assumed in the productivity
process and the production function, and, therefore, in the material demand equa-
tion. The actual implementation now depends on whether we consider a so-called
one-step estimator, as suggested by Wooldridge (2009), or a two-step estimator,
as suggested by Ackerberg, Caves, and Frazer (2015). While from a theoretical
point of view, the two approaches are very similar, in practice they are expected

6To obtain this expression, we take the first-order condition for the intermediate input dit with the
profit function Πit = PitQit − (P dDit + P lLit + P kKit), and take logs and invert for productivity.
Formally, we can deal with any linear control function ωit = θddit + θllit + θkkit, but we wish to
provide a theoretical grounding for a linear control. In the standard setup considered in the literature,
this last term zit drops out due to perfect output and input markets.

7While we consider an AR(1) process, the approach goes through for higher-order AR processes of
the form

∑P
p=1 ρpωt−p. If we considered dynamic controls, such as investment, having a higher-order

Markov process would cause considerable problems since the control variable would typically be a
function of many unobserved productivity terms ωit, ωit−1, · · · . It thus remains an empirical matter
how to evaluate the trade-off between allowing for non-linearities and higher-order AR terms.
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to perform differently depending on the degree of persistence of the capital stock
over time. We start with the one-step approach since this gives rise to a standard
GMM estimator with the well-known properties, and analytically provided stan-
dard errors. We then show how to adapt our estimators to the two-step approach
of Ackerberg, Caves, and Frazer (2015).8

3.3 One-step approach

The first step of our approach follows Wooldridge (2009). We replace the produc-
tivity shock with the empirical counterpart of its law of motion (7) and utilize the
intermediate input equation (6):

yit = βllit + βkkit + ωit + εyit − βkε
k
it

= βllit + βkkit + ρωit−1 + ξit + εyit − βkε
k
it

= βllit + βkkit + θkkit−1 + θllit−1 + θddit−1 + z
′
it−1γ + ξit + εit

(8)

with εit ≡ εyit − ε̃kit and ε̃kit collects all the relevant terms related to the measure-
ment error in capital — i.e., ε̃kit ≡ βkε

k
it + θ1ε

k
it−1. We combine the persistence and

production parameters in θ — e.g., θd ≡ ρ(1− βd).
In the absence of the measurement error in capital εk, we can rely on standard

techniques to obtain consistent estimates of the production function. The specific
estimator will, of course, depend on a host of assumptions about the environment
in which firms produce, and the degree of variability of the inputs. However, our
focus is specifically on the bias induced by the presence of the measurement error
such that E(kitεit) 6= 0, regardless of the specific environment under considera-
tion. The details of our approach do, however, vary with the exact assumptions
regarding the variability of the labor input and the degree of competition in output
markets. We consider these cases separately below.

We start in section 3.3.1 with the simplest case of perfectly competitive output
markets and static labor choices. This is the predominant set of assumptions in the
literature. We then consider the case with labor adjustment costs insection 3.3.2,
and, finally, the case with imperfect competition in output markets in section 3.3.3.

8Appendix B provides precise details on these estimators, and our webpage has code for these in
STATA.
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3.3.1 Standard case: perfect competition and static labor choices

The classic setup relies on perfectly competitive output markets and labor being
a static input choice. This implies that we can immediately obtain an estimate of
the labor coefficient by exploiting the first-order condition for the choice of labor,
which yields βl = WLit

PYit
, where P is the price for output, which is the same across

producers due to the assumption of perfect competition, and W is the wage rate
for labor, which is also a constant due to perfect competition in the labor market.

The presence of measurement error in output then calls for a simple estimator
for the labor coefficient:

β̂l = Median

[
WLit
PYit

]
, (9)

the median of the labor cost to sales ratio, where the median is used instead of the
mean, due to the error in the denominator of this expression.9 This estimator is a
consistent estimator of βl if we assume that the output measurement error satisfies
Med[εyit = 0]. To see, this consider the first-order condition of profits with respect
to labor, and rearrange terms to obtain:

Median

[
WLit
PYit

1

exp(εyit)

]
=
WLit
PYit

1

exp(Median[εyit])
, (10)

where we use the property of the exponential being a monotone function. Thus,
our estimator proposed in equation (9) is a consistent estimator of βl.

Using this estimator β̂l and that the output market is perfectly competitive sim-
plifies equation (8) to:

ỹit = βkkit + θkkit−1 − ρl̃it−1 + θddit−1 + ξit + εit, (11)

where ỹit = y∗it − β̂llit — i.e., output net of labor variation, and l̃it−1 = β̂llit−1.
In the absence of the measurement error in capital, we could run equation (11)

above with OLS and obtain a consistent estimate of the capital coefficient given
the timing assumptions: capital at t (and at t− 1) is orthogonal to the productivity
shock ξit, and so is the intermediate input choice at t− 1. We call this the One-Step
Control Function estimator. It is precisely because of errors in the capital stock that
we require an instrument.

9Strictly speaking, we could use a mean estimator for equation (9). The point of the median is to
allow for measurement error in labor that is also median zero. Of course, this assumption is difficult
to square with the rest of the setup of the paper, which is why we do not discuss it in further detail.

11



Our strategy is to use lagged investment as an instrument for current capital,
and an analogous strategy for the lagged capital term, which controls (partially) the
persistent part of productivity. Specifically we use following moment conditions:

E

(εit + ξit)


iit−1
iit−2
l̃it−1
dit−1


 = 0, (12)

and the resulting estimator is called the IV One-Step Control Function estimator.
To sum up, we rely on a simple linear IV to obtain consistent estimates of the

production function in the presence of serially correlated unobserved productivity
and measurement error in capital.

3.3.2 Perfect competition and labor adjustment costs

In the case in which labor faces adjustment costs, the labor input now constitutes
a state variable, and labor choices will not entirely react to productivity innovation
shocks ξit. In addition, labor choices are no longer described by a simple first-order
condition as described by equation (9), and, therefore, we can no longer net out the
labor variation. The equation of interest thus becomes:

yit = βllit + βkkit + θkkit−1 + θllit−1 + θddit−1 + ξit + εit, (13)

and, depending on the specific source of invariability of the labor input we can
specify the relevant instruments. In the case of one-period hiring, labor at time t
and labor at t − 1 are exogenous variables and do not require instruments. The
moments conditions to obtain the estimates for (βl, βk, θk, θl, θd) are given by:

E

(εit + ξit)


lit
iit−1
iit−2
lit−1
dit−1


 = 0. (14)

Thus, the source of identification for the labor coefficient is then precisely that
adjustment costs vary across firms, to the extent that these vary with the labor stock
(see Bond and Söderbom (2005) for a discussion).
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3.3.3 Imperfect competition and static labor

The case of imperfect competition is similar to the case in the previous subsection,
in that the static first-order condition cannot be used to recover the labor coefficient.
However, there are two extra complications. First, we need to address the simul-
taneity of labor, and this requires additional assumptions on labor markets, and the
wage rate in particular. Second, the control function (equation (6)) now consists of
the extra term zit, and we need to include the relevant variables in the control func-
tion to avoid an omitted variable bias. The relevant estimating equation is, thus,
precisely equation (8).

The data-generating process discussed in De Loecker and Warzynski (2012)
considers lit−1 and lit−2, to instrument for lit and lit−1. This requires, of course,
that labor choices are linked over time, and this is the case when wages do not
only vary across firms, but also are serially correlated over time. Note that in this
case, we require to observe wages, and, in fact, they become the dit−1 variable in
equation (13). In this case, the relevant moment conditions are now:

E

(εit + ξit)



lit−1
iit−1
iit−2
lit−2
dit−1
zit−1



 = 0, (15)

where the last moment, E[(εit + ξit)zit−1] = 0, highlights that firms produce in an
imperfect output market and face different input prices, here wages (as captured
by z in our notation).

3.4 Two-step approach

The two-step approach relies on the same assumptions as the one-step approach,
but instead of replacing the unobserved productivity shock with its productivity
process, which is directly a function of observables, in the production function,
it replaces the productivity shock with the inverted intermediate input demand
equation. This yields a so-called first-stage regression:

yit = βllit + βkkit + ωit + εyit − βkε
k
it

= βllit + βkkit +
(
θddit + γdlit + γkkit + z′itγz

)
+ ε̃it

= θkkit + θllit + θddit + z′itγz + ε̃it,

(16)
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where we highlight that the error term in this regression, ε̃it, is different from
the one-step approach. Unlike the first-stage in ACF, an OLS regression of equa-
tion (16) gives biased estimates of the first-stage parameters due to the errors-in-
variables problem. Therefore, our first-stage requires an instrumental variables
regression where iit−1 is used as an instrument for kit, to obtain unbiased estimates
of the coefficients. This provides us with a consistent estimate of predicted output,
φit in the notation of ACF, and now we obtain an expression for productivity given
the parameters (βl, βk), using this first-stage regression:

ωit = φit − βllit − βkkit, (17)

with the only wrinkle being that we observe only capital with measurement er-
ror, and, therefore, we have to incorporate the measurement error in capital. This,
however, does not affect the remainder of the procedure.

The remainder of the ACF approach relies on the specific law of motion of pro-
ductivity to generate moment conditions directly on the productivity shock, ξit,
where the latter is obtained, for a given value of βl and βk, by projecting ωit on
its lag, given the linear productivity process assumed throughout. Formally, this
gives moment conditions on ξit:

E[ξit(β)iit−1] = 0. (18)

This moment compares to the standard moment condition in ACF, E(ξitkit) = 0,
which highlights the difference from our IV strategy, which relies on lagged invest-
ment to instrument for the potentially mismeasured capital stock.

3.5 Discussion

3.5.1 Comparison to Olley-Pakes

The moment condition of the two-step IV control function approach, E(ξitiit−1) =

0, is different from the Olley-Pakes estimator, which uses both current and lagged
(measured) capital. However, it is useful to contrast this with a special case of the
Olley-Pakes estimator where investment variation is implicitly used to identify the
capital coefficient. To see this, consider a simple Martingale process for productiv-
ity, ωit = ωit−1 +ξit, and consider the final stage of the Olley-Pakes procedure. This
final stage is very similar to equation (11), where the labor variation is subtracted,
and the productivity process has been substituted. In this case, the Olley-Pakes
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regression is given by:
∆ỹit = βk∆kit + ξit + ∆εyit, (19)

where ∆ denotes the first difference operator — i.e., ∆xit = xit − xit−1, and capital
is assumed to be observed without error. Given the law of motion on capital in
equation (2), this implies that the capital coefficient is identified from the moment
condition E[(ξit + εyit)̃iit−1] = 0. However, in practice, the difference in the mea-
sured capital stock, ∆kit, is used.10 That is precisely the focus of this paper, and we
use investment at t−1, which will eliminate the measurement error present in both
current and lagged capital. The comparison to the (final stage) Olley-Pakes speci-
fication holds only in the case where we can directly compute the labor coefficient,
and, therefore, immediately nets out labor variation.11 It is, however, well known
that the Olley-Pakes estimator leads to substantially higher capital coefficients, and
our approach suggests that this could partly reflect the presence of measurement
error in the capital stock.

3.5.2 Departures from linearity

The choice among the various data-generating processes — for example, whether
labor is a static variable input or not — depends, of course, on the specific appli-
cation and the institutional details of the industry. While our approach works in a
wide variety of economic environments, the main restriction we have imposed is to
specify a Cobb-Douglas production technology, an associated linear control func-
tion, and a linear process for productivity. While this captures a large majority of
the empirical applications considered by previous studies, this is still a restriction.

The main issue with allowing for a) an non Cobb-Douglas production function,
such as a translog, b) a non-linear productivity control function of the form ωit =

h(dit, kit, zit), or c) a non-linear Markov process for productivity ωit = g(ωit) + ξit,
has to do with addressing an errors-in-variables problem for non-linear specifica-
tions. To our knowledge, the literature on non-linear error in variables, such as
Schennach (2004), deals with instrumental variables with a specific so-called dou-
ble measurement form; or, as in Hausman, Newey, Ichimura, and Powell (1991),

10We use the notation ĩit−1 to reflect that ∆kit 6= iit, but ∆kit = kit−1 − ln[(1 − δ)Kit−1 + Iit−1].
However, the variation in ∆kit comes from the lagged investment component.

11In the absence of this first-order approach to measuring βl, the measurement error in capital no
longer enters linearly: it is now part of the unspecified nonparametric function φ(k + εk, i). Instead,
we focus on a simple IV strategy while still encompassing a relatively rich environment.
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looks at specific functional forms (univariate polynomials), that are not met by our
framework.

3.5.3 Validity of instrument

Our approach has a very transparent first-stage regression to check the validity
of the instrument, although this is met by construction when we rely on the cap-
ital stock computed using the perpetual inventory law of motion — i.e., Kit =

(1 − δ)Kit−1 + Iit−1. When we rely on the reported book value of capital, this
is not the case. However, in both instances, it is a useful check whether lagged
investment has sufficient explanatory power to predict current capital stock. Ob-
viously, we rule out that the measurement in capital is correlated with investment,
or if investment itself is measured with error, we rule out that there is a correla-
tion between both measurement errors. As discussed in Section 2.1, we believe
that the main source of measurement error comes from the difficulty of appropri-
ately measuring depreciations over a long time period across heterogeneous assets
and production processes. We do, however, require that this measurement error is
unrelated to the measurement of gross investment.

In the next section, we demonstrate our estimator in a controlled setting using
a Monte Carlo analysis, based on the framework introduced by ACF, in which we
introduce measurement error in capital to evaluate the performance of our estima-
tor. We then turn to two datasets covering standard production and input data for
plants active in manufacturing in India and Slovenia.

4 Monte Carlo Analysis

We evaluate our estimator in a series of Monte Carlo analyses in which the main
interest lies in comparing the capital coefficient across methods as we increase the
level of measurement error in capital. We follow Ackerberg, Caves, and Frazer
(2015) closely, starting with their data-generating process, and adding measure-
ment error to capital. We depart from ACF by adding time-varying investment
costs in the investment policy function.

We refer the reader to Appendix C for the details of the underlying model of in-
vestment, but the main features of our setup are as follows. We rely on a constant
returns to scale production function with a quadratic adjustment cost for invest-
ment. This model yields closed-form solutions for both labor and capital, where
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labor is set using a static first-order condition given firm-specific wages.12 Produc-
tivity and wages follow an AR(1) process, and we consider a quadratic adjustment
cost for investment: φitI2it, where φit — which should be considered as the price of
capital — itself follows a first-order Markov process. We solve the model in closed
form, extending the work in Syverson (2001) and discussed in Appendix C.2, and
this generates our perfectly measured Monte Carlo dataset on output, inputs, in-
vestment and productivity.

We then overlay measurement error on this dataset composed of AR(1) pro-
cesses with normally distributed shocks:

εyit = ρyεyit−1 + uyit

εkit = ρkεkit−1 + ukit,
(20)

where uy ∼ N (0, σ2y), and uk ∼ N (0, σ2k). In other words, we allow for serially
correlated measurement error in output and capital.

Within this setup, we focus mainly on the impact of increasing εk, which is gov-
erned by the variance σ2k. We distinguish between the role of measurement error
within a given Monte Carlo, and the overall distribution of estimated coefficients
across 1,000 Monte Carlo runs.

Table 1 shows the parameters used in our Monte Carlo. We pick the same pa-
rameters for the size of the dataset, production function, and processes for pro-
ductivity and wages as in ACF. For the process for the price of capital, denoted
φit, we pick parameters that match the the cross-sectional dispersion of capital
(std.[kit] = 1.6) and the time-series variation in capital (Corr.[kit − kit−1] = 0.93)
in the Annual Survey of Industries in India (discussed in Section 5), choosing an
autocorrelation term for the process of φ of 0.9 and a shock variance of 0.3.13

Finally, we pick parameters for the measurement error in inputs and outputs.
We choose a measurement error for output with a standard deviation of 30 percent,
and a low autocorrelation of 0.2. For capital, we choose a serial correlation coeffi-
cient of 0.7, so a fairly high persistence, and a standard deviation of 0.2. Note that

12ACF also deal with two other data-generating processes, other than the approach we described
(called DGP1 in their paper). In Appendix C.4, we also consider optimization error in labor (DGP2)
and an interim productivity shock between labor and materials as in ACF (DGP3), along with opti-
mization error in labor.

13Indeed, it is this last moment that the ACF Monte Carlo has difficulty replicating: it predicts a se-
rial correlation coefficient of capital of 0.997. Clearly, this will make the one-stage approach problem-
atic, as both current and lagged capital are highly collinear, much more so than in any producer-level
dataset we are aware of.
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this assumption on the time series process for capital measurement error yields a
difference between k and k∗, which has a standard deviation of 30 percent. How-
ever, we also look at the sensitivity of estimated production function coefficients to
the standard deviation of capital measurement error.

4.1 The impact of measurement error

We will compare the performance of estimators that use investment to instrument
for mismeasured capital and of those that do not, which were discussed in Sec-
tion 3.3 and 3.4. We name these estimators one-step and two-step control function
estimators, some of which use first-order conditions (FOC) to estimate the labor
coefficient. Estimators that use investment as an instrument have the IV prefix in
front of them.

In Figure 1, we plot the average estimate of βk over 100 replications against
the variance of capital measurement error σk. Panel (a) shows the two-step control
function estimator; panel (b) shows the two-step control function FOC estimator;
and panel (c) shows the one-step control function estimator FOC.14

The first main result of our Monte Carlo simulations is that we find that stan-
dard estimators, the two and one-step, labor FOC or not, become progressively
more biased as the measurement error in capital increases. It is of course difficult
to guess the relevant range of this variance, but the main takeaway is that our IV-
based estimator is insulated from this problem. The simulations do suggest that
standard methods deliver an estimate of half the magnitude for a standard de-
viation in the capital measurement error σk of about 0.2, which corresponds to a
standard deviation between k and k∗ of 0.28 in the stationary distribution.

It is important to note that our estimators are robust to capital measurement
error, while still undoing the simultaneity bias that typically plagues the produc-
tion function estimation. Therefore, applying our estimator when capital stock is
accurately measured provides consistent estimates of the production function co-
efficients.

14We do not show the one-step control function estimator since it is subject to the ACF critique of
material control functions: we would need a Monte Carlo with adjustment costs for labor in order to
properly evaluate this estimator.
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4.2 Distribution of estimated coefficients

So far, we have inspected the sensitivity of the estimated coefficients to the degree
of the measurement error in capital. Now we consider the distribution of our esti-
mators, given σk = 0.2, over 1,000 Monte Carlo replications. In Figure 2, we plot
the distribution over the estimated capital coefficient, comparing the same IV and
non-IV estimators as in the previous figure.

Again, the takeaway from this analysis is simple but very stark: our IV esti-
mators are centered around the true parameter (0.4), while the other estimators
generate, albeit tight, distributions that are biased substantially towards zero, and
that often do not include the true value in their support. Interestingly enough, the
two-step estimator generates an implied distribution that is much closer to one ob-
tained with the IV approach, but it is centered around about 0.3 and still generates
severely biased capital coefficients. As a side note, the IV one-step estimator gen-
erates similar mean estimates of βk as the IV two-step estimators, but has far more
variance.

4.3 Alternative sources of measurement error

As discussed before, we have considered what we refer to as a reduced form for
the measurement error in capital. That is, we consider the standard representation
of an errors-in-variable, whereby the measurement error is (log) additive — here
k + εk. In Appendix D, we discuss an alternative source of measurement error
in capital, derived structurally from the measurement error in depreciation rates:
Kit = (1 − δit)Kit−1 + Iit and δit = (δ + εdit); i.e., there is measurement error in
depreciation rates.

This form of measurement error does not map into a log-additive structure,
and, we evaluate our estimator in the presence of this alternative setup. The main
takeaway from Appendix Figure D.1 is that our estimator outperforms the other
approaches (both in a one-step and a two-step setting) but, given the formal vio-
lation of the moment conditions, leads to a small bias of the capital coefficient for
large values of the variance of the capital measurement error.

The evidence from the Monte Carlo unequivocally favors our estimator in the
presence of measurement error in capital and, moreover, suggests that the bias can
be quite severe for moderate measurement error in capital. To verify how large this
problem is in real data, we now apply our estimator, exactly as performed in our
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Monte Carlo analysis, to two different datasets of manufacturing plants, in India
and Slovenia.

5 Applications to plant-level data

We show our methodology for two applications using plant-level microdata. The
first dataset we use is from the Annual Survey of Industries from India. This a
plant-level survey for over 600,000 plants over a twenty-year period.Allcott, Collard-
Wexler, and O’Connell (2016) previously used and described this dataset . The sec-
ond dataset is the Slovenian Database, as used in De Loecker and Warzynski (2012)
and De Loecker (2007), and covers all establishments in the Slovenian manufac-
turing sector for the period 1994-2000. All variables are deflated using industry-
specific price deflators. Appendix A describes each dataset briefly, and presents
basic summary statistics.

These two datasets have been used extensively to study productivity dynam-
ics, but at the same time have distinct features related to the measurement of cap-
ital. The data on Slovenian establishments report the book value of plants and
investment, while the Indian census data report both the book value and the (con-
structed) capital stock using the perpetual inventory method. In addition, the eco-
nomic environments are different in important ways. There is substantial invest-
ment during the process of economic transition in Slovenia, while in India, labor
represents about 20 percent of value added, which is far below the cost share of
labor in most other countries. We expect these differences to materialize in the es-
timated coefficient, and in the role and importance of measurement error in the
capital stock.

Throughout, we will compare the production function coefficients obtained by
simple OLS, IV (without the simultaneity control), One-Step Control (i.e., the LP
approach), Two-Step Control (i.e., the ACF approach) and our approach, either IV
One-Step or IV Two-Step. We estimate a separate capital and labor coefficient for
each industry in both Slovenia and India.

We start by reporting the average labor and capital coefficients across the var-
ious estimators in Table 2 below. We confirm a well-known result in the literature
that using fixed effects lowers the capital coefficient substantially, from an aver-
age of 0.39 to 0.20 in India, and from 0.24 to 0.18 in Slovenia. By itself, this does
not conclusively show that there is measurement error in capital. However, if cap-
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ital is fixed over a long period of time, we cannot identify its marginal product
using the time series variation within producers. Our next specification, IV (in-
vestment), considers a two-stage least squares regression of output on capital and
labor, where we instrument for capital with investment. Thus, the IV estimator
also ignores the simultaneity bias. We find substantially higher capital coefficients
compared to OLS, of 0.59 versus 0.39 in India, and 0.35 versus 0.24 in Slovenia,
respectively. This reinforces our prior that instrumenting for capital with lagged
investment may lead to a higher capital coefficient. In fact, the first-stage of this
IV regression — a univariate regression of capital on lagged investment — has an
R2 of 0.79 and 0.64 in Slovenia and India. However, investment and unobserved
productivity are very likely to be positively correlated, so the increase in the capital
coefficient in the IV regression might simply reflect the endogeneity of investment.

The second panel lists the standard control function estimators used in the liter-
ature — i.e., those that do not use investment as an instrument for capital, One-Step
and Two-Step Control; and, also, consider the FOC approach to estimating labor
(denoted by FOC). They produce reasonable parameter estimates that are line with
the literature — i.e., capital coefficients of around 0.25.

The third panel lists the estimators based on our IV strategy, again for the One-
Step and Two-Step approach, and interacted with the FOC approach. We obtain
much higher capital coefficients across both datasets and various specifications.
For instance, the IV One-Step Control produces an average capital coefficient of
0.41 and 0.41 for India and Slovenia, respectively, compared to 0.23 and 0.19 when
we do not instrument the capital stock with lagged investment. Likewise, instru-
menting with investment raises the Two-Step Control estimate of capital from 0.31
to 0.46 in India, and from 0.26 to 0.32 in Slovenia. More generally, the IV estimators
produce higher capital coefficients for all but one country-estimator pair.

These differences are not only statistically significant (at any level of signifi-
cance), even more importantly, are economically meaningful. The implied marginal
product of capital and associated objects of interest, such as productivity, are widely
different.

Our estimators also control for the simultaneity of inputs, and this is reflected in
the labor coefficients: we find lower coefficients than obtained using OLS — again
a standard finding in the literature. An attentive reader will also notice that the
estimators that use first-order conditions give very different labor coefficients (with
a smaller effect on capital coefficients). In particular, in India, the labor coefficient
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falls from 0.63 in the IV Two-Step Control, to 0.22 for the IV Two-Step Control FOC.
Note that the labor coefficient in all the FOC methods is the same, since it is derived
from the input cost share of labor: in India, labor accounts for 22 percent of value
added, versus 54 percent in Slovenia. Thus, the implausibly low labor coefficients
in India are not a result of our particular techniques. Instead, they suggest that
static labor choices are a particularly bad assumption in the Indian context.15

Finally, in Figure 3 we plot the industry-specific capital coefficients by country,
for our one-step and two-step estimators. For each panel, the left subpanel shows
the results for India, and the right subpanel shows the results for Slovenia. The
vertical axis shows the capital coefficient from our IV estimator, while the horizon-
tal axis shows the capital coefficient that does not instrument with investment. The
bulk of the observations are above the 45-degree line (in red), indicating that our IV
estimates are higher than the non-IV estimates for capital. On average, we obtain
capital coefficients that are about two times larger, and this holds across all indus-
tries in all of our datasets. If we go back to our Monte Carlo results, say in figure
1, dropping the capital coefficient by half would indicate that the variance of the
measurement error σk is around 0.2.16

Taking these results at face value suggests that measurement error in capital
leads to obtaining capital coefficients that are significantly lower — i.e., half the
magnitude. This has important consequences for any subsequent productivity
analysis, and we discuss this in the next section.

6 Implications for productivity analysis

The results from the Monte Carlo, and the analysis producer-level data in India and
Slovenia point to a large bias in the capital coefficient due to measurement error in
capital. In India and Slovenia, we find, on average, across all industries and both
countries, capital coefficients that are twice as large when we use our estimators
that correct for measurement error in capital versus when we do not.

This bias impacts the estimates of marginal products of capital, productivity

15This is to be expected given the evidence on the prevalence of substantial labor adjustment cost
in the Indian labor market, which would invalidate the use of the FOC approach. See e.g. De Loecker,
Goldberg, Khandelwal, and Pavcnik (2016) for a discussion.

16This is very much in line with the results in Van Biesebroeck (2007); in particular section V (ii) and
Table II panel (4c) is relevant for our purpose. The reported bias in the capital coefficient, between
the estimated and the true value, is around −0.2 for the Olley and Pakes method, the most similar to
our approach, and given the selected value for the capital coefficient of 0.4.
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estimates, and, therefore, any derived productivity analysis. To illustrate this, we
investigate the impact of the bias on the productivity-size and productivity-export
premium — two well-known facts in the productivity literature. We also show
the implications for the measure of productivity dispersion, which has become a
central measure of interest in the so-called misallocation literature.

In what follows, we abstract away from the bias in the labor coefficient, and,
therefore, we can write the implied bias in the measured productivity residual ωm

as follows:
ωmit = ωit + b · kit − β̂kεkit, (21)

where b measures the bias in the capital coefficient: b = (βk − β̂k). Our Monte
Carlo exercises in Section 4 showed that, without correcting for measurement error
in capital, we should expect β̂k < βk, and, thus, b > 0. This will lead to a spu-
rious positive relationship between productivity and size, if we measure size by
the capital stock, of magnitude b. Note that many of the outcomes that researchers
have studied, such as the relationship between productivity and R&D activities or
import and export behavior, may also suffer from bias in βk, to the extent that these
characteristics are correlated with capital stock.

6.1 Productivity Premium

The productivity-size premium drives many economic models of firm heterogene-
ity (Hopenhayn, 1992; Melitz, 2003), with implications for the distribution of firm
size, industry dynamics, and growth. If the capital coefficients double, we expect
the correlation between firm size and productivity to drop, as the productivity pre-
mium is biased in proportion to the covariance of capital and size.

In Figure 4, we plot the productivity-size premium for India, relying on sales
to measure firm size. The productivity-size premium is much muted when we
construct productivity using our IV-control function estimates rather than in the
standard control function estimates. Clearly, this will limit the extent to which
allocating more output to larger firms would be welfare improving.

Finally, we examine the relationship between a firm’s export status and its pro-
ductivity, which plays a central role in the international trade literature (Melitz,
2003). In the case of Slovenia, we compare the standard export premium esti-
mates reported in the literature to the ones obtained with our productivity esti-
mate. We run an OLS regression of (log) productivity on a firm’s export status,
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that is a dummy equal to one when it exports at a given time, while controlling
for year and industry fixed effects. We obtain a coefficient of 0.25 using our ap-
proach, as opposed to 0.52 using a standard control function, and these coefficients
differ at the one percent level. This result is not unexpected, as exporters are, on
average, more capital-intensive than non-exporters. In the Slovenia sample, ex-
porters have a capital per worker ratio that is higher by 0.37. We also considered
specifications where we use the variation in export intensity (measured by export
sales), conditional on exporting; we find a negative coefficient on the export inten-
sity, compared to a strong positive coefficient when using the uncorrected capital
coefficient. These results suggest that the export premium is substantially lower, or
even nonexistent, once we rely on the appropriate production function coefficient
for capital. The fact that our capital coefficient is higher, while holding the labor
coefficient fixed, drives up the returns to scale for all firms in the industry, and
almost mechanically offsets any productivity gain resulting from increases in firm
size, be it in employment, sales, or access to larger markets.

6.2 Productivity dispersion

The dispersion of productivity has recently received a tremendous amount of at-
tention, starting with earlier work by Syverson (2004), among others, and applied
to the cross-country context in the work of Hsieh and Klenow (2009). The latter
identify the mere presence of productivity dispersion as a potential diagnostic of
misallocation of resources and, consequently, an indication as to where to look for
drivers of differences in income across countries.

It is easy to show that the dispersion of productivity, which is typically mea-
sured using the standard deviation of log productivity (Std.(ω)), is again a function
of the bias in our estimate of βk.17

We can expect to find a larger dispersion of TFPR with larger measurement
error in capital, which would then suggest a larger degree of misallocation. In Fig-
ure 5 we plot the distribution of productivity, computed using two-step IV control
function estimates versus non-IV control function estimates for the entire Indian
manufacturing dataset. There is far more dispersion in productivity in the non-IV
estimates than the IV ones.

Whether these patterns play out more generally across other datasets for other

17Indeed, the difference between the standard deviation of productivity, with and without mea-
surement error, depends on the variance of the capital stock and the covariance of capital and output.
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countries and time periods remains to be seen and requires more work. But the
results presented here suggest, at the very least, that dealing with measurement
error in capital is important for any subsequent productivity analysis.

7 Conclusion

This paper revisits the estimation of production functions in the presence of mea-
surement error in capital. Our starting point is that appropriately measuring cap-
ital is one of the most difficult tasks that go into estimating a production function.
There is, however, rather surprisingly little work that deals directly with the poten-
tial presence of measurement error in capital, or any input for that matter.

Introducing an estimator that relies on a hybrid IV-control function approach,
we build on what have now become standard techniques to address the simultane-
ity bias, and add an IV strategy to correct for the measurement error of capital. We
propose a simple strategy that relies on investment to inform us about the marginal
product of capital; specifically, we use investment as an instrument for the capital
stock while still controlling for the standard simultaneity bias.

Monte Carlo simulations show that our estimator performs well, even in cases
of rather large measurement error. We also apply our estimator to Indian and
Slovenian producer-level data. We estimate capital coefficients that are about twice
as large as those obtained with standard techniques. This indicates that correcting
for measurement error in capital can be a first-order concern, and it has immediate
implications for the literature that studies productivity dynamics, firm growth, in-
vestment, and the covariates of productivity growth. In particular, we show that
our correction calls a few well-known facts into question — essentially, the rela-
tionship of firm size and productivity.
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Tables and Figures

Table 1: Monte Carlo Parameters

Data Size
Number of Firms N= 1,000
Time Periods T= 10

Production Function Parameters
Capital Coefficient βk = 0.4
Labor Coefficient βl = 0.6
Depreciation Rate δ = 0.2
Productivity Process ρω=0.7, σω = 0.3
Wage Process ρw=0.3, σw = 0.1


Taken from ACF.

Cost Capital φ ρφ=0.9, σφ = 0.3
} Dispersion of Log Capital of 1.6

Autocorrelation of Capital of 0.93

Measurement Error Parameters
Error in Capital ρk = 0.7, σk = 0.2

}
High Persistence, and 30 percent measurement
error in stationary distribution

Error in Output ρy = 0.2, σy = 0.3
}

Low Persistence, and 30 percent measurement
error in stationary distribution
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Table 2: Mean Industry-Level Coefficients

India Slovenia
(Nr Ind. =19) (Nr Ind. =18)

Capital Labor Capital Labor
OLS 0.39 0.78 0.24 0.83
FE 0.20 0.59 0.18 0.77
IV (investment) 0.59 0.51 0.35 0.70

One-Step Control 0.23 0.41 0.19 0.65
Two-Step Control 0.31 0.91 0.26 0.47
Two-Step Control (Adj) 0.36 0.71 0.21 0.85
One-Step Control, Labor FOC 0.25 0.22 0.20 0.54
Two-Step Control, Labor FOC 0.57 0.22 0.42 0.54

IV One-Step Control 0.41 0.37 0.41 0.61
IV Two-Step Control 0.46 0.63 0.32 0.67
IV Two-Step Control (Adj) 0.56 0.53 0.32 0.74
IV One-Step Control, Labor FOC 0.47 0.22 0.44 0.54
IV Two-Step Control, Labor FOC 0.68 0.22 0.40 0.54

Notes: We report the average capital across all industries for each dataset. We consider value-added
based Cobb-Douglas production functions with material demand as a control for productivity, and
an AR(1) process for productivity. FOC refers to case in which the labor coefficient is obtained using
the FOC approach — i.e., we compute the median of the wage bill to sales ratio for each industry
separately. Thus, all estimators labeled with FOC thus have the same estimate for labor — i.e. the
median of the wage bill over sales, by industry. (Adj) refers to the specification with both labor and
capital adjustment costs — i.e., current labor is used as the instrument.
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Figure 1: Impact of measurement error on capital coefficient in a Monte Carlo (βk =
0.4):

(a) Two-Step Control
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(c) One-Step Control FOC
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Note: We plot the estimated capital coefficient as a function of the variance in the capital measure-
ment error (σ2

k). Average of 100 Monte Carlo replications per value of σk.
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Figure 2: The distribution of the estimated capital coefficient in a Monte Carlo (βk =
0.4)
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(c) One-Step Control FOC
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Note: We plot the distribution of the estimated capital coefficient across 1000 Monte Carlo replica-
tions, with βk = 0.4, and σ2

k = 0.2.
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Figure 3: Industry-specific Coefficients

(a) Two-Step Control FOC

.2

.4

.6

.8

.2 .4 .6 .8 .2 .4 .6 .8

India Slovenia

IV Two-Step Control FOC
Two-Step Control FOC

IV
 T

w
o-

S
te

p 
C

on
tr

ol
 F

O
C

Two-Step Control FOC

Graphs by country

(b) Two-Step Control
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(c) One-Step Control FOC
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(d) One-Step Control
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Notes: Each observation is a two-digit industry (as classified by the respective national industry
classification), and we plot the capital coefficient obtained from our procedure (i.e., IV) against the
alternative, either the one-step control function estimator or the two-step control function estima-
tor. The red line is the 45-degree line. All specifications consider value-added based Cobb-Douglas
production functions, with material demand to control for productivity and an AR(1) process for
productivity. Both the labor and the capital coefficients are estimated in the non-FOC specifications,
and, therefore, do not impose perfect competition and labor being a variable input of production.
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Figure 4: Productivity-Size Premium in India
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Note: We plot the relationship between log productivity, measured either using the control function
estimator (solid blue line) and our IV control function approach (dotted red line), against log sales
for all plants in the Indian ASI in 2000. We use a third-order local polynomial series approximation
to present the relationship.
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Figure 5: Productivity Distribution and Dispersion
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Note: We plot the kernel density of log productivity for all plant-year observations (543,365) in Indian
manufacturing. The dotted red density is based on the corrected productivity estimates (using IV
Two-Step Control) and, the solid blue one is obtained using productivity estimates from the standard
control function (Two-Step Control) routine.
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A Data Appendix

We apply our estimator to two datasets, covering manufacturing plants in India and Slove-
nia. There have been numerous productivity studies using these data, and, therefore, are
completely standard in which variables are reported, and how they are constructed.

A.1 Slovenian manufacturing

We refer the reader to De Loecker (2007) for a detailed discussion of the data. For this
setting, it is important to note that the data contain standard information on establishment-
level production and that similar data have been used throughout the literature. See, for
example, Olley and Pakes (1996) and Levinsohn and Petrin (2003).

In particular, and as mentioned in the paper, the data represent the population of pro-
ducers of manufacturing products over the period 1994-2000. The estimation of the pro-
duction function requires information on plant-level output (revenues deflated with de-
tailed producer price indices), (deflated) value added, and input use: labor as measured
by full-time equivalent production workers, raw materials and a measure of the capital
stock. The latter is constructed from the balance sheet information on total fixed assets
broken down into 1) machinery and equipment, 2) land and buildings and 3) furniture and
vehicles. Appropriate depreciation rates (based on actual depreciation rates) are used to
construct a firm-level capital stock series using standard techniques. See, for example, the
data appendix in Olley and Pakes (1996).

In addition, the data report investment and provide detailed information on owner-
ship, firm entry and exit. Finally, the export status and export revenues — at every point
in time — provide information on whether a firm is a domestic producer, an export entrant
or a continuing exporter. This gives rise to an unbalanced panel of about six thousand
producers, covering the period 1994-2000.

A.2 Indian manufacturing

We use India’s Annual Survey of Industries (ASI) for establishment-level microdata; this
dataset is described in more detail in Allcott, Collard-Wexler, and O’Connell (2016). Reg-
istered factories with over 100 workers (the “census scheme”) are surveyed every year,
while smaller establishments (the “sample scheme”) are typically surveyed every three to
five years. The publicly available ASI includes establishment identifiers that are consistent
across years beginning in 1998, but we have plant identifiers going back to 1992. We have
a plant-level panel for the entire 1992-2010 sample.

The ASI is comparable to manufacturing surveys in the United States and other coun-
tries. Variables include revenues, value of fixed capital stock, total workers employed, total
costs of labor, and materials. Industries are grouped using India’s NIC (National Industrial
Classification) codes, which are closely related to SIC (Standard Industrial Classification)
codes.

There are 615,721 plant-by-year observations at 224,684 unique plants. 107,032 plants
will be immediately dropped from our estimators because they are observed only once.
For plants observed multiple times, 60 percent of intervals between observations are one
year, while 91 percent are five years or less.

The mean (median) plant employs 79 (34) people and has gross revenues of 139 million
(20 million) Rupees, or in U.S. dollars approximately $3 million ($400,000).
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B Estimators: Details

In this section we describe the estimators proposed in this paper in great detail, enough
so that they can easily be coded up by other researchers, and code for these estimators is
also available in STATA. In what follows, we use materials as the static control function
decision d∗.

B.1 One-Step Estimators, Labor FOC

1. Estimate βl

β̂l = Median

(
WLit
PYit

)
.

2. Produce output ỹit netted out from labor contribution.

ỹit = yit − β̂llit.

3. Estimate
ỹit = βkkit + θkkit−1 + θllit−1 + θddit−1 + εit

using instruments xit = [iit−1, iit−2, lit−1, dit−1].

Notice that we refer to the non-IV version of this estimator as the estimator that esti-
mates ỹit = βkkit + θkkit−1 + θllit−1 + θddit−1 by OLS.

B.2 One-Step Estimators, Labor Adjustment Costs

Estimate:
yit = βllit + βkkit + θkkit−1 + θllit−1 + θddit−1

by two-stage least-squares using instruments xit = [lit, iit−1, iit−2, lit−1, dit−1]. Notice that
we refer to the non-IV version of this estimator as the estimator that estimates this previous
equation by OLS.

B.3 Two-Step Estimators, Labor FOC

1. Estimate βl

β̂l = Median

(
WLit
PYit

)
.

2. Produce output ỹit netted out from labor contribution.

ỹit = yit − β̂llit

3. Estimate

ỹit = θddit

by OLS, and obtain ŷit = θ̂ddit.
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4. For a parameter βk, minimize the criterion Q(βk) using:

(a) Compute ωit = ŷit − βkkit
(b) Estimate the AR(1) process for productivity, ωit = ρωit−1 , by OLS, obtain ρ̂.

Recover productivity shock ξit = ωit − ρ̂ωit−1.

(c) ComputeQ(βk) as the empirical analogue of the moment condition E[ξitiit−1] =
0.

Q(βk) = (ξz)′(z′z)−1(ξz),

where ξ denotes the stacked vector of ξit, and z denotes the stacked vector of
iit−1.

(d) Find β̂k as the minimizer of Q(βk).

B.4 Two-Step Estimators, Labor Adjustment Costs

1. Estimate the regression:
yit = θddit,

by OLS.

Obtain ŷit = θ̂ddit.

2. For a parameter β = [βk, βl], minimize the criterion Q(β) using:

(a) Compute ωit = ŷit − βkkit − βllit.
(b) Estimate the AR(1) process for productivity, ωit = ρωit−1 , by OLS, obtain ρ̂.

Recover productivity shock ξit = ωit − ρ̂ωit−1.

(c) ComputeQ(β) as the empirical analogue of the moment condition E[ξit

(
lit
iit−1

)
] =

0 given by:
Q(β) = (ξZ)′(Z ′Z)−1(ξZ), (B.1)

where ξ denotes the stacked vector of ξit, and Z denotes the stacked matrix of
xit = [lit, iit−1].

(d) Compute βk as the minimizer of Q(βk).
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C Monte Carlo

In this section, we describe details of the Monte Carlo that we will use to evaluate the per-
formance of our estimator. We will need to specify laws of motion for each of the variables
in the data-generating process.

C.1 Timing

First, we specify the timing assumptions in our model. Investment is chosen with one
period time to build. Materials are chosen statically — i.e., after the firm knows its produc-
tivity Ωit. Labor is chosen statistically in for DGP 2 and DGP 3, and in an interim period
for DGP 1 — i.e., part of the productivity shock is revealed before the firm makes its labor
choice.

Second, there are four exogenous state variables, productivity Ait, wages Wit, output
prices Pit, and the price of capital φit, which all have log AR(1) processes. The only en-
dogenous state variable is capital.

Logged productivity A has a first-order Markov evolution:

ait = ρaait−1 + uait, (C.1)

where ua ∼ N (0, σ2
a).

In addition, log wages have a first-order Markov process:

wit = ρwwit−1 + uwit, (C.2)

and likewise for the logged price for output (P ):

pit = ρppit−1 + upit, (C.3)

where uw ∼ N (0, σ2
w) and up ∼ N (0, σ2

p). For the purposes of the Monte Carlo, we will
normalize pit ≡ 1, the case of perfect competition.

C.2 Derivation of Investment Policy as in Syverson (2001)

In this section, we derive a closed form for the investment function in Syverson (2001), to
show that we can allow a time-varying cost of capital φit. This derivation is very close to
Syverson (2001), so our goal is merely to show that this model admits a time-varying cost
of capital φit.

Firms have flow profits given by:

Πit = PitAitL
α
itK

1−α
it −WitLit −

φit
2
I2
it, (C.4)

where P is the price of output, A is physical productivity, W refers to firm specific wages,
and I is investment.
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The firm’s value function V is given by:

V (Pit, Ait,Kit,Wit, φit) = max
Lit,Kit

PitAitL
α
itK

1−α
it −WitLit

+ βEitV (Pit+1, Ait+1,Kit+1,Wit+1, φit+1)

such that Kit+1 = (1− δ)Kit + Iit

(C.5)

where δ is the depreciation rate of capital.
Labor is chosen using the usual first-order condition ∂Πit

∂Lit
= 0:

PitAitαL
α−1
it K1−α

it = Wit

→ Lit =

[
αPitAit
Wit

] 1
1−α

Kit

(C.6)

And, likewise, investment solves the Euler Equation, ∂V∂I = 0, giving,

φitIit = βEitVK(Pit+1, Ait+1,Kit+1,Wit+1, φit+1). (C.7)

The envelope condition yields:

VK(Pit, Ait,Kit,Wit, φit) =(1− α)PitAitL
α
itK
−α
it

+ (1− δ)EitVK(Pit+1, Ait+1,Kit+1,Wit+1, φit+1).
(C.8)

Substituting into the first-order conditions, the envelope condition becomes

φitIit =βEit
[
(1− α)α

α
1−αW

− α
1−α

it+1 P
1

1−α
it+1A

1
1−α
it+1

]
+ β(1− δ)Eitφit+1Iit+1. (C.9)

And then iterating this equation forward — i.e., replacing EitφitIit with the right-hand
side in equation (C.9) — yields:

φitIit =βEit
[
(1− α)α

α
1−αW

− α
1−α

it+1 P
1

1−α
it+1A

1
1−α
it+1

]
+ β(1− δ)Eitβ

[
(1− α)α

α
1−αW

− α
1−α

it+2 P
1

1−α
it+2A

1
1−α
it+2

]
+ [β(1− δ)]2 Et+1φit+2Iit+2

φitIit =βEit
[
(1− α)α

α
1−αW

− α
1−α

it+1 P
1

1−α
it+1A

1
1−α
it+1

]
+ β(1− δ)Eitβ

[
(1− α)α

α
1−αW

− α
1−α

it+2 P
1

1−α
it+2A

1
1−α
it+2

]
+ [β(1− δ)]2 β

[
(1− α)α

α
1−αW

− α
1−α

it+3 P
1

1−α
it+3A

1
1−α
it+3

]
+ [β(1− δ)]3 Et+2φit+3Iit+3.

(C.10)
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Writing in the form of geometric series

Iit =
β(1− α)

φit
α

α
1−αEit

∞∑
j=0

{
[β(1− δ)]jW−

α
1−α

it+1+jP
1

1−α
it+1+jA

1
1−α
it+1+j

}
(C.11)

Given that we assume that Pit, Ait and Wit follow the log-linear AR(1) process with
normal error terms, the investment function becomes:

Iit =
β(1− α)

φit
α

α
1−αEit

∞∑
j=0

{[β(1− δ)]jW−
αφi+1
w

1−α
it

j∏
s=0

(uwt+1+i−s)
−αφ

s
w

1−α P
φi+1
p

1−α
it

·
j∏
s=0

(upt+1+i−s)
φsp
1−αA

φi+1
a

1−α
it

j∏
s=0

(uat+1+i−s)
φsa
1−α }

=
β(1− α)

φit
α

α
1−α

j∏
s=0

{[β(1− δ)]jW−
αφi+1
w

1−α
it

j∏
s=0

Eit(uwt+1+i−s)
−αφ

s
w

1−α P
φi+1
p

1−α
it

·
j∏
s=0

Eit[(upt+1+i−s)
φsp
1−α ]A

φi+1
a

1−α
it

j∏
s=0

Eit[(uat+1+i−s)
φsa
1−α ]}

Since for ε ∼ N (0, σ2), we have E(u
φs

1−α ) = exp( σ2φ2s

2(1−α)2 ); then, the investment function
can be further simplified as:

Iit =
β(1− α)

φit
α

α
1−αEit

∞∑
i=0

{[β(1− δ)]jW−
αφi+1
w

1−α
it

j∏
s=0

exp

(
α2σ2

wφ
2s
w

2(1− α)2

)
P
φi+1
p

1−α
it

·
j∏
s=0

exp

(
σ2
pφ

2s
p

2(1− α)2

)
A
φi+1
a

1−α
it

j∏
s=0

exp

(
σ2
aφ

2s
a

2(1− α)2

)
}.

(C.12)

C.3 Process for the Price of Capital

In the original Monte Carlo proposed by Ackerberg, Caves, and Frazer (2015), the authors
extend the model proposed by Syverson (2001) by allowing for the price of capital φ to dif-
fer between firms — i.e., to allow the price for capital to be a firm-specific φi. This is impor-
tant, in the context of their Monte Carlo, since it allows a higher cross-sectional dispersion
of capital between firms than that generated by reasonable processes of productivity, given
the patterns in standard producer-level data.

In this paper, we also need capital to move around more than it does in Ackerberg,
Caves, and Frazer (2015), with a process that generates a serial correlation coefficient for
capital of 0.99. Instead, we have the following AR(1) process:

φit = ρφφit−1 + σφuφit, (C.13)

where uφit ∼ N (0, 1).
Figure C.1 shows the relationship between the autocorrelation of the price of capital

and estimates of the capital coefficient using both the one and two-step estimators pro-
posed in the paper. To make these estimates more comparable, when we change ρφ, we
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coefficient over 100 Monte Carlo replications.

Figure C.1: Persistence of the price of capital φ; i.e., ρφ, and estimate of the capital
coefficient

adjust σφ so that the stationary distribution of φ, given by the usual formula for an AR(1)
process with normal errors σ√

1−ρ2
, is unchanged. In panel a, showing one-step estima-

tors, for a wide range range of ρφ parameters below one, our estimator performs very well.
However, at very high levels of persistence of φ, our IV one-step estimate drops to 0.2. In
contrast, the estimates for panel b, showing two-step estimators, do not change much as
we vary the persistence of the price of capital φ.

C.4 Alternative Data-Generating Processes

We evaluate the performance of our estimator in two alternative data-generating processes
(DGPs), as considered in ACF in their Monte Carlos.

• DGP 1:
DGP 1 is the case considered in the main Monte Carlos in the paper. Note that labor
is chosen a half-period before materials are picked. More precisely, labor is chosen
at time t − 0.5, and materials are chosen at time t, where the productivity process is
adjusted so that the stochastic process for ωit−0.5 is given by:

ωit = ρ0.5ωit−0.5 + ξbit,

where ξbit is an appropriately adjusted normally distributed shock.

• DGP 2:
DGP2 refers to the case of optimization error in labor. The variance of the wage
distribution is shut down, σw = 0, but instead, firms face an optimization error in
labor. Thus, lit = l∗it + εlit where εlit ∼ N (0, 0.37).
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• DGP 3:
DGP 3, has the same process as DGP 1, but adds in optimization error in labor,lit =
l∗it + εlit, where εlit ∼ N (0, 0.37), as in DGP 2.

Figure C.2, below replicates Figure 1 for DGP 1, 2 and 3, and shows the sensitivity of
our IV and non-IV two-step estimators to the measurement error in capital. Notice that the
pattern that we document in the Monte Carlos for DGP 1 in the main paper is the same
as what we find for these alternative DGPs: our estimator performs well with varying
degrees of capital measurement error, while the standard control function approaches are
biased for reasonable amounts of measurement error.
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Note: We plot the estimated capital coefficient as a function of the variance in the capital measure-
ment error (σ2

k). Average of 100 Monte Carlo replications per value of σk. The true value of βk = 0.4.

Figure C.2: Relationship between βk and Measurement error σk in Capital for dif-
ferent DGPs
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D Different Processes for Measurement Error in Capital

In our main specifications in this paper, we rely on the process for measurement error
having the form:

kit = k∗it + εkit, (D.1)

where εkit is a mean zero measurement error, which may be serially correlated. While this
is the standard formulation for an errors-in-variables structure, we contrast this approach to,
what we refer to as, a structural derived measurement error for capital. After we introduce
this setup, we perform an analogous Monte Carlo analysis to evaluate our estimator, and
we make sure that both approaches are directly comparable through their implied variance
in the measurement error of capital.

As discussed in Section 2, we consider the main source of the capital measurement error
to stem from errors in depreciation Dit = δitKi−1t, where the correct measure is given by
dit = δ∗itK

∗
it−1. Applying the same law of motion for capital as before, it is easy to show

that the measured capital stock under the error in depreciation rates is given by:

Kit =

t∑
τ=0

I∗iτ −
t∑

τ=0

Diτ−1, (D.2)

where we keep the assumption that we observe investment without error and, for sim-
plicity, also the initial capital stock.18 The source of measurement error is, thus, from the
cumulative depreciation errors, and we capture as follows: δit = δ∗+εdit. Both the reduced-
form and the structural approach generate a wedge between the measured and true capital
stock, in levels K and K∗, respectively. After some algebra, we have a direct mapping
between the structural measurement error, εdit, and the reduced form measurement εkit:

εdit =
K∗it
K∗0

exp (εkit). (D.3)

This relationship is important when comparing the performance of our estimator across
both Monte Carlos: a much smaller variance in the depreciation error, εdit, is needed to gen-
erate a certain variance of the classical measurement error, εkit.

19

D.1 Monte Carlo Analysis

All parameters of the Monte Carlo are the same as before, except that we parameterize εdit ∼
N (0, σd). True depreciation is given by D∗it = δK∗i−1t. However, measured depreciation is
given by Dit = (δ + εdit)Kit.

Figure D.1 presents the results of this Monte Carlo for both the two-step IV control
method we propose and a two-step control method that does not use investment as an
instrument. Plot the relationship between the mean estimate of βk over 1,000 replications,
as we vary method and a two-step , across the three data-generating process considered by
ACF.

18This is without loss of generality for the purpose of this Appendix.
19We have traced this out in our Monte Carlo analysis, and we obtain about a 20-1 ratio — i.e., we

obtain similar implied variances for the measurement error using either σk = 0.2 or σd = 0.01.
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Figure D.1 shows that under a small amount of measurement error in depreciation —
say, on the order of a 0.01 variance shock to a depreciation rate of 0.1 — the IV control
function method we have proposed does fairly well, with mean estimates around the true
value of 0.4. In contrast, the mean estimates that do not instrument with investment, show
a drop of βk to 0.3, with a 0.01 variance shock to the depreciation rate, in line with the
previous results that we showed illustrating that measurement error in capital stock leads
to downward bias on the capital coefficient.

Notice that Figure D.1 does not show that our two-step IV control function estimator
is consistent for any value of measurement error in depreciation. Indeed, the process for
measurement error in depreciation does not lead to the log additive error structure on cap-
ital that we need for estimation. Instead, our goal is merely to point out that our estimator
might perform well for alternative measurement error structures, at least for some small
deviations from our structure.
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(b) Two-Step Control FOC
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(c) One-Step Control FOC

Note: We plot the estimated capital coefficient as a function of the variance in the capital measure-
ment error (σ2

k). Average of 100 Monte Carlo replications per value of σd. The true value of βk = 0.4.

Figure D.1: Relationship between βk and Measurement error σd in Depreciation
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