
NBER WORKING PAPER SERIES

THE BIGGER PICTURE:
COMBINING ECONOMETRICS WITH ANALYTICS IMPROVE FORECASTS OF MOVIE SUCCESS

Steven F. Lehrer
Tian Xie

Working Paper 24755
http://www.nber.org/papers/w24755

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
June 2018

We wish to thank Chris Hansen, seminar participants at the Young Econometricians around 
Pacific (YEAP) 2017 annual conference, the Canadian Econometrics Study Group (CESG) 2017 
annual conference, Carleton University, Chinese Academy of Sciences, Northeastern University, 
Renmin University, Xiamen University, and Zhejiang University for helpful comments and 
suggestions. Xie’s research is supported by the Natural Science Foundation of China (71701175), 
the Chinese Ministry of Education Project of Humanities and Social Sciences (17YJC790174), 
the Natural Science Foundation of Fujian Province of China (2018J01116), the Fundamental 
Research Funds for the Central Universities in China (20720171002, 20720171076, and 
20720181050), and Educational and Scientific Research Program for Young and Middleaged 
Instructor of Fujian Province (JAS170018). Lehrer wishes to thank SSHRC for research support. 
The usual caveat applies. The views expressed herein are those of the authors and do not 
necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2018 by Steven F. Lehrer and Tian Xie. All rights reserved. Short sections of text, not to 
exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



The Bigger Picture: Combining Econometrics with Analytics Improve Forecasts of Movie
Success
Steven F. Lehrer and Tian Xie
NBER Working Paper No. 24755
June 2018
JEL No. C52,C53,C55

ABSTRACT

There exists significant hype regarding how much machine learning and incorporating social 
media data can improve forecast accuracy in commercial applications. To assess if the hype is 
warranted, we use data from the film industry in simulation experiments that contrast 
econometric approaches with tools from the predictive analytics literature. Further, we propose 
new strategies that combine elements from each literature in a bid to capture richer patterns of 
heterogeneity in the underlying relationship governing revenue. Our results demonstrate the 
importance of social media data and value from hybrid strategies that combine econometrics and 
machine learning when conducting forecasts with new big data sources. Specifically, while 
recursive partitioning strategies greatly outperform dimension reduction strategies and traditional 
econometric approaches in forecast accuracy, there are further significant gains from using hybrid 
approaches. Further, Monte Carlo experiments demonstrate that these benefits arise from the 
significant heterogeneity in how social media measures and other film characteristics influence 
box office outcomes.

Steven F. Lehrer
School of Policy Studies
and Department of Economics
Queen's University
Kingston, ON K7L 3N6
CANADA
and NBER
lehrers@queensu.ca

Tian Xie
Wang Yanan Institute for Studies in Economics
Department of Finance,  MOE Key Lab of Econometric
Xiamen, Fujian 361005, China
xietian001@hotmail.com



1 Introduction

Many speculate that in the near future, movie studios will find that predictive analytics

may play just as large of a role as either the producer, director, and/or stars of the film

when determining if it will be a success. Currently, predictive analytics that incorporate

social media data are being predominately used for demand forecasting exercises in the

film industry. Improved forecasts are valuable since they not only could increase capital

investments by reducing investor uncertainty of the box office consequences, but also

help marketing teams tailor effective advertising campaigns. However, there remains

both skepticism as to whether social media data truly adds value to these forecasting

exercises, and debate if the hype of its potential is truly warranted.

In this paper we introduce new strategies for predictive analytics that are contrasted

with existing tools from both the econometrics and machine learning literature to first

give guidance on how to improve forecast accuracy in applications within the film in-

dustry.1 Second, we consider the value of different measures of social media data in our

application. We examine if there is additional value from analyzing individual social me-

dia messages for trends in sentiment that are beyond simply collecting the amount of

social media chatter surrounding individual movies.

This paper contributes to a burgeoning literature in the emerging fields of data science

and analytics that focuses on developing methods to improve empirical practice includ-

ing forecast accuracy.2 Motivating our strategies is that in many forecasting exercises

involving social media data we would anticipate heteroskedasticity for at least two rea-

sons. First, the characteristics of individuals attracted to different films will differ sharply

leading the data to appear as if coming from different distributions. Second, online re-

spondents may have greater unobserved variability in their opinions of different films.
1As discussed in the next section, traditional econometric strategies generally differ from machine learn-

ing approaches by first writing an explicit model for how covariates influence outcomes.
2 For example, among other developments, Vasilios, Theophilos, and Periklis (2015) examine the fore-

casting accuracy of machine learning techniques on forecasting daily and monthly exchange rates, Wager
and Athey (2017) propose variants of random forests to estimate causal effects, and Ban, Karoui, and Lim
(2018) adopted machine learning methods for portfolio optimization.
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Econometricians have long been well aware that heteroskedasticity of data impacts

the predictive ability of many traditional estimators. With recursive partitioning strate-

gies such as regression trees that underlie ensemble methods such as random forests or

bagging, researchers do not specify a structure for the model to forecast the mean, but

implicitly assume homogeneous variance across the entire explanatory-variable space.3

We propose two new empirical strategies for this setting. First, we develop computa-

tionally efficient methods to implement model averaging estimators with heteroskedastic

data. Specifically, we extend the theoretical results of Zhang, Yu, Zou, and Liang (2016)

and prove the asymptotic optimality of Mallows-type model averaging estimators using

a set of screened candidate models.4 Second, we propose a hybrid strategy that uses

recursive partitioning methods to develop subgroups and then undertake model aver-

aging within these groups to generate forecasts. Traditionally, forecasts from regression

trees assume homogeneity in outcomes within individual leafs. By allowing for model

uncertainty in the leaves, richer forms of heterogeneity in the relationships between inde-

pendent variables and outcomes within each subgroup in a leaf is allowed.

To examine the empirical performance of these alternative approaches we first extend

the prediction exercise in Lehrer and Xie (2017) by removing the sampling criteria based

on the budget. All movies released over a three-year period ranging from art-house to

blockbuster are now included. By relaxing this restriction, the data exhibits strong het-

eroskedasticity,5 which likely arises since different films appeal to populations drawn

3More generally, both OLS, regression trees and Lasso methods rely on the unweighted sum of squares
criterion (SSR), which implicitly assumes homoskedastic errors. It is well known that when this condition
is violated and heteroskedasticity is present, the standard errors are biased influencing statistical inference
procedures. Further, the objective function ensures that areas of high variability will contribute more to
minimizing the unweighted SSR, and will therefore play a larger role when making predictions at the
mean. As such, predictions for low-variance areas are expected to be less accurate relative to high variance
areas. This is why heteroskedasticity might affect predictions at the mean, since the implicit weights to the
data are determined by the local variance. Recent developments continue to use the SSR as a loss function
but can generally accommodate richer forms of heterogeneity relative to parametric econometric models
by accounting for limited forms of parameter heterogeneity.

4Specifically, we consider three model averaging estimators: the MMA estimator of Hansen (2007), the
PMA estimator of Xie (2015), and the HRCp of Liu and Okui (2013).

5Results from Breusch-Pagan test are presented in appendix E.1. We should stress that a reason one
needs to account for heteroskedasticity is parameter heterogeneity, which is a form of an omitted variables
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from different distributions.

Our results provide new insights on the trade-offs researchers face when choosing

a forecasting method. Recursive partitioning strategies including regression trees, bag-

ging and random forests yield on average a 30-40% gains in forecast accuracy relative

to econometric approaches that either use a model selection criteria or model averaging

approach. These large gains from statistical learning methods even relative to economet-

ric estimators and penalization methods that implicitly account for heteroskedastic data,

demonstrate the restrictiveness of linear parametric econometric models. These models

remain popular in econometrics since as Manski (2004) writes “statisticians studying esti-

mation have long made progress by restricting attention to tractable classes of estimators;

for example, linear unbiased or asymptotic normal ones”.

Second, we find additional gains of roughly 10% in forecast accuracy from our pro-

posed strategy that allows for model uncertainty in each leaf of a regression tree relative

to popular recursive partitioning algorithms such as random forest and bagging.6 Monte

Carlo experiments clarify why these gains arise in our empirical application. We find

hybrid strategies are quite useful in settings where heteroskedasticy arises due to sig-

nificant parameter heterogeneity, perhaps due to jumps or threshold effects, or simply

neglected parameter heterogeneity in the underlying behavioral relationships. In this set-

ting, hybrid strategies can explain a portion of the significant amount of heterogeneity in

outcomes within each leaf of a bagging tree. In contrast, when heteroskedasticy is due to

random factors, we do not observe significant benefits from the hybrid strategies.

Third, our analysis finds tremendous value from incorporating social media data in

forecasting exercises. Econometric approaches show that the inclusion of social media

problem. However, the link between neglected parameter heterogeneity and heteroskedasticity are not well
known among practitioners, but can be easily explained with the following example. If regression coeffi-
cients vary across films (perhaps the role of Twitter volume on box office revenue differs for a blockbuster
science fiction film relative to an art house drama), then the variance of the error term varies too for a fixed-
coefficient model. This link between neglected heterogeneity and heteroskedasticity has implications for
specification tests and Chesher (1984) demonstrates that the well-known information matrix (IM) test due
to White (1982) can be interpreted as a test against random parameter variation.

6Note, our analysis finds that adding model averaging post variable selection by penalization methods
or using a model screening approach leads to small gains relative to traditional econometric approaches.
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data leads to large gains in forecast accuracy. Calculations of variable importance from

recursive partitioning methods show that measures of social media message volume ac-

count for 6 of the 10 most influential variables when forecasting either box office or retail

movie unit sales revenue.

This paper is organized as follows. In the next section, we first review traditional

econometric and machine learning strategies to conduct forecasting and then propose

two new strategies to aid managerial decision making. The strategies are designed to

be computationally efficient and can accommodate more general forms of heterogeneity

than traditional forecasting methods. The data used and design of the simulation ex-

periments that compares forecasting methods is outlined in section 3. Section 4 presents

and discusses our main results that show the value of social media data and combining

machine learning with econometrics when undertaking forecasts. Further, we conduct

additional Monte Carlo experiments to elucidate why an understanding of the source

of heteroskedasticity is useful when selecting a forecasting method. We summarize our

findings and conclude in the final section.

2 Empirical Tools for Forecasting

Forecasting involves a choice of a method to identify the underlying factors that might

influence the variable being predicted. Econometric approaches begin by considering a

linear parametric form for the data generating process (DGP) of this variable as

yi = µi + ei, µi =
∞

∑
j=1

β jxij, E(ei|xi) = 0 (1)

for i = 1, ..., n and µi can be considered as the conditional mean µi = µ(xi) = E(yi|xi)

that is converging in mean square.7 The error term can be heteroskedastic, where σ2
i =

E(e2
i |xi) denote the conditional variance that depends on xi. Since the DGP in equation

7Convergence in mean square implies that E(µi −∑k
j=1 β jxij)

2 → 0 as k→ ∞.
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(1) is unknown, econometricians often approximate it with a set of M candidate models:

yi =
km

∑
j=1

βm
j xm

ij + ui, (2)

for m = 1, ..., M, where xm
ij for j = 1, ..., km denotes the regressors, βm

j denotes the coeffi-

cients. The residual now contains both the original error term and a modeling bias term

denoted as bm
i ≡ µi−∑km

j=1 βm
j xm

ij . In practice, econometricians often use specification tests

such as the Akaike information criterion to determine a single preferred model.

In the machine learning literature, many popular algorithms select variables rather

than models. For example, recursive partitioning methods such as classification and re-

gression decision trees (CART) use a fast divide and conquer greedy algorithm that recur-

sively partitions the data into smaller subsets.8 A node τ containing nτ observations with

mean outcome ȳ(τ) can only by split by one selected variable into two leaves, denoted as

τL and τR. The split is made at the variable where ∆ =SSR(τ)−SSR(τL)−SSR(τR), reaches

its global maximum;9 where the within-node sum of squares is SSR(τ) = ∑nτ
i (yi − ȳτ)2.

This splitting process continues at each new node until the ȳ(τ) at nodes can no longer

be split since it will not add any additional value to the prediction. Forecasts at each final

leaf l are the fitted value from a regression model of

yi = a + ui, i ∈ l, (3)

where ui is the error term and a stands for a constant term. The least square estimate of

â = ȳi∈l. In other words, after partitioning the dataset into numerous final leaf nodes, the

8Regression trees are applied to real number predicted outcomes and differ sharply from econometric
strategies by not linearizing the relationship in (1). These strategies aim to estimate y = f (x) while trying
to avoid overfitting. Further, smoothness conditions are not required in contrast to many nonparametric
approaches in econometrics. Work on tree-based regression models traces back to Morgan and Sonquist
(1963) and within machine learning, most research efforts concentrate on classification (or decision) trees
(Hunt, Martin, and Stone, 1966, Quinlan, 1986) and work on regression trees started with RETIS (Karalic
and Cestnik, 1991) and M5 (Quinlan, 1992).

9Implicitly it is assumed that there are no unobservables relevant to the estimation. That said, the stan-
dard methodology to induce regression trees is based on the minimization of the squared error.
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forecast assumes any heterogeneity in outcomes within each subgroup is random. From

the perspective of the econometrician, this can appear unsatisfying.

In addition, Hastie, Tibshirani, and Friedman (2009) discuss that individual regres-

sion trees are not powerful predictors relative to ensemble methods since they exhibit

large variance. Ensemble methods that combine estimates from multiple models or trees

exist in both the machine learning and econometrics literature. The model averaging

literature in econometrics assumes that a weighted average of M linear candidate mod-

els can approximate the DGP in equation (1).10 This strategy can also be motivated by

the researcher being uncertain about the appropriate specification. Since M models ap-

proximate the DGP as given by y = µ + e, where y = [y1, ..., yM]>, µ = [µ1, ..., µM]>,

e = [e1, ..., eM]> and we define the variable w = [w1, w2, ..., wM]> as a weight vector in the

unit simplex in RM,

H ≡
{

wm ∈ [0, 1]M :
M

∑
m=1

wm = 1

}
. (4)

There are numerous optimization routines used to estimate these weights and each aims

to strike a balance between model performance and complexity of the individual mod-

els.11 Once the optimal weights are obtained, the forecast from the model averaging esti-

mator of µ is

µ̂(w) =
M

∑
m=1

wmµ̂m =
M

∑
m=1

wmPmy = P(w)y. (5)

This forecast is a weighted average of the forecasts of the individual candidate models.

Within machine learning, bootstrap aggregating decision trees (aka bagging) proposed

in Breiman (1996) and random forest developed in Breiman (2001) are randomization-

based ensemble methods that draw a parallel to model averaging.12 In bagging, trees are

10That is, define the estimator of the mth individual model is given as µ̂m = Xm(Xm>Xm)−1Xm>y =

Pmy, where Xm is a full rank n × km matrix of independent variables with (i, j)th element being xm
ij and

Pm = Xm(Xm>Xm)−1Xm>. Similarly, the residual is êm = y− µ̂m = (In − Pm)y for all m.
11Several of these methods are considered in our empirical exercise and described in the appendix.
12The main idea is to introduce random perturbations into the learning procedure by growing multiple

different decision trees from a single learning set and then an aggregation technique is used to combine the
predictions from all these trees.These perturbations help remedy the fact that a single tree may suffer from
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built on random bootstrap copies of the original data, producing multiple different trees.

Bagging differs from random forest only in the set of explanatory factors being considered

in each tree. That is, rather than consider which among the full set of explanatory vari-

ables leads to the best split at a node of the tree, random forests only consider a random

subset of the predictor variables for the best split. With both strategies, the final forecast

is obtained as an equal weight average of the individual tree forecasts.

Forecasts from recursive partitioning and model averaging methods are computation-

ally expensive but differ in three important ways. The first difference relates to how the

DGP in equation (1) is approximated and both bagging and random forest do not make

any assumptions about the probabilistic structure of the data. The remaining two differ-

ences relate to how predictions are weighted across the different models/trees. Optimal

weights across models are calculated using equation (4) from predictions using the full

sample in model averaging strategies. The weight of each leaf in the tree forecast is sim-

ply determined by the sample proportion in each leaf. Second, final predictions from

regression trees rule out any model uncertainty in each final leaf ȳ(τ) of the tree.

This lack of heterogeneity and computational considerations motivate our two pro-

posed extensions for forecasting with social media data. The first extension considers an

improved method to select candidate models for model averaging estimators. The second

extension proposes a hybrid strategy that combines recursive partitioning with model av-

eraging to allow for heterogeneity in forecasts when the final leaf subgroup consists of

observations that differ in some observed covariates.

2.1 A New Strategy for Model Screening

The empirical performance of any model averaging estimator crucially depends on the

candidate model set. LetM denote the candidate model set before screening. In practice,

one possible approach to construct the candidate model set is to consider a full permu-

high variance and display poor forecast accuracy. See appendix A for more details.
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tation of all regressors. One obvious drawback of this approach is that the total number

of candidate models increases exponentially with the number of regressors. As shown in

Wan, Zhang, and Zou (2010), Xie (2015), Zhang, Zou, and Carroll (2015), among others, by

either keeping the total number of candidate models to be small or letting the total num-

ber of candidate models converge to infinity slow enough, provides a necessary condition

to maintain the asymptotic optimality of model averaging estimators.13 While most ex-

isting research assumes a pre-determined candidate model set, a recent paper by Zhang,

Yu, Zou, and Liang (2016) established the asymptotic optimality of Kullback-Leibler (KL)

loss based model averaging estimators with screened candidate models. Following this

insight, we define M̃ to be the candidate model set following model screening, in which

M̃ ⊆ M. The weight vector space solved via an optimization routine under M̃ can be

written as

H̃ =

{
w ∈ [0, 1]M : ∑

m∈M̃
wm = 1 and ∑

m/∈M̃
wm = 0

}
. (6)

Note that the weight vector under M̃ is still M× 1, however, models that do not belong

in M̃ are assigned zero weight.

We define the average squared loss as L(w) = (µ̂(w)− µ)T(µ̂(w)− µ) where µ̂(w) is

defined in (A21). We present the following set of assumptions

Assumption 1 We assume that there exist a non-negative series of vn and a weight series of
wn ∈ H such that

(i) vn ≡ L(wn)− infw∈H L(w),

(ii) ξ−1
n vn → 0,

(iii) Pr(wn ∈ H̃)→ 1 as n→ ∞,

where H̃ is defined in (6) and ξn is the (lowest) modified model risk defined in equation (A6).

13Moreover, Hansen (2014) and Zhang, Ullah, and Zhao (2016) point out that to satisfy the conditions on
the global dominance of averaging estimators over the unrestricted least-squares estimator, the number of
candidate models should be limited by screening and every possible model should not be estimated.
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Assumption 1(i) is the definition of vn, which is the distance between a model risk by

wn and the lowest possible model risk. Assumption 1(ii) is a convergence condition. It

requires that ξn goes to infinity faster than vn. The final item of Assumption 1 implies

the validity of our selected model screening techniques. When the sample size goes to

infinity, the chance that the model screening techniques accidentally omit at least one

useful model goes to 0. This condition is easily satisfied by imposing mild screening

conditions, while keeping the candidate models in M̃ to be as many as allowed.

The following theorem establishes the asymptotic optimality of Mallows-type model

averaging estimators under screened model set.

Theorem 1 Let Assumption 1 be satisfied, then under the conditions that sustain the asymptotic
optimality of Mallows-type model averaging estimators under given (unscreened) candidate model
set, we have

L(w̃)

infw∈H L(w)

p→ 1, (7)

as n→ ∞.

The proof appears in appendix C. Theorem 1 states that using screened model set M̃,

the model averaging estimator w̃ is asymptotically optimal in the sense of achieving the

lowest possible mean squared error (model risk); even compared to a model averaging

estimator that used all potential candidate models in its set.

2.2 New Hybrid Approaches: Model Averaging Learning Methods

Building off the idea of Belloni and Chernozhukov (2013) who suggest using OLS es-

timates after variable selection by the Lasso,14 Lehrer and Xie (2017) proposed model

averaging from models constructed with variables selected by the Lasso. We suggest that

at each tree leaf in the forest, there may be a sequence of m = 1, ..., M linear candidate

models, in which regressors of each model m is a subset of the regressors belonging to

14Penalization methods such as the Lasso have objective functions designed to reduce the dimensionality
of explanatory variables.
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that tree leaf. The regressors Xm
i∈l for each candidate model within each tree leaf is con-

structed such that the number of regressors km
l � nl for all m. Using these candidate

models, we perform model averaging estimation and obtain

β̂l(w)
(K×1)

=
M

∑
m=1

wm β̃
m
l

(K×1)
, (8)

which is a weighted averaged of the “stretched” estimated coefficient β̃
m
l for each candi-

date model m. Note that the K × 1 sparse coefficient β̃
m
l is constructed from the km

l × 1

least squares coefficient β̂
m
l by filling the extra K − km

l elements with 0s. The forecast for

all observations can then be obtained as

ŷt∈l = X p
t∈l β̂l(w). (9)

This strategy preserves the original classification process and within each leaf allows ob-

servations that differ in characteristics to generate different forecasts ŷt∈l.

Model averaging bagging (MAB) applies this process to each of the B samples used

to construct a bagging tree. The final MAB forecast remains the equal weight average

of the B model averaged tree forecasts. Model averaging random forest (MARF) oper-

ates similarly with the exception that only k predictors out of the total K predictors are

considered for the split at each node. With fewer predictors, the candidate model set for

each leaf does not potentially consider each of the K regressors as in MAB, but rather is

constructed with the k regressors used to split the nodes that generated this leaf l.15 This

restriction affects how β̂l(w) is calculated as it is averaged only over those leafs where it

was randomly selected.

15In a forecast exercise, the predicting observations X p
t with t = 1, 2, ..., T are dropped down the regres-

sion tree. For each X p
t , after several steps of classification, we end up with one particular tree leaf l. We

denote the predicting observations that are classified in tree leaf l as X p
t∈l . If the full sample contains n

observations, the tree leaf l contains a subset nl < n of the full sample of y, denoted as yi with i ∈ l. Also,
the sum of all nl for each tree leaf equals n. The mean of yi∈l is calculated, denoted as ȳi∈l . The value ȳi∈l
is the forecast estimate of X p

t∈l . It is quite possible that different predicting observations X p
t and X p

s with
t 6= s will end up with the same tree leaf, therefore, generates identical forecasts.
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3 Data and Empirical Exercise

We collected data on the universe of movies released in North America between October

1, 2010 and June 30, 2013. We extend the analysis in Lehrer and Xie (2017) that concen-

trated solely on movies with budgets ranging from 20 to 100 million dollars and consider

the full suite of films released during this period.16 With the assistance of the IHS film

consulting unit the characteristics of each film were characterized by a series of indica-

tor variables to describe the film’s genre,17 the rating of a film’s content provided by the

Motion Picture Association of America’s system,18 film budget excluding advertising and

both the pre-determined number of weeks and screens the film studio forecasted the spe-

cific film will be in theatres measured approximately six weeks prior to opening. In our

analysis, we examine the initial demand by using the actual opening weekend box office

and total sales of both DVD and Blu-Rays upon initial release.

To measure purchasing intentions from the universe of Twitter messages (on average,

approximately 350 million tweets per day) we consider two measures. First, the senti-

ment specific to a particular film is calculated using an algorithm based on Hannak et

al. (2012) that involves textual analysis of movie titles and movie key words.19 In each

Twitter message that mentions a specific film title or key word, sentiment is calculated by

examining the emotion words and icons that are captured within.20 The sentiment index

for a film is the average of the sentiment of the scored words in all of the messages asso-

ciated with a specific film. Second, we calculate the total unweighted volume of Twitter

16Movies with budgets above 100 million dollars are usually regarded as “Blockbusters” and many “Art-
house” movies usually have budgets below 20 million dollars.

17In total, we have 14 genres: Action, Adventure, Animation, Biography, Comedy, Crime, Drama, Family,
Fantasy, Horror, Mystery, Romance, Sci-Fi, and Thriller.

18Specifically, films in our sample were assigned ratings of PG, PG13, and R. There are very few movies
in our data set that were given a G rating.

19This algorithm developed by Janys Analytics for IHS-Markit was also used for the initial reported
measures of the Wall Street Journal-IHS U.S. Sentiment Index

20In total, each of 75,065 unique emotion words and icons that appeared in at least 20 tweets between
January 1st, 2009 to September 1st, 2009 is given a specific value that is determined using emotional valence.
Note that Twitter messages were capped at 140 characters throughout this period. These messages often
contain acronyms and Twitter specific syntax such as hashtags that may present challenges to traditional
sentiment inference algorithms.
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messages for each specific film. We consider volume separate from sentiment in our anal-

yses since the latter may capture perceptions of quality, whereas volume may just proxy

for popularity.21

Across all the films in our sample, there is a total of 4,155,688 messages to be assessed.

There is a large amount of time-varying fluctuations in both the number of, and sentiment

within the Twitter messages regarding each film. Some of this variation reflects responses

to the release of different marketing campaigns designed to both build awareness and

increase anticipation of each film. Thus, in our application we define measures from

social media data over different time periods. That is, suppose the movie release date is

T, we separately calculate sentiment in ranges of days within the window corresponding

to 4 weeks prior to and subsequent the release date.22

Summary statistics are presented in table 1. The mean budget of films is respectively

approximately 61 and 63 million for the open box office and retail unit sales outcome.

On average, these films were in the theatre for 14 weeks and played on roughly 3000

screens. Not surprisingly, given trends in advertising, the volume of Tweets increases

sharply close to the release date and peaks that day. Following a film’s release we find a

steady decline in the amount of social web activity corresponding to a film.

3.1 Simulation Experiment Design

To examine the importance of incorporating data from the social web either using tradi-

tional estimators or an approach from the machine learning literature, we follow Hansen

and Racine (2012) and conduct the following experiment to assess the relative prediction

21We consider both measures since prior work by Liu (2006) and Chintagunta, Gopinath, and Venkatara-
man (2010) suggest that sentiment in reviews affect subsequent box office revenue. Similarly, Xiong and
Bharadwaj (2014) finds that pre-launch blog volume reflects the enthusiasts’ interest, excitement and ex-
pectations about the new product and Gopinath, Chintagunta, and Venkataraman (2013) study the effects
of blogs and advertising on local-market movie box office performance.

22For a typical range, T–a/–b, it stands for a days before date T (release date) to b days before date T. We
use the sentiment data before the release date in equations that forecast the opening weekend box office.
After all, reverse causality issues would exist if we include sentiment data after the release date. Similarly,
T+c/+d means c days to d days after date T, which are additionally used for forecasting the retail unit sales.
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Table 1: Summary Statistics

Variable Open Box Office Retail Unit Sales
Mean Std. Dev. Mean Std. Dev.

Genre
Action 0.3202 0.4679 0.3357 0.4739
Adventure 0.2416 0.4292 0.2378 0.4272
Animation 0.0843 0.2786 0.0909 0.2885
Biography 0.0393 0.1949 0.0420 0.2012
Comedy 0.3652 0.4828 0.3776 0.4865
Crime 0.1966 0.3986 0.1818 0.3871
Drama 0.3483 0.4778 0.3706 0.4847
Family 0.0562 0.2309 0.0629 0.2437
Fantasy 0.1011 0.3023 0.0909 0.2885
Horror 0.1180 0.3235 0.1049 0.3075
Mystery 0.0899 0.2868 0.0909 0.2885
Romance 0.1124 0.3167 0.0979 0.2982
Sci-Fi 0.1124 0.3167 0.1119 0.3163
Thriller 0.2416 0.4292 0.2517 0.4355
Rating
PG 0.1461 0.3542 0.1608 0.3687
PG13 0.4213 0.4952 0.4126 0.4940
R 0.4270 0.4960 0.4196 0.4952
Core Parameters
Budget (in million) 60.9152 56.9417 63.1287 56.5959
Weeks 13.9446 5.4486 14.4056 5.7522
Screens (in thousand) 2.9143 0.8344 2.9124 0.8498
Sentiment
T-21/-27 73.5896 3.2758 73.4497 3.5597
T-14/-20 73.6999 3.0847 73.7530 3.0907
T-7/-13 73.8865 2.6937 73.9411 2.6163
T-4/-6 73.9027 2.7239 73.8931 2.8637
T-1/-3 73.8678 2.8676 73.7937 3.0508
T+0 73.8662 3.0887
T+1/+7 73.8241 3.1037
T+8/+14 73.4367 3.8272
T+15/+21 73.7001 3.3454
T+22/+28 74.0090 2.7392
Volume
T-21/-27 0.1336 0.6790 0.1499 0.7564
T-14/-20 0.1599 0.6649 0.1781 0.7404
T-7/-13 0.1918 0.6647 0.2071 0.7377
T-4/-6 0.2324 0.8400 0.2494 0.9304
T-1/-3 0.4553 0.9592 0.4952 1.0538
T+0 1.5233 3.2849
T+1/+7 0.6586 1.1838
T+8/+14 0.3059 0.8290
T+15/+21 0.2180 0.7314
T+22/+28 0.1660 0.7204
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efficiency of different estimators with different sets of covariates. The estimation strate-

gies that we contrast can be grouped into the following categories (i) traditional econo-

metric approaches, (ii) model screening approaches, (iii) machine learning approaches,

and (iv) newly proposed methods that combine econometrics with machine learning al-

gorithms to capture richer patterns of heterogeneity. Table 2 lists each estimator analyzed

in the exercise and the online appendix provides further details on their implementation.

The experiment shuffles the original data with sample n, into a training set of nT and

an evaluation set of size nE = n− nT. Using the training set, we obtain the estimates from

each strategy and then forecast the outcomes for the evaluation set. With these forecasts,

we evaluate each of the forecasting strategies by calculating mean squared forecast error

(MSFE) and mean absolute forecast error (MAFE):

MSFE =
1

nE
(yE − xE β̂T)

>(yE − xE β̂T),

MAFE =
1

nE

∣∣yE − xE β̂T
∣∣> ιE,

where (yE, xE) is the evaluation set, nE is the number of observations of the evaluation

set, β̂T is the estimated coefficients by a particular model based on the training set, and

ιE is a nE × 1 vector of ones. In total, this exercise is carried out 10,001 times for different

sizes of the evaluation set, nE = 10, 20, 30, 40.

In total, there are 223 = 8, 388, 608 and 229 = 536, 870, 912 potential candidate mod-

els for open box office and movie unit sales respectively. This presents computational

challenges for the HRCp and other model averaging estimators. Thus, we conducted the

following model screening procedure based on the GETS method to reduce the set of po-

tential candidate models for model selection and model averaging methods. First, based

on the OLS results presented in table A1, we restrict that each potential model contains a

constant term and 7 (11) relatively significant parameters for open box office (movie unit

sales). Second, to control the total number of potential models, a simplified version of the

automatic general-to-specific approach of Campos, Hendry, and Krolzig (2003) is used for
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model screening.23 While this restriction that rules out many potential candidate model

may appear severe, it has been found in numerous applications including Lehrer and Xie

(2017), that only a handful of models account for more than 95% of the total weight of the

model averaging estimate.24

4 Empirical Results

The two panels of table 3 report the median MSFE and MAFE from the prediction error

exercise outlined in the preceding section for the 10 different econometric strategies listed

in panel A of table 2. Each row of the table considers a different size for the evaluation

set and to ease interpretation all MSFEs and MAFEs are normalized by the MSFE and

MAFE of the HRCp. Panel A of table 3 presents results for forecasting open box office and

panel B demonstrates results corresponding to forecasting retail movie unit sales. Notice

that for open box office, all remaining entries for MSFE are larger than one, indicating

inferior performance of the respective estimator relative to HRCp. In general, the three

model averaging approaches and the model selected by AIC perform nearly as well as

HRCp. For movie unit sales, HPMA yields the best results in the majority of experiments.

However, the gains from using HPMA in place of PMA appear quite small.

The results in table 3 also stress the importance of social media data for forecast

accuracy. Models that ignore social media data (MTV) perform poorly relative to all

other strategies. Additional experiments makes clear that both social media measures are

23This approach explores through the whole set of potential models and examine each model using the
following rule: we first estimate the p-values for testing each parameter in the model to 0. If the maximum
of these p-values exceeds our benchmark value, we exclude the corresponding model. In this way, we are
deleting models with weak parameters from our model set. We set the benchmark value to equal to 0.3
and 0.35 for open box office and movie unit sales respectively, which is a very mild restriction. These pre-
selection restrictions lead us to retain 105 and 115 potential models for open box office and retail movie unit
sales respectively. Note, we did investigate the robustness of our results to alternative benchmark values
and in each case the results presented in the next section are quite similar.

24See appendix E.5 for a detailed discussion of the model averaging weights and top 5 models for both
open box office and movie unit sales in our experiment.
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needed.25 In contrast to Lehrer and Xie (2017) we find that the post-Lasso methods listed

in table 2,26 including the double-Lasso method, OLS post Lasso and model averaging

post Lasso perform poorly relative to HRCp in this application.

Table 4 considers the performance of alternative model screening strategies listed in

panel B of table 2 relative to HRCp. We observe small gains in forecast accuracy from

model screening relative to the benchmark HRCp. The hetero-robust methods yields

slightly better results than homo-efficient methods for forecasts of box office opening.

In contrast, when forecasting retail movie unit sales, the homo-efficient ARMS demon-

strates better results than the other screening methods.27 Taking these findings together

with the results contrasting PMA to HPMA table 3 illustrate that there are small gains in

practice from using econometric approaches that accommodate heteroskedasticity.28

Table 5 demonstrates that are very large gains in prediction efficiency of the recursive

partitioning algorithms relative to the benchmark HRCp. For both outcomes when nE is

small, machine learning methods have dominating performance over the HRCp. Popular

approaches such as bagging and random forest greatly outperform the benchmark. How-

ever, our proposed MAB has the best performance when evaluating by MSFEs and adding

model averaging tends to lead to gains of 10% between bagging and MAB.29 While regres-

sion tree yields the lowest relative MAFE, random forest methods, both conventional and

model averaging, have moderate performance in all cases. Note that as nE increases, all

25In appendices E.3 and E.4.1 and E.6, we carried out additional prediction experiments to evaluate the
forecast accuracy of alternative strategies with only a single social media measure. In each case, the ev-
idence demonstrates markedly lower degrees of forecast accuracy relative to the corresponding exercise
with two measures, thereby providing robust evidence of the need to account for both sentiment and vol-
ume.

26The post Lasso strategy can be viewed as a model screening method since it limits the number of ex-
planatory variables and hence dimensionality of the candidate models. Full details on how these estimators
are implemented is available in appendix B.4.

27Interestingly as presented in appendix E.7, the ARMS and ARMSH approaches select nearly identical
weights and models.

28In appendix E.4, we use the Monte Carlo design introduced in section 4.2 to additionally evaluate
whether the source of heteroskedasticity can explain some of these surprising results. This includes (i) the
difference in the performance between PMA and HRCp in table 3 when forecasting retail movie unit sales,
and (ii) the relative improved performance of ARMS presented in table 4.

29In appendix E.9, we present results from the SPA test of Hansen (2005) that provide significant evidence
of the superior predictive ability of the MAB method over all the other considered.
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learning methods observe decreases in performance. Last, note that the large gains in

performance of all strategies in table 5 relative to the results presented in tables 3 and 4.

A potential explanation for the improved performance of statistical learning approaches

relative to all of the econometric strategies is that the full suite of predictors is considered.

Recall, that due to computational challenges we undertook model screening to reduce the

number of candidate models for model averaging estimators and by so doing reduced the

number of predictors. In appendix E.8, we reconsider table 5 where we restrict the set of

predictors to be identical for the recursive partitioning strategies as the model screening

and model averaging approaches. We continue to find large gains in forecast accuracy

from random forest and bagging relative to the econometric approaches. This suggests

that the gains in forecast accuracy are not from allowing a larger dimension of predictor

variables, but rather likely are obtained by relaxing the linearity assumption imposed by

the econometric estimator considered when constructing candidate models.

4.1 Relative Importance of the Factors

While recursive partitioning algorithms were developed to make predictions and not un-

derstand the underlying process of how predictors influence outcomes, strategies have

since been developed to identify which predictor variables are the most important in

making forecasts.30 The importance of each predictor variable is first computed at the

tree level, and the scores are averaged across all trees to obtain the final, global impor-

tance score for the variable.31 The most important variables are the ones leading to the

30Variable importance is often computed by applied researchers but the theoretical properties and statis-
tical mechanisms of these algorithms are not well studied. To the best of our knowledge, Ishwaran (2007)
presents the sole theoretical study of tree-based variable importance measures.

31With bagging and random forests, each tree is grown with its respective randomly drawn bootstrap
sample and the excluded data from the Out-Of-Bag sample (OOB) for that tree. The OOB sample can
be used to evaluate the tree without the risk of overfitting since the observations did not build the tree. To
determine importance, a given predictor is randomly permuted in the OOB sample and the prediction error
of the tree on the modified OOB sample is compared with the prediction error of the tree in the untouched
OOB sample. This process is repeated for both each tree and each predictor variable. The average of this
gap in prediction errors across all OOB samples provides an estimate of the overall decrease in accuracy
that the permutation of removing a specific predictor induced.
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greatest losses in accuracy.

We calculate variable importance scores using the MAB and MARF strategies where

we include and exclude the social media variables as predictors.32 Table 6 reports the top

10 most important predictors for open box office and movie unit sales in panels A and B,

respectively. The results with both strategies reinforce the importance of social media data

and volume related variables are found to have a greater influence on revenue outcomes

than sentiment measures. Further, and perhaps unsurprising is the predetermined budget

and screens as well as weeks in theatre are important predictors. Taken together, these

results suggest that the amount of social media buzz is more important than the emotional

content when forecasting revenue outcomes.

Table 6: Relative Importance of the Predictors

Ranking With Twitter Variables Without Twitter Variables
MAB MARF MAB MARF

Panel A: Open Box Office
1 Screens Screens Screens Screens
2 Budget Budget Rating: R Budget
3 Volume: T-1/-3 Volume: T-1/-3 Genre: Horror Genre: Horror
4 Volume: T-4/-6 Volume: T-4/-6 Genre: Adventure Weeks
5 Volume: T-7/-13 Volume: T-7/-13 Budget Genre: Adventure
6 Volume: T-21/-27 Volume: T-14/-20 Rating: PG Genre: Fantasy
7 Volume: T-14/-20 Genre: Adventure Genre: Comedy Rating: PG13
8 Sentiment: T-1/-3 Volume: T-21/-27 Genre: Animation Rating: R
9 Weeks Weeks Rating: PG13 Genre: Comedy
10 Rating: R Genre: Horror Genre: Fantasy Rating: PG

Panel B: Movie Unit Sales
1 Screens Screens Screens Screens
2 Budget Budget Weeks Budget
3 Weeks Weeks Budget Weeks
4 Volume: T+0 Volume: T+0 Genre: Comedy Genre: Fantasy
5 Volume: T+8/+14 Volume: T+8/+14 Rating: R Genre: Adventure
6 Volume: T+15/+21 Volume: T+1/+7 Genre: Horror Rating: R
7 Volume: T-21/-27 Volume: T-1/-3 Genre: Fantasy Genre: Drama
8 Volume: T+22/+28 Volume: T+15/+21 Rating: PG Genre: Family
9 Volume: T+1/+7 Volume: T-4/-6 Genre: Thriller Genre: Comedy
10 Volume: T-1/-3 Volume: T-21/-27 Genre: Adventure Genre: Animation

Note: This table presents the rank order of the importance of the predictors for film revenue by the
respective machine learning.

32We consider both MAB and MARF since Strobl et al. (2008) showed that using mean decreased accuracy
in variable importance with random forests is biased and could overestimate the importance of correlated
variables. This bias exists if random forest did not select the correct covariate, but rather chose a highly
correlated counterpart in a bootstrapped sample. This bias should not exist with bagging strategies that
use all available predictors. However, it should also be noted that the finding in Strobl et al. (2008) were
not replicated in Genuer, Poggi, and Tuleau-Malot (2010).
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To examine whether sentiment plays a larger role for small budget films that may

benefit more from word of mouth or critical reviews, we calculated variable importance

scores for films located in different budget quartile. The results are presented in table 7.

Notice that constructed buzz measures are highly important for large budget films, but

the messages are important for many films ranked in lower quartiles.

While the Lasso can be used to select variables to include in a regression model it does

not rank them. In table 8, we report the numbers of Twitter sentiment and volume vari-

ables selected by Lasso in various samples. The results show that the Lasso favors the

inclusion of sentiment variables in almost all subsamples. This difference in the impor-

tance of social media variables selected may explain the uneven prediction performance

of Lasso-related estimators in tables 3 and 4. In summary, the evidence in this study con-

tinues to point to the inclusion of both social media measures and different forecasting

strategies yield different rankings of the importance of each measure.

4.2 Monte Carlo Evidence: Contrasting Random Heteroskedasticity from

Parameter Heterogeneity

To provide insights on when allowing for model uncertainty may improve forecasts from

recursive partioning strategies, we conduct the following Monte Carlo study. Similar to

Liu and Okui (2013),33 we consider the following DGP

yt = µt + et =
∞

∑
j=1

(β j + r · σt)xjt + et (10)

for t = 1, ..., n. The coefficients are generated by β j = cj−1, where c is a parameter that we

control, such that R2 = c2/(1 + c2) that varies in {0.1, ..., 0.9}. The parameter σt is drawn

from a N(0, 1) and introduces potential heterogeneity (depends on values of the scale

variable r) to the model. We set x1t = 1 and other xjts follow N(0, 1). Since the infinite

33The simulation design aims to mimic a big data environment, where the number of explanatory vari-
ables is large.

24



Ta
bl

e
7:

H
et

er
og

en
ei

ty
in

th
e

R
el

at
iv

e
Im

po
rt

an
ce

of
Pr

ed
ic

to
rs

by
Fi

lm
Bu

dg
et

R
an

ki
ng

1st
Q

ua
rt

ile
2nd

Q
ua

rt
ile

3rd
Q

ua
rt

ile
4th

Q
ua

rt
ile

M
A

B
M

A
R

F
M

A
B

M
A

R
F

M
A

B
M

A
R

F
M

A
B

M
A

R
F

Pa
ne

lA
:O

pe
n

Bo
x

O
ffi

ce
1

Sc
re

en
s

Sc
re

en
s

Sc
re

en
s

Sc
re

en
s

Sc
re

en
s

Sc
re

en
s

V
O

L:
T-

7/
-1

3
V

O
L:

T-
7/

-1
3

2
V

O
L:

T-
1/

-3
V

O
L:

T-
14

/-
20

W
ee

ks
W

ee
ks

V
O

L:
T-

7/
-1

3
V

O
L:

T-
7/

-1
3

Sc
re

en
s

V
O

L:
T-

1/
-3

3
G

en
re

:H
or

ro
r

V
O

L:
T-

1/
-3

V
O

L:
T-

21
/-

27
V

O
L:

T-
21

/-
27

V
O

L:
T-

4/
-6

V
O

L:
T-

4/
-6

V
O

L:
T-

14
/-

20
V

O
L:

T-
4/

-6
4

V
O

L:
T-

14
/-

20
V

O
L:

T-
7/

-1
3

SE
N

:T
-1

4/
-2

0
G

en
re

:T
hr

ill
er

V
O

L:
T-

21
/-

27
V

O
L:

T-
21

/-
27

V
O

L:
T-

1/
-3

Sc
re

en
s

5
V

O
L:

T-
7/

-1
3

G
en

re
:H

or
ro

r
R

at
in

g:
PG

V
O

L:
T-

14
/-

20
W

ee
ks

W
ee

ks
V

O
L:

T-
4/

-6
V

O
L:

T-
14

/-
20

6
G

en
re

:T
hr

ill
er

V
O

L:
T-

21
/-

27
G

en
re

:C
ri

m
e

SE
N

:T
-7

/-
13

V
O

L:
T-

1/
-3

V
O

L:
T-

1/
-3

Bu
dg

et
V

O
L:

T-
21

/-
27

7
SE

N
:T

-2
1/

-2
7

V
O

L:
T-

4/
-6

SE
N

:T
-2

1/
-2

7
SE

N
:T

-4
/-

6
V

O
L:

T-
14

/-
20

V
O

L:
T-

14
/-

20
V

O
L:

T-
21

/-
27

Bu
dg

et
8

G
en

re
:C

om
ed

y
SE

N
:T

-1
4/

-2
0

G
en

re
:D

ra
m

a
SE

N
:T

-1
/-

3
R

at
in

g:
PG

SE
N

:T
-4

/-
6

SE
N

:T
-1

4/
-2

0
SE

N
:T

-1
4/

-2
0

9
W

ee
ks

G
en

re
:D

ra
m

a
V

O
L:

T-
14

/-
20

SE
N

:T
-1

4/
-2

0
G

en
re

:S
ci

-F
i

Bu
dg

et
G

en
re

:A
dv

en
tu

re
SE

N
:T

-1
/-

3
10

SE
N

:T
-1

4/
-2

0
W

ee
ks

G
en

re
:T

hr
ill

er
SE

N
:T

-2
1/

-2
7

G
en

re
:F

am
ily

SE
N

:T
-1

/-
3

SE
N

:T
-1

/-
3

R
at

in
g:

PG
13

Pa
ne

lB
:M

ov
ie

U
ni

tS
al

es
1

Sc
re

en
s

Sc
re

en
s

Sc
re

en
s

W
ee

ks
V

O
L:

T+
8/

+1
4

V
O

L:
T

+8
/+

14
Sc

re
en

s
Sc

re
en

s
2

SE
N

:T
+2

2/
+2

8
SE

N
:T

+2
2/

+2
8

W
ee

ks
Sc

re
en

s
W

ee
ks

W
ee

ks
V

O
L:

T-
21

/-
27

V
O

L:
T-

21
/-

27
3

W
ee

ks
V

O
L:

T-
4/

-6
G

en
re

:F
am

ily
V

O
L:

T-
21

/-
27

V
O

L:
T+

0
V

O
L:

T
+1

/+
7

V
O

L:
T

+8
/+

14
V

O
L:

T
+8

/+
14

4
V

O
L:

T
+1

5/
+2

1
SE

N
:T

+1
/+

7
V

O
L:

T+
1/

+7
SE

N
:T

-7
/-

13
V

O
L:

T+
1/

+7
V

O
L:

T
+0

V
O

L:
T-

4/
-6

V
O

L:
T-

4/
-6

5
SE

N
:T

-7
/-

13
V

O
L:

T+
1/

+7
G

en
re

:M
ys

te
ry

SE
N

:T
-1

/-
3

V
O

L:
T-

7/
-1

3
V

O
L:

T-
7/

-1
3

V
O

L:
T-

14
/-

20
V

O
L:

T-
7/

-1
3

6
V

O
L:

T-
4/

-6
V

O
L:

T-
14

/-
20

SE
N

:T
-4

/-
6

V
O

L:
T-

14
/-

20
V

O
L:

T+
15

/+
21

V
O

L:
T

+1
5/

+2
1

V
O

L:
T-

1/
-3

V
O

L:
T-

14
/-

20
7

SE
N

:T
+1

/+
7

V
O

L:
T+

8/
+1

4
G

en
re

:D
ra

m
a

SE
N

:T
-4

/-
6

V
O

L:
T-

21
/-

27
V

O
L:

T-
4/

-6
V

O
L:

T-
7/

-1
3

V
O

L:
T-

1/
-3

8
SE

N
:T

-4
/-

6
V

O
L:

T+
15

/+
21

C
on

st
an

t
SE

N
:T

+1
/+

7
Sc

re
en

s
Sc

re
en

s
G

en
re

:A
ni

m
at

io
n

V
O

L:
T

+1
/+

7
9

V
O

L:
T-

14
/-

20
SE

N
:T

-4
/-

6
G

en
re

:A
dv

en
tu

re
G

en
re

:F
am

ily
V

O
L:

T-
1/

-3
V

O
L:

T-
1/

-3
V

O
L:

T
+1

/+
7

V
O

L:
T

+0
10

V
O

L:
T-

7/
-1

3
SE

N
:T

-7
/-

13
G

en
re

:A
ni

m
at

io
n

G
en

re
:D

ra
m

a
V

O
L:

T-
4/

-6
V

O
L:

T
+2

2/
+2

8
V

O
L:

T
+0

G
en

re
:A

ni
m

at
io

n

N
ot

e:
Th

is
ta

bl
e

pr
es

en
ts

th
e

ra
nk

or
de

r
of

th
e

im
po

rt
an

ce
of

th
e

pr
ed

ic
to

rs
fo

r
fil

m
re

ve
nu

e
by

th
e

re
sp

ec
ti

ve
m

ac
hi

ne
le

ar
ni

ng
in

ea
ch

bu
dg

et
su

bs
am

pl
e.

25



Table 8: Describing the Selected Parameters by OLS-post-Lasso

Method 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile Full Sample
Sentiment Volume Sentiment Volume Sentiment Volume Sentiment Volume Sentiment Volume

Panel A: Open Box Office
OLS10 5 1 3 2 4 1 5 2 6 2
OLS12 6 1 5 2 4 1 6 2 7 2
OLS15 7 2 6 2 5 1 6 2 8 3

Panel B: Movie Unit Sales
OLS10 7 1 8 1 8 2 6 2 7 2
OLS12 9 1 9 1 9 2 8 2 8 2
OLS15 11 1 10 1 10 2 11 2 10 2

Note: Each entry in the table lists the number of respective social media variables chosen as one of the first 10 predictors among all
variables in different budget subsamples 10, 12, or 15.

series of xjt is infeasible in practice, we truncate the process at jmax = 10, 000 without

violating our assumption on the model set-up.34 We assume that the whole 10,000 xjts

set is not entirely feasible and we can only observe the first 20 regressors. Two scenarios

designed to represent pure random heteroskedasticity and heteroskedasticity that arises

due to neglected parameter heterogeneity are considered. Formally,

1. Random Heteroskedasticity: we set the parameter r = 0, eliminating heterogeneity

and pure random heteroskedasticity is created by drawing et ∼ N(0, x2
2t).

2. Parameter Heterogeneity: heterogeneity in β for each observation is created by set-

ting r = 1/10 and drawing et ∼ N(0, 1).35

With this DGP, we compare the performance of conventional learning methods and

model averaging learning methods using their risks.36 We assume that the first K = 5

34Note that we can ignore variables with close-to-0 coefficients, as they have little influence on the de-
pendent variable. Such is the case for xjt with j > jmax.

35Our results are robust to alternative values of r.
36Specifically, Riski ≡ 1

n ∑n
i=1
(
µ̂L

i − µi
)2, where µi is the true fitted value (feasible in simulation) and

µ̂L
i is the fitted value obtained by a specific learning method for for L = Regression Tree, Bagging, MAB,

Random Forest, and MARF. For each sample size, we compute the risk for all methods and average across
1,000 simulation draws. For bagging and random forest, we set the total number of bootstraps as B = 20.
For random forest, we randomly draw 2 regressors out of 5 to split each node. The same settings apply to
the model averaging learning methods. For all model averaging learning methods, the candidate model set
for each leaf contains all feasible combinations of the regressors. To ease interpretation, we normalize all
risks by the risk of the generalized unrestricted model.
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regressors are observed in both scenarios and fix the control parameter c = 2 when gen-

erating the true coefficients. Figure 1 panels A and B present results respectively for

the random heteroskedasticity and parameter heterogeneity scenario. In each figure, the

number of observations is presented on the horizontal axis, the relative risk is displayed

on the vertical axis and dash-dotted (solid) lines respectively represent bagging and ran-

dom forest (the model averaging counterpart). The results indicate that: i) the model aver-

aging learning method performs much better than their respective conventional learning

method in all values of n; ii) as sample sizes increase, all methods tend to yield smaller

risks; and iii) MARF has the best relative performance in all cases. Overall, we observe

smaller relative risks in the parameter heterogeneity scenario.

Figure 1: Relative Performance of Conventional and Model Averaging Learning
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B. Parameter Heterogeneity
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Since the results in figure 1 panel A are relative to generalized unrestricted model,

we next present absolute risks for all model averaging learning methods along with the

risks of the generalized unrestricted model in figure 2. Figure 2(a) and (b) presents results

for the absolute risks under random heteroskedasticity and parameter heterogeneity, re-

spectively. In each figure, MAB, MARF, and GUM are presented by circle-, and star-solid

lines, respectively. The ranking of the methods is identical and GUM yields significantly

higher risks in the parameter heterogeneity scenario. This suggests that conventional

regressions suffer from efficiency loss in the presence of heterogeneity. Yet the statisti-

cal learning methods are immune to heterogeneity, since it has been acknowledged and

treated during the classification process.

Figure 2: Risk Comparison under Different Scenarios

200 400 600 800 1000

Number of Observations

60

70

80

90

100

110

120

130

R
is

k

(a) Random Heteroskedasticity
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In summary, the results from the Monte Carlo experiments suggest that in settings

where there may be significant parameter heterogeneity, perhaps due to jumps or thresh-

old effects, or simply parameter heterogeneity in the underlying behavioral relationships,

hybrid strategies may be quite useful. Econometric strategies that use of mean or average

marginal effects simply do not allow for good forecasts when there is large heterogene-

ity in effects both within and across subgroups. Intuitively, this additional heterogeneity

shifts to the residual, creating new outliers that change the effective weighting on differ-

ent observations. In contrast, the recursive partitioning methods provide equal weights

to observation within each constructed leaf subgroup, thereby ruling out heterogeneity

28



within groups.37

5 Conclusion

Several high profile economists have recently speculated that machine learning may soon

transform applied econometrics in a manner similar to how economic imperialism38 changed

the evolution of research in several other social science disciplines.39 There is also much

excitement about using new sources of data from social media products in forecasting

exercises. Using data from the film industry, we present evidence that this excitement

for both machine learning and social media data is warranted. Specifically, recursive

partitioning strategies greatly outperform dimension reduction strategies and traditional

econometrics approaches in forecast accuracy. Incorporating social media data in fore-

casting exercises increases accuracy sharply, in part since recursive partitioning methods

find that 6 of the 10 most influential variables when forecasting either box office or retail

movie unit sales outcomes are from this new source.

Despite these enthusiastic findings for machine learning and social media data, we

also find that even even in the era of big data, heteroskedastic data will continue to present

challenges for forecasters. On the one hand, our investigation cast doubt that there are

significant gains from modifying traditional econometric approaches, penalization meth-

ods or model screening methods to account for heteroskedasticity.

37The theoretical benefits related to most model screening methods are related to efficiency and there
appears to be benefits from using machine learning approaches to shrink the number of potential models
since recursive partitioning models divide the data repeatedly based on identifying differences. Model
screening approaches and model averaging or Lasso methods that additionally consider heteroskedasticity
do not seem to perform differently whatever the source of heteroskedasticity, and in practice yield minimal
gains to approaches that treat the data as homoskedastic.

38Economic imperialism refers to economic analysis of seemingly non-economic aspects of life, such as
politics, sociology, religion, etc. It has been asserted that these and a focus on economic efficiency have been
ignored in other social sciences and “allowed economics to invade intellectual territory that was previously
deemed to be outside the discipline’s realm.” See Mäki (2009) for a detailed discussion.

39Recent articles by Varian (2014), Bajari, Nekipelov, Ryan, and Yang (2015), and Athey and Imbens (2015)
have discussed the possibility that computer science based analytics tools such as machine learning would
make conventional statistical and econometric techniques, such as regression, obsolete.
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On the other hand, we propose a hybrid strategy that applies model averaging to

observations in each leaf subgroup created by either bagging or random forest and find

that it leads to significant gains in forecast accuracy. These gains exist over econometric

strategies and popular machine learning strategies such as random forest. To shed light

on these additional gains, Monte Carlo evidence indicates that when neglected parameter

heterogeneity is the underlying rationale for heteroskedasticity, gains from allowing for

model uncertainty with recursive partioning are obtained. Future work is needed to not

only understand the properties of hybrid strategies that combine machine learning with

econometrics as well as developing tests that can detect the source of heteroskedasticity

in settings with many covariates, to help guide practitioners choice of tools to undertake

forecasts with social media data.
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APPENDIX

A Review of Popular Machine Learning Tools for Forecast-
ing

Algorithms in machine learning build forecasting models by a series of data-driven deci-
sions that optimize what can be learnt from the data to subsequently make predictions.
Proponents of machine learning algorithms point to their improved performance in out
of sample forecast exercises and stress the intuition on why they perform well, but do not
consider their small sample or asymptotic properties.

The majority of machine learning tools used for forecasting explicitly assume ho-
moskedasticity and ex ante we would expect their performance to deteriorate with het-
eroskedastic data. In this section we summarize why we make this conjecture with six
alternative strategies. First, estimates from the least absolute selection and shrinkage op-
erator (Lasso) are obtained by minimizing the l1-penalized least squares criterion. The cri-
terion involves the unweighted sum of squares and a penalty to make the model sparse.
Further, as some parameter estimates are shrunk relative to traditional OLS estimates,
some omitted variable bias may arise.

Breiman, Friedman, and Stone (1984) introduced the classification and regression de-
cision trees (CART). A decision tree is a flowchart-like structure in which each internal
node represents a “test” on an attribute , each branch (or tree leaf) represents the outcome
of the test and each leaf node represents a class label (decision taken after computing all
attributes). The paths from root to leaf represents classification rules. In the application
in the paper, we concentrate on the regression tree case, since our predicted outcomes are
real number.

A regression tree (RT) recursively partition data into groups that are as different as
possible and fit the mean response for each group as its prediction. The variable and
splitting point are chosen to reduce the residual sum of squares (SSR) as much as possible
after the split as compared to before the split.40 That is, similar to stepwise regression
the first split is akin to choosing which variable should be first included in the model.
With regression trees, splits can continue within each subgroup until some stopping rule
is reached. This could lead to overfitting and as such, in practice the full trees are pruned

40As mentioned in the main text, in RT, a node τ contains nτ of observations. Each node can only by split
into two leaves, denoted as τL and τR, each contains subsets of nL and nR observations with nτ = nL + nR.
Define the within-node sum of squares as SSR(τ) = ∑nτ

i (yi − (ȳτ))̄
2, where ȳ(τ) is the mean of those cases.

We split the nτ observations of node τ into τL and τR if the following value reach its global maximum:
∆ = SSR(τ)− SSR(τL)− SSR(τR). Each tree leaf τL or τR can be treated as a new node and continue with
the splitting process. We start from the top of the tree (full sample) and apply the same approach to all
subsequent nodes. Once a tree is constructed, the full sample is split into a number of leaves. Each leaf
contains a subset of the full sample and the accumulation of all leaves is the full sample.
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using a cost-complexity criterion. This criterion takes into account the amount of squared
error explained by each sub-tree plus a penalty chosen by cross-validation for the number
of terminal nodes in the sub-tree in an attempt to trade-off tree size and over-fitting.

Forecasts from RT involve calculating the average of the associated observations of the
dependent variable in each leaf calculated and treated as the fitted value of the regression
tree. Hastie, Tibshirani, and Friedman (2009) provide evidence that in practice, predic-
tions from RT have low bias but large variance. This variance arises due to the instability
of RT as very small changes in the observed data can lead to a dramatically different se-
quence of splits, and hence a different prediction. This instability is due to the hierarchical
nature; once a split is made, it is permanent and can never be “unmade” further down in
the tree. Variations of RT have been shown to have better predictive abilities and we now
briefly outline the procedures of two popular approaches known as bagging and random
forest.

Bootstrap aggregating decision trees, or bagging, was proposed by Breiman (1996) to
improve the classification by combining classifications of randomly generated training
sets. Given a standard data set {yi, X i}with i = 1, ..., n, bagging generates B new training
sets {yi, X i}b for b = 1, ..., B, in which each set is a random sample of size n replacement
from the original training set {yi, X i}. By sampling with replacement, some observa-
tions may be repeated and for large n the set {yi, X i}b is expected to have the fraction
(1− 1/e) ≈ 63.2% of the unique examples of {yi, X i}. Each data set will construct one re-
gression tree that is grown deep and not pruned. In a forecasting exercise, we first obtain
forecasts from each tree that similar to RT has a high variance with low bias. The final
forecast takes the equal weight averages of these tree forecasts and by averaging across
trees, the variability of the prediction declines. Much research has found that bagging,
which combines hundreds or thousands of trees, leads to sharp improvements by over a
single RT.

A challenge that bagging faces is that each tree is identically distributed and in the
presence of a single strong predictor in the data set, all bagged trees will select the strong
predictor at the first node of the tree. Thus, all trees will look similar and be correlated.
The bias of bagged trees is identical to the bias of the individual trees but the variance
declines even when trees are correlated as B increases.

To reduce the chance of getting correlated trees, Breiman (2001) developed the random
forest method. Random forest is similar to bagging, as both involve constructing B new
trees with bootstrap samples from the original data set. But for random forest, as each
tree is constructed, we take a random sample (without replacement) of q predictors out
of the total Ktotal (q < Ktotal) predictors before each node is split. This process is repeated
for each node and the default value for q is b1/3Ktotalc. Note that if q = Ktotal, random
forest is equivalent to bagging. Eventually, we end up with B trees and the final random
forecast estimate is calculated as the simple average of forecasts from each tree.

Research has found that random forests do a good job at forecasting when the number
of relevant variables in the set K is large. After all, if there are many irrelevant variables
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the chance of a split on something relevant becomes low. Yet, by randomly selecting
predictors they produce trees with much lower degrees of correlation than bagging.

For space considerations, we did not consider four other methods developed in the
machine learning literature. Boosted regression trees use a sequential process of fitting
regression trees (without bootstrap sampling) to determine the weights of each tree in
the forest. This relaxes the equal weight assumption implicit in the final forecast of ran-
dom forest and bagging, but the method still relies on homoskedasticity in determining
the splits at each node. Artificial neural networks and multivariate adaptive regression
splines also have algorithms that make decisions assuming homoskedasticity.41 Strategies
based on Bayesian adaptive regression tree require researchers to assign priors including
a functional form of the residual. In summary, heteroskedastic data is not considered with
many popular tools in the machine learning literature.

B Review of Existing Methods

In this section, we review several existing heteroskedasticity-robust model averaging
methods and several the Lasso methods. We summarize the theoretical conclusions and
provide details on the computational algorithm used for each method.

B.1 Jackknife Model Averaging

Hansen and Racine (2012) proposed a jackknife model averaging (JMA) estimator for
the linear regression model. The model set-up is identical to that provided in section 2.
Hansen and Racine (2012) demonstrate the asymptotic optimality of the JMA estimator
in the presence of heteroskedasticity and suggest selecting the weights by minimizing a
leave-one-out cross-validation criterion

JMA(w) =
1
n

w>Ẽ>Ẽw with ŵ = arg min
w∈H∗

JMA(w), (A1)

where Ẽ = [ẽ1, ..., ẽM]> is an n × M matrix of jackknife residuals and ẽm stands for the
jackknife residuals of model m.

The jackknife residual vector ẽm = y − µ̃m for model m requires the estimate of µ̃m,
where its ith element, µ̃m

i , is the least squares estimator µ̂m
i computed with the ith observa-

tion deleted. In practice, ẽm can be conveniently written as ẽm = Dmêm, where êm is the

41Briefly, with artificial neural networks the weights for each node that correspond to different explana-
tory variables are estimated by minimizing the residual sum of squares; this approach is called back-
propagation. With multivariate adaptive regression splines, terms are added to the regression model if
they give the largest reduction in the residual sum of squares and to prevent over-fitting a backward dele-
tion process is used to make the model sparse.
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least squares residual vector and Dm is the n × n diagonal matrix with the ith diagonal
element equal to (1− hm

i )
−1. The term hm

i is the ith diagonal element of the projection
matrix Pm.

Hansen and Racine (2012) assume H∗ to be a discrete set of
{

0, 1
N , 2

N , ..., 1
}

for some
positive integer N. Obtaining w following equation (A1) with condition w ∈ H∗, is a
quadratic optimization process. Note that while there is a difference between our contin-
uousH set defined in equation (A20) andH∗, this should be neglectable in practice since
N can take any value.

B.2 Heteroskedasticity-Robust Cp Model Averaging

Liu and Okui (2013) also use the same model set-up to propose the heteroskedasticity-
robust Cp (HRCp) model averaging estimator for linear regression models with heteroskedas-
tic errors. They demonstrate the asymptotic optimality of the HRCp estimator when
the error term exhibits heteroskedasticity. Liu and Okui (2013) propose computing the
weights by the following feasible HRCp criterion

HRCp(w) = ‖y− P(w)y‖2 + 2
n

∑
i=1

ê2
i pii(w) (A2)

with ŵ = arg min
w∈H

HRCp(w). Obtaining w following (A2) with condition w ∈ H is a

quadratic optimization process.

Equation (A2) includes a preliminary estimate êi that must be obtained prior to esti-
mation. Liu and Okui (2013) discuss several ways to obtain êi in practice. When the mod-
els are nested, Liu and Okui (2013) suggest using the residuals from the largest model.
When the models are non-nested, they recommended constructing a model that contains
all the regressors in the potential models and use the predicted residuals from the esti-
mated model. In addition, a degree-of-freedom correction on êi is reccomended to im-
prove finite-sample properties. For example, when the mth model is used to obtain êi, we
can use

ê =
√

n/(n− km)(I − Pm)y

instead of (I − Pm)y to generate the preliminary estimate êi.

B.3 Iterative HRCp Model Averaging

Liu and Okui (2013) also consider an iterative procedure in the presence of too many
regressors, a common feature of big data sources. The procedure takes the following
steps
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1. Begin with an initial estimate σ̂i using one selected model (Liu and Okui (2013)
recommended using the largest model). This initial estimate can always be written
as σ̂i(ŵ0), with w0 being a special weight vector such that the selected model is
assigned weight 1 and 0s for all other models.

2. Plug σ̂i(ŵ0) in the HRCp criterion function defined in equation (A2) and obtain the
next round ŵ1.

3. Using ŵ1, we obtain the average residual êi(ŵ1) and hence σ̂i(w1). We then use
σ̂i(w1) to generate the next round weight vector.

4. Repeat steps (2) and (3) until weight vector ŵj is obtained that satisfies
∣∣ĤRCp(ŵj)−

ĤRCp(ŵj−1)
∣∣ ≤ ϕ, where ϕ is a predetermined tolerance level (usually a small

number).

A problem with this iterative process is that it can be computationally demanding,
since multiple steps of quadratic optimization are required. To overcome this problem,
we can either choose a relatively large ϕ or fix the total number of iterations.

B.4 Lasso, Post Model Selection by Lasso, and Double Lasso

Consider the linear regression model:

yi = x>0i β0 +
p

∑
j=1

xjiβ j + ui

for i = 1, ..., n, where x0i is k0 × 1 and xji is scalar for j ≥ 1. Let

β =
[

β>0 , β1, ..., βp

]>
xi =

[
x>0 , x1i, ..., xpi

]>
and define the matrices X and y by stacking observations. The OLS estimate of β is β̂ =
(X>X)−1X>y. Consider a constrained least-squares estimate β̃ subject to the constraint
β1 = β2 = ... = 0. The Lasso estimator shrinks β̂ towards β̃ by solving

β̂
L
= arg min

β

1
2n

n

∑
i=1

(yi − x>i β)2 + λ
p

∑
j=1
|β j|, (A3)

where λ is the tuning parameter that controls the penalty term. In practice, researchers
either assign λ to take on a specific value or use k-fold cross-validation to determine the
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optimal λ. A common choice is to pick λ to minimize 5-fold cross-validation. In general,
the benefits from applying the Lasso in place of OLS exist in settings where either the
number of regressors exceeds the number of observations since it involves shrinkage, or
in settings where the number of parameters is not small relative to the sample size and
some form of regularization is necessary.

The drawback of k-fold cross-validation is its lack of computational efficiency. For ex-
ample, using five-fold cross-validation, the Lasso computation procedure will need to be
carried out over 200 times. This computational inefficiency becomes especially significant
when either the sample size is large or the number of variables is large. Thus, we follow
Belloni and Chernozhukov (2013) and ex ante pick the number of explanatory variables
that will not have their coefficient shrunk to zero, a form of post model selection by Lasso.

The double-lasso regression is similar to the post model selection by Lasso. The goal
is to identify covariates for inclusion in two steps, finding those that predict the depen-
dent variable and those that predict the independent variable of interest. Without loss of
generality, we focus on the case with a single focal independent variable of interest, x0i,
and we want to know how it relates to dependent variable yi. The double-Lasso variable
selection procedure can be carried out as follows:

Step 1. Fit a lasso regression predicting the dependent variable, and keeping track of the
variables with non-zero estimated coefficients:

yi = c1 +
p

∑
j=1

xjiβ j + ui,

where c1 is a constant.

Step 2. Fit a lasso regression predicting the focal independent variable, keeping track of
the variables with non-zero estimated coefficients:

x0i = c2 +
p

∑
j=1

xjiβ j + ui,

where c2 is a constant. If x0i is an effectively randomized treatment, no covariates
should be selected in this step.

Step 3. Fit a linear regression of the dependent variable on the focal independent variable,
including the covariates selected in either of the first two steps:

yi = c3 + x0iβ0 + ∑
k∈A

xkiβk + ui,

where c3 is a constant, A is the union of the variables estimated to have non-zero
coefficients in Steps 1 and 2.
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C More Details on the Econometric Theory

In this section, we prove the asymptotic optimality of Mallows-type model averaging es-
timator under the constraint of screened model set. Our proof is inspired by the work of
Zhang, Zou, and Carroll (2015) who demonstrated the asymptotic optimality of Kullback-
Leibler (KL) type model averaging estimators under screened model set. We extend their
results, allowing their findings to be applied to a broader set of model averaging estima-
tors.

We first lay out the following conditions that have been verified in the existing litera-
ture such as White (1982).

Condition 1 We have ‖X>µ0‖ = O(n) and ‖X>ε‖ = Op(n1/2).

Note that our proof is built upon the conditions that sustain the asymptotic optimality
of Mallows-type model averaging estimators under given unscreened candidate model
set. For example, see either equations (7) and (8) in Wan, Zhang, and Zou (2010), or
assumptions 1 to 3 in Xie (2015), or assumptions 2.1 to 2.7 in Liu and Okui (2013). Condi-
tion 2 corresponds to these suppositions and would change slightly as we adopt different
model averaging estimators.

Condition 2 Conditions that sustain the asymptotic optimality of Mallows-type model averag-
ing estimators (homoskedasticity or heteroskedasticity-robust) under given unscreened candidate
model set in the original paper.

For each approximation model m, we can define its mean squared error as

L(βm) ≡ (µ(βm)− µ0)
> (µ(βm)− µ0) , (A4)

where µ0 is the true value and µ(βm) = Xβm. Note that in our definition, all βm for
m = 1, ..., M are k × 1 vector, in which certain coefficients are set to 0 if the associated
independent variables are not included in model m. Let β∗m be the coefficient that mini-
mizes equation (A4) such that β∗m = arg min L(βm). The coefficient vector β∗m minimizes
the mean squared error of model m with respect to the true prediction value µ0, which is
different from β̂m that minimizes the sum squared residual (SSR) of model m.

We define the following averaged coefficients

β̂(w) ≡
M

∑
m=1

wm β̂m and β∗(w) ≡
M

∑
m=1

wmβ∗m
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Since µ(w) = ∑M
m=1 wmX β̂m = X ∑M

m=1 wm β̂m = X β̂(w), we define µ∗(w) ≡ Xβ∗(w)
and the associated mean squared error can be written as

L∗(w) =
(
µ∗(w)− µ0

)>(
µ∗(w)− µ0

)
. (A5)

We then define the ξn as
ξn = inf

w∈H
L∗(w), (A6)

which is the lowest possible value of L∗(w) under setH.

Although the mean squared error L∗(w) is based on a different averaged coefficients
β̂
∗
(w), it is closely related to the L(w) defined in (A24).

Lemma 1 Given Conditions 1 and 2, we have

sup
w∈H

|L(w)− L∗(w)|
L∗(w)

= op(1), (A7)

sup
w∈H

|C(w)−∑n
i=1 σ2

i − L∗(w)|
L∗(w)

= op(1). (A8)

Proof of Lemma 1 In line with the Theorem 3.2 of White (1982), under standard regular-
ity conditions, it is straightforward to show that β̂m − β∗m = Op(n−1/2). Therefore,

β̂(w)− β∗(w) =
M

∑
m=1

wm
(

β̂m − β∗m
)
= Op(n−1/2) (A9)

holds uniformly for w ∈ H.

By Taylor expansion and Condition 1,

L∗(w) = L(w) + 2X>
(
X β̂(w)− µ0

)(
β∗(w)− β̂(w)

)
+ op(1)

= L(w) + Op(n1/2) + op(1),

which implies supw∈H |L(w)− L∗(w)| ≤ Op(n1/2). Since supw∈H |L(w)− L∗(w)| is in a
smaller order than L∗(w), we obtain (A7).

Moreover, for Mallows-type criterion, we have

C(w) =
(
y− µ̂(w)

)>(y− µ̂(w)
)
+ 2σ2k

= L(w) + ε>ε + 2ε>
(
µ0 − µ̂(w)

)
+ 2σ2k

= L∗(w) +
(

L(w)− L∗(w)
)
+ ε>ε + 2ε>X

(
β0 − β̂(w)

)
+ 2σ2k.

43



Therefore, by Condition 2,

sup
w∈H
|C(w)− L∗(w)| ≤ sup

w∈H
|L(w)− L∗(w)|+ 2 sup

w∈H
|ε>X

(
β0 − β̂(w)

)
|+

n

∑
i=1

σ2
i + op(1).

Note that the term ∑n
i=1 σ2

i can be simplified as nσ2 if we assume homoskedasticity. Fol-
lowing Condition 1 and results in (A7), we have supw∈H |C(w) − ∑n

i=1 σ2
i − L∗(w)| ≤

Op(n1/2). Hence, we obtain (A8) and complete the proof.

Once Lemma 1 is established, we can prove Theorem 1 with the following steps.

Proof of Theorem 1 Our proof follows Zhang, Yu, Zou, and Liang (2016). Define a(w) =
C(w)−∑n

i=1 σ2
i − L(w). As demonstrated in Lemma 1, Assumption 1, and Conditions 1

and 2, it is straightforward to show that, as n→ ∞

sup
w∈H

∣∣∣∣ a(w)

L∗(w)

∣∣∣∣ p→ 0, (A10)

sup
w∈H

∣∣∣∣ vn

L∗(w)

∣∣∣∣ p→ 0, (A11)

sup
w∈H

∣∣∣∣L∗(w)

L(w)

∣∣∣∣ p→ 1. (A12)

Therefore,

sup
w∈H

∣∣∣∣ L∗(w)

L(w)− vn

∣∣∣∣ ≤
{

1− sup
w∈H

∣∣∣∣L(w)− L∗(w)|
L∗(w)

∣∣∣∣− sup
w∈H

∣∣∣∣ vn

L∗(w)

∣∣∣∣
}−1

p→ 0, (A13)

as n→ ∞. Then, we expand equation (7) of Theorem 1 as

Pr
{∣∣∣∣ infw∈H L(w)

L(w̃)
− 1
∣∣∣∣ > δ

}
= Pr

{∣∣∣∣∣ infw∈H̃
(

L(w) + a(w)
)
− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣∣ > δ

}

= Pr

{∣∣∣∣∣ infw∈H̃
(

L(w) + a(w)
)
− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣∣ > δ, wn ∈ H̃
}

+Pr

{∣∣∣∣∣ infw∈H̃
(

L(w) + a(w)
)
− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣∣ > δ, wn /∈ H̃
}

.(A14)

By definitions of conditional and joint probabilities, we have

RHS of equation (A14)
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≤ Pr

{∣∣∣∣∣ infw∈H̃
(

L(w) + a(w)
)
− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣∣ > δ
∣∣∣wn ∈ H̃

}
Pr(wn ∈ H̃)

+ Pr(wn /∈ H̃)

≤ Pr
{∣∣∣∣L(wn) + a(wn)− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣ > δ
∣∣∣wn ∈ H̃

}
Pr(wn ∈ H̃) + Pr(wn /∈ H̃)

≤ Pr
{∣∣∣∣L(wn) + a(wn)− a(w̃)− infw∈H L(w)

L(w̃)

∣∣∣∣ > δ

}
+ Pr(wn /∈ H̃). (A15)

Following the definition of vn defined in Assumption 1(i), we have

RHS of equation (A15)

= Pr
{∣∣∣∣vn + a(wn)− a(w̃)

L(w̃)

∣∣∣∣ > δ

}
+ Pr(wn /∈ H̃)

≤ Pr
{∣∣∣∣ vn

L(w̃)

∣∣∣∣+ ∣∣∣∣ a(wn)

L(w̃)

∣∣∣∣+ ∣∣∣∣ a(w̃)

L(w̃)

∣∣∣∣ > δ

}
+ Pr(wn /∈ H̃)

≤ Pr

{
sup
w∈H

∣∣∣∣ vn

L(w)

∣∣∣∣+ ∣∣∣∣ a(wn)

infw∈H L(w)

∣∣∣∣+ sup
w∈H

∣∣∣∣ a(w)

L(w)

∣∣∣∣ > δ

}
+ Pr(wn /∈ H̃)

≤ Pr

{
sup
w∈H

∣∣∣∣ vn

L∗(w)

∣∣∣∣ sup
w∈H

∣∣∣∣L∗(w)

L(w)

∣∣∣∣+ sup
w∈H

∣∣∣∣ a(w)

L∗(w)

∣∣∣∣ sup
w∈H

∣∣∣∣ L∗(w)

L(w)− vn

∣∣∣∣
+ sup

w∈H

∣∣∣∣ a(w)

L∗(w)

∣∣∣∣ sup
w∈H

∣∣∣∣L∗(w)

L(w)

∣∣∣∣ > δ

}
+ Pr(wn /∈ H̃). (A16)

According to Conditions (A10), (A11), (A12), (A13), and Assumption 1(iii), we obtain that
the RHS of equation (A16) converge to 0 as n→ ∞. This completes the proof.

D Heteroskedasticity-robust Prediction Model Averaging
(HPMA) Method

Our setup is similar to both Wan, Zhang, and Zou (2010) and Liu and Okui (2013) by
allowing the candidate models to be non-nonested. We observe a random sample (yi, xi)
for i = 1, ..., n, in which yi is a scalar and xi = (xi1, xi2, ...) is countably infinite. We
consider the following data generating process (DGP)

yi = µi + ei, µi =
∞

∑
j=1

β jxij, E(ei|xi) = 0 (A17)
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for i = 1, ..., n and µi can be considered as the conditional mean µi = µ(xi) = E(yi|xi)
that is converging in mean square.42 We assume the error term to be heteroskedastic by
letting σ2

i = E(e2
i |xi) denotes the conditional variance which is allowed to depend on xi.

Now we consider a set of M candidate models. We allow the M models to be non-
nested. The mth candidate model that approximates the DGP in equation (A17) is

yi =
km

∑
j=1

βm
j xm

ij + bm
i + ei, (A18)

for m = 1, ..., M, where xm
ij for j = 1, ..., km denotes the regressors, βm

j denotes the coeffi-

cients, and bm
i ≡ µi −∑km

j=1 βm
j xm

ij is the modeling bias.

Define y = [y1, ..., yn]>, µ = [µ1, ..., µn]>, and e = [e1, ..., en]>. The DGP in equation
(A17) can be presented by y = µ + e. Let Xm be a full rank n× km matrix of independent
variables with (i, j)th element being xm

ij . The estimator of µ from the mth model is

µ̂m = Xm(Xm>Xm)−1Xm>y = Pmy,

where Pm = Xm(Xm>Xm)−1Xm> for all M. Similarly, the residual is êm = y − µ̂m =
(In − Pm)y for all m. Since Pm is n× n for each m, we follow standard model averaging
procedure and construct an averaged projection matrix P(w):

P(w) =
M

∑
m=1

wmPm, (A19)

where P(w) is a weighted average of all potential Pm. Due to its structure, P(w) is sym-
metric but not idempotent. The variable w = [w1, w2, ..., wM]> is a weight vector we
defined in the unit simplex in RM,

H ≡
{

w ∈ [0, 1]M :
M

∑
m=1

wm = 1

}
. (A20)

Then, the model averaging estimator of µ is

µ̂(w) =
M

∑
m=1

wmµ̂m =
M

∑
m=1

wmPmy = P(w)y. (A21)

42Convergence in mean square implies that E(µi −∑k
j=1 β jxij)

2 → 0 as k→ ∞.
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Similarly, we define the averaged residual as

ê(w) =
M

∑
m=1

wmêm = (I − P(w))y. (A22)

The performance of a model averaging estimator crucially depends on its choice of
the weight vector w. Xie (2015) proposed a predictive model averaging (PMA) method
that selects w through a convex optimization of a PMA criterion function of Amemiya
(1980). One merit of the PMA method is that no preliminary estimates are required. The
limitation of the PMA method is that the error term is required to be homoskedastic.

In the spirit of Liu and Okui (2013), we extend the PMA method to a heteroskedastic-
robust predictive model averaging (HPMA) method with the following criterion function

HPMA(w) = ‖y− P(w)y‖2 + 2
n

∑
i=1

(
êi(w)

)2pii(w), (A23)

where P(w) is defined in (A19), êi(w) is the ith element in ê(w) defined in equation (A22),
pii(w) is the ith diagonal term in P(w). We estimate the weighting vector following

ŵ = arg min
w∈H

HPMA(w).

Similar to PMA, obtaining ŵ from HPMA with restrictions w ∈ H is a convex optimiza-
tion process.

D.1 Asymptotic Optimality

In this subsection, we investigate the asymptotic properties of the HPMA estimator of
w. We demonstrate that the proposed HPMA estimator is asymptotically optimal, in the
sense of achieving the lowest possible mean squared error.

Let the average squared error loss and the corresponding l2 type risk be

L(w) = (µ̂(w)− µ)>(µ̂(w)− µ), (A24)
R(w) = EL(w), (A25)

where µ̂(w) is defined in equation (A21). To prove the optimality of HPMA, we assume
the following regularity conditions similar to those demonstrated in Liu and Okui (2013),

Assumption A1 There exists ε > 0 such that min1≤i≤n σ2
i > ε.

Assumption A2 E(e4G
i |xi) ≤ κ < ∞ for some integer 1 ≤ G < ∞ and for some κ.

47



Assumption A3 Mξ−2G ∑M
m=1

(
R(w0

m)
)G → 0 as n → ∞, where ξ ≡ infw∈H R(w) and w0

m
is a vector whose mth element is 1 and all other elements are 0s.

Assumption A4 max1≤m≤M max1≤i≤n pm
ii = O(n−1/2), pm

ii is the ith diagonal element of Pm.

Assumptions A1-A4 correspond to Assumptions 2.1-2.4 in Liu and Okui (2013). As-
sumptions A1 and A2 establish bounds on the error terms and conditional moments.
Assumptions A3 is a convergence condition that requires ξ goes to infinity faster than M
and maxm R(w0

m). Assumptions A4 is a standard convergence condition on projection
matrices.

Assumption A5 max1≤m≤M ξ−1 p̃µ>(I − Pm)µ
p→ 0 and max1≤m≤M M2ξ−2G p̃2G(µ>(I −

Pm)µ
)G p→ 0, where p̃ ≡ supw∈Hmax1≤i≤n(pii(w)).

Assumption A6 max1≤m≤M ξ−1 p̃e>Pme
p→ 0, max1≤m≤M ξ−1 p̃tr(PmΩ)

p→ 0, and
max1≤m≤M M2ξ−2G p̃2G(tr(Pm)

)G p→ 0, where p̃ is defined in Assumption A5 and Ω is an
n× n diagonal matrix with σ2

i being its ith diagonal element. .

Assumption A5 requires that the bias from the worst potential model is small and
Assumption A6 states that the associated variance be small. Similar requirements can be
found in Wan, Zhang, and Zou (2010), which implies that some pre-selection procedures
are always needed not just for the sake of computational efficiency, but also to maintain
asymptotic optimality.43 Finally, we demonstrate the optimality of HPMA estimator in
the following Theorem.

Theorem 2 Let Assumptions A1-A6 hold, as n→ ∞, we have

L(ŵ)

infw∈H L(w)

p→ 1, (A26)

where L(w) is defined in equation (A24) and ŵ is the HPMA estimator.
43Frequentist model averaging usually involves a constraint optimization (quadratic, convex, etc.) pro-

cess that can be quite computationally demanding when the set of approximation models is large. A pre-
selection procedure can reduce the total number of models by removing some poorly constructed models
following certain criteria, therefore, improves computation efficiency. On the other hand, conditions like
Assumptions A5 and A6 are frequently used (Wan, Zhang, and Zou (2010), Liu and Okui (2013), Xie (2015),
etc) in demonstrating asymptotic optimality. As argued in Wan, Zhang, and Zou (2010), a necessary condi-
tion for Assumptions A5 and A6 type conditions to hold is removing some poorly constructed models (by
a pre-selection procedure) before commencing the model averaging process. See Xie (2017) for a detailed
discussion of various pre-selection methods for frequentist model averaging.
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Proof of Theorem 2 Our proof follows Liu and Okui (2013) and Xie (2015). Let P̄(w) be
a diagonal matrix whose ith diagonal element is pii(w). Let êi(w) as the ith element of
ê(w). Because:

ĤPMA(w) = (y− µ̂(w))>(y− µ̂(w)) + 2
n

∑
i=1

ê2
i (w)pii(w)

= HRCp(w) + 2

(
n

∑
i=1

ê2
i (w)pii(w)− tr(ΩP(w))

)
.

where HPCp(w) takes another form of the heteroskedasticity-robust model averaging
method Liu and Okui (2013) proposed in (A2) such that

HPCp(w) = ‖y− P(w)y‖2 + 2tr
(
ΩP(w)

)
, (A27)

where Ω is an n× n diagonal matrix with σ2
i being its ith diagonal element.

Theorem 1 of Liu and Okui (2013) showed that under Assumptions A1 to A3

sup
w∈H

{
HRCp(w)

/
R(w)

} p→ 0.

Therefore, we just need to prove that

sup
w∈H

{∣∣∣∣∣ n

∑
i=1

ê2
i (w)pii(w)− tr(ΩP(w))

∣∣∣∣∣ /R(w)

}
p→ 0 (A28)

LHS of equation (A28) can be rewritten as

sup
w∈H

{∣∣∣∣∣ n

∑
i=1

ê2
i (w)pii(w)− tr(ΩP(w))

∣∣∣∣∣ /R(w)

}
≤ sup

w∈H
|ê(w)>P̄(w)ê(w)−E(e>P̄(w)e)|/ξ

≤ sup
w∈H
{|ê(w)>P̄(w)ê− e>P̄(w)e|+ |e>P̄(w)e−E(e>P̄(w)e)|}/ξ. (A29)

where e(w) is defined in (A22), P̄(w) is an n× n diagonal matrix with pii(w) being its ith

diagonal element, and ξ is defined in Assumption A3. The first term in (A29) is

ê(w)>P̄(w)ê(w)− e>P̄(w)e

= µ>(I − P(w))P̄(w)(I − P(w))µ + 2µ>(I − P(w))P̄(w)(I − P(w))e

+ e>(I − P(w))P̄(w)(I − P(w))e− e>P̄(w)e.
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We have

sup
w∈H

µ>(I − P(w))P̄(w)(I − P(w))µ/ξ ≤ p̃ max
1≤m≤M

µ>(I − Pm)µ/ξ
p→ 0 (A30)

by Assumption A6. Next, we consider the term

e>(I − P(w))P̄(w)(I − P(w))e− e>P̄(w)e = −2e>P(w)P̄(w)e + e>P(w)P̄(w)P(w)e,

where
sup
w∈H

e>P(w)P̄(w)P(w)e/ξ ≤ p̃ max
1≤n≤M

e>Pme/ξ
p→ 0. (A31)

by Assumption A6. For the term e>P(w)P̄(w)e, we note that

E(e>P(w)P̄(w)e) = E

(
e>

M

∑
m=1

wmPmP̄(w)e

)
=

M

∑
m=1

E(e>wmPmP̄(w)e)

=
M

∑
m=1

E(wme>PmP̄(w)e) =
M

∑
m=1

E(wmtr(PmP̄(w)ee>)

=
M

∑
m=1

wmtr(P̄(w)PmΩ).

Therefore,
sup
w∈H

E(e>P(w)P̄(w)e)/ξ ≤ max
1≤m≤M

ξ−1 p̃tr(PmΩ)
p→ 0

by Assumption A6. Moreover, using Chebyshev’s inequality and Theorem 2 of Whittle
(1960), for any δ > 0, we have

Pr

{
sup
w∈H

∣∣∣(e>P(w)P̄(w)e)−E(e>P(w)P̄(w)e)
∣∣∣ /ξ > δ

}

≤
M

∑
l=1

M

∑
m=1

E

{
[(e>P(l)P̄(w0

m)e)−E(e>P(l)P̄(w0
m)e)]2G

δ2Gξ2G

}

≤ δ−2Gξ−2G
M

∑
l=1

M

∑
m=1

C1

{
n

∑
i=1

n

∑
j=1

(p(l)ij )
2p2

ii(w
0
m)[E(e4G

i )]1/2G[E(e4G
i )]1/2G

}G

≤ C1 max
1≤j≤n

E(e4G
i )δ−2Gξ−2G p̃2G

M

∑
l=1

M

∑
m=1

{
n

∑
i=1

n

∑
i=1

(p(l)ij )
2

}G

= C2 max
1≤l≤M

δ−2Gξ−2G M2 p̃2G[tr(P(l))]G → 0

by Assumption A6, where C1 is a constant and C2 ≡ C1 max1≤i≤n E(e4G
i ) is a bounded
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constant according to Assumption A2. It follows that

sup
w∈H

(e>P(w)P̄(w)e)/ξ = op(1). (A32)

Noting that E[µ>(I−P(w))P̄(w)(I−P(w))e] = 0, we again use Chebyshev’s inequality
and Theorem 2 of Whittle (1960) to show that

Pr

{
sup
w∈H

∣∣∣µ>(I − P(w))P̄(w)(I − P(w))e
∣∣∣ /ξ > δ

}

≤
M

∑
l=1

M

∑
m=1

E

{
[µ>(I − P(l))P̄(w0

m)(I − P(l))e]2G

δ2Gξ2G

}

≤ δ−2Gξ−2G M
M

∑
m=1

C3

{
n

∑
i=1

γ2
im[E(e2G

i )]1/G

}G

,

where γim is the ith element of max1≤l≤M µ>(I − P(l))P̄(w0
m)(I − P(l)), and C3 is a con-

stant. We now have that

δ−2Gξ−2G M
M

∑
m=1

C3

{
n

∑
i=1

γ2
im[E(e2G

i )]1/G

}G

≤ δ−2Gξ−2G M
M

∑
m=1

C4

{
n

∑
i=1

γ2
im

}G

,

where C4 ≡ C3 max1≤i≤n E(e2G
i ) is a bounded constant according to Assumption A2 and

n

∑
i=1

γ2
im = max

1≤l≤M
µ>(I − P(l))P̄(w0

m)(I − P(l))(I − P(l))P̄(w0
m)(I − P(l))µ

≤ max
1≤l≤M

( p̃)2µ>(I − P(l))µ.

Therefore, it holds that

δ−2Gξ−2G
M

∑
m=1

C4

{
n

∑
i=1

γ2
jm

}G

≤ max
1≤l≤M

δ−2Gξ−2GC4 p̃2G M2
{

µ>(I − Pm)µ
}G
→ 0

by Assumption A5. Therefore, we have

sup
w∈H

∣∣∣µ>(I − P(w))P̄(w)(I − P(w))e
∣∣∣ /ξ

p→ 0. (A33)

By (A30), (A31), (A32), and (A33), we have that the first term in (A29)

sup
w∈H

∣∣∣ê(w)>P̄(w)ê(w)− e>P̄(w)e
∣∣∣ /ξ

p→ 0. (A34)
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Similarly, for the second term in (A29), using Chebyshev’s inequality and Theorem 2 of
Whittle (1960), for any δ > 0, we have

Pr

{
sup
w∈H

∣∣∣e>P̄(w)e−E
(

e>P̄(w)e
)∣∣∣ /ξ > δ

}

≤
M

∑
m=1

E

{
[e>P̄(w0

m)e−E
(
e>P̄(w0

m)e
)
]2G

δ2Gξ2G

}

≤ δ−2Gξ−2G
M

∑
m=1

C5

{
n

∑
i=1

p2
ii(w

0
m)[E(e4G

i )]1/G

}G

≤ C6 max
1≤j≤n

E(e4G
i )δ−2Gξ−2G

M

∑
m=1

{
n

∑
i=1

p2
ii(w

0
m)

}G

≤ C6δ−2Gξ−2G
M

∑
m=1

[tr[
(

P(w0
m)
)2
]]G

= C6δ−2Gξ−2G
(

inf
1≤i≤M

σ2
i

)−G M

∑
m=1

[tr[ inf
1≤i≤M

σ2
i

(
P(w0

m)
)2
]]G

≤ C6δ−2Gξ−2G
(

inf
1≤i≤M

σ2
i

)−G M

∑
m=1

[tr[Ω
(

P(w0
m)
)2
]]G

= C6δ−2Gξ−2G
(

inf
1≤i≤M

σ2
i

)−G M

∑
m=1

[tr[ΩP(w0
m)]]

G

≤ C6δ−2Gξ−2G
M

∑
m=1

[
R(w0

m)
]G
→ 0,

where C5 is a constant and C6 ≡ C5 max1≤i≤n E(e4G
i ) is a bounded constant according to

Assumption A2. The last inequality is due to

R(w0
m) = E(L

(
w0

m

)
) = E

[
(Pmy− µ)> (Pmy− µ)

]
= E

[
(Pm (µ + e)− µ)> (Pm (µ + e)− µ)

]
= E

[
((Pm − I) µ− Pme)> ((Pm − I) µ− Pme)

]
= µ> (Pm − I)> (Pm − I) µ− 2E

[
µ> (Pm − I)> Pme

]
+ E

[
e>Pme

]
= µ> (Pm − I)> (Pm − I) µ + tr[ΩPm]

= µ> (Pm − I)> (Pm − I) µ + tr[ΩP(w0
m)]

≥ tr[ΩP(w0
m)],
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where P(w0
m) = Pm and the expectation is conditional on X. Therefore, we have

sup
w∈H

∣∣∣e>P̄(w)e−E
(

e>P̄(w)e
)∣∣∣ /ξ

p→ 0. (A35)

Results of (A34) and (A35) imply that condition (A28) hold. This completes the proof.

E More Empirical Results

This appendix consists of numerous subsections that provide further analyses and ro-
bustness checks of our main findings. OLS estimates of the GUM model are provided in
subsection E.1. Breusch-pagan tests are provided in Table A1 show strong evidence of
heteroskesdasticity for both open box office and movie unit sales.

The first piece of evidence pertaining to using two social media measures versus one
is obtained by comparing estimates across tables in subsection E.3 (see tables A3 and A4).
In subsection E.2 and E.6 we provide evidence of the relative prediction efficiency for
double Lasso and Lasso based Strategies respectively. As observed in tables A2 and A8 –
A10, the benchmark HRCp outperforms all Lasso based methods considered. Finally, the
evidence contrasting tables A8 – A10 present further evidence for why two social media
measures are preferred to either one.

In subsection E.4, a Monte Carlo study is used to shed further light on the relative per-
formance of ARMS and ARMSH under different scenarios related to what is the source
of heteroskedasticity. Related, in subsection E.7 we present additional analyses that con-
trasts which models (and their contents) are selected by ARMS to ARMSH. These sections
explain when differences between these methods could occur and why in our application,
there were many similarities. Related to E.7, in subsection E.5 we present weights of, and
contents of the top 5 models selected by the HRCp estimator. These results continue to
show that in practice, the model averaging estimator gives lots of weight to very few of all
the potential models and is consistent with other applications of these methods including
in policy oriented applications such as crime deterrence (Durlauf, Navarro, and Rivers,
2016).

In subsection E.8, we provide evidence that even when we restrict machine learning
strategies to use the identical set of predictors as model screening choices made for model
averaging that recursive partitioning methods yield more accurate forecasts. This shows
that much of the gains we observed in our application come from the restrictiveness of
the linear model and that additional gains can still be obtained by allowing for model
uncertainty and considering that the data is heteroskedastic. Subsection E.9 provides for-
mal evidence that the proposed MAB method significantly outperforms other forecasting
strategies considered in the main text (tables 3 – 5).
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Last, subsection E.10 considers adding a model averaging flavor to a single regression
tree (MART). For space considerations, we did not include this in the main text since as
seen in the single figure A2 presented in subsection E.10, the MART method is outper-
formed by both MAB and MARF by a large margin in both heteroskedasticity scenarios.
Thus, similar to the discussion in the statistical learning literature that forecasts from RT
are unreliable and both bagging and random forest present improvement, we advocate
only adding model averaging to strategies that used bagging or random forest to create
subgroups.
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E.1 OLS Estimates of the GUM Model

Table A1: OLS Estimates of the Generalized Unrestricted Model

Variable Open Box Office Movie Unit Sales
Coefficient Robust S.E. Coefficient Robust S.E.

Genre
Action -1.6895 3.0838 -0.0622 0.1194
Adventure 4.6542 3.7732 -0.0967 0.1588
Animation -1.9354 5.6046 0.8167* 0.3609
Biography 0.1229 4.2324 -0.0109 0.2015
Comedy -0.9595 3.7382 -0.1287 0.1859
Crime 2.6461 2.7335 -0.0931 0.1052
Drama -1.7884 3.6083 0.0139 0.1092
Family 2.6236 6.7679 -0.4118 0.3503
Fantasy 12.8881* 4.9159 0.5634 0.3937
Horror 3.0486 2.4376 -0.3655* 0.1441
Mystery 3.3377 2.4852 0.1414 0.1243
Romance -2.5919 3.3696 -0.0986 0.0921
Sci-Fi -0.3705 2.6569 0.0336 0.1391
Thriller 0.8643 2.9379 0.0306 0.1301
Rating
PG 2.8901 5.4757 -0.6290 0.4196
PG13 1.8691 6.8517 -0.8369 0.5112
R 2.6378 6.6841 -0.7490 0.4964
Core Parameters
Budget 0.1182* 0.0399 0.0035* 0.0016
Weeks 0.3738 0.2768 0.0447* 0.0109
Screens 6.1694* 1.3899 0.3215* 0.0526
Sentiment
T-21/-27 -0.1570 0.6610 -0.0148 0.0241
T-14/-20 -0.9835 0.9393 -0.0040 0.0304
T-7/-13 -1.2435 1.0695 0.1802 0.1104
T-4/-6 0.2277 1.1775 -0.1708* 0.0842
T-1/-3 2.5070* 0.7509 -0.0422 0.0839
T+0 0.2172* 0.0864
T+1/+7 -0.0927* 0.0399
T+8/+14 0.0212 0.0234
T+15/+21 0.0085 0.0291
T+22/+28 -0.0808 0.1072
Volume
T-21/-27 -97.5186* 31.6624 -1.6863 0.9608
T-14/-20 19.4109 38.6929 0.0724 1.1598
T-7/-13 -45.2885 30.9011 -1.8770 1.1417
T-4/-6 86.2881* 27.2008 2.5302* 0.7184
T-1/-3 18.9664* 5.1687 -1.2437* 0.4167
T+0 0.4423* 0.1064
T+1/+7 -0.2006 0.2404
T+8/+14 1.1195 0.9779
T+15/+21 0.4945 0.6281
T+22/+28 -0.3414 0.3104

Breusch-Pagan Statistic 249.9485 207.3698
Breusch-Pagan p-value <0.0001 <0.0001
R-square 0.7973 0.8016

Note: * indicates the associated variable is significant at 5% level.
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E.2 Performance of Double-Lasso Strategy in Simulation Experiment

Table A2: Comparing Hetero-robust and Homo-efficient Model Screening Methods

nE OLS10 OLS12 OLS15 HRCp
10 HRCp

12 HRCp
15 Benchmark

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 1.4388 1.5229 1.1787 1.4181 1.5075 1.1564 1.0000
20 1.6213 1.6090 1.2135 1.5898 1.5814 1.1854 1.0000
30 1.7625 1.6869 1.2597 1.7322 1.6714 1.2344 1.0000
40 1.8172 1.7028 1.2622 1.7745 1.6768 1.2548 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.2064 1.2131 1.0778 1.1962 1.2054 1.0680 1.0000
20 1.2356 1.2208 1.0880 1.2262 1.2173 1.0841 1.0000
30 1.2420 1.2273 1.0882 1.2331 1.2192 1.0833 1.0000
40 1.2475 1.2330 1.0845 1.2360 1.2187 1.0766 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 1.3855 1.4254 1.4699 1.3645 1.3892 1.4364 1.0000
20 1.3562 1.3960 1.4022 1.3321 1.3651 1.3730 1.0000
30 1.2831 1.3096 1.3088 1.2733 1.2909 1.2821 1.0000
40 1.1793 1.2094 1.2499 1.1573 1.1807 1.2210 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.2604 1.2731 1.2840 1.2514 1.2616 1.2683 1.0000
20 1.2345 1.2541 1.2626 1.2273 1.2365 1.2472 1.0000
30 1.2014 1.2190 1.2314 1.1920 1.2053 1.2169 1.0000
40 1.1682 1.1878 1.2051 1.1565 1.1706 1.1880 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of
the table. The remaining entries provide the ratio of the degree of the respective
forecast error metric of the estimator using specific estimation approach denoted
in the column relative to results using the HRCp method presented in the last
column.
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E.3 Additional Evidence on the Importance of Social Media Data

Table A3: OLS Estimates of Models with Sentiment Only

Variable Open Box Movie Unit
Coefficient Robust S.E. Coefficient Robust S.E.

Genre
Action -11.8297 5.1756 -0.5991 0.2118
Adventure 1.8903 9.0801 -0.2221 0.3721
Animation -8.6157 7.2188 0.3618 0.3987
Biography -10.6777 7.3202 -0.3815 0.3079
Comedy -6.1906 4.4094 -0.3875 0.2136
Crime 5.6338 3.7323 0.1658 0.1751
Drama -4.3020 4.9879 -0.2661 0.1924
Family -1.3797 8.0709 -0.3123 0.3741
Fantasy 19.2129 10.5968 0.8570 0.4906
Horror -0.8574 4.6042 -0.6504 0.2190
Mystery -4.1597 3.1965 -0.1284 0.1412
Romance -1.3851 4.4953 0.1232 0.1784
Sci-Fi 0.6611 6.1694 0.1187 0.2989
Thriller 1.4062 5.2588 0.0971 0.2140
Rating
PG 7.6872 7.0093 -1.0293 0.4639
PG13 21.6049 10.7996 -0.5286 0.5447
R 19.5326 10.5227 -0.5796 0.5433
Core Parameters
Budget 0.1525 0.0827 0.0064 0.0033
Weeks 1.3267 0.5057 0.0943 0.0204
Screens 13.8708 2.9586 0.5949 0.1233
Sentiment
T-21/-27 0.9289 0.7021 -0.0195 0.0292
T-14/-20 -0.7583 0.7503 0.0373 0.0366
T-7/-13 -1.1656 1.6137 0.3103 0.1303
T-4/-6 0.9664 2.1090 -0.0694 0.1113
T-1/-3 -0.1460 1.1729 -0.0401 0.1418
T+0 0.1238 0.1668
T+1/+7 -0.1016 0.0603
T+8/+14 0.0649 0.0372
T+15/+21 -0.0992 0.0411
T+22/+28 -0.1859 0.1286
R-square 0.5322 0.6488

Note: * indicates the associated variable is significant at 5% level.
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Table A4: OLS Estimates of Models with Volume Only

Variable Open Box Movie Unit
Coefficient Robust S.E. Coefficient Robust S.E.

Genre
Action -1.7845 3.0495 -0.1049 0.1163
Adventure 4.8425 3.7630 0.0347 0.1508
Animation -3.8178 5.2420 0.6189 0.3508
Biography 0.5099 4.4590 -0.1050 0.2038
Comedy -0.5934 3.8404 -0.1896 0.1556
Crime 3.1958 2.6371 0.0043 0.0961
Drama -1.9479 3.5767 -0.0280 0.1078
Family 3.6903 6.5546 -0.3090 0.3424
Fantasy 13.3327 4.9812 0.5544 0.3864
Horror 3.6698 2.5120 -0.2299 0.1305
Mystery 2.6945 2.5712 -0.0145 0.1100
Romance -2.5929 3.4036 -0.0859 0.0909
Sci-Fi -0.5145 2.7094 0.0015 0.1279
Thriller 0.6968 3.0682 -0.0407 0.1181
Rating
PG 1.8990 5.2023 -0.3739 0.3662
PG13 1.6943 6.7034 -0.5650 0.4418
R 2.3396 6.4815 -0.5206 0.4475
Core Parameters
Budget 0.1142 0.0396 0.0029 0.0016
Weeks 0.4335 0.2705 0.0424 0.0114
Screens 6.9067 1.4856 0.3422 0.0557
Volume
T-21/-27 -97.6733 30.6043 -1.5188 0.9072
T-14/-20 21.1375 36.7023 -0.0649 1.1053
T-7/-13 -39.7233 31.2763 -1.6555 1.1440
T-4/-6 81.3088 27.3566 2.1988 0.6776
T-1/-3 18.1939 4.9561 -1.4011 0.3762
T+0 0.4675 0.1007
T+1/+7 -0.2659 0.2455
T+8/+14 1.6392 0.8910
T+15/+21 0.2306 0.5984
T+22/+28 -0.2764 0.3631
R-square 0.8224 0.8445

Note: * indicates the associated variable is significant at 5% level.
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E.4 Using Monte Carlo Study to Understand How Different Sources
for Heteroskedasticity Affect Strategies

We found in forecasts of retail movie unit sales that the difference in the performance be-
tween PMA and HRCp in table 3 in conjunction with the relative improved performance
of ARMS presented in table 4 to be surprising. A potential explanation for these findings
is the source of heteroskedasticity in the data. We examine the performance of five dif-
ferent model screening methods that are implied in the subscripts of the following model
sets: MK

GETS, MK
Lasso, MK

ARMS, MK
ARMSH, and MK

HRMS.44 Using data generated by the
Monte Carlo design described in section 4.2, we compare the risks of each method:

Riski ≡
1
n

n

∑
t=1

(
µ̂t(MK

i )− µt
)2 for i = GETS, Lasso, ARMS, ARMSH, and HRMS,

where µt is the true fitted value (feasible in simulation) and µ̂t(MK
i ) is the average fitted

value obtained by HRCp using specific candidate model set. Four different sample sizes
(n = 100, 200, 300, and 400) are considered and the risk for each method - sample size pair
is averaged across 10,000 simulation draws.

Figures A1 presents the results from this exercise where we normalize the risks by the
risk of the infeasible optimal model. Each line presents the relative risks of each model
screening method associated with R2 from 0.1 to 0.9, respectively. Each sub-panel (a) to
(d) presents the results for different sample sizes.

In virtually every panel of figures A1, HRMS has the best performance. In the random
heteroskedasticity scenario, GETS and Lasso perform well only when R2 is low. As R2 in-
creases, the relative improved performance of ARMS, ARMSH, and HRMS emerges. The
performance of both ARMS and ARMSH more closely mimics HRMS at larger sample
sizes. However, in simulations where heteroskedasticity arises due to neglected parame-
ter heterogeneity both GETS and Lasso perform poorly, particularly when there is strong
correlation among the regressors. The performance of both screening methods is rela-
tively poorer when either the sample size or R2 increases. In contrast, ARMS and ARMSH
yield consistently better results that are similar with increasing n and R2. Note that for
both cases, ARMS and ARMSH yield quite similar results. The results in figures A1 point
out that the performance of both GETS and Lasso rely heavily on homoskedasticity.

44A full permutation of the K = 20 regressors leads to a total of 1,048,575 candidate models (the null
model is ignored). In our experiments, the pre-determined parameters for GETS and ARMS(H) are p = 0.1
and M′ = 20 respectively, whereas we manipulate the tuning parameter for Lasso and select 5 predictors.
We construct 25 − 1 = 31 models based on permutation of the selected parameters.
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Figure A1: Comparing Model Screening Methods with Simulated Data

Scenario A. Random Heteroskedasticity
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E.4.1 Prediction Comparison Using One Set of Measures

Table A5: Evaluating the Importance of Twitter Variable using MAB

nE Include Both Sentiment Only Volume Only Include None Benchmark

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 0.6045 0.8659 0.6009 1.5271 1.0000
20 0.8098 1.2111 0.8242 1.6091 1.0000
30 0.9123 1.4463 0.9654 1.8287 1.0000
40 1.0281 1.6934 1.0810 2.1822 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.6538 0.7505 0.6635 0.9881 1.0000
20 0.7296 0.8531 0.7428 1.0911 1.0000
30 0.7541 0.9057 0.7940 1.2939 1.0000
40 0.7890 0.9653 0.8151 1.3988 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 0.8114 0.9235 0.8683 1.4882 1.0000
20 0.8914 1.0621 0.9038 1.6761 1.0000
30 0.9270 1.1196 0.9325 1.7988 1.0000
40 0.9734 1.1244 0.9757 1.9982 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.7740 0.8397 0.7970 1.0981 1.0000
20 0.8192 0.8861 0.8287 1.1532 1.0000
30 0.8269 0.9052 0.8525 1.2887 1.0000
40 0.8470 0.9311 0.8617 1.4109 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of the
table. The remaining entries provide the ratio of the degree of the respective forecast error
metric of the estimator using specific estimation approach denoted in the column relative
to results using the HRCp method presented in the last column.
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E.5 Weights of, and Contents of the Top 5 Models Selected by the HRCp

Estimator

Table A6: Describing the 5 Highest Weight Models: Open Box Office

Model 1 Model 2 Model 3 Model 4 Model 5 HRCp

Weight in HRCp 0.3862 0.2159 0.1755 0.0945 0.0816
Genre
Action x x
Adventure x x x x
Animation x
Biography x
Comedy x x
Crime x x
Drama x x
Family x
Fantasy x x x x x x
Horror x x x x
Mystery x x x x
Romance x x x
Sci-Fi x
Thriller x
Rating
PG x
PG13 x
R x
Core
Budget x x x x x x
Weeks x x x x x x
Screens x x x x x x
Sentiment
T-21/-27 x
T-14/-20 x x x x
T-7/-13 x x x
T-4/-6 x
T-1/-3 x x x x x x
Volume
T-21/-27 x x x x x x
T-14/-20 x
T-7/-13 x x x x x x
T-4/-6 x x x x x x
T-1/-3 x x x x x x
R2 w/ SV. 0.8265 0.8249 0.8258 0.8248 0.8259 0.8230
R2 w/o SV. 0.4836 0.4796 0.4789 0.4911 0.4795 0.7383

Note: x denotes that explanatory variable is included in the particular model, SV denotes
social media data and HRCp refers to a specific model averaging method.
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Table A7: Describing the 5 Highest Weight Models: Retail Movie Unit Sales

Model 1 Model 2 Model 3 Model 4 Model 5 HRCp

Weight in HRCp 0.2977 0.1645 0.1558 0.1447 0.0989
Genre
Action x
Adventure x
Animation x x x x x x
Biography x
Comedy x x
Crime x
Drama x
Family x x x x x x
Fantasy x x x x x x
Horror x x x x x x
Mystery x x x x
Romance x
Sci-Fi x
Thriller x x
Rating
PG x x x x x
PG13 x x x x x x
R x x x x x
Core
Budget x x x x x x
Weeks x x x x x x
Screens x x x x x x
Sentiment
T-21/-27 x
T-14/-20 x x
T-7/-13 x x x x x x
T-4/-6 x x x x x x
T-1/-3 x x
T+0 x x x x x x
T+1/+7 x x x x x
T+8/+14 x x
T+15/+21 x
T+22/+28 x x
Volume
T-21/-27 x x x x x x
T-14/-20 x
T-7/-13 x x x x x x
T-4/-6 x x x x x x
T-1/-3 x x x x x x
T+0 x x x x x x
T+1/+7 x
T+8/+14 x x
T+15/+21 x x x x
T+22/+28 x
R2 w/ SV. 0.8512 0.8517 0.8530 0.8503 0.8362 0.8450
R2 w/o SV. 0.5976 0.6024 0.6027 0.5976 0.5918 0.7002

Note: x denotes that explanatory variable is included in the particular model, SV denotes
social media data and HRCp refers to a specific model averaging method.
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E.6 Further Comparison of the Relative Prediction Efficiency for Lasso-
based Strategies

Table A8: Further Comparison of the Relative Prediction Efficiency (with Both Sentiment
and Volume)

nE OLS10 OLS11 OLS12 OLS13 OLS14 OLS15 HRCp
10 HRCp

11 HRCp
12 HRCp

13 HRCp
14 HRCp

15 HRCp

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 1.1464 1.1704 1.1671 1.1778 1.1132 1.1221 1.1462 1.1642 1.1647 1.1717 1.1094 1.1203 1.0000
20 1.1620 1.1809 1.1803 1.1830 1.0943 1.0992 1.1606 1.1771 1.1797 1.1755 1.0815 1.0826 1.0000
30 1.1922 1.2092 1.2067 1.2113 1.0731 1.0696 1.1899 1.2068 1.2037 1.2092 1.0636 1.0624 1.0000
40 1.2076 1.2295 1.2174 1.2233 1.0608 1.0633 1.2027 1.2197 1.2141 1.2199 1.0573 1.0537 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.0529 1.0591 1.0669 1.0689 1.0623 1.0632 1.0430 1.0595 1.0576 1.0687 1.0593 1.0594 1.0000
20 1.0603 1.0657 1.0692 1.0767 1.0556 1.0549 1.0506 1.0631 1.0689 1.0750 1.0551 1.0546 1.0000
30 1.0568 1.0619 1.0669 1.0722 1.0560 1.0558 1.0473 1.0528 1.0576 1.0719 1.0542 1.0538 1.0000
40 1.0591 1.0663 1.0673 1.0734 1.0549 1.0537 1.0578 1.0654 1.0641 1.0720 1.0536 1.0530 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 1.3737 1.2921 1.3495 1.3456 1.3621 1.3757 1.3558 1.2784 1.3354 1.3434 1.3512 1.3704 1.0000
20 1.3756 1.2772 1.2811 1.2457 1.2578 1.2768 1.3448 1.2459 1.2697 1.2432 1.2568 1.2651 1.0000
30 1.3001 1.2388 1.2086 1.1616 1.1666 1.1814 1.2728 1.2282 1.2012 1.1530 1.1644 1.1822 1.0000
40 1.2306 1.1718 1.1609 1.1135 1.1364 1.1454 1.2069 1.1565 1.1486 1.1093 1.1281 1.1398 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.2303 1.2058 1.2161 1.1581 1.1534 1.1600 1.2229 1.1974 1.2155 1.1575 1.1523 1.1564 1.0000
20 1.2096 1.1844 1.1958 1.1386 1.1427 1.1436 1.2036 1.1760 1.1890 1.1369 1.1411 1.1398 1.0000
30 1.1887 1.1656 1.1735 1.1182 1.1204 1.1195 1.1794 1.1569 1.1675 1.1161 1.1180 1.1149 1.0000
40 1.1704 1.1469 1.1557 1.0989 1.1064 1.1086 1.1600 1.1364 1.1459 1.0959 1.1005 1.1027 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of the table. The remaining entries provide the ratio of
the degree of the respective forecast error metric of the estimator using specific estimation approach denoted in the column relative to
results using the HRCp method presented in the last column.
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Table A9: Further Comparison of the Relative Prediction Efficiency (with Sentiment Only)

nE OLS10 OLS11 OLS12 OLS13 OLS14 OLS15 HRCp
10 HRCp

11 HRCp
12 HRCp

13 HRCp
14 HRCp

15 HRCp

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 1.1111 1.1240 1.1428 1.1403 1.1389 1.1528 1.0865 1.0922 1.1077 1.1022 1.1068 1.1084 1.0000
20 1.0836 1.0940 1.1102 1.1121 1.0887 1.0896 1.0802 1.0766 1.0912 1.1010 1.0795 1.0842 1.0000
30 1.0648 1.0700 1.0888 1.0871 1.0799 1.0840 1.0641 1.0643 1.0787 1.0809 1.0702 1.0772 1.0000
40 1.0732 1.0779 1.1027 1.1099 1.0902 1.0909 1.0727 1.0768 1.0939 1.0916 1.0777 1.0795 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.0305 1.0422 1.0485 1.0528 1.0552 1.0652 1.0302 1.0325 1.0368 1.0281 1.0318 1.0457 1.0000
20 1.0314 1.0399 1.0467 1.0535 1.0556 1.0647 1.0276 1.0311 1.0323 1.0369 1.0413 1.0456 1.0000
30 1.0303 1.0378 1.0474 1.0522 1.0542 1.0669 1.0256 1.0298 1.0318 1.0364 1.0382 1.0421 1.0000
40 1.0355 1.0468 1.0542 1.0615 1.0592 1.0719 1.0281 1.0343 1.0398 1.0402 1.0411 1.0475 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 1.0179 1.0323 1.0391 1.0299 1.0494 1.0257 1.0152 1.0037 1.0030 1.0192 1.0151 1.0068 1.0000
20 1.0462 1.0589 1.0635 1.0528 1.0639 1.0362 1.0388 1.0515 1.0557 1.0429 1.0509 1.0303 1.0000
30 1.0308 1.0406 1.0501 1.0376 1.0445 1.0199 1.0273 1.0296 1.0342 1.0338 1.0328 1.0168 1.0000
40 1.0111 1.0214 1.0307 1.0291 1.0309 1.0094 1.0019 1.0204 1.0263 1.0227 1.0233 1.0033 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.0180 1.0219 1.0216 1.0212 1.0394 1.0330 1.0063 1.0101 1.0073 1.0088 1.0192 1.0132 1.0000
20 1.0044 1.0132 1.0162 1.0194 1.0366 1.0242 1.0072 1.0049 1.0062 1.0056 1.0166 1.0115 1.0000
30 1.0013 1.0100 1.0145 1.0195 1.0327 1.0253 1.0010 1.0072 1.0014 1.0019 1.0148 1.0122 1.0000
40 1.0081 1.0042 1.0089 1.0149 1.0300 1.0214 1.0028 1.0032 1.0013 1.0099 1.0052 1.0023 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of the table. The remaining entries provide the ratio of
the degree of the respective forecast error metric of the estimator using specific estimation approach denoted in the column relative to
results using the HRCp method presented in the last column.
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Table A10: Further Comparison of the Relative Prediction Efficiency (with Volume Only)

nE OLS10 OLS11 OLS12 OLS13 OLS14 OLS15 HRCp
10 HRCp

11 HRCp
12 HRCp

13 HRCp
14 HRCp

15 HRCp

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 1.0614 1.0391 1.0312 1.0315 1.0309 1.0380 1.0551 1.0351 1.0297 1.0224 1.0255 1.0362 1.0000
20 1.0817 1.0181 1.0074 1.0122 1.0069 1.0137 1.0791 1.0102 0.9984 1.0108 1.0041 1.0121 1.0000
30 1.1556 1.0217 1.0176 1.0200 1.0207 1.0263 1.1517 1.0159 1.0107 1.0131 1.0117 1.0205 1.0000
40 1.1705 1.0267 1.0179 1.0198 1.0170 1.0271 1.1689 1.0227 1.0104 1.0164 1.0172 1.0199 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.0058 1.0113 1.0109 1.0113 1.0116 1.0115 1.0012 1.0037 1.0067 1.0119 1.0036 1.0018 1.0000
20 1.0228 1.0150 1.0160 1.0131 1.0117 1.0163 1.0148 1.0120 1.0069 1.0078 1.0045 1.0137 1.0000
30 1.0343 1.0122 1.0147 1.0149 1.0172 1.0212 1.0249 1.0075 1.0091 1.0125 1.0159 1.0158 1.0000
40 1.0280 1.0169 1.0194 1.0203 1.0213 1.0247 1.0264 1.0084 1.0104 1.0186 1.0166 1.0196 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 1.2868 1.2680 1.2518 1.1204 1.0814 1.0996 1.2614 1.2570 1.2493 1.1113 1.0772 1.0969 1.0000
20 1.2641 1.2501 1.2383 1.1429 1.0971 1.0951 1.2537 1.2472 1.2332 1.1340 1.0883 1.0879 1.0000
30 1.1739 1.1650 1.1541 1.0774 1.0604 1.0389 1.1700 1.1549 1.1439 1.0704 1.0522 1.0304 1.0000
40 1.1208 1.1178 1.1126 1.0543 1.0504 1.0125 1.1103 1.1082 1.1092 1.0474 1.0408 1.0093 1.0000

Mean Absolute Forecast Error (MAFE)
10 1.1268 1.1229 1.1274 1.0750 1.0752 1.0715 1.1236 1.1128 1.1177 1.0668 1.0728 1.0724 1.0000
20 1.1125 1.1080 1.1138 1.0688 1.0631 1.0547 1.1096 1.0970 1.1043 1.0610 1.0632 1.0461 1.0000
30 1.0874 1.0886 1.0918 1.0492 1.0479 1.0439 1.0803 1.0828 1.0820 1.0490 1.0455 1.0364 1.0000
40 1.0784 1.0833 1.0877 1.0487 1.0474 1.0425 1.0768 1.0803 1.0786 1.0463 1.0434 1.0367 1.0000

Note: Bold numbers denote the strategy with the best performance in that row of the table. The remaining entries provide the ratio of
the degree of the respective forecast error metric of the estimator using specific estimation approach denoted in the column relative to
results using the HRCp method presented in the last column.
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E.7 Comparing ARMS and ARMSH

From the exercises in the main text, we notice that ARMS and ARMSH provide similar
results in many cases. Although ARMSH is hetero-robust, ARMS and ARMSH end up
with similar candidate model sets. In the following table A11, we show the 5 highest
weight models estimated by HRCp using candidate model sets screened by ARMS and
ARMSH respectively. For each model screening method, an “x” denotes the associated
explanatory variable is included in the particular model. Each model screening method
contains a candidate model set of 100 selected models. Estimated model weights are
presented in the last row for each method.

Table A11: Describing the 5 Highest Weight Models Using Model Sets Screened by ARMS
and ARMSH

ARMS ARMSH
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Genre
Action
Adventure x x x x x x
Animation
Biography
Comedy
Crime x x
Drama
Family
Fantasy x x x x x x x x x x
Horror x x x x x x
Mystery x x x x x x
Romance x x
Sci-Fi
Thriller
Rating
PG
PG13
R
Core
Budget x x x x x x x x x x
Weeks x x x x x x x x x x
Screens x x x x x x x x x x
Sentiment
T-21/-27
T-14/-20 x x x x x x x x
T-7/-13 x x
T-4/-6
T-1/-3 x x x x x x x x x x
Volume
T-21/-27 x x x x x x x x x x
T-14/-20
T-7/-13 x x x x x x x x x x
T-4/-6 x x x x x x x x x x
T-1/-3 x x x x x x x x x x
Weights 0.4278 0.3914 0.1296 0.0332 0.0155 0.4283 0.4220 0.1038 0.0291 0.0168

Note: x denotes that explanatory variable is included in the particular model. The above exercise is carried out by
using the top 100 models screened by ARMS and ARMSH respectively for open box office.

The top 5 models for each method accumulates more than 95% of the total weights.
Moreover, we notice that the top 5 models for each method are identical with the same
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ranking. This explains why in our prediction experiment, ARMS and ARMSH yield quite
similar results in terms of forecast accuracy. In Subsection E.4, we conduct a Monte Carlo
study to shed further light on the relative performance of ARMS and ARMSH under
different scenarios related to what is the source of heteroskedasticity.

E.8 Performance of Recursive Partitioning Methods Using Identical Vari-
ables to Model Screening/Averaging Strategies

In the empirical exercises, we restrict that each potential model contains a constant term
and 7 (11) relatively significant parameters for open box office (movie unit sales) based
on the OLS results presented in table A1. To examine if our findings are driven by pre-
selection, we compare the performance of recursive partitioning methods to econometric
strategies using identical set of selected 7 (11) parameters. Results are presented in table
A12.

As usual, we report the median MSFE and MAE of different strategies listed in panel A
of table A12 for each evaluation set of different sizes nE = 10, 20, 30, 40. Panel A presents
results for forecasting open box office and panel B demonstrates results for forecasting
movie unit sales. To ease interpretation, in each row of table A12 we normalize the MSFEs
and MAFEs, respectively, by the MSFE and MAFE of the HRCp.

For both panels, table A12 demonstrates that there are very large gains in prediction
efficiency of the recursive partitioning algorithms relative to the benchmark HRCp, al-
though such gains are not as large as those demonstrated in table 5, in which the recur-
sive partitioning methods use all the potential variables available. Take the MSFE results
under nE = 10 in panel A for example, Reg.Tree shows approximately 37% increase in
prediction efficiency in table 5 and 20% increase in table A12. The results indicate that
the pre-selected 7 (11) variables play crucial roles in predicting the open box office (movie
unit sales). On the other hand, the other potential variables also jointly provide signifi-
cant predicting power. In summary, the gains from machine learning strategies that use
recursive partitioning over econometric methods is not due to differences in the set of
predictors.

E.9 Test for Superior Predictive Ability (SPA) of the MAB Method

In this subsection, we perform the SPA test of Hansen (2005) to examine if the MAB
method we proposed demonstrates superior predictive ability over all the other methods
listed in this paper. We consider both the squared forecast error (SFE) and the absolute
forecast error (AFE) as the quantities for comparing predictive ability. We set the results
of MAB as the benchmark.

The null hypothesis of the SPA test states that the average performance of the bench-
mark is as good as the best average performance across the other competing methods. The
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Table A12: Results of Relative Prediction Efficiency between Recursive Partitioning Meth-
ods Using Selective Variables and the Benchmark Method

nE Reg. Tree Bagging Random Forest Benchmark
RF10 RF15 RF20

Panel A: Open Box Office
Mean Squared Forecast Error (MSFE)

10 0.8020 0.9501 0.8155 0.8542 0.9559 1.0000
20 1.0149 0.9287 0.8560 0.8540 0.8940 1.0000
30 1.1125 0.8611 0.8679 0.8525 0.9940 1.0000
40 1.3306 1.1571 1.2549 1.1343 1.2340 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.7794 0.8487 0.7865 0.7973 0.8641 1.0000
20 0.8079 0.7635 0.7571 0.7359 0.7507 1.0000
30 0.8780 0.8487 0.8536 0.8670 0.8909 1.0000
40 0.8501 0.8539 0.8649 0.8837 0.8914 1.0000

Panel B: Movie Unit Sales
Mean Squared Forecast Error (MSFE)

10 0.9236 0.9580 0.9009 0.9151 0.9571 1.0000
20 1.0261 0.9600 0.9439 0.9053 0.9557 1.0000
30 1.2982 0.9810 1.0447 1.0652 1.1236 1.0000
40 1.1213 1.0037 0.9886 0.9761 0.9834 1.0000

Mean Absolute Forecast Error (MAFE)
10 0.8390 0.9794 0.9201 0.9525 0.9443 1.0000
20 0.8409 0.8303 0.8448 0.8388 0.8563 1.0000
30 0.9485 0.9103 0.9431 0.9220 0.9250 1.0000
40 0.8905 0.8367 0.8332 0.8456 0.8398 1.0000

Note: Bold numbers denote the strategy with the best performance in that
row of the table. The remaining entries provide the ratio of the degree of
the respective forecast error metric of the estimator using specific estimation
approach denoted in the column relative to results using the HRCp method
presented in the last column.

alternative is that there is at least one competing method has better average performance
than the benchmark. We estimate the p-values under the two forecast error quantities
for open box office and movie unit sales. Large p-values signify the superior predictive
ability of the MAB method over others.

Results for different nE values are presented in table A13 and all the p-values are larger
than 5% implying the superior predictive ability of the MAB method over others. This is
particularly true for movie unit sales, in which the p-values are as high as 1 in all cases.
The p-values for open box office under SFE are relatively smaller than other cases which
coincides with the MSFE results demonstrated in table 5.

E.10 Model Averaging Regression Tree

This subsection considers adding a model averaging flavor to a single regression tree
(MART). We duplicate the Monte Carlo simulations in section 4.2 and the MART method
is represented by the lines with dots in figure A2. Although MART dominates RT for
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Table A13: SPA Test Results of the MAB Method

nE Open Box Office Movie Unit Sales
SFE AFE SFE AFE

10 0.2651 1.0000 1.0000 1.0000
20 0.0912 0.8180 1.0000 1.0000
30 0.1770 1.0000 1.0000 1.0000
40 0.0938 1.0000 1.0000 1.0000

both heteroskedasticity scenarios in figures A2(a) and A2(b), it is clear in figures A2(c)
and A2(d) that the MART method is outperformed by both MAB and MARF by a large
margin in both scenarios. In fact under random heteroskedasticiy MART performs sim-
ilarly to OLS estimation of GUM. This reinforces our claim that gains to adding model
averaging to recursively partitioned subgroups occurs when there is systemic heterogene-
ity perhaps due to parameter heterogeneity. The MART method only outperforms GUM
under parameter heterogeneity.

Figure A2: Risk Comparison under Different Scenarios
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(a) Random Heteroskedasticity: RT vs. MART
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(b) Parameter Heterogeneity: RT vs. MART
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(c) Random Heteroskedasticity: All

MART
MAB
MARF
GUM

200 400 600 800 1000

Number of Observations

60

70

80

90

100

110

120

130

R
is

k

(d) Parameter Heterogeneity: All
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