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Abstract

We explore model misspecification in an observational learning framework.

Individuals learn from private and public signals and the actions of others. An

agent’s type specifies her model of the world. Misspecified types have incorrect

beliefs about the signal distribution, how other agents draw inference and/or

others’ payoffs. We establish that the correctly specified model is robust in

that agents with approximately correct models almost surely learn the true

state asymptotically. We develop a simple criterion to identify the asymptotic

learning outcomes that arise when misspecification is more severe. Depending

on the nature of the misspecification, learning may be correct, incorrect or be-

liefs may not converge. Different types may asymptotically disagree, despite

observing the same sequence of information. This framework captures behav-

ioral biases such as confirmation bias, false consensus effect, partisan bias and

correlation neglect, as well as models of inference such as level-k and cognitive

hierarchy.
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1 Introduction

Faced with a new decision, individuals gather information from many diverse sources

before choosing an action. This can include the choices of peers, the announcements

of public institutions, such as a government or health agency, and private sources,

such as past experiences in similar situations. For example, when deciding whether to

enroll in a degree program, an individual may read pamphlets and statistics about the

opportunities the program provides, discuss the merits of the program with faculty,

and observe the enrollment choices of other students. Learning from these sources

requires a model of how to interpret signals, how the choices of other individuals

reflect their information, and how to aggregate multiple pieces of information.

A rich literature in psychology and experimental economics documents the myr-

iad of biases that individuals exhibit when processing information and interpreting

others’ decisions. Individuals have been found to systematically overweight informa-

tion in favor of their prior beliefs (confirmation bias),1 overreact or underreact to

information (over- and under-confidence),2 incorrectly aggregate correlated informa-

tion (correlation neglect),3 systematically slant information towards a preferred state

(motivated reasoning, partisan bias),4 misunderstand strategic interaction (level-k,

cognitive hierarchy),5 and miscalculate the extent to which others’ preferences are

similar to their own (false consensus effect, pluralistic ignorance).6 These biases are

forms of model misspecification in which individuals have incorrect models of the

informational environment and how others make decisions.

In this paper, we characterize how model misspecification affects long-run learning

in a sequential learning framework. Individuals choose between two alternatives.

Their payoff depends on their own action choice and an unknown state of the world.

Prior to making a decision, an individual learns about the state by observing the

actions of her predecessors, a private signal, and a sequence of public signals. An

individual’s type specifies how she interprets signals, and how she believes others

1Darley and Gross (1983); Lord, Ross, and Lepper (1979); Plous (1991).
2Moore and Healy (2008).
3Enke and Zimmermann (2017); Eyster and Weizsacker (2011); Kallir and Sonsino (2009).
4Bartels (2002); Bénabou and Tirole (2011); Brunnermeier and Parker (2005); Jerit and Barabas

(2012); Koszegi and Rabin (2006); Kunda (1990).
5Kübler and Weizsäcker (2004); Kübler and Weizscker (2005); Penczynski (forthcoming).
6Gilovich (1990); Grebe, Schmid, and Stiehler (2008); Marks and Miller (1987); Miller and

McFarland (1987, 1991); Ross, Greene, and House (1977).
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draw inference and make decisions. Misspecified models of the signal process are

modeled as a mapping from the true to the misperceived posterior belief. We provide

a foundation for this representation as the reduced form of a misspecified measure over

an arbitrary signal space (Appendix A.1). Misspecified models of how others draw

inference are captured by a type’s perceived distribution over the type space, which

can differ from the true distribution. Individuals with different types may coexist,

and they can either be aware or unaware of each others’ models of the world. Our

framework captures the information-processing biases cited above, and nests several

previously developed behavioral models of inference.7

We study the asymptotic behavior and beliefs of individuals to determine when

individuals with misspecified models adopt the desirable action, and whether individ-

uals with different misspecified models conform or disagree. We know from correctly

specified observational learning models that individuals asymptotically adopt the de-

sirable action when sufficient information arrives.8 Misspecification opens the door

to learning outcomes – long-run beliefs about the state – that do not occur in the

correctly specified model. This includes incorrect learning, where beliefs converge to

the wrong state with positive probability, non-stationary incomplete learning, where

beliefs about the state almost surely do not converge, and disagreement, where with

positive probability, some types learn the correct state and others learn the incorrect

state.

Our first main result (Theorem 1) characterizes each type’s asymptotic learning

outcomes. We show that the set of asymptotic learning outcomes that arise with

positive probability depends on two expressions that are straightforward to derive

from the primitives of the model – (i) the expected change in the likelihood ratio for

each type near a candidate limit belief; and (ii) an ordering over the type space,

which we refer to as the total informativeness rank. The first expression is used to

7Appendix B maps Rabin and Schrag (1999) and Epstein, Noor, and Sandroni (2010) into the
framework of this paper. It also outlines how our framework can be used to study other non-Bayesian
learning rules.

8Individuals almost surely adopt the optimal action asymptotically if there are arbitrarily precise
private signals (Smith and Sorensen 2000), actions perfectly reveal beliefs (Lee 1993), a subset of
individuals who do not observe others’ actions (Acemoglu, Dahleh, Lobel, and Ozdaglar 2011), or
an infinite sequence of public signals. Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch
(1992) first studied the sequential observational learning framework with a binary signal space.
They demonstrate that incomplete learning may arise when the action space is coarser than the
belief space. Ali (2016) shows that incomplete learning can arise even when the action space is
isomorphic to the belief space.
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determine whether a learning outcome is locally stable, in that beliefs converge to this

outcome with positive probability, from a neighborhood of the outcome. We show

that a learning outcome is locally stable if and only if the expected change in the log

likelihood ratio moves toward this outcome from nearby beliefs. We are interested in

a characterization that is independent of the initial belief, and therefore, we need a

tighter notion of stability. We say an outcome is globally stable if beliefs converge

to this outcome with positive probability, from any initial belief. For an agreement

outcome – all types have the same (possibly incorrect) limit beliefs – we show that

local stability is both necessary and sufficient for global stability. However, a disagree-

ment outcome – types have different limit beliefs – requires an additional condition to

establish global stability. Starting from a common prior, it must be possible to sep-

arate the beliefs of different types. The second expression, the total informativeness

rank, is a sufficient condition to separate beliefs. Therefore, a disagreement outcome

arises with positive probability, from any initial belief, if it is locally stable and total

informativeness ranked, while a disagreement outcome almost surely does not arise

if it is not locally stable. Given a particular form of misspecification, deriving these

two expressions will characterize the set of asymptotic learning outcomes. Correct

learning, incorrect learning, non-stationary incomplete learning and disagreement are

all possible under certain forms of misspecification.

To establish Theorem 1, we use results from Markov dynamic systems to char-

acterize the limiting behavior of the belief process for each type. The equations of

motion for the dynamic system are equilibrium objects that are derived from each

agent’s optimal choice, as well as their beliefs about the behavior of other agents.

An individual’s interpretation of others’ actions depends on the current belief vector.

Therefore, the equations of motion are state-dependent and nonlinear. This presents

a technical challenge, as the process fails to satisfy standard conditions from the

existing literature on Markov chains (despite the fact that the belief process has a

countable state space).

Our second set of main results (Theorems 2 and 3) establish that the correctly

specified model is robust to misspecification. As long as individuals have approxi-

mately correct models of the signal processes and how others draw inference, then

learning is complete in that all types almost surely learn the correct state. Even if

there are multiple types of individuals with biases that move in different directions,

complete learning obtains, as long as none of these biases are too severe. This may
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not seem surprising, since Bayes rule is continuous. But in an infinite horizon setting,

a small bias in each period has the potential to sum to a large bias in aggregate.

These results establish that this does not occur.

We close with three applications that demonstrate various forms of misspecifica-

tion – level-k reasoning, partisan bias and confirmation bias. In the level-k appli-

cation, individuals correctly interpret signals, but have a misspecified model of how

others draw inference. Depending on the severity of the misspecification, individuals

may learn the correct or incorrect state, and agents with different levels of reasoning

may asymptotically disagree.9 A surprising finding is that a higher level of reasoning

may perform strictly worse than a lower level of reasoning. Therefore, it may be

optimal for an agent to continue reasoning at a lower level, even if he can acquire the

ability to use a higher level of reasoning for an arbitrarily small cost.

In the partisan bias application, some individuals systematically slant information

towards one of the states. These partisan types believe that all other agents interpret

information in the same way as them. Non-partisan types correctly interpret infor-

mation, but do not account for the slant of the partisan types. We establish that

as long as the frequency of partisan types or the level of their bias is not too large,

then learning is correct for both types. As the bias and frequency of partisan types

increase, both types pass through a region of the parameter space in which the beliefs

of neither type converges, before reaching a region in which both types almost surely

learn the incorrect state. We also consider the case in which non-partisan types have

correct beliefs about the share of partisan types and their level of bias. Disagreement

arises almost surely for severe enough levels of partisan bias.

Finally, in the confirmation bias application, a single type systematically slants

information towards the state that she believes is more likely. As in Rabin and Schrag

(1999), we show that incorrect learning can arise if the degree of confirmation bias is

sufficiently high.

Similar to our robustness results for the correctly specified model, our characteri-

zations of asymptotic learning outcomes in misspecified models are robust. Therefore,

the insights from these applications are not sensitive to the exact choice of functional

form used to pin down each bias. This also establishes that the models nested in our

framework are robust to nearby forms of misspecification.

9Eyster and Rabin (2010) is a level-k model in which all agents are level-2, but believe that all
other agents are level-1.
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Related theoretical work shows that information processing biases and incorrect

models of inference can lead to incorrect learning and biased beliefs. This includes

when agents underweight and overweight new information (Epstein et al. 2010; Rabin

and Schrag 1999), selectively pay attention (Schwartzstein 2014), fail to account for

redundant information (Bohren 2016; Eyster and Rabin 2010; Gagnon-Bartsch and

Rabin 2017), have a coarse model of inference such as the analogy-based expectation

equilibrium solution concept (Guarino and Jehiel 2013; Jehiel 2005), overestimate

the similarity of others’ preferences (Gagnon-Bartsch 2017), or use a non-Bayesian

updating heuristic (Jadbabaie, Molavi, Sandroni, and Tahbaz-Salehi 2012). Theo-

ries of cognitive limitations provide a foundation for certain information-processing

biases. Bounded memory can lead to behavior that is consistent with many docu-

mented behavioral phenomena, including belief polarization, confirmation bias and

stickiness (Wilson 2014). Allowing individuals to selectively interpret signals leads to

confirmation bias and conservatism bias (Gottlieb 2015). Bohren (2016) characterizes

asymptotic learning outcomes in a model with a single misspecified type who under-

estimates or overestimates redundant information. Beliefs do not converge when the

underestimation is severe, whereas belief may converge to the incorrect state if the

overestimation is severe. The robustness result in Bohren (2016) is a special case of

the robustness theorems in this paper.

Esponda and Pouzo (2016, 2017) explore the implications of model misspecifica-

tion for solution concepts. In a Berk-Nash equilibrium, players have a set of (possibly

misspecified) models of the world. Individuals play optimally with respect to the

model from this set that is the best fit (formally, the model that minimizes relative

entropy with respect to the true distribution of outcomes under the equilibrium strat-

egy profile). Nash equilibrium is a special case in which the set of models includes the

correctly specified model (which is always the best fit), while our paper corresponds

to the case in which each individual has a single (possibly misspecified) model for

each state.10 In our framework, when the belief about the state converges, each type

believes that the true state is the state that is the best fit from his set of models,

given the frequency of actions and signals that arise when each type is playing opti-

mally with respect to his belief about the state. This is equivalent to a Berk-Nash

10In our framework, an agent’s type and a state corresponds to a model of the world in the
Esponda and Pouzo (2016) framework. Our framework implicitly restricts the feasible models of the
world, in that an agent must have the same type in every state.

5



equilibrium in a dynamic game with infinitely many players.

Madarász and Prat (2016) study optimal mechanism design when the principal’s

model of the agent’s preferences is misspecified, in that it is a finite approximation of

the truth. When non-local incentive constraints bind, using the optimal mechanism

with respect to a misspecified model can lead to non-vanishing losses, even when

the level of misspecification is small. This contrasts with our robustness results, in

which the losses from misspecification vanish as the misspecified model approaches

the correctly specified model.

An older statistics literature on model misspecification complements recent work.

Berk (1966) and Kleijn and van der Vaart (2006) show that when an individual with

a misspecified model is learning from i.i.d. draws of a signal, her beliefs will converge

to the distribution that minimizes relative entropy with respect to the true model.

Shalizi (2009) extends these result to a class of non-i.i.d. signal processes. He looks

at the limiting distributions of posteriors and establishes conditions for the posterior

to converge to the set of distributions that minimize the relative entropy with respect

to the true model. These assumptions do not hold in our environment. In particular,

the asymptotic-equipartition property, which describes the long-run behavior of the

sample entropy, is generally not satisfied in social learning environments with model

misspecification.

The paper proceeds as follows Section 2 sets up the general model and outlines

the individual’s decision problem. Section 3 presents the main results, including

characterizing the asymptotic learning outcomes under misspecification and estab-

lishing robustness. Section 4 develops three applications to explore specific forms of

misspecification. Most proofs are in the Appendix.

2 The Common Framework

2.1 The Model

There are two payoff-relevant states of the world, ω ∈ {L, R}, with common prior

belief P (ω = R) = 1/2. Nature selects one of these states at the beginning of the

game. A countably infinite set of agents T = {1, 2, ...} act sequentially and attempt

to match the realized state of the world by making a single decision at ∈ {L,R}.
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Information. Agents learn from private information, public information and the

actions of other agents. Before choosing an action, each agent t observes the ordered

history of past actions (a1, ..., at−1), a private signal zt ∈ Z, where Z is an arbitrary

signal space, and the ordered history of public signals (y1, ..., yt), where y ∈ Y and

Y is binary. Let ht = (a1, ..., at−1, y1, ..., yt−1) denote the action and public signal

history.

Suppose signals 〈zt〉 and 〈yt〉 are i.i.d. across time, conditional on the state,

jointly independent, and drawn according to probability measures µωz ∈ ∆(Z) and

µωy ∈ ∆(Y) in state ω. Assume that no private or public signal perfectly reveals the

state, which implies that both µLz , µ
R
z and µLy , µ

R
y are mutually absolutely continuous

with common supports, which without loss of generality we assume to be Z and Y .

Finally, assume that some signals are informative, which rules out the case where

both dµLz /dµ
R
z = 1 almost surely and dµLy /dµ

R
y = 1 almost surely.

Given private signal z, the correctly specified private belief that the state is L is

s(z) = 1/(1+dµRz /dµ
L
z (z)). Let c.d.f. F ω(s) ≡ µωz (z|s(z) ≤ s) denote the distribution

of s, and let [b, b̄] ⊆ [0, 1] denote the convex hull of the common support of private

beliefs, suppF . Beliefs are bounded if 0 < b < b̄ < 1, and unbounded if [b, b̄] = [0, 1].

Similarly, given public signal y, the correctly specified public belief that that state is

L is σ(y) = 1/(1 + dµRy /dµ
L
y (y)), with c.d.f. Gω(σ) ≡ µωy (y|σ(y) ≤ σ) denoting the

distribution of σ. The public signal is binary, so there are at most two public beliefs,

{σR, σL}, with σR ≤ 1/2 ≤ σL. Let suppG denote the common support of Gω.

We will work directly with the correctly specified belief processes 〈st〉 and 〈σt〉,
where st ≡ s(zt) is referred to as the private signal and σt ≡ σ(yt) is referred to as

the public signal. From Lemma A.1 in Smith and Sorensen (2000) and Lemma 9 in

Appendix A.1, (suppF, FL) and (σR, σL) are sufficient for the state signal distribu-

tions.

Models of Inference and Payoffs. Agent t has privately observed type θt ∈ Θ,

where Θ is a non-empty finite set and π ∈ ∆(Θ) is the distribution over types. Each

type θ specifies a payoff structure and a model of inference. In terms of payoffs, all

types seek to choose the action that matches the hidden state, but types differ in

their costs of errors. Specifically, an agent receives a payoff of 0 if her action matches

the realized state. Type θ receives a penalty of −uθ ∈ (0, 1) from choosing action L

in state R, and a penalty of −(1− uθ) from choosing action R in state L.
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A agent’s model of inference determines how she processes information about

the state from signals and prior actions. Type θ’s model of inference includes (i) a

(possibly misspecified) belief about the likelihood of other types, π̂θ ∈ ∆(Θ), (ii) a

(possibly misspecified) belief about the private signal distribution, µ̂ω,θz (·|p), in each

state ω ∈ {L,H} and (iii) a (possibly misspecified) belief about the public signal

distribution, µ̂ω,θy (·|p), in each state ω ∈ {L,H}, where p ∈ [0, 1] is the type’s belief

that the state is L after observing the history but before observing her private sig-

nal. This allows an agent’s misspecification about the signal distribution to depend

on her current belief (for example, to capture confirmation bias). Assume that all

distributions are continuous in p under the sup norm.

We place several restrictions on the type of misspecification an agent may have

about the state signal distribution. Agents correctly believe that no private or pub-

lic signal perfectly reveals the state, which implies that both µ̂L,θz (·|p), µ̂R,θz (·|p) and

µ̂L,θy (·|p), µ̂R,θy (·|p) are mutually absolutely continuous for all p ∈ [0, 1]. Agents do not

observe signals inconsistent with their models of the world, which implies that both

pairs of misspecified measures have full support. Lastly, we say that two pairs of mea-

sures have an equivalent ordinal ranking of signals if they rank the informativeness

of signals in the same order.

Definition 1 (Equivalent Ordinal Ranking of Signals). Given mutually absolutely

continuous probability measures µL, µR ∈ ∆(X ) and νL, νR ∈ ∆(X ) on some signal

space X , with supp ν = suppµ, these pairs of measures have an equivalent ordinal

ranking of signals if for any x, x′ ∈ X such that dµR

dµL
(x) ≥ dµR

dµL
(x′), then dνR

dνL
(x) ≥

dνR

dνL
(x′), with equality iff dµR

dµL
(x) = dµR

dµL
(x′).

We assume that both the misspecified public and private signal distributions have

an equivalent ordinal ranking of signals as the true distributions. This means that

if for any two signals z, z′ ∈ Z, if signal z leads to a higher true private belief that

the state is L than signal z′, then it also leads to a higher misspecified private belief,

with an analogous interpretation for the public signal. We make one exception to

this assumption to allow for the possibility that a type believes signals are entirely

uninformative, µ̂L,θz = µ̂R,θz or µ̂L,θy = µ̂R,θy .

Given private signal z and prior belief p ∈ [0, 1], the misspecified private belief

that the state is L is ŝθ(z, p) = 1/(1 + dµ̂R,θz /dµ̂L,θz (z|p)). By Lemma 8 in Appendix

A.1, it is possible to represent the misspecified private belief as a function of the
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true private belief, ŝθ(z, p) = rθ(s(z), p) for a function rθ that is strictly increasing

in its first argument and, when private signals are informative, satisfies r(b, ·) < 1/2

and r(b, ·) > 1/2. Define the c.d.f. of the perceived distribution of signal s as

F̂ ω,θ(s) ≡ µ̂ωz (z|s(z) ≤ s). Similarly, we can represent the misspecified belief after

observing the public signal y and holding prior belief p as σ̂θ(y, p) = ρθ(σ(y), p),

where ρθ(σR, p) ≤ 1/2 ≤ ρθ(σL, p) with either both or neither inequalities binding.

Therefore, taking (s, σ) as the private and public signals, the tuple {rθ, F̂L,θ, ρθ} is

sufficient for representing type θ’s signal misspecification and we do not need to keep

track of the underlying measures on Z (Lemma 8 in Appendix A.1). The functions

rθ(s, ·) and ρθ(σ, ·) determine the perceived posterior beliefs following s and σ.11

In summary, a type is represented as a tuple {uθ, π̂θ, rθ, F̂L,θ, ρθ} that specifies

a payoff, belief about other types and model of the state signal distributions.12 We

define several special types. A rational type θC has a correctly specified model,

π̂C = π, rC(s, ·) = s, F̂L,C = FL and ρC(σ, ·) = σ. A noise type θN believes signals

and actions are uninformative, rN(s, ·) = 1/2, ρN(σ, ·) = 1/2 and everyone else is a

noise type, π̂N = δθN . An autarkic type θA acts solely based on its private signal

and does not incorporate the history into its decision-making. It believes everyone

else is a noise type, π̂A = δθN , the public signal is uninformative, ρA(σ, ·) = 1/2,

and the private signal is informative, rA(s, ·) 6= 1/2. We assume rθ(b, 1/2) > uθ

and rθ(b, 1/2) < uθ to ensure the autarkic type chooses both actions with positive

probability (otherwise, it is equivalent to a noise type). There can be multiple autarkic

types with different private signal misspecifications and / or an autarkic type with a

correctly specified signal distribution. A sociable type believes actions are informative

and does learn from the history – these are the set of types who are not noise or

autarkic types.

Given a set of types Θ, let the vector (θ1, ..., θn) order Θ such that the first k types

are sociable and the remaining n−k types are autarkic or noise types. Let ΘA denote

the set of autarkic types and ΘS = (θ1, ..., θk) denote the set of sociable types.

11Further, for any strictly increasing function r : suppFs → [0, 1], if r(b) < 1/2 and r(b) > 1/2,
then there exist a pair of mutually absolutely continuous probability measures with full support on
∆(Z) that are represented by r.

12We can view our restriction to allowing agents to have a single model of signals and inference
as the long-run outcome of a learning process across multiple social learning games, where agents
begin with multiple types. This is similar to Esponda and Pouzo (2016), who justify Berk-Nash
equilibria as the long run outcome of a similar learning process.
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We focus on settings where learning is complete in the correctly specified model –

that is, an infinite amount of information is revealed through actions or public signals.

The following assumption ensures that this is the case by assuming that either there

is a positive mass of autarkic types or the public signal is informative.

Assumption 1. At least one of the following hold: (i) π(ΘA) > 0; (ii) σL > 1/2.

We also assume that sociable types have models of inference that believe actions

and/or public signals are informative.

Assumption 2. For each sociable type θ, at least one of the following hold: (i)

π̂θ(ΘA) > 0; (ii) ρθ(σL, ·) > 1/2.

Finally, we rule out the possibility that an agent observes action choices that are

inconsistent with her model of the world.

Assumption 3. If π(ΘA) > 0 or [b, b̄] = [0, 1], then for each sociable type θ, at least

one of the following hold: (i) π̂θ(ΘA) > 0; (ii) rθ(b, ·) = 0 and rθ(b̄, ·) = 1.

This ensures that when both actions occur with positive probability after any history,

every sociable type expects both actions to occur with positive probability.

The timing of the game is as follows. At time t, agent t observes his type θt,

the history ht, the private signal st, then chooses action at. Then public signal yt is

realized, and the history ht+1 is updated to include (at, yt).
13

2.2 The Individual Decision-Problem

Consider an agent of type θi who observes history h. Using her model of inference,

she computes the probability of this history in each state, P i(h|ω), and applies Bayes

rule to form the public likelihood ratio λi(h) that the state is L versus R,

λi(h) =
P i(h|L)

P i(h|R)
.

This forms her belief P i(L|h) = λi(h)/(1 + λi(h)) for interpreting the private signal

when the signal misspecification depends on her current belief, and is also sufficient

13Allowing agent t to observe yt before choosing an action does not change the results, but
complicates the notation.
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for the history. Next, the agent observes private signal s. Given public belief λi, she

uses Bayes rule to compute perceived private belief ri(s, λi/(λi + 1)) that the state is

L, where in a slight abuse of notation, we let i index the misspecified posterior belief

representation for θi. She forms posterior likelihood ratio

qi(λi, s) = λi

(
ri(s, λi/(λi + 1))

1− ri(s, λi/(λi + 1))

)
that the state is L versus R. The agent maximizes her expected payoff by choosing

action L if qi(λi, s) ≥ ui/(1 − ui), and action R otherwise. For any public belief λi,

this decision rule can be represented as a cut-off rule on signal s: choose L if

s ≥ si(λi) ≡ (ri)−1

(
ui

λi(1− ui) + ui
,

λi
1 + λi

)
, (1)

and otherwise choose R, where (ri)−1 is the inverse of ri in the first component. It is

common knowledge that each type maximizes payoffs subject to her posterior belief,

and therefore, the decision rule of each type is also common knowledge.

2.3 Examples

This framework captures common information-processing biases and models of rea-

soning about others’ action choices. It can be used to study both social and individual

learning.14 The following examples illustrate several types of misspecification.

Level-k and Cognitive Hierarchy. Level-k corresponds to a model in which

agents have a misspecified belief about the distribution of types. Level-0 is the noise

type. Level-1 believes all other agents are the noise type and behaves as the autarkic

type. Level-2 believes all other agents are the autarkic type and interprets all prior

actions as independent private signals. Level-3 believes all other agents are level-2,

and so on. The cognitive hierarchy model is similar, but allows agents to have a

richer belief structure over the types of other agents. A level-k agent have a perceived

distribution that can place positive probability on types of level-0 through k-1.

14Social learning settings are captured by types with informative private signals and non-trivial
models of inference about other agents. Individual learning settings are captured by informative
public signals, uninformative private signals and agents who do not learn from actions. This is
isomorphic to a setting with a single long-run agent of each type.

11



Partisan Bias. Agents systematically slant signals towards one state. For example,

a parameterization that slants signals towards state L is r(s, p) = sν , where ν < 1.

Confirmation Bias. Agents overweight information in favor of their prior. That

is, they overweight signals in favor of state L when the prior is high, and under-

weight signals in favor of state L when the prior is low. For example, a symmetric

parameterization is r(s, p) ≥ s if p > 1/2 and r(s, p) ≤ s if p < 1/2.

Under/Overconfidence. Agents either underweight or overweight signals. For

example,
r(s, p)

1− r(s, p)
=

(
s

1− s

)ν
,

where ν ∈ [0, 1) corresponds to underweighting and ν ∈ (1,∞) corresponds to over-

weighting.

False Consensus Effect. Agents overweight the likelihood that others have similar

preferences, when in reality preferences are heterogeneous. For example, there are two

types of agents with different costs of choosing the incorrect action, u1 6= u2. However,

all agents believe that other agents have the same cost, π̂1(θ1) = 1 and π̂2(θ2) = 1.

Pluralistic Ignorance. Agents underweight the likelihood that others have similar

preferences. For example, all agents have cost of choosing an incorrect action u1, but

believe that others have cost of choosing an incorrect action u2.

3 Learning Dynamics

We study the asymptotic learning outcomes – long-run beliefs about the state – of

sociable types. Autarkic and noise types do not learn from the history; therefore,

their public beliefs are constant across time and their behavior is stationary.

3.1 The Likelihood Ratio

Let λi denote the public likelihood ratio of type θi, and define λ ≡ (λ1, ..., λk) as the

vector of public likelihood ratios for sociable types (note λi = 1 for all autarkic or noise

types θi). Recall that the public likelihood ratio for type θi after observing history h

12



depends on how type θi perceives the probability of h in each state, λi(h) = P i(h|L)
P i(h|R)

.

In order to calculate λi(h), we need to determine how P i(h|ω) depends on θi’s model

of inference.

Misspecification introduces a wedge between the perceived and true probability

of observing each action in h. An agent’s type determines how she interprets each

action, while the true probability of each action depends on the true signal and type

distributions. The true probability that an agent of type θi chooses action L when she

has public likelihood ratio λ and the state is ω is equal to the probability of observing

a private signal below the cutoff si(λ) from decision rule (1). This is determined

by the true signal distribution, F ω(si(λ)). However, type θj believes that θi chooses

action L with probability F̂ ω,j(si(λ)). This is θj’s perceived probability of observing

a private signal is below θi’s cutoff. Similarly, the probability of action R is equal

to the probability of observing a signal above si(λ), 1 − F ω(si(λ)). The perceived

probability is defined analogously.

Given λ and state ω, the true probability of action L across all types depends on

the true distribution of types,

ψ(L|ω,λ) ≡
n∑
j=1

F ω(sj(λj))π(θj).

Similarly, the probability of actionR is ψ(R|ω,λ) = 1−ψ(L|ω,λ). Type θi’s perceived

probability of action L depends on her perceived distribution of types π̂i and signals

F ω,i,

ψ̂i(L|ω,λ) ≡
n∑
j=1

F̂ ω,i(sj(λj))π̂
i(θj).

Similarly, her perceived probability of action R is ψ̂i(R|ω,λ) = 1− ψ̂i(L|ω,λ).

Each type interprets the history and forms a public likelihood ratio using her

perceived probability of actions and public signals. Given a likelihood ratio λt, action

at and public signal σt in period t, the likelihood ratio in the next period is λt+1 =

φ(at, σt,λt), where φ : {L,R} × {σL, σR} × Rn
+ → Rn

+, with

φi(a, σ,λ) ≡ λi

(
ψ̂i(a|L,λ)

ψ̂i(a|R,λ)

)(
ρi(σ, λi/(λi + 1))

1− ρi(σ, λi/(λi + 1))

)
. (2)

The transition probability for the likelihood ratio depends on the true probability

13



of each action and public signal. In a slight abuse of notation, let ψ(a, σ|ω,λ) ≡
ψ(a|ω,λ)dGω(σ) denote the probability of action a and public signal σ when the

state is ω and the current value of the likelihood ratio is λ, with analogous notation

for ψ̂(a, σ|ω,λ). Given {at, σt,λt}, the process transitions to {at+1, σt+1, φ(at, σt,λt)}
with probability ψ(at+1, σt+1|ω, φ(at, σt,λt)).

15

The joint stochastic process 〈at, σt,λt〉∞t=1 is a discrete-time Markov chain starting

at λ1 = 1. The stochastic properties of this Markov chain determine the learning

dynamics for each type. The equations of motion are state-dependent and nonlinear,

due to the dependence of equilibrium actions on the current belief vector. This

presents a technical challenge, as the process fails to satisfy standard conditions from

the existing literature on Markov chains (despite having a countable state space). In

the following sections, we use results on the stability of nonlinear stochastic difference

equations to characterize the limiting behavior of the likelihood ratio for each type.

3.2 Main Results

Asymptotic Learning Characterization. We first define several asymptotic learn-

ing outcomes. Let incorrect learning (for type θi) denote the event where λt → ∞k

(λi,t →∞), correct learning (for type θi) denote the event where λt → 0k (λi,t → 0)

and incomplete learning (for type θi) denote the event where λt (λi,t) does not con-

verge or diverge, where 0k (∞k) denotes the vector of all zeros (all ∞). Agents

asymptotically agree when all types have the same limit beliefs, λ ∈ {0k,∞k},
and agents asymptotically disagree when different types have different limit beliefs,

λ ∈ {0,∞}k \ {0k,∞k}. Assumptions 1 and 2 rule out λt → λ for any λ /∈ {0,∞}k.
Our main result characterizes the asymptotic learning outcomes in misspecified

models. In correctly specified models, the likelihood ratio is a martingale, and the

Martingale Convergence Theorem provides a powerful tool to characterize its limit

behavior. This is not the case in a misspecified model – with even the slightest

misspecification, the likelihood ratio is no longer a martingale, as any perturbation

breaks the equality condition. Therefore, an alternative approach is necessary to

characterize limit beliefs. The characterization we develop depends on two expressions

15When an agent’s interpretation of signals depends on her current belief, this set-up implicitly
assumes that the agent uses belief λt to interpret both st and σt. This is for notational simplicity.
The results are unchanged if the agent uses λt to interpret st, and an interim belief that incorporates
the information from at to interpret σt.
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that are straightforward to calculate from the primitives of the model – the type space

and the signal distributions.

The first expression, the expected change in the log likelihood ratio, determines

whether a candidate learning outcome is locally stable, in that the likelihood ratio

converges to this limit belief with positive probability, from a neighborhood of the

belief. Without loss of generality, suppose that the realized state is ω = R. For type

θi, the expected change in the log likelihood ratio at λ ∈ {0,∞}k depends on the

perceived and true probability of each action,

γi(λ) ≡
∑

(a,σ)∈{L,R}×{σL,σR}

ψ(a, σ|R,λ) log

(
ψ̂i(a, σ|L,λ)

ψ̂i(a, σ|R,λ)

)
. (3)

Let γ(λ) = (γ1(λ), ..., γk(λ)). The sign of each component of γ(λ) determines local

stability. An outcome λ is locally stable if and only if γi(λ) is negative for types with

λi = 0 and positive for types with λi =∞. Let Λ denote the set of learning outcomes

that are locally stable,

Λ ≡ {λ ∈ {0,∞}k|γi(λ) < 0 if λi = 0 and γi(λ) > 0 if λi =∞}. (4)

We establish that if 〈λt〉∞t=1 converges, then it must converge to a limit random variable

whose support lies in Λ. Intuitively, in order for the likelihood ratio to converge to a

candidate limit point with positive probability, the likelihood ratio must move towards

this limit point in expectation from nearby beliefs. It is straightforward to compute Λ

from the primitives of the model. This result significantly simplifies the set of possible

limit beliefs.

We are interested in a characterization of asymptotic learning that is independent

of the initial belief, and therefore, we need a tighter notion of stability. A learning

outcome is globally stable if the likelihood converges to this limit belief with positive

probability, from any initial belief. For an agreement outcome, we show that local

stability is necessary and sufficient for global stability. Therefore, computing Λ is

the only calculation necessary to determine whether correct or incorrect learning

outcomes arise. These learning outcomes arise with positive probability if and only

if the corresponding limit beliefs, 0k or ∞k, are in Λ. For disagreement outcomes, a

failure of local stability is sufficient to ensure that the outcome almost surely does not

arise, but an additional condition is necessary to establish when the outcome arises,
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from any initial belief. For a disagreement outcome to be globally stable, it must be

possible to separate the beliefs for the types converging to 0 and the types converging

to ∞.

The second expression, which we term the total informativeness ranking, is a

condition on how the type space is ordered that is sufficient to separate beliefs. To

derive the expression, first define a pairwise order that relates how two types interpret

actions and signals.

Definition 2 (Pairwise Informativeness Order). Given λ ∈ {0,∞}k, θi �λ θj iff∣∣∣∣∣log

(
ψ̂i(R, σR|L,λ)

ψ̂i(R, σR|R,λ)

)∣∣∣∣∣ ≥
∣∣∣∣∣log

(
ψ̂j(R, σR|L,λ)

ψ̂j(R, σR|R,λ)

)∣∣∣∣∣
and ∣∣∣∣∣log

(
ψ̂i(L, σL|L,λ)

ψ̂i(L, σL|R,λ)

)∣∣∣∣∣ ≤
∣∣∣∣∣log

(
ψ̂j(L, σL|L,λ)

ψ̂j(L, σL|R,λ)

)∣∣∣∣∣ .
In other words, the most informative action and public signal in favor of state R,

(R, σR), which unambiguously decreases the likelihood ratio, is more informative for

type θi than type θj. The most informative action and public signal in favor of state

L, (L, σL), which unambiguously increases the likelihood ratio, is more informative

for type θj than type θi.

We use the pairwise informativeness order to define a ranking over all types. A

disagreement outcome is total informativeness ranked if the least pairwise informative

type in the set of types whose limit beliefs converge to 0 is pairwise more informative

than the greatest pairwise informative type whose limit beliefs converge to ∞.

Definition 3 (Total Informativeness Rank). A disagreement vector λ = (0m,∞k−m)

is total informativeness ranked if for i = 1, ...,m and j = m + 1, ..., k and for either

λA ∈ {0k,∞k},

1. There exists an i∗ ≤ m such that θi �λA θi∗ for all i ≤ m and there exists an

j∗ > m such that θj∗ �λA θj for all j > m.

2. θi∗ �λA θj∗.

For any disagreement outcome in Λ, the total informativeness rank is a sufficient

condition for global stability. If the information from actions and public signals
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arrives at a rate such that the least informative type with λi = 0 moves towards 0 at

a faster rate than the most informative type with λj =∞ moves towards 0, then it is

possible to find a finite sequence of actions and public signals that sufficiently separate

beliefs. Once again, this condition is straightforward to verify from the primitives of

the model.

Given Λ and the total informativeness ranking, Theorem 1 characterizes the set

of asymptotic learning outcomes.

Theorem 1. Assume Assumptions 1, 2 and 3 and suppose ω = R.

• Correct learning occurs with positive probability if and only if 0k ∈ Λ.

• Incorrect learning occurs with positive probability if and only if ∞k ∈ Λ.

• Agents disagree with positive probability if there exists a disagreement vector

λ ∈ Λ that is total informativeness ranked, and agents almost surely do not

disagree if Λ contains no disagreement vectors.

• Incomplete learning (non-convergence) occurs almost surely if Λ is empty, and

beliefs converge almost surely if Λ is non-empty and either (i) 0k ∈ Λ, (ii)

∞k ∈ Λ or (iii) ∃ λ ∈ Λ that is total informativeness ranked.

The conditions for correct and incorrect learning are tight. These learning outcomes

obtain if and only if the respective limit beliefs are in Λ. Disagreement outcomes

are more challenging. We establish a sufficient condition for disagreement to occur,

and a sufficient condition for disagreement not to occur. A general necessary and

sufficient condition is not possible. In particular, we cannot determine whether the

likelihood ratio converges with positive probability to a disagreement vector that is

in Λ, but is not total informativeness ranked. In such a case, whether disagreement

occurs can depend on initial beliefs. In Section 4, we demonstrate that this will not

be an issue for certain forms of misspecification. In these applications, all locally

stable disagreement vectors are total informativeness ranked, and there is no wedge

between the two sufficient conditions. Therefore, Λ fully characterizes asymptotic

learning outcomes.

In Section 3.3, we outline the proof for Theorem 1 through a series of Lemmas.

Before proceeding to the proof, we present several additional results.
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An immediate consequence of Theorem 1 is that learning is complete – correct

learning occurs almost surely – in the correctly specified model (Λ = {0}). More

generally, even if some types of agents have misspecified models, these misspecified

types do not interfere with asymptotic learning for the type that has a correctly

specified model. This type has correct beliefs about the distribution of misspecified

types, and is able to probabilistically parse out the actual information conveyed by

actions. Therefore, learning is complete for the correctly specified type, independent

of the other types’ outcomes.

Corollary 1. Assume Assumptions 1, 2 and 3. Learning is complete for the correctly

specified type θC, λC,t → 0 almost surely.

Robustness of Complete Learning. Our second set of main results establish

that the asymptotic learning properties of the correctly specified model are robust

to some misspecification, in that learning is complete for sociable types with nearby

misspecified models. In correctly specified models, the martingale property of the

likelihood ratio, coupled with the Martingale Convergence Theorem, is used to es-

tablish complete learning. The likelihood ratio is no longer a martingale with even

an arbitrarily small amount of misspecification. However, this is a sufficient, but not

necessary, condition for complete learning. From Theorem 1, the behavior of the log

likelihood ratio yields necessary and sufficient conditions for complete learning. If the

log likelihood ratio is a supermartingale, then learning is complete. An even weaker

conditions is possible. The log likelihood ratio only needs to decrease in expectation

at a finite set of vectors in the belief space for learning to be complete. Namely,

at each candidate learning outcome λ ∈ {0,∞}k.16 Due to the concavity of the log

operator, if the likelihood ratio is a martingale, then the log likelihood ratio satisfies

this condition. Therefore, the correctly specified model is a special case of the set of

models in which complete learning obtains.

Theorem 2 presents two sets of sufficient conditions for complete learning to obtain

for all sociable types. First, if all sociable types have perceived type and public signal

distributions close enough to the true distribution, then learning is complete. This

condition places no restrictions on the perceived private signal distributions. Second,

16An even weaker condition is possible. The log likelihood ratio needs to decrease in expectation
at 0k, and for any other learning outcome λ, the log likelihood ratio cannot increase in expectation
for all types with λi = ∞ and decrease in expectation for all types with λi = 0. This is precisely
the condition that ensures that 0k is the unique locally stable vector.
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if all types have perceived private and public signal distributions close enough to

the true distribution, and sociable types’ perceived frequency of autarkic types is

approximately correct, then learning is complete. This condition holds even if sociable

types have very incorrect beliefs over the distribution of different types. For example,

all sociable types are type θ, but believe all sociable types are type θ′ 6= θ.

Theorem 2. Assume Assumptions 1, 2 and 3 and suppose ω = R.

1. There exists a δ > 0 such that if ||π̂i − π|| < δ and ||ρi − I|| < δ for all sociable

types θi, then learning is complete.

2. There exists a δ > 0 such that if ||ri−I|| < δ, ||F̂L,i−FL|| < δ and ||ρi−I|| < δ

for all types θi, and |π̂i(ΘA)− π(ΘA)| < δ for all sociable types θi, then learning

is complete.

where || · || denotes the supremum metric, and I : [0, 1] → [0, 1] denotes an identity

function, I(s) = s.17

This follows from the continuity of γ in each type θi’s belief over the signal and type

distributions. Since γ is the key expression used to calculate Λ, and Λ = {0} in

the correctly specified model, Λ = {0k} is maintained when some misspecification is

introduced.

More generally, correct learning obtains for any form of misspecification in which

each type’s perceived probability of actions and public signals is close enough to the

true probability. We present a more general robustness theorem, which depends on

the equilibrium objects ψ and ψ̂i. As long as ψ̂i is close to ψ at all of the candidate

limit beliefs {0,∞}k, learning is complete.

Theorem 3. Assume Assumptions 1, 2 and 3 and suppose ω = R. There exists a

δ > 0 such that if for each sociable type θi, if |ψ̂i(a, σ|R,λ) − ψ(a, σ|R,λ)| < δ for

all (a, σ,λ) ∈ {L,R} × {σL, σR} × {0,∞}k, then learning is complete for all sociable

types.

In addition to showing that correct learning is robust to small misspecification,

the tools in this paper allow for a precise characterization of exactly how robust

correct learning is to different types of misspecification. In many interesting examples,

17Given set X and metric space Y , the supremum metric between two bounded functions f :
X → Y and g : X → Y is ||f − g|| = supx∈X |f(x)− g(x)|.
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including those developed in Section 4, the region where correct learning is the unique

outcome can be quite large. Even agents with misspecified models can still learn the

correct state of the world in the long-run.

3.3 Proof of Theorem 1

We establish Theorem 1 through a series of Lemmas. In Lemma 1, we characterize

the stationary vectors of the likelihood ratio, which are candidate limit points of 〈λt〉.
In Lemma 2, we establish when a stationary vector is locally stable. Local stability

depends on fl defined in (4), and Lemma 2 establishes that the set Λ defined in (4) is

the set of locally stable vectors. To fully characterize asymptotic learning outcomes,

we need to determine when the likelihood ratio converges to a stationary vector, from

any initial belief. Lemma 3 establishes that global stability immediately follows from

local stability for agreement vectors. Lemmas 4 and 5 establish a sufficient condition

for a locally stable disagreement vector to also be globally stable. Lemma 6 establishes

that when there is at least one globally stable vector, the likelihood ratio converges

almost surely. Finally, Lemma 7 rules out convergence to non-stationary vectors.

At a stationary vector, the likelihood ratio remains constant for any action and

signal pair that occurs with positive probability.

Definition 4. A vector λ is stationary if for all (a, σ) ∈ {L,R} × {σR, σL}, either

(i) ψ(a, σ|ω,λ) = 0 or (ii) φi(a, σ,λ) = λ for for all θi ∈ ΘS.

By Assumptions 1 and 2, actions and/or public signals are informative at any interior

belief. Therefore, the set of stationary vectors of the likelihood ratio correspond to

each type placing probability 1 on either state L or state R.

Lemma 1. Assume Assumptions 1 and 2. The set of stationary vectors for λ are

{0,∞}k.

Next, we determine when the likelihood ratio converges to a stationary vector

with positive probability. We say stationary vector λ is locally stable if the process

〈λt〉 converges to λ with positive probability when λ1 is in a neighborhood of λ.

Definition 5. A stationary vector λ ∈ {0,∞}k is locally stable if there exists an

ε > 0, M > 0 and neighborhood N =
∏k

i=1 Ni with Ni = {λ|λ < ε} if λi = 0 and

Ni = {λ|λ > M} if λi =∞, such that P (λt → λ|λ1 ∈ N) > 0.
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Recall from (3) that γi(λ) is the expected change in the log likelihood ratio for type

θi when λt = λ, with γ = (γ1, ..., γk). Lemma 2 establishes the relationship between

the local stability of λ and the sign of γi(λ) for each sociable type.

Lemma 2. Suppose ω = R and let λ ∈ {0,∞}k.

1. If γi(λ) < 0 for all θi ∈ ΘS such that λi = 0 and γi(λ) > 0 for all θi ∈ ΘS such

that λi =∞, then λ is locally stable.

2. If there exists a θi ∈ ΘS such that λi = 0 and γi(λ) > 0 or λi = ∞ and

γi(λ) < 0, then λ is not locally stable and P (λt → λ) = 0.

Intuitively, if the likelihood ratio moves towards a stationary point in expectation

when it is within a neighborhood of the stationary point, then the stationary point is

locally stable; otherwise it is not. The likelihood ratio almost surely does not converge

to stationary points that are not locally stable. Given Lemma 2, the set Λ defined in

(4) is generically the set of locally stable vectors.

Local stability establishes convergence when the likelihood ratio is near a sta-

tionary vector. However, we are interested in determining whether convergence to

a stationary vector occurs from any initial value of the likelihood ratio. We say a

stationary vector is globally stable if the likelihood ratio converges to it with positive

probability from any initial value.

Definition 6. A stationary vector λ ∈ {0,∞}k is globally stable if for any initial

value λ1 ∈ (0,∞)k, P (λt → λ) > 0.

Lemma 2 established that if the likelihood ratio converged to λ with positive probabil-

ity, then λ is locally stable. Therefore, the set of globally stable stationary vectors is

a subset of the set of locally stable stationary vectors. It remains to establish when lo-

cal stability implies global stability. For stationary agreement vectors, λ ∈ {0k,∞k},
global stability immediately follows from local stability.

Lemma 3. For λ ∈ {0k,∞k}, if λ is locally stable, then λ is globally stable.

All types update their beliefs in the same directly following either an L action and

public signal σL, or an R action and public signal σR. Therefore, it is possible to push

the likelihood ratio arbitrarily close to a stationary agreement vector with positive

probability by constructing a finite sequence of action and public signal pairs. Once
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the likelihood ratio is close enough to the agreement vector, local stability guarantees

convergence.

Local stability may not imply global stability for stationary disagreement vectors,

λ ∈ {0,∞}k \ {0k,∞k}. In contrast to agreement vectors, it is not always possible to

construct a sequence of action and public signal realizations that push the likelihood

ratio arbitrarily close to the disagreement vector. For example, if two types are

sufficiently close to each other, then disagreement may arise if their initial beliefs

are very far apart, but may not be possible if their initial beliefs are close together.

Therefore, there may exist initial values of the likelihood ratio such that a locally

stable disagreement vector is reached with probability zero.

Lemma 4 establishes a sufficient condition for the global stability of a stationary

disagreement vector when there are two sociable types, k = 2. Define the matrix

A(λ) ≡

log ψ̂1(L,σL|L,λ)

ψ̂1(L,σL|R,λ)
log ψ̂1(R,σR|L,λ)

ψ̂1(R,σR|R,λ)

log ψ̂2(L,σL|L,λ)

ψ̂2(L,σL|R,λ)
log ψ̂2(R,σR|L,λ)

ψ̂2(R,σR|R,λ)

 . (5)

Lemma 4. Suppose k = 2.

1. If (0,∞) is locally stable and either det(A(0, 0)) > 0 or det(A(∞,∞)) > 0, then

(0,∞) is globally stable.

2. If (∞, 0) is locally stable and either det(A(0, 0)) < 0 or det(A(∞,∞)) < 0, then

(∞, 0) is globally stable.

The determinant conditions in Lemma 4 guarantee that the rate of information arrival

is such that it is possible to push beliefs of different types arbitrarily far apart. As

before, once the likelihood ratio is sufficiently close to the disagreement vector, then

convergence obtains when the disagreement vector is locally stable. Lemma 5 builds

on Lemma 4 to establish a sufficient condition for global stability of a stationary

disagreement vector when there are more than two sociable types.

Lemma 5. If disagreement vector λ = (0m,∞k−m) is locally stable and total infor-

mativeness ranked, then (0m,∞k−m) is globally stable.18

Finally, if there is at least one globally stable vector, then the likelihood ratio

converges almost surely.

18While total informativeness rank is a simple and easy to parse condition, the proof would go
through almost unchanged under a more general sufficient condition. Disagreement is globally stable
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Lemma 6. Suppose Λ is non-empty and either (i) 0k ∈ Λ, (ii) ∞k ∈ Λ or (iii)

∃λ ∈ Λ that is total informativeness ranked. Then for any initial value λ1 ∈ (0,∞)k,

there exists a random variable λ with supp(λ) ⊂ Λ such that λt → λ almost surely.

If there are no locally stable vectors, then the likelihood ratio almost surely does not

converge, as Lemma 2 rules out convergence to non-locally stable vectors and the

following lemma rules out convergence to non-stationary vectors.

Lemma 7. If λ ∈ (0,∞)k, then P (λt → λ) = 0.

Theorem 1 immediately follows. The proofs of Lemmas 1-7 are in Appendix A.2.

4 Applications

We next explore learning in three applications. We illustrate how to calculate the set

of asymptotic learning outcomes, Λ, and derive comparative statics for how this set

varies with the extent of the misspecification.

4.1 Level-k Model of Inference

Set-up. Suppose that agent types correspond to a level-k model of inference with

four levels of reasoning, Θ = {θ0, θ1, θ2, θ3}.19,20 Level-0 is a noise type used to model

the beliefs of other types, but does not actually exist in the population. The level-1,

2 and 3 types correctly interpret private information, but have misspecified beliefs

over the type distribution. Level-1 is an autarkic type – it draws inference solely from

its private signal, and is not sophisticated enough to draw inference from the actions

of others. This is modeled by specifying that level-1 types believe prior actions are

uninformative i.e. all other agents are type θ0, π̂1(θ0) = 1.

if it is locally stable and the set

{b ∈ (0,∞)4 : A(λ)b = c for some c such that for any i ≤ m, j > m, ci < cj},

where (A(λ))ij = log
ψ̂i(aj ,σj |L,λ)

ψ̂i(aj ,σj |L,λ)
, is non-empty for some λ ∈ {0k,∞k}.

19Camerer, Ho, and Chong (2004); Costa-Gomes, Crawford, and Iriberri (2009).
20It is possible to allow for higher levels, k > 3. However, empirical and experimental studies

of level-k models rarely find evidence of types above level-3. Penczynski (forthcoming) analyzes
experimental data on social learning and finds evidence of level-1, level-2 and level-3 types, with a
modal type of level-2, across several learning settings.
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Level-2 and level-3 are the sociable types. They believe that actions are informa-

tive, but have incorrect models of how others draw inference. Actions reflect both

private information and information from the actions of others, but level-2 types

do not understand this strategic link. They believe actions solely reflect private in-

formation and fail to account for repeated information stemming from prior agents

observing a subset of the same action history. This leads level-2 types to overweight

the informativeness of actions – their perceived type distribution places probability

one on type θ1, π̂2(θ1) = 1.

Level-3 types have the most sophisticated reasoning. They understand that some

agents act solely based on their private information and some agents misunderstand

the strategic link between action choices and the history. However, they do not

account for the fact that there are other agents with the same level of reasoning.

They believe agents are type θ2 with probability p ∈ [0, 1), π̂3(θ2) = p, and type θ1

with probability 1 − p, π̂3(θ1) = 1 − p. If p is high, they believe most actions are

from level-2 types and underweight the informativeness of actions to counteract the

overweighting behavior of these level-2 types. If p is low, they believe most actions

are from level-1 types and, similar to level-2 types, overweight the informativeness of

actions.

To close the model, assume the true distribution of types is equally distributed

across levels 1-3, π(θ1) = π(θ2) = π(θ3) = 1/3, there are no noise types, π(θ0) = 0,

private signals are symmetrically distributed across states, FL(1/2) = 1 − FR(1/2),

and there are no public signals. All agents have common error penalty u = 1/2.21

Level-1 types occur with positive probability, and level-2 and level-3 types believe

that level-1 types occur with positive probability, so Assumptions 1 - 3 are satisfied.

Action Choices and Beliefs. Level-1 types incorporate solely their private infor-

mation into their decision and their public belief is constant across time, λ1,t = 1 for

all t. When θt = θ1, the agent chooses at = L if st ≥ 1/2 and the informativeness of

her action is independent of the history.

Level-2 types believe past actions are from level-1 types, and therefore, are in-

dependent and identically distributed. Their perceived probability of each R action

in the history is the probability that a level-1 type chooses action R, ψ̂2(R|ω,λ) =

21These assumptions are made for expositional simplicity. The results from Section 3 apply to
any level-k model in which the level-1 type occurs with positive probability, π(θ1) > 0, or there are
public signals.
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F ω(1/2), and their perceived probability of each L action is the probability that a

level-1 type chooses action L, ψ̂2(L|ω,λ) = 1 − F ω(1/2), which are independent of

λ = (λ2, λ3). Given the symmetry assumption on FR and FL, the difference between

the number of R and L actions, nt ≡
∑t−1

τ=1 1aτ=R − 1aτ=L, is a sufficient statistic for

the public belief of level-2 types,

λ2,t =

(
FL(1/2)

FR(1/2)

)nt
.

When θt = θ2, she chooses at = L if st ≥ 1/(λ2,t + 1). Note the informativeness of

level-2 actions does depend on the history through nt.

Level-3 types believe past actions are from either level-1 or level-2 types. Their

perceived probability of an R action at time t is a weighted average of the probability

that level-1 and level-2 types choose action R,

ψ̂3(R|ω,λt) = pF ω

(
1

λ2,t + 1

)
+ (1− p)F ω(1/2).

The perceived probability of an L action is analogous. Both depend on the public

belief of the level-2 type, λ2,t. Therefore, how level-3 types update their public belief

following an action depends on the current belief of level-2 types. For example,

following an R action,

λ3,t = λ3,t−1

 pFL
(

1
λ2,t+1

)
+ (1− p)FL(1/2)

pFR
(

1
λ2,t+1

)
+ (1− p)FR(1/2)

 .

When θt = θ3, she chooses at = L if st ≥ 1/(λ3,t + 1).

The actual probability of an R action at time t depends on the true distribution

over types as well as the signal cut-off for each type,

ψ(R|ω,λt) =
1

3
F ω(1/2) +

1

3
F ω

(
1

λ2,t + 1

)
+

1

3
F ω

(
1

λ3,t + 1

)
.

This is the distribution that governs the transition of 〈λ2,t, λ3,t〉. Note that neither

level-2 nor level-3 agents have a correctly specified model of inference for any value

of p, as neither are aware of level-3 types. Thus, the correctly specified model is not

a special case of this level-k model.
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Asymptotic Learning. We use Theorem 1 to characterize asymptotic learning

outcomes in the level-k model. There are four candidate outcomes: (0, 0) corresponds

to correct learning for level-2 and level-3 types, (∞,∞) corresponds to incorrect

learning for both types, and (0,∞) and (∞, 0) are the disagreement outcomes in

which one type learns the correct state and the other learns the incorrect state.

Recall that whether an asymptotic learning outcome (λ∗2, λ
∗
3) arises depends on the

signs of the expected change in the log likelihood ratio for each type, γ2(λ∗2, λ
∗
3) and

γ3(λ∗2, λ
∗
3). By determining how the sign of (γ2, γ3) varies with level-3’s belief p about

the share of level-2 types, we can characterize the set of candidate learning outcomes

Λ (as defined in (4)) for any p.

Suppose the true state is ω = R and consider the correct learning outcome (0, 0).

At (0, 0), level-2’s perceived probability of an R action in state ω is F ω(1/2), and

its perceived probability of an L action is 1− F ω(1/2). All level-2 and level-3 types

are choosing R actions at these beliefs, so the true probability of an R action is

2/3 + FR(1/2)/3. The true probability of an L action is the probability of type θ1

times the probability this type chooses L, (1− FR(1/2))/3. From (3),

γ2(0, 0) =

(
2 + FR(1/2)

3

)
log

(
FL(1/2)

FR(1/2)

)
+

(
1− FR(1/2)

3

)
log

(
1− FL(1/2)

1− FR(1/2)

)
,

which is negative, since FR(1/2) > FL(1/2). The expression γ3(0, 0) can be con-

structed in a similar manner. Whenever γ3(0, 0) < 0, correct learning is a candidate

learning outcome i.e. (0, 0) ∈ Λ. A similar characterization determines whether other

learning outcomes are in Λ.

From Theorem 1, whenever an agreement outcome (0, 0) ∈ Λ or (∞,∞) ∈ Λ, these

learning outcomes occur with positive probability. When Λ contains a disagreement

outcome, we also need to check whether the disagreement outcome satisfies the total

informativeness rank to determine whether it occurs with positive probability. In this

example, it turns out that when disagreement arises, learning is correct for level-2

types and incorrect for level-3 types i.e. (0,∞). At any p such that (0,∞) ∈ Λ, (0,∞)

is also total informativeness ranked, and therefore, occurs with positive probability.

The other disagreement outcome, (∞, 0), is never in Λ and almost surely does not

arise. Therefore, characterizing Λ fully determines the set of asymptotic learning

outcomes. Theorem 4 characterizes how asymptotic learning outcomes depend on p.

Theorem 4. Suppose ω = R. Then λt converges almost surely to a limit random
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variable λ∞ with support Λ. There exist unique cutoffs 0 < p1 < p2 < p3 < 1 such

that:

1. If p < p1, then incorrect and correct learning occur with positive probability,

Λ = {(0, 0), (∞,∞)}.

2. If p ∈ (p1, p2), then incorrect learning, correct learning and disagreement occur

with positive probability, Λ = {(0, 0), (∞,∞), (0,∞)}.

3. If p ∈ (p2, p3), then correct learning and disagreement occur with positive prob-

ability, Λ = {(0, 0), (0,∞)}.

4. If p > p3, then disagreement occurs almost surely, Λ = {(0,∞)}.

Intuition and Discussion. When p is low, level-3 types believe most agents are

level-1 and they behave similarly to level-2 types. The models of level-2 and level-3

types are too similar for asymptotic disagreement to occur. Learning is either com-

plete or incorrect. Both types overweight the informativeness of actions, and initial

actions have an outsize effect on asymptotic beliefs, as the information from these

actions is amplified in every subsequent action. Therefore, whether initial actions are

correct or incorrect will influence whether beliefs build momentum on the correct or

incorrect state.

As p increases, level-2 and level-3 types interpret the action history in an increas-

ingly different way, and disagreement becomes possible. This disagreement takes a

particular form: level-2 types learn the correct state, while the higher order of reason-

ing level-3 types do not. Although level-2 types have a lower order of reasoning, the

impact of their misspecification is mitigated by the behavior of level-3 types. As p

increases, level-3 types switch to underweighting the informativeness of actions – they

believe a large share of actions are from level-2 types, and therefore, overweighted, so

the level-3 types compensate by underweighting these actions. Therefore, the actions

of level-3 types do indeed reflect more of their private information, mitigating level-2’s

bias. Consider (∞, 0). When the beliefs of level-2 types are near ∞ but the beliefs

of level-3 types are near 0, R actions occur frequently enough to pull level-2’s beliefs

away from incorrect learning, despite level-2’s overweighting, and this disagreement

outcome does not arise. However, when the beliefs of level-3 types are near∞ but the

beliefs of level-2 types are near 0, even though R actions occur at the same frequency
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as near (∞, 0), level-3 underweights these R actions, and therefore, level-3 beliefs

continue moving towards the incorrect state. Thus, beliefs can converge to (0,∞).

As p increases above p2, level-3 underweights the action history enough that it

completely cancels the overweighting of level-2 types, and level-2 can no longer have

incorrect learning. Either both types learn the correct state or they disagree and

level-3 learns the incorrect state. Finally, for p > p3, the level-3 types anti-imitate

the level-2 types so severely that they almost surely converge to believing the incorrect

state.

This characterization yields an interesting take-away on the incentives of an agent

to acquire a higher level of reasoning. Suppose that an agent of type k can engage in

costly introspection in order to increase his level of reasoning to k+1. If a higher level

type performs strictly worse than a lower level type, then such an agent will not seek

to increase his level of reasoning, even when the cost of doing so is arbitrarily small.

Further, even if an agent already understands how to reason at a higher level, there

is still a higher cognitive cost associated with utilizing this higher level of reasoning,

as it involves more complex computations. A level-2 type simply needs to count the

number of each action to make a decision, while in addition to this computation, a

level-3 type needs to back-out the beliefs of a level-2 type at each previous period to

accurately extract level-2’s private information. Therefore, it may be optimal for the

agent to reason at a lower level even if the cost of switching to higher-level reasoning

is arbitrarily small.

Figure 1 plots the probability of each learning outcome, as a function of p. In-

creasing p monotonically increases the probability that level-2 learns the correct state,

as level-3’s model mitigates level-2’s bias. However, increasing p has a non-monotonic

effect on the probability that level-3 learns the correct state. At first, raising p moves

level-3’s model closer to the true model, which increases the probability of complete

learning, but above p = .55, increasing p moves level-3’s model further from the true

model. In this specification, p1 = .01, p2 = .55 and p3 = .76.

While this example focuses on a particular distribution, π = (0, 1/3, 1/3, 1/3), a

robustness result that is similar in spirit to Theorem 3 establishes that the learning

outcomes characterized in Theorem 4 also obtain for nearby distributions π′.
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4.2 Partisan Bias

A large literature in both psychology and economics has provided evidence for bi-

ased information processing that systematically slants information towards a partic-

ular state. One strand of literature posits that motivated reasoning (Kunda 1990)

leads individuals to slant beliefs towards a preferred state due to self-image con-

cerns (Bénabou and Tirole 2011), ego utility (Koszegi and Rabin 2006) or optimism

(Brunnermeier and Parker 2005). A related literature in political science explores the

impact of party affiliation on information processing. Jerit and Barabas (2012) find

that subjects are better at recalling facts that support their political position. Bartels

(2002) show that how individuals’ evaluations of candidates update in response to new

information is consistent with partisan bias. This bias can impede the convergence

of beliefs and can even lead to polarization – beliefs moving in opposite directions –

after observing the same event. In this application, we seek to model how such a bias

affects social learning, but are agnostic as to its source.

Set-up. Suppose that there are two ways in which agents process private informa-

tion. Some individuals – who we refer to as partisan types – systematically slant
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private information in favor of state L. Following any private signal, these partisan

types will believe that state L is more likely than it actually is, given the true measure

over signals. We model this as a misspecified private signal distribution that slants

information in favor of state L, rP (s) = sν for some ν ∈ (0, 1). Other individuals are

unbiased in that they correctly interpret private information, rU(s) = s. Although

partisan and unbiased agents agree on the optimal action choice when the state is

known, they will potentially disagree on the optimal action choice following imperfect

signals, as the partisan types will believe that signals are more favorable towards state

L than unbiased types.

To complete the signal misspecification, we must also specify F̂L,P , the perceived

distribution of signal s in state L. We assume that the true distribution of signals is

unbounded, suppF = [0, 1], and that the perceived distribution satisfies F̂L,P (s) =

FL(sν). This implies that F̂R,P (s) = FR(sν). Under this specification, whenever a

partisan type sees a signal s, they interpret it like an unbiased type would interpret

a signal s′ = sν , which corresponds to stronger evidence for state L. This captures

a type who believes signals are manipulated towards state R. For instance, suppose

vaccines are dangerous in state L and safe in state R. Then someone who is primed

to believe that vaccines are dangerous may look at a study providing evidence that

vaccines are safe and believe that the results were falsified to some degree, so results

providing a signal of strength s towards state L were actually providing a signal of

strength sν , more favorable to state L, before they were manipulated.

Suppose that some partisan and unbiased agents observe the history and others

do not, so there are four types, Θ = {θP , θU , θAP , θAU}. Types θP and θAP are

partisan, with the former a sociable type who learns from the action history and the

latter an autarkic type. Types θU and θAU are unbiased sociable and autarkic types,

respectively. Let q = π(θAP ) + π(θP ) denote the share of partisan types. Suppose

share α ∈ (0, 1) of both partisan and unbiased types are autarkic, so π(θAP ) = αq

and π(θAU) = α(1− q).
In the presence of partisan types, there is an additional challenge to learn from

the actions of others, relative to a model in which all agents correctly interpret the

state signal distribution. To accurately interpret actions, an unbiased agent must be

aware of the partisan types, and know both the form of their bias (i.e. ν) and their

frequency in the population. We assume that agents are not this sophisticated. In

particular, unbiased types believe that all agents interpret private information in the
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same manner as themselves. Although they have a correct model of the state signal

distribution, they incorrectly assume that all other agents do as well.22 Therefore,

they do not invert the bias of the partisan types when learning from actions. This

corresponds to believing that no types have partisan bias, π̂U(θAP ) = π̂U(θP ) = 0.

Similarly, partisan types believe that all other agents interpret information in the

same manner as themselves. In the context of the vaccine example, this means that

the partisan types believe that all other types are adjusting for the possibility that

information has been manipulated. Although these types have a correct model of how

other partisan types interpret information, they have an incorrect model of the state

signal distribution driving this process and an incorrect model of how unbiased types

interpret information. This corresponds to believing that all types have partisan bias,

π̂P (θAU) = π̂P (θU) = 0, along with perceived state-signal distributions (F̂L,P , F̂R,P )

that can be represented by rP (s) = sν .

To close the model, assume that both partisan and unbiased types correctly un-

derstand how to separate private information from redundant information in actions

– that is, they have correct beliefs about the share of autarkic types in the population,

π̂P (θAP ) = π(θAU) + π(θAP ) and π̂U(θAU) = π(θAU) + π(θAP ). Assume that there are

no public signals, and all agents have common error penalty u = 1/2. Autarkic types

occur with positive probability, and both sociable types believe autarkic types occur

with positive probability, so Assumptions 1-3 are satisfied.

Action Choices and Beliefs. Let λ = (λP , λU) denote the likelihood ratio vector.

At λ ∈ (0, 1), a sociable partisan type plays action R following signals s ≤ sP (λ) =

1/(1 + λ)1/ν , while a sociable unbiased type plays action R following signals s ≤
sU(λ) = 1/(1 + λ). Similarly, autarkic partisan types play action R following signals

s ≤ sP (1) = 0.51/ν , while autarkic unbiased types play action R following signals

s ≤ sU(1) = 0.5. Note that sP (λ) < sU(λ) – partisan types choose action L for a

larger interval of signals, and therefore, with higher frequency.

A partisan type believes that other agents are also partisan. Therefore, she be-

lieves that all other agents also use cut-off sP , which is lower than the threshold used

by unbiased types. The partisan type also has an incorrect belief about the signal

distribution – it believes signals are below sP in state ω with probability F̂ ω,P (sP (λ)),

22We relax this assumption and consider the case where unbiased types have correct beliefs about
the share of partisan types later in this section.
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which is greater than the true probability F ω(sP (λ)). Therefore, she both underesti-

mates the range of signals for which other agents choose action R and overestimates

the probability of these signals. The partisan type’s perceived probability of an R

action is

ψ̂P (R|ω, λP , λU) = (1− α)F̂ ω,P (sP (λP )) + αF̂ ω,P (sP (1))

= (1− α)F ω(sU(λP )) + αF ω(sU(1)),

where the second equality follows from sP (λ) = sU(λ)1/ν and F̂ ω,P (s) = F ω(sν).

An unbiased type believes that other agents are also unbiased and use cut-off sU ,

and has a correct belief about the signal distribution. Therefore, she overestimates

the range of signals for which other agents choose action R, since some agents are

using cut-off sP < sU , but correctly estimates the probability of these signals. The

unbiased type’s perceived probability of an R action is

ψ̂U(R|ω, λP , λU) = (1− α)F ω(sU(λU)) + αF ω(sU(1)).

This is equal to the true probability that an unbiased type plays an R action, and is

strictly greater than the true probability of an R action.

Note that if λP = λU , then ψ̂P (R|ω, λP , λU) = ψ̂U(R|ω, λP , λU). Therefore, if the

partisan and unbiased type start with the same prior belief, both types update their

public likelihood ratio in the same way following an action, and after any history ht,

λP,t = λU,t. Although they have different models of the world, their misspecifications

collapse to the same misperceived probability of each action in each state. They both

overestimate the informativeness of L actions and underestimate the informativeness

of R actions. This means that we can consider partisan and unbiased types as a

single type to characterize asymptotic learning.23 It also rules out the possibility of

asymptotic disagreement.

Incorrect Learning. When partisan bias is in favor of the incorrect state, then

the learning outcome depends on the severity of the partisan bias. If partisan bias is

severe, then partisan types choose L for a large range of signals. They believe these

signals are less likely than is actually the case, and therefore, they overestimate the

23Note that this does not imply that a partisan and unbiased type with public belief λ and private
signal s will choose the same action, as they have different cut-offs.
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informativeness of L actions. Unbiased types believe that other agents are choosing

L for a smaller range of signals than is actually the case, and therefore, they also

overestimate the informativeness of these L actions. This leads both partisan and

unbiased types to almost surely learn the incorrect state. If partisan bias is not

severe (i.e. ν close to one), overweighting the informativeness of L actions is not

severe enough to interfere with learning and both types learn the correct state. For

intermediate levels, beliefs do not converge. Agents believe L actions are not very

informative when beliefs are close to λ =∞, as most agents are following the herd and

reveal little private information, so beliefs do not converge to∞. But these agents also

underestimate the informativeness of R actions, and therefore, when beliefs are close

to 0, L actions pull beliefs away from 0 and prevent correct learning. As discussed

above, when partisan bias favors the correct state, learning is complete regardless of

the level of bias, as the bias simply speeds up the rate at which beliefs converge to

state L. Theorem 5 formalizes these results (the proof is in Appendix A.4).

Theorem 5. When ω = R, there exists an q ∈ (0, 1) such that for q > q, there exist

unique cutoffs 0 < ν1(q) < ν2(q) < 1 such that:

1. If ν > ν2(q), then learning is correct almost surely, Λ = {(0, 0)}.

2. If ν ∈ (ν1(q), ν2(q)), then learning is incomplete and beliefs do not converge

almost surely, Λ = ∅.

3. If ν < ν1(q), then learning is incorrect almost surely, Λ = {(∞,∞)}.

and there exists a q < q such that for q < q, learning is correct almost surely. When

ω = L, learning is correct almost surely, Λ = {(0, 0)}.

Figure 2 illustrates the asymptotic learning outcomes as a function of (q, ν) when

ω = R. Theorem 5 and Figure 2 also illustrate the robustness of the correctly specified

model, in which q = 0 and ν = 1. Notice that for (q, ν) close enough to (0, 1), learning

is correct almost surely (Theorem 3.1). When ν is close to 1, then correct learning

obtains even if all agents have partisan bias (q = 1), since the bias is not severe

(Theorem 3.2). Similarly, when the share of partisan types is small, q close to 0, then

correct learning obtains even if these partisan types have a very severe bias, ν close

to 0.
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Figure 2. Learning Outcomes for (q, ν). (ω = R, α = .1, FL(s) = s2, FR(s) = 2s − s2,
suppF = [0, 1])

Disagreement. Now suppose there the unbiased type not only has a correct belief

about the signal distribution, but also correctly accounts for and parses out the

overweighted information in favor of state L from the partisan types. In other words,

the unbiased type has a correct belief about the level of partisan bias ν and the share

of partisan types q. The next result establishes that disagreement can arise with

probability one when the partisan bias favors the incorrect state.

Theorem 6. Suppose ω = R. There exists a q ∈ (0, 1) such that for q > q, there

exist unique cutoffs 0 < ν1(q) < ν2(q) < 1 such that:

1. If ν > ν2(q), then learning is correct almost surely, Λ = {(0, 0)}.

2. If ν ∈ (ν1(q), ν2(q)), then learning is incomplete for the partisan type, Λ = ∅,
but the unbiased type still learns the correct state.

3. If ν < ν1(q), then disagreement occurs almost surely, Λ = {(∞, 0)}.

Therefore, despite observing the same sequence of information, partisan and unbiased

types almost surely disagree.
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4.3 Confirmation Bias

Confirmation bias is the tendency to interpret information in a way that confirms

one’s existing beliefs or hypotheses about the world. This bias is well documented in

the literature. It has been highlighted as a significant factor in the over-justification

of adopted policies in government (Tuchman 1984), continued use of ineffective pro-

cedures in medicine (Thomas 1979) and primacy effects in judicial reasoning (Devine

and Ostrom 1985). It has also been linked as a cause of overconfidence (Nickerson

1998), which has been implicated as a major reason for the underperformance of

individual traders on financial markets (Barber and Odean 2001; Odean 1999).24

Set-up. In this application, we show how confirmation bias impacts asymptotic

learning. Suppose agents act sequentially and observe a sequence of informative

public signals. There is as single type who underweights information that contradicts

her prior beliefs (i.e. information that favors the state that she believes to be less

likely). The agent correctly interprets information that confirms her prior beliefs in

that her perceived posterior is equal to the true posterior following a signal in favor

of the more likely state. Given prior belief p that the state is L, an agent interprets

public signal σ according to

ρ(σ, p) =


σ if σ = σL and p ≥ 1

2

σ if σ = σR and p ≤ 1
2

σ + %(p)
k

(0.5− σ) otherwise.

where k > 1 and % : [0, 1] → [0, 1] is a continuous function with %(0) = %(1) =

1. Confirmation bias is less severe for higher k, and the correctly specified model

corresponds to the limit as k →∞. If % is strictly decreasing on [0, 1/2] and strictly

increasing on [1/2, 1], then the bias becomes more severe as the agent’s prior becomes

more extreme.

24Additionally, Lord et al. (1979) show that when asked to read two studies, one which supports
capital punishment and one that does not, proponents of capital punishment place more weight
on the former study, while opponents place more weight on the latter; Darley and Gross (1983)
found that after being told a child’s socioeconomic background, subjects were more likely to rate
her performance on a reading test lower when she came from a low socioeconomic background;
Plous (1991) documents that, when faced with a non-catastrophic breakdown of a given technology,
supporters of the technology become more confident that the safeguard in place will prevent a
catastrophic breakdown, while opponents will believe that a catastrophic breakdown is more likely.
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To complete the model, assume that public signals are the only source of informa-

tion and they are informative (i.e. private signals are uninformative, are believed to

be uninformative, and σL > 1/2). An agent’s beliefs about how other agents interpret

public signals is irrelevant, as there is no additional information contained in actions.

All agents have common error penalty u = 1/2.

Action Choices and Beliefs. There is one type, so we need to keep track of a

single likelihood ratio. In period t, given λt, agent t chooses action L if λt > 1, and

otherwise chooses action R. Actions are uninformative, so following public signal

σt = σL, the likelihood ratio updates to

λt+1 = λt

(
σL

1− σL

)
if λt ≥ 1 and

λt+1 = λt

(
σL + %(λt/(λt+1))

k
(0.5− σL)

1− σL − %(λt/(λt+1))
k

(0.5− σL)

)
if λt < 1. The expressions following σt = σR are analogous. The actual probability

of signal σL is dFR(σL) = (1 − 2σR)(1 − σL)/(σL − σR) in state R and dFL(σL) =

(1− 2σR)σL/(σL − σR) in state L (Lemma 9 in Appendix A.1).

Asymptotic Learning. When agents have confirmation bias, they underweight

signals that do not confirm their current belief. Following a contrary signal – a signal

in favor of the less likely state – beliefs move more slowly away from the favored

state, relative to the correctly specified model. When the confirmation bias is severe

enough, it is very unlikely that agents will see enough information to overturn their

prior misconceptions. Suppose the true state is R but an initial set of signals favor

state L. If confirmation bias is severe, it is difficult to recover from this trap, as agents

place less and less weight on contrary R signals as their beliefs move towards state

L. Therefore, incorrect learning arises with positive probability. But if confirmation

bias is relatively low, then agents will eventually see enough signals in favor of state

R to overcome their preconceptions and incorrect learning almost surely does not

occur. Correct learning always occurs with positive probability, since with positive

probability, agents come to believe the correct state is more likely, and once this

occurs, the bias only increases the rate at which their beliefs move towards the correct
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Figure 3. Probability of Learning Outcome. (%(p) =
(
1
2 · |p− 1/2|

) 1
8 , σL = 5/8, σR = 3/8)

state. This is similar to the results from Rabin and Schrag (1999).25

Theorem 7. Suppose ω = R. There exists a unique cutoff k̄ > 1 such that

1. If k > k̄ then learning is correct almost surely.

2. If k < k̄ then both correct and incorrect learning occur with positive probability,

and beliefs converge almost surely.

Figure 3 plots the probability of correct and incorrect learning as a function of k.

Increasing k monotonically decreases the probability of incorrect learning. Correct

learning almost surely occurs for k > 2.55.

5 Conclusion

Our paper develops a general framework for learning with model misspecification.

We characterize how the asymptotic learning outcomes depend on the primitives

of the model, including the ways in which agents misinterpret private and public

25We can nest the model in Rabin and Schrag (1999) with a minor extension to our framework –
allowing for four public signals. All results in this paper easily extend to any finite number of public
signals, so this is a straightforward extension. Appendix B outlines the mapping between this paper
and Rabin and Schrag (1999).
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information, and draw inference from the actions of others. When agents’ models of

the world are misspecified, correct learning – individuals eventually place probability

one on the true state – is no longer guaranteed. Asymptotic learning may be incorrect,

individuals may perpetually disagree, or beliefs may not converge at all. We establish

that the correctly specified model is robust, in that correct learning is guaranteed for

approximately correctly specified models, regardless of the form of misspecification.

These results yield insights about new forms of misspecification, as well as unify

particular types of misspecification that have already been studied.

A Appendix

A.1 Posterior Representation.

Let Z be a signal space. Suppose signals {zn} are i.i.d., conditional on the state,

and drawn according to probability measure µω ∈ ∆(Z) in state ω ∈ {L,R}. As-

sume µL, µR are mutually absolutely continuous, and therefore have common support,

which we assume to be full. Define the posterior belief s(z) ≡ 1/(1 + dµR

dµL
(z)) that

the state is L. The c.d.f. F ω
s (x) ≡ µω(z|s(z) ≤ x) is the distribution of the posterior

belief s, with common support suppFs. Let [b, b] ⊆ [0, 1] denote the convex hull of

suppFs. Assume signals are informative, which rules out dµL/dµR = 1 almost surely.

Suppose an agent has a misspecified probability measure µ̂ω ∈ ∆(Z) about the

distribution of signals, where µ̂L, µ̂R are mutually absolutely continuous with common

support. Assume the misspecified measures also have full support, so that agents do

not observe signals that are inconsistent with their model of the world. When an

agent observes signal z, she has misspecified posterior belief ŝ(z) ≡ 1/(1 + dµ̂R

dµ̂L
(z)).

The c.d.f. F̂ ω
ŝ (x) ≡ µ̂ω(z|ŝ(z) ≤ x) is the perceived distribution of ŝ. We also

define the c.d.f. F ω
ŝ (x) ≡ µω(z|ŝ(z) ≤ x) as the true distribution of ŝ and the c.d.f.

F̂ ω
s (x) ≡ µ̂ω(z|s(z) ≤ x) as the perceived distribution of s.

We define two properties of probability measures. The first describes a property

of the relationship between two pairs of measures, which lead to the same ordinal

mapping between sets of signals and posterior beliefs.

Definition 7 (Equivalent Ordinal Ranking of Signals). Given mutually absolutely

continuous probability measures µL, µR ∈ ∆(Z) with Radon-Nikodym derivative f(z) =
dµR

dµL
(z), mutually absolutely continuous probability measures νL, νR ∈ ∆(Z) with
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supp ν = suppµ and Radon-Nikodym derivative g(z) = dνR

dνL
(z) have an equivalent or-

dinal ranking of signals if for any z, z′ ∈ Z such that f(z) ≥ f(z′), then g(z) ≥ g(z′),

with equality iff f(z) = f(z′).

The second describes an equivalence class of probability measures, which have the

same support of posterior beliefs, distributions over posterior beliefs and ordinal rank-

ing of signals.

Definition 8 (Equivalent Measures). Mutually absolutely continuous probability mea-

sures µL, µR ∈ ∆(Z) and νL, νR ∈ ∆(Z) are equivalent iff suppµ = supp ν, µω(z|1/(1+
dµR

dµL
(z)) ≤ x) = νω(z|1/(1+ dνR

dνL
(z)) ≤ x) for all x ∈ [0, 1] and they have an equivalent

ordinal ranking of signals.

Lemma 8 establishes that when a pair of misspecified probability measures has an

equivalent ordinal ranking of signals as the true measures, there is a unique mapping

between a set of misspecified measures (µ̂L, µ̂R) ∈ ∆Z and a representation (r, F̂L
s ),

where r : suppFs → [0, 1] is a strictly increasing function mapping the true posterior

s to the misspecified posterior ŝ and F̂L
s is the c.d.f. of the perceived distribution of

s in state L.

Lemma 8. Let µL, µR ∈ ∆(Z) be a set of mutually absolutely continuous probability

measures with full support. Assume signals are informative.

1. For any mutually absolutely continuous misspecified probability measures µ̂L, µ̂R ∈
∆(Z) that have full support and an equivalent ordinal ranking of signals, there

exists a unique (r, F̂L
s ), where r : suppFs → [0, 1] is a strictly increasing func-

tion with r(b) > 1/2 and r(b) < 1/2, such that ŝ(z) = r(s(z)) for all z ∈ Z and

F̂L
s is the c.d.f. of the perceived distribution of s in state L.

2. For any strictly increasing function r : suppFs → (0, 1) and any c.d.f. F̂L
s with

supp F̂L
s = suppFs and

∫ 1

0

(
1−r(s)
r(s)

)
dF̂L

s = 1, there exist unique (up to an equiv-

alent measure) mutually absolutely continuous probability measures µ̂L, µ̂R ∈
∆(Z) that have full support and satisfy r(s(z)) = 1/(1 + dµ̂R

dµ̂L
(z)) for all z ∈ Z.

The measures µ̂L, µ̂R have an equivalent ordinal ranking of signals to µL, µR.26

26Note that if F̂Ls is a c.d.f. and
∫ 1

0

(
1−r(s)
r(s)

)
dF̂Ls = 1, then it must be that r(b) > 1/2 and

r(b) < 1/2.
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3. For any strictly increasing function r : suppFs → (0, 1), if r(b) < 1/2 and

r(b) > 1/2, then there exist mutually absolutely continuous probability measures

µ̂L, µ̂R ∈ ∆(Z) that have full support and satisfy r(s(z)) = 1/(1 + dµ̂R

dµ̂L
(z)) for

all z ∈ Z.

Proof. First establish part (i). Let µ̂L, µ̂R ∈ ∆(Z) be probability measures that are

mutually absolutely continuous with full support and strictly preserve the ordinal

ranking of signals. Define the mapping r : supp(Fs) → [0, 1] as r(s(z)) = ŝ(z). This

is a function since if s(z) = s(z′), then ŝ(z) = ŝ(z′), which establishes existence. For

any z such that s(z) > s(z′), ŝ(z) = r(s(z)) > ŝ(z′) = r(s(z′)) since µ̂L, µ̂R strictly

preserve the ordinal ranking of signals. Therefore, r is strictly increasing on suppFs.

By the Bayesian constraint, it must be that Ê[ŝ(z)] = 1/2, where the expectation

is taken with respect to the misspecified measures. Given that the true measures

are informative and the misspecified measures strictly preserve the ordinal ranking of

signals, it cannot be that ŝ(z) = 1/2 for all z ∈ Z. Therefore, there exist z, z′ ∈ Z
such that ŝ(z) > 1/2 and ŝ(z′) < 1/2, which implies that there exist s, s′ ∈ suppFs

such that r(s) > 1/2 and r(s′) < 1/2. Given that r is strictly increasing in s, it

immediately follows that r(b) > 1/2 and r(b) < 1/2. Define F̂L
s (x) ≡ µ̂L(z|s(z) ≤ x).

Then F̂L
s is the perceived c.d.f. of s under measure µ̂L. Given {r, F̂L

s }, F̂R
s is uniquely

pinned down by

F̂R
s (x) =

∫ x

0

(
1− r(s)
r(s)

)
dF̂L

s (s)

for any x ∈ suppFs.

Next, show part (ii). Let r : suppFs → [0, 1] be a strictly increasing function and

let c.d.f. F̂L
s be the perceived distribution of s in state L, with supp F̂L

s = suppFs and∫ 1

0

(
1−r(s)
r(s)

)
dF̂L

s = 1. By Lemma A.1 in Smith and Sorensen (2000), the perceived

distribution of s in state R is uniquely determined by

F̂R
s (x) =

∫ x

0

(
1− r(s)
r(s)

)
dF̂L

s (s).

Since F̂R
s has Radon-Nikodym derivative 1−r(s)

r(s)
, it induces posterior belief r(s) after

observing a signal z from set of signals Z = {z|s(z) = s} that lead to correctly

specified posterior s, for any s ∈ suppFs. If any other distribution induced the same

posterior beliefs, then it would also have Radon-Nikodym derivative 1−r(s)
r(s)

, so it would

be equivalent to F̂R
s . Since 1−r(s)

r(s)
> 0 and F̂R

s (1) = 1, F̂R
s is a probability distribution.
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Define the random variable S = s(z). F̂ ω
s defines a probability measure over this

random variable in state ω. For any measurable set A ⊆ Z, define

µ̂ω(A) =

∫
E(1A|S)dF̂ ω

s ,

where E is the conditional expectation defined with respect to µL. By the uniqueness

and additivitiy of conditional expectation, for any disjoint, measurable sets A,B ⊆ Z,

µ̂ω(A ∪B) =

∫
E(1A∪B|S)dF̂ ω

s =

∫
(E(1A|S) + E(1B|S))dF̂ ω

s = µ̂ω(A) + µ̂ω(B)

so µ̂ω is a measure. For any set A, if µ̂L(A) = 0, then µ̂R(A) = 0 and vice versa,

since the integrand used to define µ̂R is strictly positive. Therefore, the distributions

µ̂R and µ̂L are mutually absolutely continuous with common support suppµ. Also,

supp µ̂ = suppµ by construction, so the measures have full support on Z. Moveover,

since F ω
s is unique, µ̂ω is unique up to the probability measure that is used to evaluate

E(·|S). For any measurable set A ⊆ Z,

µ̂R(A) =

∫
E(1A|S)

(
1− r(S)

r(S)

)
dF̂L

s =

∫
A

(
1− r(s(z))

r(s(z))

)
dµ̂L(z),

where the first equality follows from the definition of F̂R
s and the second equality

follows from the definition of µ̂L, so these distributions induce the correct posterior

beliefs. Finally, µ̂L(Z) =
∫ 1

0
dF̂L

s (s) = 1 and µ̂R(Z) =
∫ 1

0
dF̂R

s (s) = 1, so these are

indeed probability measures.

Finally, show part (iii). Suppose r : suppFs → [0, 1] is a strictly increasing

function with r(b) < 1/2 and r(b) > 1/2. Fix any distribution F̂ (·) with support

suppFs ∩ {s|r(s) < 1/2}. Then
∫ 1

0

(
1−r(s)
r(s)

)
dF̂s(s) < 1. Similarly, fix a distribution

Ĝ(·) with support suppFs ∩ {s|r(s) ≥ 1/2}. Then
∫ 1

0

(
1−r(s)
r(s)

)
dĜ(s) > 1. For any

λ ∈ [0, 1], let F̂λ be the distribution of the compound lottery F̂λ = λF̂ + (1 −
λ)Ĝ. This lottery draws signals from F̂ with probability λ and Ĝ with probability

(1 − λ). The function H(λ) ≡
∫ (1−r(s)

r(s)

)
dF̂λ is a continuous mapping from [0, 1]

to R, so by the intermediate value theorem, there exists a λ∗ ∈ (0, 1) such that∫ (1−r(s)
r(s)

)
dF̂λ∗ = 1. Let F̂L = F̂λ∗ . Then F̂L is a probability distribution, since it

is the convex combination of two distributions. By construction, supp F̂L
s = suppFs
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and
∫ 1

0

(
1−r(s)
r(s)

)
dF̂L

s = 1. Therefore, from part(ii), it is possible to construct the

desired probability measures µ̂L, µ̂R. �

The first part of Lemma 8 implies that F ω
ŝ (r(s)) = F ω

s (s) for all s ∈ supp(Fs)

and supp(Fŝ) = r(supp(Fs)). Similarly, F̂ ω
ŝ (r(s)) = F̂ ω

s (s) for all s ∈ supp(F̂s) and

supp(F̂ŝ) = r(supp(F̂s)).

Lemma 9. Given mutually absolutely continuous probability measures µL, µR ∈ ∆(Z),

suppFs and FL
s are sufficient for the state-signal distribution. If signals are binary,

| suppFs| = 2, then suppFs is sufficient for the state-signal distribution.

Proof. The first part follows immediately from Lemma A.1 in Smith and Sorensen

(2000). Given suppFs and FL
s , FR

s is uniquely pinned down by

FR
s (x) =

∫ x

0

(
1− s
s

)
dFL

s (s)

for any x ∈ suppFs.

In the case of binary signals, there are two possible posterior beliefs. Without

loss of generality, denote these beliefs sR and sL, with sR ≤ sL. It must be that

sR ≤ 1/2 ≤ sL, where the equality either binds for both or neither posteriors, in order

to satisfy the Bayesian constraint E[s] = 1/2. Then FL
s and FR

s are uniquely pinned

down by {sR, sL}. To see this, note that by definition, dFL
s (sL)/dFR

s (sL) = sL/(1−sL)

and dFL
s (sR)/dFR

s (sR) = sR/(1− sR). Since FL
s is a c.d.f., dFL

s (sL) + dFL
s (sR) = 1.

Therefore, (
sL

1− sL

)
dFR(sL) +

(
sR

1− sR

)
dFR(sR) = 1. (6)

Similarly, dFR
s (sL) + dFR

s (sR) = 1. Plugging in dFR
s (sR) = 1 − dFR

s (sL) to (6) pins

down the unique dFR
s (sL) ∈ (0, 1), and therefore, dFR

s (sR). FL
s (sR) is pinned down

by dFL
s (sR)/dFR

s (sR) = sR/(1− sR), and similarly for dFL
s (sL). �

A.2 Proof of Theorem 1

Throughout this section, assume Assumptions 1, 2 and 3 hold and suppose ω = R.
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Proof of Lemma 1. At a stationary vector λ∗, φi(a, σ,λ
∗) = λ∗ for all (a, σ)

such that ψi(a, σ|ω,λ∗) > 0. When π(ΘA) > 0, both actions occur with positive

probability at all λ ∈ [0,∞]k, since autarkic types play both actions with positive

probability independent of the history. Both public signals always occur with positive

probability since the distribution is independent of λ. Therefore, at all λ ∈ [0,∞]k,

either ψi(L, σL|ω,λ) > 0 or ψi(R, σR|ω,λ) > 0 (or both). By Assumption 2, actions

and/or public signals are perceived to be informative by all sociable types θi, so at

all λ ∈ [0,∞]k,

ψ̂i(L, σL|L,λ)

ψ̂i(L, σL|R,λ)
> 1 and

ψ̂i(R, σR|L,λ)

ψ̂i(R, σR|R,λ)
< 1.

Therefore, φ(a, σ,λ) = λ at all (a, σ) such that ψi(a, σ|ω,λ) > 0 if and only if

λ ∈ {0,∞}k. �

Proof of Lemma 2.

Part 1. Consider the stationary vector 0. Since γi(0) < 0 for all i, there exists a

neighborhood of 0, [0,M ]k, such given any likelihood ratio vector λa,σ ∈ [0,M ]k for

each a, σ pair ∑
a,σ

ψi(a, σ|R,0) log
ψ̂i(a, σ|L,λa,σ)

ψ̂i(a, σ|R,λa,σ)
< 0.

Let

gi,a,σ = sup
λ∈[0,M ]k

log
ψ̂i(a, σ|L,λa,σ)

ψ̂i(a, σ|R,λa,σ)

and let

ḡi = max
a,σ

gi,a,σ.

Fix an ε > 0 and define a neighborhood [0,Mε]
k ⊆ [0,M ]k such that

inf
λ∈[0,Mε]k

|ψ(a, σ,λ)− ψ(a, σ, 0)| < ε/4.

Define the linear system 〈λ̂ε,t〉 as follows.

λ̂ε,t = exp(ga,σ)λ̂t−1,
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when public signal σ is realized and the type drawn in period t would play a for all

λ ∈ [0,Mε], and

λ̂ε,t = exp(ḡi)λ̂t−1

otherwise (let ε̄ be the probability of this event). This is a linear system in each

coordinate, so by lemma C.1 of Smith and Sorensen (2000) if

exp(ḡi)
ε̄
∏
a,σ

exp(gi,a,σ)inf
λ∈[0,Mε]k

ψi(a,σ|R,λ) < 1.

This holds for sufficiently small ε, ε1, since this is strictly less than 1 at ε = 0.

So whenever a private signal is drawn such that a type would play a for any

λ ∈ [0,Mε]
k, λ̂ε1,t updates by exp(ga,σ) which is by construction larger than the

actual update. Otherwise, λt updates by ḡ, which is larger than all possible updates.

Therefore λ̂i,ε1,t−1 = λi,t−1 then λ̂i,ε1,t ≥ λi,t for all i. So if λ0 ∈ [0,Mε1 ]
k then it is

bounded above by a RV that converges almost surely as long as it remains in [0,Mε1 ]
k.

Since λ̂ε1,t → 0 almost surely

Pr(∪t ∩s≥t {λ̂s ∈ [0,Mε1 ]
k}) = 1

So there must exist some t ≥ 0 such that Pr(∀s ≥ t, λ̂ε1,s ∈ [0,Mε1 ]
k and since the

system is linear, if this holds at some t > 0, it must hold at t = 0. So, with positive

probability, if λ̂ε1,0 ∈ [0,Mε1 ]
k, it remains in [0,Mε1 ]

k forever and is thus always larger

than λ. When this happens, since λ̂ε1 converges to 0, so does λ.

The proof in the other cases is analogous. If λ∗i =∞, consider the λ−1
i instead for

that component and modify the transition rules accordingly. �

Part 2. Suppose λ∗ is stationary and there exists a θi ∈ ΘS such that λi = 0 and

γi(λ
∗) > 0 or λi =∞ and γi(λ

∗) < 0. Suppose P (λt → λ∗) > 0 so that the likelihood

ratio converges to this vector with positive probability. Let

ΘR ≡ {θi ∈ ΘS|λi = 0}
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be the set of sociable types with limit belief 0 and ΘL ≡ ΘS \ΘR be the set of sociable

types with limit belief ∞. Given θi ∈ ΘS, define

gi(a, σ,λ) ≡ log
ψ̂i(a, σ|L,λ)

ψ̂i(a, σ|R,λ)
.

for all i ∈ ΘR and

gi(a, σ,λ) ≡ log
ψ̂i(a, σ|R,λ)

ψ̂i(a, σ|L,λ)

for all other types. The log-likelihood ratio process 〈logλt〉 follows law of motion

log λi,t+1 = log λi,t + gi(at, σt,λt) for each θi ∈ ΘS. Fix a nbhd [0,M ]k and define an

i.i.d. sequence of random variables

αθt =



L if θt plays L at (λt, st) for any λ ∈ [0,M ]

R if θt plays R at (λt, st) for any λ ∈ [0,M ]

R if the above doesn’t hold and θ ∈ ΘR

L otherwise

Fix ε > 0, and choose M such that the probability that either of the first two cases

do not occur is at most ε.

By Lemma 2, for small ε > 0∑
α,σ

ψi,α(L, σ,λ∗)gi(α, σ,λ
∗) > (<)0.

for all θi ∈ ΘR(ΘL), where ψα(α, σ,λ∗) is the probability of (α, σ) given the αθ random

variable.

By continuity, there exists an M̄ > 0 such that∑
α,σ

ψi,α(L, σ,λ∗)gi(α, σ,λα,σ) > (<)0.

inequalities holds for any four λα,σ ∈ [0, M̄ ]k, for any θi ∈ ΘR(ΘL)

Let

gi,a,σ = inf
λ∈[0,M̄ ]k

gi(a, σ,λ).
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By construction ∑
α,σ

ψα,i(α, σ|R,λ)gi,a,σ > 0.

In a neighborhood of the non-locally stable vector λ,
∑
gi(at, σt,λ) ≥

∑
gi,αit,σt .

Since 〈αt〉 and 〈σt〉 are i.i.d. processes,

lim
T→∞

P

(
1

T

T∑
t=0

gi,αit,σt > 0

)
= 1

by the Strong Law of Large Numbers. Let τ1 be the first time beliefs enter the set

[0,M ]k and never leave for type θi. This implies that

λi,t = λi,τ1 +
t−1∑
i=τ1

gi(αt, σt, 0)→∞ a.s.,

which is a contradiction. �

The following Lemma is an intermediate result used in Lemma 3.

Lemma 10. For any logλ ∈ Rk, inf g(L, σL,λ) > 0 and sup g(R, σR,λ) < 0.

Proof. L actions are always perceived to occur (weakly) more frequently in state L

and R actions are always perceived to occur more frequently in state R. Similarly, σR

signals are always perceived to occur more frequently in state R and σL signals are

perceived to occur more frequently in σL. Under Assumption 2, agents either believe

there is a positive mass of autarkic types or the public signal is informative. Suppose

type θi believes there is a positive mass of autarkic types. Following an L action,

log λi updates to

log
Pr(L|θ ∈ ΘA, ω = L)π̂i(ΘA) + π̂i(ΘS)Pr(L|θ 6∈ ΘA, ω = L)

Pr(L|θ ∈ ΘA, ω = R)π̂i(ΘA) + π̂i(ΘA)Pr(L|θ 6∈ ΘA, ω = R)

where Pr is the misperceived probability. This is bounded below by

log
Pr(L|θ ∈ ΘA, ω = L)π̂i(ΘA)

Pr(L|θ ∈ ΘA, ω = R)π̂i(ΘA) + π̂i(ΘS)1
> 0.

Similar logic holds for R actions.

Suppose type θi believes that the public signal is informative. Then the mini-

mal informativeness of σL is always positive, so the log-likelihood ratio updates are
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bounded below uniformly. �

Proof of Lemma 3. Suppose 0 ∈ ΛL. Let J denote the locally stable neighborhood

defined in Lemma 2 and choose M > 0 so that if logλ ∈ Rk \ [−M,M ]k then it is

contained in one of the neighborhoods of stationary points constructed in Lemma 2.

Let N be the minimal number of consecutive (R, σR) action and signal pairs required

for the likelihood ratio of all sociable types to reach J , given initial likelihood ratio

logλ0 ∈ [−M,M ]k. N exists by Lemma 10.

Let τ3 be the first time that λi enters J for all θi ∈ ΘS, and let τ4 be the first

time any type’s beliefs leave after entering. We know that P (τ3 < ∞) = 1, since if

they did not, logλ ∈ [−M,M ]k infinitely often, and the probability of transitioning

from [−M,M ]k to J is bounded below by the probability of observing N action and

signal pairs (R, σR).

Also, P (τ4 <∞) < 1, since beliefs enter J and never leave with positive probabil-

ity due to local stability. So P (λt 6∈ J i.o.) = 0. Let τ5 be the first time the likelihood

ratio enters the J set and stays there forever. P (τ5 <∞) = 1, so the likelihood ratio

remains in the J almost surely. By Lemma 2, if the likelihood ratio remains in J
forever, then beliefs must converge. �

Let J be the neighborhood constructed in Lemma 2 and let M > 0 be such that

if λ ∈ R \ [−M,M ] then it is contained in one of the neighborhoods constructed in

Lemma 2 (either the neighborhood where beliefs converge with positive probability

or the nbhd where beliefs leave with probability 1).

Proof of Lemma 4. Let k = 2 and first suppose signals are bounded. The linear

equation

A(0, 0)

(
c

d

)
=

(
0

1

)
has a solution where (c, d) are positive if and only if det(A(0, 0)) > 0. Therefore, if

det(A(0, 0)) > 0 then there exist c, d such that

c log
ψ̂i(L|0, L)

ψ̂i(L|0, R)
+ d log

ψ̂i(R|0, L)

ψ̂i(R|0, R)

is negative for θ1 and positive for θ2. Moreover, for some −M ′ < −M if logλ ∈
(−∞,−M ′]k of 0, this will still hold.
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Let

ξ1,t =
∑

g1,at,σt

where g1,a,σ = suplogλ∈(−∞,−M ′]2 g1(a, σ,λ) and

ξ2,t =
∑

g2,at,σt

where g2,at,σt = infλ∈(−∞,−M ′′]2 g2(a, σ,λ).

For any K2 > 0 there exists a sequence of actions (at, σt)
T
t=1 and a finite number

K1, where T is some finite number such that

1. ξ1,T < 0

2. ξ2,T > K2

3. ξ1,t < K1 for all t.

This sequence exists because there are rational numbers P and Q such that

P log

(
ψ̂i(L|L, λ)

ψ̂i(L|R, λ)

)
+Q log

(
ψ̂i(R|L, λ)

ψ̂i(R|R, λ)

)

is less than 0 for the first type and is greater than 0 for the second. So there exists

a non-zero N ∈ N such that NP and NQ are integers. Then after NP (L, σL)′s

and NQ (R, σR)’s, λ1 decreases and λ2 increases. So a finite sequence of actions that

satisfies the three properties exists.

Let λ0 ∈ (−∞,−M ]2. As long as logλ ∈ (−∞,−M ′]2, ξ1 bounds the updates to

θ1’s beliefs above, logλ1,t − logλ1,0 < ξ1,t, and ξ2 bounds θ2’s beliefs below logλ2,t −
logλ2,0 > ξ2,t.

Let (−∞,−M ′] be the set of log-likelihood ratios constructed in Lemma 2 around

λ∗ = 0k. The above construction implies that for K2 = 1 if log λ1 < −M ′ −K1 −K
for any K > 0 where K1 is the K1 that corresponds to K2 = 1, then there exists

a sequence of actions such that λ1 < −M ′ − K and λ2 is outside of (−∞,M ′] if

λ1 ∈ (−∞,−M ′].

Let N1 be the smallest number of consecutive (L, σL) actions and signals it takes

for λ2,t to go from a point outside of (−∞,−M ′] to [M,∞). This can at most increase

log λ1,t by K <∞ by lemma 10. So, if log λ1,t < sup−M ′−K −K1 for large enough

K1, then there exists a finite sequence of S actions such that
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1. log λ1,t < −M ′ for all t.

2. log λ2,S > M .

Since any finite sequence of actions occurs with positive probability, and beliefs con-

verge with positive probability once the logλ enters (−∞,−M ′] × [M,∞), beliefs

converge with positive probability to λ∗ = (0,∞) if this is true.

So, with positive probability, from any initial λ0 ∈ (0,∞)2, λ enters a neighbor-

hood of (0,∞) where beliefs converge with positive probability. So, disagreement

occurs with positive probability. �

Proof of Lemma 5. By Lemma 4, we can separate θi∗ and θj∗ , since

A(λ(i∗,j∗)) =

(
gi∗(L, σL,λ) gi∗(R, σR,λ)

gj∗(L, σL,λ) gj∗(R, σR,λ)

)

has positive determinant by the assumption that θi∗ �λ θj∗ . As in the proof of Lemma

4, let ξi,t ≡
∑
gi,at,σt , where

gj,at,σt ≡ inf
logλ∈(−∞,−M ′]k

gj(a, σ,λ)

for all j > m, and

gi,at,σt ≡ sup
log λ∈(−∞,−M ′]k

gi(a, σ,λ)

for all other i ≤ m. By the argument from Lemma 4, for any Kj∗ ∈ R+, there exists

a sequence of actions, a T ∈ N, and a Ki∗ ∈ R+ such that

ξi∗,T < 0

ξj∗,T > Kj∗

ξi∗,t < Ki∗ for all t ≤ T

Moreover, the � relation implies that for any θi � θj, the log likelihood ratio for θi

has increased more (or decreased less) than the log likelihood ratio for θj as long as

both likelihood ratios remain in (−∞,−M ′]. Therefore, there exists a sequence of

actions such that λi ∈ (∞,−M ′−K] for all types θi where i ≤ m for any K > 0 and

λj 6∈ −(∞,−M ′] for all other types j.
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Let N1 be the minimum number of consecutive (L, σL) actions and signals such

that for any type j > m such that if logλj,t = −M ′ then logλj,t+N1 > M (denote this

by J j
D for each type θj). This minimum number of (L, σL) actions exists by Lemma

10. There exists a maximum amount that these N1 (L, σL)s can increase log λj for

any j ≤ m. Let K be the maximum amount that this can increase log λj for any

j ≤ m (i.e. after N1 (L, σL)s, log λj,N1 − log λj,0 < K for any λ0).

Therefore, from any initial λ0, there exists a sequence such that λj ∈ (−∞,−M ′−
K] for all types i ≤ m and λi /∈ (−∞,−M ′] for all other types. With positive

probability, N1 consecutive (L, σL)s occur after the likelihood ratio reaches this set.

After N1 consecutive (L, σL)s logλ ∈ (−∞,−M ]m × [M,∞)k−m. Therefore λ enters

a neighborhood of (0m,∞k−m) where beliefs converge with positive probability. So,

disagreement occurs with positive probability. �

Proof of Lemma 6. Let J be the neighborhood constructed in Lemma 2 and let

M > 0 be such that if logλ ∈ R \ [−M,M ] then it is contained in one of the neigh-

borhoods constructed in lemma 2 (either the neighborhood where beliefs converge

with positive probability or the nbhd where beliefs leave with probability 1). Let

τ1 = inf{t : λt ∈ J }.
First, we show that Pr(τ1 < ∞) = 1. Suppose Pr(τ1 < ∞) < 1. If 0 or

∞ are stable, then there exists a sequence of actions such that for any point in

logλ0 ∈ [−M,M ]k enters the part of J containing a locally stable point. By the

proof of Lemma 5 for any disagreement point there exists a finite sequence of actions

such that from any point in logλ0 ∈ [−M,M ]k beliefs eventually enter the part of J
containing a locally stable point. Therefore, the probability of entering the part of J
from any point in [−M,M ]k in finite time is bounded away from 0. Moreover, if beliefs

never entered a part of J containing a locally stable point, then with probability 1

logλt ∈ [−M,M ]k i.o. Since the probability of entering J from [−M,M ]k is bounded

away from 0, beliefs must eventually enter J near a locally stable point. Therefore,

Pr(τ1 < ∞) = 1. Let τ2 = inf{t > τ1 : λt 6∈ J }. By Lemma 2, Pr(τ2 < ∞) < 1.

Therefore, Pr(λt 6∈ J i.o.) = 0, so beliefs converge almost surely. �

Proof of Lemma 7. Suppose beliefs converged to a non-stationary point λ∗ ∈
(0,∞)k with positive probability. After an L action and a σL public signal, the

likelihood ratio must increase for all sociable types, by Assumptions 1-3. Moreover,
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for any M > 0, if log λi ∈ [−M,M ], this update is bounded uniformly away from

0. For ε > 0, let Bε(λ
∗) be an open ε-ball around λ∗. For sufficiently small ε > 0,

if λ ∈ Bε(λ
∗), then observing (L, σL) causes the likelihood ratio to leave Bε(λ

∗).

The probability of (L, σL) never occurring converges to 0 as t → ∞. Therefore, the

likelihood ratio leaves any ε-ball around a non-stationary point almost surely. �

Proof of Corollary 1. Given Assumption 1, if the correctly specified type θC has a

stationary limit belief, then the support of the limit belief is a subset of {0,∞}. Also,

for θC , the perceived probability of each action is equal to the true probability, ψ̂C =

ψ. Therefore, λC,t is a martingale for any {Θ, π}. By the Martingale Convergence

Theorem, λC,t converges almost surely to a limit random variable λ∞ with supp(λ∞) ⊂
[0,∞). This rules out incorrect and non-stationary incomplete learning. Therefore,

0 is the only candidate limit point and it must be that λC,t → 0 almost surely. �

A.3 Proofs of Theorem 2 and 3

Proof of Theorem 2. Assume Assumptions 1, 2 and 3 and suppose ω = R.

Part 1: For any type θ, the function (π̂θ, ρθ) 7→ ψ̂θ(a, σ|ω,λ) is continuous. By

continuity, given δ2 > 0, there exists a δ > 0 such that if ||π̂θi − π|| < δ and ||ρθi −
r|| < δ for all sociable types θi, then ||ψ̂i(a, σ|ω, ·) − ψ(a, σ|ω, ·)|| < δ2 for (a, σ) ∈
{L,R} × {σL, σR}. Thus, δ2 can be chosen to be sufficiently small so that at every

λ ∈ {0,∞}
|γ(λ)− γC(λ)| < min

i,λ∈{0,∞}k
|γi(λ)|/2,

where γC is the corresponding γ for the model where π̂ = π and ρθ = r. So δ can be

chosen so that the sign of γ in the misspecified model matches the sign of γC at all

stationary points. Since

γC(λ) =
∑
a,σ

ψ(a, σ,R) log
ψ(a, σ, L)

ψ(a, σ, L)
< 0,

by Theorem 3, learning is complete.

Part 2: Let ε = mini,λ∈{0,∞}k |γi(λ)|/2. There exists a δ > 0 such that if ||rθ−r|| <
δ and ||ρθ − r|| < δ for all types θ, ||F̂L,i − FL|| < δ, and

∣∣π̂θ(ΘA)− π(ΘA)
∣∣ < δ for
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all sociable types θ such that:

1. The empirical frequency with which autarkic types θ play each action is

|F ω(
1

2
)− F̂ ω(rθ)−1(

1

2
,
1

2
)| < ε,

since there always exists a δ sufficiently small such that

||
∫

1− r(p)
r(p)

dF̂L −
∫

1− p
p

dFL|| < ε.

2. For all sociable types, at any stationary λ, the probability of any action is either

1 or 0 in both the misspecified and correctly specified models.

3. Binary signals imply that the perceived probability of each signal is continuous.

At any stationary vector λ, the perceived probabilities of each public signal

satisfies |G(σL)− Ĝθ(σL)| < ε.

This implies ψ̂i can be made sufficiently close to ψ at every stationary vector so that

||γC(λ)− γ(λ)|| < ε where γC is γ in the correctly specified model. Therefore, γ has

the same sign as γC for all stationary λ. By Theorem 3, learning is complete. �

Proof of Theorem 3. Assume Assumptions 1, 2 and 3 and suppose ω = R. For

any sociable type θi, the mapping (ψ̂i(a, σ|R,λ)) 7→ γ(λ) is continuous, and by the

concavity of the log operator, is negative when ||ψ̂i(a, σ|R, ·) − ψ(a, σ|R, ·)|| = 0.

Therefore, there exists a δi > 0 such that if ||ψ̂i(a, σ|R, ·) − ψ(a, σ|R, ·)|| < δi for

(a, σ) ∈ {L,R} × {σL, σR}, then γi(λ) < 0 at all stationary vectors. Therefore, any

locally stable point must have λi = 0. This holds for all sociable types θi, so λ = 0

is the unique locally stable point. By Theorem 1, the likelihood ratio converges to 0

almost surely and learning is complete. �

A.4 Proofs from Section 4

Proof of Theorem 4. Suppose ω = R. Let x ≡ FR(1/2) be the probability a

level-1 type plays action R. At a stationary vector (λ2, λ3), whether this vector is in
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Λ is determined by the sign of

γi(λ2, λ3) = ψ(R|R, λ2, λ3) log
ψ̂i(R|L, λ2, λ3)

ψ̂i(R|R, λ2, λ3)
+ ψ(L|R, λ2, λ3) log

ψ̂i(L|L, λ2, λ3)

ψ̂i(L|R, λ2, λ3)

for each type. Consider the level-2 type. Since x > 1/2,

γ2(0, 0) = −
(

1 + 2x

3

)
log

(
x

1− x

)
< 0

γ2(∞, 0) =

(
1− 2x

3

)
log

(
x

1− x

)
< 0

γ2(0,∞) =

(
1− 2x

3

)
log

(
x

1− x

)
< 0

γ2(∞,∞) =

(
3− 2x

3

)
log

(
x

1− x

)
> 0.

Therefore, (0, 0), (0,∞) and (∞,∞) are locally stable for level-2 and (∞, 0) is not

locally stable. Consider the level-3 type.

γ3(∞,∞) =
(x

3

)
log

(
1− x
x

)
+

(
3− x

3

)
log

(
p+ (1− p)x

p+ (1− p)(1− x)

)
γ3(0,∞) =

(
1 + x

3

)
log

(
p+ (1− p)(1− x)

p+ (1− p)x

)
+

(
2− x

3

)
log

(
x

1− x

)
γ3(0, 0) =

(
2 + x

3

)
log

(
p+ (1− p)(1− x)

p+ (1− p)x

)
+

(
1− x

3

)
log

(
x

1− x

)
.

If γ3(∞,∞) > 0, then (∞,∞) ∈ Λ. From these expressions, γ3(∞,∞) is positive at

p = 0, decreasing in p and negative at p = 1. Therefore, there exists a p2 such that for

p < p2, (∞,∞) ∈ Λ, and for p > p2, (∞,∞) /∈ Λ. If γ3(0,∞) > 0, then (0,∞) ∈ Λ
and if γ3(0, 0) < 0, then (0, 0) ∈ Λ. The expressions γ3(0, 0) < γ3(0,∞) are both

negative at p = 0, increasing in p and positive at p = 1. Therefore, there exists

p1 < p3 such that (0, 0) ∈ Λ for p < p3 and (0, 0) /∈ Λ for p > p3, while (0,∞) /∈ Λ for

p < p1 and (0,∞) ∈ Λ for p > p1.

It immediately follows from Theorem 1 that the agreement outcomes (0, 0) and

(∞,∞) arise with positive probability if and only if they are in Λ, and when at least

one agreement vector is in Λ, beliefs converge (i.e. for p < p3). It remains to show

that if (0,∞) ∈ Λ, then (0,∞) is total informativeness ranked, which establishes

that this outcome arises with positive probability if and only if it is in Λ, and also
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establishes belief convergence for the case of p > p3. To apply Lemma 5, it must be

that for some λ ∈ {(0, 0), (∞,∞)}, θ2 �λ θ3. This is satisfied for �(0,0). In particular,

|g2(R, (0, 0))| =
∣∣∣∣log

(
1− x
x

)∣∣∣∣ > ∣∣∣∣log

(
p+ (1− p)(1− x)

p+ (1− p)x

)∣∣∣∣ = |g3(R, (0, 0))|

g2(L, (0, 0)) = log

(
x

1− x

)
= g3(L, (0, 0)).

Intuitively, both types make the same inference from L actions around (0, 0), which

they believe must come from a level-1 type. But the level-2 type believes that R

actions are stronger evidence of state R than the level-3 type, because the level-3

type underweights the informativeness of these actions to account for the possibility

of level-2 types. Therefore, the conditions for the pairwise informativeness order

defined in Definition 2 are satisfied, θ2 �(0,0) θ3. Given that these are the only two

types, the conditions in Definition 6 for (0,∞) to be total informativeness ranked are

also satisfied.

Proof of Theorem 5. Both partisan and unbiased types believe that share α of

agents are autarkic. Partisan types think these autarkic types are also partisan, while

unbiased types think these autarkic types are also unbiased. Let xωP (ν) ≡ F ω(0.51/ν)

be the probability that the partisan autarkic type plays action R and xωU ≡ F ω(0.5)

be the probability that the unbiased autarkic type plays action R in state ω. Then

xRP (ν) ≤ xRU and xLP (ν) ≤ xLU for all ν ∈ (0, 1), since partisan types slant information

in favor of state L. Moreover, action R occurs more often in state R, so xRU > xLU
and xRP (ν) > xLP (ν) for all ν ∈ (0, 1). Unbiased types believe that autarkic types play

action R with probability xωU , and partisan types believe that autarkic types play

action R with probability F̂ ω,P (0.51/ν) = F ω(0.5) = xωU .

Let γν,qP (λ) be the value of γP (λ) in the model with partisan bias level ν and

frequency q, with an analogous definition of γν,qU (λ). Since partisan and unbiased

sociable types have the same perceived probability of each action, beliefs can never

separate and asymptotic disagreement is not possible. Additionally, γν,qP = γν,qU , and

therefore, we only need to check the sign of γν,qP (0, 0) to determine whether (0, 0) is

locally stable, and the sign of γν,qP (∞,∞) to determine whether (∞,∞) is locally

stable. Recall that global stability immediately follows for agreement vectors.

Suppose ω = R. To determine whether (∞,∞) ∈ Λ at (ν, q), we need to determine

54



the sign of

γν,qP (∞,∞) = ψν,q(R|R,∞2) log

(
ψ̂P (R|L,∞2)

ψ̂P (R|R,∞2)

)
+ψν,q(L|R,∞2) log

(
ψ̂P (L|L,∞2)

ψ̂P (L|R,∞2)

)
,

where

ψ̂P (R|ω,∞2) = αxωU

ψ̂P (L|ω,∞2) = α(1− xωU) + 1− α

ψν,q(R|R,∞2) = αqxRP (ν) + α(1− q)xRU
ψν,q(L|R,∞2) = αq(1− xRP (ν)) + α(1− q)(1− xRU) + 1− α.

If ν = 1, then xRP (1) = xRU , so ψ1,q(R|R,∞2) = ψ̂P (R|R,∞2) and ψ1,q(L|R,∞2) =

ψ̂P (L|R,∞2). Therefore, γ1,q
P (∞,∞) < 0 by the concavity of the log operator, for

any q. At ν = 0 and q = 1, xRP (0) = 0 and therefore ψ0,1(R|R,∞2) = 0. Note that R

actions decrease the likelihood ratio, log
(
ψ̂P (R|L,∞2)

ψ̂P (R|R,∞2)

)
< 0, while L actions increase

the likelihood ratio, log
(
ψ̂P (L|L,∞2)

ψ̂P (L|R,∞2)

)
> 0, independently of q and ν. Therefore,

γ0,1
P (∞,∞) > 0. Also, ψν,q(R|R,∞2) is strictly decreasing in q and strictly increasing

in ν, since xRP (ν) is strictly increasing in ν. Therefore, γν,qP (∞,∞) is strictly decreasing

in ν and increasing in q. Therefore, there exists a cutoff q1 such that for q > q1, there

exists a cutoff ν1(q) > 0 such that for ν < ν1(q), γν,qP (∞,∞) > 0 and (∞,∞) is locally

stable, while for ν > ν1(q), γν,qP (∞,∞) < 0 and (∞,∞) is not locally stable.

To determine whether (0, 0) ∈ Λ at (ν, q), we need to determine the sign of

γν,qP (0, 0) = ψν,q(R|R, 02) log

(
ψ̂P (R|L, 02)

ψ̂P (R|R, 02)

)
+ ψν,q(L|R, 02) log

(
ψ̂P (L|L, 02)

ψ̂P (L|R, 02)

)
,

where

ψ̂P (R|ω, 02) = αxωU + 1− α

ψ̂P (L|ω, 02) = α(1− xωU)

ψν,q(R|R, 02) = αqxRP (ν) + α(1− q)xRU + 1− α

ψν,q(L|R, 02) = αq(1− xRP (ν)) + α(1− q)(1− xRU).

If ν = 1, then xRP (1) = xRU , so ψ1,q(R|R, 02) = ψ̂P (R|R, 02) and ψ1,q(L|R, 02) =
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ψ̂P (L|R, 02). Therefore, γ1,q
P (0, 0) < 0 by the concavity of the log operator. At

ν = 0 and q = 1, then xRP (0) = 0, and therefore ψ0,1(R|R, 02) = 1 − α. Therefore,

γ0,1
P (0, 0) > 0. Moreover, γν,qP (0, 0) is strictly increasing in q and strictly decreasing in

ν, since xRP (ν) is strictly increasing in ν. Therefore, there exists a cut-off q2 < 1 such

that for any q > q2, there exists a cutoff ν2(q) such that for ν < ν2(q), γν,qP (0, 0) > 0

and (0, 0) is not locally stable, and for ν > ν2(q), γν,qP (0, 0) < 0 and (0, 0) is locally

stable.

Suppose ω = L. Then γ1,q(∞,∞) > 0 and γ1,q(0, 0) > 0 for all q ∈ [0, 1], since

only correct learning can occur for ν = 1. The only change in the above expressions

is that now the true measures are taken for state L, rather than state R. Therefore,

all of the comparative statics on γ are preserved. As above, for any q, γν,q(0, 0)

is decreasing in ν. Therefore, γν,q(0, 0) > 0 for all ν and q, and incorrect learning

is never locally stable. Also, for any q, γν,q(∞,∞) is decreasing in ν. Therefore,

γν,q(∞,∞) > 0 for all ν and q, and correct learning is always locally stable.

Proof of Theorem 6. Theorem 1 establishes that that λ → 0 almost surely for

a correctly specified type. Moreover, since the beliefs of the correctly specified type

are a martingale, γU(λP , λU) < 0 for all (λP , λU) ∈ [0, 1]2. In order to establish this

result, all that remains is to sign γν,qP (0, 0) and γν,qP (∞, 0). Since the partisan type

believes that all types are partisan, ψ̂P remains unchanged from the proof of Theorem

5. But now at (0, 0),

ψν,q(R|R, 02) = αqxRP (ν) + α(1− q)xRU + (1− α)

ψν,q(L|R, 02) = αq(1− xRP (ν)) + α(1− q)(1− xRU).

and at (0,∞),

ψν(R|R, (∞, 0)) = α(1− q)xRU + αqxRP (ν) + (1− α)(1− q)

ψν(L|R, (∞, 0)) = α(1− q)(1− xRU) + αq(1− xRP (ν)) + αq.

As before, as ν increases, ψν(R|R,λ) increases and ψν(L|R,λ) decreases. So, as long

as γ0,q
P (0, 0) > 0 and γ0,q

P (∞, 0) > 0, both these cutoffs exist.
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Proof of Theorem 7. Suppose ω = R. Let γk(λ) be the value of γ(λ) in the model

with parameter k. Specifically,

γk(0) = dFR(σL) log

(
σL + 1

k
(0.5− σL)

1− σL − 1
k
(0.5− σL)

)
+ dFR(σR) log

(
σR

1− σR

)
γk(∞) = dFR(σL) log

(
σL

1− σL

)
+ dFR(σR) log

(
σR + 1

k
(0.5− σR)

1− σR − 1
k
(0.5− σR)

)

since %(0) = %(1) = 1. With a single type, global stability follows immediately

from local stability. Determining how the sign of γk(0) and γk(∞) varies with k will

characterize the local stability set, and therefore, asymptotic learning outcomes.

We know that learning is almost surely correct in the correctly specified model,

so it must be that γ∞(0) < 0 and γ∞(∞) < 0. The bias ρ is continuous in k, so γk(0)

and γk(∞) are continuous in k. The informativeness of σL when beliefs are near 0 is

log

(
σL + 1

k
(0.5− σL)

1− σL − 1
k
(0.5− σL)

)
.

This expression is increasing in k since σL > 1/2. Increasing k has no effect on the

informativeness of σR when beliefs are near 0. Therefore, γk(0) is increasing in k.

Since γ∞(0) < 0, γk(0) < 0 for all k. This means that correct learning occurs with

positive probability for all k > 1.

In contrast, the informativeness of σR when beliefs are near ∞,∣∣∣∣log

(
σR + 1

k
(0.5− σR)

1− σR − 1
k
(0.5− σR)

)∣∣∣∣ ,
is increasing in k. Therefore, γk(∞) is decreasing in k. Since γ∞(∞) < 0, incor-

rect learning can only occur if k is low enough. At k = 1, σR is perceived to be

uninformative near ∞, and the likelihood ratio moves towards state L,

γ1(∞) = dFR(σL) log

(
σL

1− σL

)
+ dFR(σR) log 1 > 0.

Therefore, there exists a cut-off k̄ > 1 such that for k < k̄, γk(∞) > 0 and incorrect

learning occurs with positive probability.
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B Examples of Nested Models

This paper nests the boundedly rational models of several other papers, including

Rabin and Schrag (1999) and Epstein et al. (2010).

B.1 Rabin and Schrag (1999)

Rabin and Schrag (1999) examines individual learning with confirmation bias. Agents

receive a binary signal, but if they receive a signal that goes against their prior beliefs

then with probability q they misinterpret that signal as the other signal (which agrees

with their prior belief). In order to nest this model, a slight extension must be made

to the framework we’ve outlined. In particular, this requires four public signals and

the mapping ρ must be able to map two public signals that induce the same posterior

to different misspecified beliefs. It is straightforward to extend all arguments made

in this paper to this case.

This is a misspecified model with one type θ. There are 4 public signals σL1 ,

σL2 , σR1 , σR2 . All L signals induce the same posterior and all R signals induce the

same posterior. Conditional on seeing an L signal, σL2 is draw with probability q.

Similarly, for σR1 and Pr(σL1 or σL2|ω = R) = Pr(σR1 or σR2|ω = L) = σ < 1/2. If

λ > 1, then ρ(σL2) = σ and all other signals are interpreted correctly. If λ < 1 then

ρ(σR1) = 1− σ and all other signals are interpreted correctly.

The parameter q indexes the degree of confirmation bias. Higher q means it is

more likely that agents misinterpret signals that go against their prior. Under this

specification,

γ(0) = (1− q)
(
σ log

(
1− σ
σ

)
+ (1− σ) log

(
σ

1− σ

))
+ q log

(
σ

1− σ

)
.

and

γ(∞) = (1− q)
(
σ log

(
1− σ
σ

)
+ (1− σ) log

(
σ

1− σ

))
+ q log

(
1− σ
σ

)
.

As q increases, more weight is placed on the last term, which is negative when λ = 0

and positive when λ =∞.

58



B.2 Epstein et al. (2010)

Epstein et al. (2010) considers an individual learning model where agents overweight

beliefs towards the prior or towards the posterior. Specifically, an agent with prior p

who would update her beliefs to BU(p) instead updates to

(1− α)BU(p) + αp

for some α ≤ 1. When α = 0, this is the correct model, for α > 0 agents overweight

the prior and for α < 0, agents overweight new information. For simplicity of notation,

suppose that Pr(σL|ω = R) = Pr(σR|ω = L) = σ < 0.5. In our framework, this is a

model with a single agent type who only receives public signal σ and maps this signal

to

ρ(σ, p) =

σ(1−α)
(1−σ)(1−p)+ps + α

1
1−p + 1−2p

1−p

(
σ(1−α)

(1−σ)(1−p)+pσ + α
) ,

with

ρ(σ, 1) =
σ

(1− α)(1− σ) + (1 + α)σ
,

which implies that ρ(σ, 1) = limp→1 ρ(σ, 1).27

Under this misspecification, whenever an agent with prior pt updates their beliefs,

the likelihood ratio becomes

λt+1 =

ptσ(1−α)
(1−σ)(1−pt)+ptσ + αpt

1− ptσ(1−α)
(1−σ)(1−pt)+ptσ − αpt

.

Therefore, the Bayes update is

pt+1 =
ptσ(1− α)

(1− σ)(1− pt) + ptσ
+ αpt.

Therefore, the update rule from Epstein et al. (2010) can be represented in our frame-

work.

27Epstein et al. (2010) does not identify how signals are interpreted at 0 or 1, since beliefs are
stationary at these points. In order to characterize asymptotic outcomes, the tools developed in this
paper show ho the limit of the update rule as p → 0 or 1 can be used to characterize asymptotic
outcomes of the model in Epstein et al. (2010).

59



Under this specification, the likelihood ratio update is

λt+1/λt =

σ(1−α)
(1−σ)(1−pt)+ptσ + α

(1−α)(1−σ)
(1−σ)(1−pt)+ptσ + α

As p→ 1, the likelihood ratio update conveges to

1

(1− α)1−σ
σ

+ α

and as p→ 0, the likelihood ratio update converges to

σ(1− α)

1− σ
+ α

In an environment with symmetric binary signals,

γ(0) = σ log[(1− α)
1− σ
σ

+ α] + (1− σ) log[(1− α)
σ

1− σ
+ α],

and

γ(∞) = σ log
1

(1− α) σ
1−σ + α

+ (1− σ) log
1

(1− α)1−σ
σ

+ α
.

B.3 Overestimating Bayesianism

An interesting class of models that are nested in the framework in this paper are

models where agents believe that others correctly interpret their private information

and update using Bayes rule, but when faced with their own decision, agents mis-

takenly interpret their private signal and fail to update correctly. For instance, an

agent may overweight her prior when forming new beliefs, as in Epstein et al. (2010),

or update beliefs in a way that favors her preferred state, while still believing that

everyone else is forming beliefs using the correctly specified model. In such a model,

the agent correctly interprets the actions of others but incorrectly combines it with

her own information.28

28In our framework, agents use Bayes rule to update beliefs from a sequence of actions. But
the techniques in this paper can easily be generalized to incorporate fully non-Bayesian update

rules of the form log λt+1 = log λt + r̂
(

log ψ̂(at|L,λt)

ψ̂(at|R,λt)
, λt

)
. Using such an updating rule, γ(λ) =∑

ψ(a|R, λ)r̂
(

log ψ̂(a|L,λ)
ψ̂(a|R,λ)

, λ
)

. Proofs remain otherwise unchanged.
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If a non-Bayesian update rule can be represented by a misspecified private belief

function r(·, p), the analysis of this paper goes through unchanged, and γ(·) can

be used to characterize the set of globally stable points. Moreover, if signals are

unbounded, there exists a misspecified model that represents this learning rule.29

Lemma 11. Suppose r : [0, 1] → [0, 1] is a strictly increasing function on suppFs

and r(suppFs) ⊆ suppFs. Then there exist mutually absolutely continuous measures

µ̂L, µ̂R ∈ ∆(Z) such that the perceived posterior distribution at belief ŝ is equal to the

true posterior distribution at signal s = ŝ, F̂ ω
ŝ (ŝ) = F ω

s (ŝ).

Proof. Let F̂L
s (s) ≡ FL

s (r(s)). This satisfies FL
s (s) = F̂L

ŝ (s). It remains to show that

F̂R
s also satisfies this identity. By Lemma A.1 in Smith and Sorensen (2000)

FR
s (r(s)) =

∫ r(s)

0

1− p
p

dFL
s (p), (7)

and it must be that

F̂R
s (s) =

∫ s

0

1− r(q)
r(q)

dF̂L
s (q).

Applying the change of variables formula to (7)

F̂R
s (s) =

∫ s

0

1− r(q)
r(q)

dF̂L
s (q).

So F̂ ω
s (s) = F ω

s (r(s)) in both states. �

By Theorem 3, learning is robust if the update rule is not far away from Bayes rule

(i.e. if ||r(s)−s|| is sufficiently small), and correct learning occurs almost surely. More-

over, even with bounded signals, the arguments for Theorem 1 remain unchanged, so

the set Λ can be used to characterize the set of globally stable points.

29When signals are bounded, there also exists a misspecified model that represents this learning
rule under a slight extension to the model that allows types to have heterogeneous signal distribu-
tions. If r : [0, 1]→ [0, 1] is a strictly increasing function on suppFs, but r(suppFs) 6⊆ suppFs (for
example, when signals are bounded and r(s) = sν), allowing for heterogeneous signal distributions
will yield an analogous result. Under this extension, type θ’s private signal and type misspecification
encodes (µ̂θ, π̂θ, µθ), where µθ is the true distribution of type θ’s signal and µ̂θ is the perceived dis-
tribution. A misspecified agent has a perceived measure over signals that is represented by r(s), but
believes that all other agents are type (µθ, π̂θ, µθ), where µθ is the true signal distribution. In this
environment, all agents are misspecified and believe all agents are interpreting information correctly.
The main results of the paper easily extend to this setting.
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