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1 Introduction

“I think the development of the venture capital system has been an example of some-

thing which is a successful improvement in risk-bearing. It doesn’t exactly remove the

risks at the beginning, but at least creates greater rewards at a slightly later stage

and therefore encourages, say, small companies to engage in technologically risky en-

terprises. If you like innovation, you expect 50 percent to 60 percent failure. In a sense

if you don’t get that, you’re not trying hard enough. Venture capital has done much

more, I think, to improve effi ciency than anything.”Kenneth J. Arrow, 1995

The importance of venture capital in the U.S. economy has skyrocketed over the past 50

years. Investment by venture capitalists was roughly $303 million in 1970. This soared to

$54 billion by 2015 (both numbers are in $2009). The rise in venture capital (VC) financing

is shown in the right-hand-side panel of Figure 1. While the share of VC funding in total

investment is still relatively small, around 2 percent in 2015, its punch far exceeds its weight.

The fraction of public firms that have been backed at some time by venture capitalists is

now around 20 percent, compared with just 4 percent in 1970—see the left-hand-side panel

of Figure 1. (See the Data Appendix for the sources of all data used in the paper.) Such

firms presently account for about 20 percent of market capitalization. The capitalization line

lies below the fraction of firms line because VC-backed companies tend to be more recent

entrants that are younger and smaller in size, whereas their non-VC-backed counterparts

tend to be established incumbents. Today venture capitalists are a significant player in

job creation and technological innovation. Public firms that were once backed by venture

capitalists currently make up a significant fraction of employment and an even larger share

of R&D spending, as opposed to virtually nothing in 1970, as the left-hand-side panel of

Figure 2 makes clear. The right-hand side of the figure displays their enormous contribution

to the generation of patents, both in raw and quality-adjusted terms. The employment

share of VC-backed firms is far less than the R&D (and patents) share. This is because

VC-backed companies are more R&D intensive than their non-VC-backed counterparts. For
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Figure 1: The rise of venture capital, 1970 to 2015. The right-hand-side panel shows in-
vestment by venture capitalists. The left-hand-side panel plots both the fraction of public
firms financed by venture capitalists and the share of VC-backed public firms in market
capitalization.

instance, Google (a VC-backed company) has far fewer employees than General Motors (a

non-VC-backed company), but Google invests a lot more in R&D than General Motors.

The VC industry has been an incubator of numerous technological giants in the informa-

tion and communication technology sector as well as the biotechnology sector, plus an array

of star innovators in the service industry. Former VC-backed firms are household names.

Table 1 lists the top 30 VC-backed public companies by market capitalization. Figure 3

plots the relative significance of the words “banks” and “venture capital,” as reflected by

their usage in English language books. As shown, the term venture capital was virtually

unused in 1930. The relative significance of venture capital vis-à-vis banks has increased

considerably since then.

To address the importance of VC in the U.S. economy, an endogenous growth model is

developed. At the heart of the growth model is a dynamic contract between an entrepre-

neur and a venture capitalist. The venture capitalist invests in the entrepreneur’s startup

as an active participant. The venture capitalist provides seed money for initial research.

The project then enters a funding-round cycle. At the beginning of each cycle the venture

capitalist evaluates the worthiness of the project. Those projects that pass the evaluation

are given funds for development. The contract is designed so that it is not in the entre-
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Figure 2: The share of VC-backed firms in employment, R&D spending, and patents. The
data in the left-hand-side panel is from 1970 to 2014, while that in the right-hand-side panel
spans 1973 to 2005.

Top 30 VC-Backed Companies

1 Apple Inc 11 Amgen Inc. 21 Fedex Corp.
2 Cisco Systems Inc. 12 Yahoo Inc. 22 Juniper Networks Inc.
3 Microsoft Corp. 13 Genentech Inc. 23 Nextel Communications Inc.
4 Alphabet Inc. 14 Celgene Corp. 24 Gap Inc.
5 Facebook Inc. 15 Ebay Inc. 25 Viacom Inc.
6 Oracle Corp. 16 Compaq Computer Corp. 26 Veritas Software Corp.
7 Amazon.Com Inc. 17 Starbucks Corp. 27 Salesforce.Com Inc.
8 Sun Microsystems Inc. 18 Micron Technology Inc. 28 Alexion Pharmaceuticals Inc.
9 Gilead Sciences Inc. 19 Applied Materials Inc. 29 Adobe Systems Inc.
10 Dell Inc. 20 Regeneron Pharmaceuticals 30 Twitter Inc.

Table 1: The table shows the top 30 VC-backed companies by market capitalizaton. These
companies are identified by matching firm names in VentureXpert and CompuStat.
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Figure 3: Banks and venture capital, 1930-2008. The figure plots the use of the words
“banks”and “venture capital,” relative to all words in English language books, using the
Google Ngram Viewer. For each series, the value in 2008 is normalized to 100.

preneur’s interest to divert funds away from their intended purpose. The venture capitalist

can imperfectly monitor at a cost the entrepreneur’s use of funds, which helps to ensure

incentive compatibility. Those ventures that are successful during a fund round are floated

on the stock market. The contract specifies for each funding round the evaluation strategy

to gauge the project’s worthiness, the amount of VC invested in development, the level of

monitoring to avoid malfeasance, and the shares of each party in the proceeds from a po-

tential IPO. The predicted features of the contract are compared with some stylized facts

about venture capital: (i) the success and failure rates by funding round, (ii) investment by

funding round, (iii) the value of an IPO by duration of the project, and (iv) the venture

capitalist’s share of equity by funding round. Despite the importance of VC, the majority

of U.S. firms are not financed through this channel. So, the analysis includes a traditional

sector that produces the majority of output using capital that can be thought of as financed

through regular banks. The key participants in a VC partnership receive the majority of

their compensation in the form of stock options and convertible equity. As such, they are

subject primarily to capital gains taxation. The analysis examines how innovative activity

is affected by the capital gains tax rate.

Dynamic contract models have now been used for some time to study consumption/savings
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cum effort decisions with moral hazard. An early example is Phelan and Townsend (1991),

with more recent work being represented by Karaivanov and Townsend (2014). Dynamic

contract frameworks that focus on firms, and VC in particular, are rarer. Bergemann and

Hege (1998), Clementi and Hopenhayn (2006), and Cole, Greenwood, and Sanchez (2016)

develop contracting structures that share some similarities with the one presented here. In

Bergemann and Hege (1998) a venture capitalist also learns about a project’s type, good or

bad, over time. The odds of a good project’s success are a linear function of investment.

The entrepreneur can secrete some of the funds intended for investment, so there is a moral

hazard problem. Given the linear structure of their model, which generates corner solutions,

analytical results obtain. In an extension, the venture capitalist can monitor investment or

not. If he monitors, then any irregularities are uncovered with certainty. The analysis is

done in partial equilibrium. While illuminating some economics about VC, it would be hard

to take their streamlined structure to the data. While not focusing on VC, the Clementi

and Hopenhayn (2006) model also reformulates as one where an entrepreneur can secrete

investment. The lender cannot monitor the borrower. Again, the analysis is done in partial

equilibrium.

The current paper borrows Cole, Greenwood, and Sanchez’s (2016) flexible-monitoring

technology. The more the venture capitalist invests in auditing, the higher the odds that he

will detect any irregularities. The venture capitalist can also invest in evaluating a project in

each funding round to learn about its type, good or bad—something not allowed in Bergemann

and Hege (1998). This feature is important because it allows the odds that a project is good

to rise over funding rounds. This works to generate an upward-sloping investment profile by

funding round. The odds of a good project’s success are an increasing, concave function of

investment in development. Additionally, VC is taken to be a competitive industry; this is

similar to Cole, Greenwood, and Sanchez’s (2016) assumption that financial intermediation,

more generally, is competitive.

The current analysis is done within the context of an endogenous growth model. Cole,

Greenwood, and Sanchez (2016) focus on the impact that financial intermediation, more
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broadly defined, has on cross-country technological adoption and income levels. As in Ak-

cigit, Celik, and Greenwood (2016), the current work has a distribution of competitive firms

operating in general equilibrium. This distribution is continually shifting rightward with

technological progress in the economy. A new entrepreneur decides how far to push his

productivity relative to the frontier; this is somewhat reminiscent of Parente (1994). The

position of the frontier is determined by a classic Romer (1986) type externality. The last

three papers noted have no startups. None of the above papers compares the predictions of

their models with the VC process in the United States. And none of them examines how

innovative activity is affected by the rate of capital gains taxation.

There is, of course, work on VC that does not take a dynamic contract perspective. Sil-

veira and Wright (2016) build a canonical search model of the process where entrepreneurs

are matched with venture capitalists, something abstracted from here. Upon meeting, the

parties bargain in Nash fashion over each one’s investment and how to split the proceeds.

Jovanovic and Szentes (2013) focus on a setting where the incubation period for a project is

unknown. Unlike entrepreneurs, venture capitalists have deep pockets and can weather sup-

porting a project over a prolonged period of time, if they so choose. A contract specifies the

initial investment by the venture capitalist and some fixed split of the profits. The analysis

focuses on characterizing and measuring the excess return earned by venture capitalists, due

to the latters’scarcity. A tractable stylized Schumpeterian model of VC that has analytical

solutions is developed by Opp (2018). He estimates that the welfare benefits of VC are worth

1 to 2 percent of aggregate consumption, despite the fact that VC investment is highly pro-

cyclical, which operates to trim the estimates. In his analysis, entrepreneurs do not choose

how far to launch their endeavour ahead of the pack. Also, the likelihood of success does

not depend on the level of development funding. Since the innovation process is essentially

static, there is no investment over time in learning about the project’s quality. Given the

static nature of the R&D investment, he does not model the stage financing process; i.e., the

success rates, failure rates, investment rates, equity shares, and values of an IPO by funding

round.
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2 The Rise of Venture Capital as Limited Partnerships

Financing cutting-edge technologies has always been problematic.1 It is diffi cult to know

whether new ideas are viable, if they will be saleable, and how best to bring them to market.

Also, it is important to ensure that entrepreneurs’ and investors’ incentives are aligned.

Traditional financial institutions, such as banks and equity/securities markets, are not well

suited to engage in this sort of finance. Historically, the introduction of new technologies

was privately financed by wealthy individuals. Investors were plugged into networks of

inventive activity in which they learned about new ideas, vetted them, and drew on the

expertise needed to operationalize them. These financiers could be considered similar to

today’s “angel investors.”

The Brush Electric Company provided such a network for inventors and investors in

Cleveland around the turn of the 20th century. Electricity was one of the inventions born

during the Second Industrial Revolution. Individuals linked with the Brush Electric Com-

pany network spawned ideas for arc lighting, liquefying air, smelting ores electrically, and

electric cars and trolleys, among other things. The shops at Brush were a meeting place

for inventors; they could develop and debug new ideas with help from others. Investors

connected with the Brush network learned about promising new ideas from the scuttlebutt

at the shops. They became partners/owners in the firms that they financed. Interestingly,

in the Midest at the time, prolific inventors (those with more than 15 patents) who were

principals in companies were much more likely to keep their patents or assign them to the

companies where they were principals as opposed to other inventors, who typically sold

them to businesses where they had no concern. This aligned the incentives of innovators

and investors.

World War II and the start of the Cold War ushered in new technologies, such as jets,

nuclear weapons, radars, and rockets. There was a splurge of spending by the Defense

Department. A handful of VC firms were formed to exploit the commercialization of scientific

1 This section draws heavily on Lamoreaux, Levenstein, and Sokoloff (2007) for the period prior to World
War II and on Kenney (2011) for the period after.
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advances. American Research and Development (ARD), founded by General Georges Doriot

and others, was one of these. ARD pulled in money from mutual funds, insurance companies,

and an initial public stock offering. The founders knew that it was important for venture

capitalists to provide advice to the fledging enterprises in which they were investing. In 1956

ARD invested $70,000 in Digital Equipment Corporation (DEC) in exchange for a 70 percent

equity stake. ARD’s share was worth $38.5 million when DEC went public in 1966, which

represented an annual return of 100 percent. While this investment was incredibly successful,

the organizational form of ARD did not come to dominate the industry. The compensation

structure of ARD made it diffi cult for the company to retain the VC professionals needed

to evaluate startups and provide the guidance necessary for success.

An alternative organizational form came to emblemize the industry; viz., the limited

partnership. This form is exemplified by the formation of Davis and Rock in 1961. These

partnerships allowed VC professionals to share in the gains from startups along with the

entrepreneurs and investors. Limited partnerships served to align venture capitalists’ in-

terests with those of entrepreneurs, investors, and key employees. Money was put in only

at the beginning of the partnership. The general partners received management fees as a

salary plus a share of the capital gains from the investments, say 40 percent, with the limited

partners earning 60 percent. The limited partners had no say in the decisions of the general

partners. The partnerships were structured for a limited length of time, say 7 to 10 years.

The returns from the partnership were paid out to the investors only when the partnership

was dissolved—there were no dividends, interest payments, etc. Therefore, the returns upon

dissolution were subject only to capital gains taxation at the investor level. The VC industry

also rewarded founders, CEOs, and key employees using stock options. Thus, they too were

subject to capital gains taxation and not taxation on labor income. The short time horizon

created pressure to ensure a venture’s rapid success.

Banks and other financial institutions are not well suited to invest in cutting-edge new

ventures. While banks are good at evaluating systematic lending risk, they have limited

ability to judge the skill of entrepreneurs, the worth of new technologies, and the expertise
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to help commercialize them. The Glass-Steagll Banking Act of 1933 prohibited banks from

taking equity positions in industrial firms—the act was repealed in 1999. Allstate Insurance

Company created a private placements program in the 1960s to undertake VC type invest-

ments. It abandoned the program because it could not compensate the VC professionals

enough to retain them. The Employee Retirement Income Security Act of 1974 prevented

pension funds (and dissuaded other traditional fiduciaries) from investing in high-risk ven-

tures. The act was reinterpreted in the 1980s to allow pension funds to invest in VC operating

companies, which provided a fillip for the VC industry.

3 Empirical Evidence on Venture Capital and Firm

Performance

How does VC affect firm growth and technological innovation? The VC industry is a suc-

cessful incubator of high-tech and high-growth companies. VC-backed public companies

have higher R&D-to-sales ratios than their non-VC-backed counterparts. Following an IPO,

they also grow faster in terms of employment and sales. VC-backed companies are em-

braced as “golden geese”by the investors. They are valued higher than their non-VC-backed

counterparts around the time of an IPO. In addition, VC is a potent apparatus for financ-

ing technological innovation. VC funding is positively associated with patenting activity

by firms. Moreover, patenting depends more on VC funding in those industries where the

dependence on external financing is high.

3.1 Venture Capital and Firm Growth

Regression analysis is now conducted to evaluate the performance of VC-backed and non-

VC-backed firms along four dimensions for the year after an IPO: the R&D-to-sales ratio,

the growth rate of employment, the growth of sales revenue, and the market value of firms.

The results are presented in Table 2. The regressions are based on an unbalanced panel of
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VC- versus Non-VC-Backed Public Companies
Dependent variable R&D / Sales Employment growth Sales growth ln(Firm value)

VC (= 1, if backed by VC) 0.0521*** 0.0490*** 0.0696*** 0.373***
(0.00169) (0.00206) (0.00270) (0.0141)

VC ×years since IPO -0.000780*** -0.00304*** -0.00406*** -0.0110***
(0.000132) (0.000165) (0.000215) (0.00110)

ln(employment) -0.0133*** -0.00567*** -0.00641*** 0.851***
(0.000248) (0.000254) (0.000335) (0.00170)

Observations 84,116 148,834 149,672 168,549
R-squared 0.383 0.084 0.108 0.737

Table 2: All specifications include year dummies, industry dummies (at the 4-digit SIC),
and a year dummy for the IPO. Standard errors are in parentheses and significance at the 1
percent level is denoted by ***.

U.S. public companies between 1970 and 2014. To compare VC-backed companies with their

non-VC-backed counterparts, a VC dummy is entered as an independent variable that takes

the value of 1 if the company is funded by VC before its IPO. In all regressions, industry

dummies, year dummies, and a year dummy for the IPO are included. In addition, a cross

term is added between the VC dummy and the number of years since the firm’s IPO.

As shown by the first row of regression coeffi cients, VC-backed companies are more R&D

intensive and grow faster than their non-VC-backed counterparts. On average the R&D-to-

sales ratio of a public VC-backed company is higher than its non-VC-backed counterpart by

5.2 percentage points, and it grows faster—by 4.9 percentage points in terms of employment

and 7.0 percentage points in terms of sales revenue. These superior performances translate

into higher market values: VC-backed companies are valued 37.3 percent higher than their

non-VC-backed counterparts. The difference in performance, however, gradually dwindles

over the years, as shown by the negative signs of the regression coeffi cients in the second

row. As a consequence, the performances of VC- and non-VC-backed public companies tend

to converge in the long run, though the speed of convergence is fairly low, as revealed by the

magnitude of the regression coeffi cients in the second row.
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3.2 Venture Capital and Innovation

Regression analysis now assesses the role of VC in encouraging technological innovation;

specifically, the impact of VC funding on patent performance at an annual periodicity is

evaluated, both at the firm and industry levels. The regression analysis is based on all

companies funded by venture capitalists between 1970 and 2015. These VC-funded patentees

are identified by matching firm names in VentureXpert and PatentsView.

Firm-Level Regressions. In the firm-level regression analysis, the primary independent

variable is (the natural logarithm of) annual VC funding, while the dependent variable is

a measure of patenting performance, both in the year and the year after the firm receives

the funding. The primary independent variable may suffer from both measurement error

and selection issues. So, in some of the regressions, two instrumental variables are used.

The first instrumental variable (IV) is the (maximum) rate of capital gains taxation in the

state where the VC-funded company is located. The second IV is a Rajan and Zingales

(1998) type measure of the dependence on external finance of the industry in which the firm

operates. This measure reflects the extent to which outside funds are used in the industry for

expenditures on property, plant and equipment, R&D, advertising, and employee training.

Both of these datums are exogenous at the level of a startup. In all of the regressions, controls

are added for the number of patents held by the firm at the beginning of the year, the age of

the firm, and the total amount of private and federally funded R&D of the industry in which

the firm operates. Additionally, both a year and industry dummy are entered. Last, since

both innovation and VC activities are remarkably clustered in California or Massachusetts,

a “cluster dummy”for a firm headquartered in California and Massachusetts is included.

The results of the regression analysis are reported in Table 3. Panel A of Table 3 conducts

the analysis along the extensive margin analysis; i.e., it examines whether the firm obtains

any patents after receiving VC funding. In regressions (1) and (2), the dependent variable

is a dummy that takes the value of 1 if the firm files any successful patent applications at

the U.S. Patents and Trademark Offi ce (USPTO) within one year after it receives funding.

Regressions (3) and (4) focus on the “breakthrough”patents, a measure pioneered by Kerr
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(2010). Breakthrough patents refers to those in the right tail of the citation distribution.

Here the dependent variable in regressions (3) and (4) is a dummy variable that takes the

value of 1 if the firm files any patents in the top 10 percent of the citation distribution in

its cohort (i.e., those patents with the same technological class and same application year).

Panel B of Table 3 turns to the intensive margin. In regressions (5) and (6) the dependent

variable is the natural logarithm of the number of patents. The natural logarithm of the

number of patents is weighted by citations in regressions (7) and (8).

As shown by the positive regression coeffi cients of VC funding in Panel A, a firm is more

likely to file a patent and come up with a breakthrough patent the larger is the funding from

a VC, although the impact of VC funding is somewhat smaller in spurring breakthrough

patents than ordinary patents. According to the IV estimates in regressions (6) and (8), a

10 percent increase in VC funding will induce a 3.6 percent boost in patenting one year after

funding, and this number goes up to 6.7 percent when the number of patents is adjusted

for quality. In addition, across all the regressions in Table 3, the estimates are consistently

higher in the IV regressions.

Industry-Level Regressions. The above firm-level regressions are now recast at the

4-digit SIC industry level. The main explanatory variable is the (natural logarithm of the)

aggregate amount of VC investment across all industries between 1970 and 2015. The de-

pendent variable is the (natural logarithm of the) number of patents filed by all VC-backed

companies in the industry one year after they receive VC funding. To capture the hetero-

geneous dependence on external finance across industries, a cross term is added between

aggregate VC funding and the industry’s dependence on external finance. This specification

emulates Rajan and Zingales (1998) in the sense that they exploit the variation of financial

development across countries, whereas the current analysis taps into fluctuations of aggregate

VC investment across time. As in the firm-level regressions, the main independent variable

may suffer from both measurement error and selection issues. An instrumental variable is

used to address this. The IV follows Kortum and Lerner (2000) and is based on the deregu-

lation of pension funds in 1979, as highlighted in Section 2. To be specific, a “deregulation
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VC Funding and Patenting: Firm-Level Regressions
Panel A: Extensive Margin Analysis

Dependent variable 1{Patent > 0} 1{“Breakthrough patent”> 0}
Probit IV Probit IV
(1) (2) (3) (4)

ln(VC funding) 0.141*** 0.682*** 0.133*** 0.635***
(0.0108) (0.0590) (0.0112) (0.0979)

Observations 9,166 8,132 9,149 8,122
Panel B: Intensive Margin Analysis

Dependent variable ln(Patent) ln(Patent, quality adj)
OLS IV OLS IV
(5) (6) (7) (8)

ln(VC funding) 0.115*** 0.363* 0.155*** 0.674*
(0.00907) (0.187) (0.0164) (0.356)

Observations 5,828 5,207 5,032 4,519
R-squared 0.244 0.123

Table 3: See the main text for a description of the dependent and independent variables.
Standard errors are in parentheses. *** denotes significance at the 1 percent level, ** at the
5 percent level, and * at the 10 percent level.

dummy,”which takes the value of 1 after 1979, is used as an instrumental variable. In all of

the industry-level regressions, controls are added for the total amounts of private R&D and

federally funded R&D in the industry. A 2-digit industry dummy variable is also included.

Since the deregulation dummy is used as an IV, year dummies cannot be used, so common

shocks to all industries are controlled for by adding NBER recession dummies as a proxy for

the business cycle and the federal funds rate as a proxy for the tightness of monetary policy.

The industry-level regressions are presented in Table 4. As can be seen from the first row

of the regression coeffi cients, the positive signs on aggregate VC funding complement the

findings at the firm level. VC investment contributes positively to patenting performance

at the industry level. According to the IV estimate in column 2, at the median level of

financial dependence across industries, a 10 percent increase in aggregate VC funding will

induce a 1.51 percent boost in industry-level patenting within a year. This elasticity is 0.194

in the prepackaged software industry, which accounted for 23 percent of VC investment.

In addition, the impact of VC is heterogeneous across industries, as revealed by the cross
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VC Funding and Patenting: Industry-Level Regressions
Dependent variable ln(Patent) ln(Patent, quality adj)

OLS IV OLS IV
ln(agg VC funding) 0.200*** 0.151*** 0.129*** 0.115*

(0.0381) (0.0569) (0.0454) (0.0681)
ln(agg VC funding) × ind financial dependence 0.1854*** 0.1852*** 0.192*** 0.191***

(0.00965) (0.00976) (0.0117) (0.0118)
Observations 1,971 1,971 1,890 1,890
R-squared 0.378 0.362

Table 4: See the main text for a description of the dependent and independent variables.
Standard errors are in parentheses. *** denotes significance at the 1 percent level, ** at the
5 percent level, and * at the 10 percent level.

term between VC funding and the dependence on external finance (see the second row).

Since the regression coeffi cients on the cross terms turn out to be positive, the impact of

the fluctuations in aggregate VC investment is more pronounced the higher is the industry’s

dependence on external finance. For industries in the top quartile of financial dependence,

the elasticity is 0.339, versus 0.111 in the bottom quartile.2 As complementary evidence

on the cyclicality of VC activities, Khan and Petratos (2016) document that VC entry (the

number of startups) and exit (the number of IPOs and M&As) are nearly three and five

times, respectively, as volatile as business fixed investment.

4 The Setting

At center of the analysis is the interplay between an entrepreneur and a venture capitalist,

which is governed by an incentive-compatible financial contract. Entrepreneurs have ideas,

but no money, while venture capitalists have money, but no ideas. Each period new entre-

preneurs bring ideas of their choosing to a venture capitalist to obtain funding. The parties

sign a partnership agreement that has finite duration. Note that most VC entreprises are

operated as partnerships. The share of corporate venture programs in total U.S. VC in-

2 To be conservative, the number for the upper quartile excludes an unrealistic high elasticity for the
insurance carrier industry, where there are only two VC-funded firms.
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vestment is low, averaging just 9 percent between 1995 and 2015. Also, corporate VC faces

many of same challenges as VC partnerships; viz., the uncertainty about a project’s quality

and the moral hazard problem connected with lending.

At the time the contract is signed, the venture capitalist provides seed money to research

initially the idea. After this initial research is finished, the project enters a funding-round

cycle that may last for many periods. Some ideas brought by entrepreneurs to the venture

capitalist are good, others are bad. Only a good idea has a payoff, and even then this might

not happen. Neither party knows whether an idea is good or bad. So, at the beginning

of each funding round the venture capitalist evaluates the project at a cost in an attempt

to detect whether the venture is bad. Bad projects are terminated. Projects that aren’t

known to be bad are given development money. The probability of success within a funding

round is an increasing function of the level of investment in development undertaken by the

entrepreneur. How much of the money the entrepreneur actually uses for development is

private information. The venture capitalist can imperfectly monitor development investment

at a cost in an attempt to detect any malfeasance. When malfeasance is detected, the venture

capitalist drops the venture. If successful, the project will be floated on the stock market or

sold to another firm, which yields a reward that will be a function of the idea’s type. The

reward is split between the entrepreneur and venture capitalist as specified by the partership

agreement. Any profits from floating a VC-funded enterprise are subject to capital gains

taxation. All revenue from capital gains taxation is rebated back to the populace in lump-

sum transfer payments. If the project is not successful, then it enters another funding round,

provided the contract has not expired, and the funding cycle goes on. The timing of events

within a generic funding round is shown in Figure 4.

The analysis focuses on a balanced-growth path. The aggregate level of productivity in

a period is denoted by x, which represents the aggregate state of the economy. Along a

balanced-growth path, x will grow at the gross rate gx > 1 so that

x′ = gxx.
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Figure 4: The timing of events within a typical funding round. The research underlying the
idea occurs at the very beginning of the funding cycle (round zero) and is shown to the left
of generic funding round.

The gross growth rate of aggregate productivity, gx, is an endogenous variable in equilibrium.

It will be a function of the effi ciency of the VC system. The discussion now proceeds by

detailing the stages portrayed in Figure 4.

4.1 The Research Stage—Starting a New Venture

Each period a flood of new entrepreneurs in the amount e approach venture capitalists to

obtain funding for their ideas. An entrepreneur incurs an opportunity cost in the amount

wo to run a project, where w is the wage rate for labor. The component o of this cost

is distributed across potential entrepreneurs according to the non-normalized distribution

function, O(o). This distribution function O(o) is assumed to be Pareto so that

O(o) = 1− (υ/o)ν , with ν, υ > 0. (1)

Only those potential entrepreneurs who expect the payoff from a startup to exceed their

opportunity cost, wo, will approach a venture capitalist for funding. This criterion will
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determine the number of funded entrepreneurs, e.

A new entrepreneur is free to choose the type of startup, x, that he wants to develop.

In particular, when deciding on the project, the entrepreneur picks x subject to a research

cost function of the form

i = R(
x

x
, e) = w(

x

x
)ιe−ξ/χR,

where i ≥ 0 is the initial investment in researching the project. The entrepreneur can choose

how far ahead the productivity of his firm, x, is from the average level of productivity in

the economy, x. The more ambitious he is, or the higher x is relative to x, the greater will

be the research cost, which rises in convex fashion. The cost of research, R(x/x, e), rises

with the level of wages, w, which will be a function of the aggregate level of productivity,

x. (Think about R(x/x, e)/w as representing the cost in terms of labor.) This structure

provides a mechanism for endogenous growth in the model. The cost of researching the

project is decreasing in the number of startups, e. The more new entrepreneurs there are

pushing the frontier forward, the easier it will be for any particular entrepreneur to research

his project due to spillover effects.

4.2 The Evaluation Stage

Out of the pool of new entrepreneurs, the fraction ρ will have good ideas, implying that the

fraction 1− ρ have bad ones. The venture capitalist can potentially discover a bad project

by evaluating it. Assume that the venture capitalist can detect within each funding round

a bad project with probability β, according to the cost function, E(β;x), where E is an

increasing, convex function in β. Specifically,

E(β;x) = w(
1

1− β − 1)β/χE.

The productivity of the evaluation process is governed by χE. Note that the marginal cost

of evaluating starts at zero when β = 0 and goes to infinity as β approaches 1. The cost of

evaluating rises with the level of wages, w. Think about χE as capturing the effi ciency of
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investment in evaluation. Projects that are detected to be bad are thrown out.

4.3 The Development Stage

Ventures that pass the evaluation stage are given development funding. The level of funding

depends upon the common prior (held by the entrepreneur and venture capitalist) that the

project is good, which evolves across funding rounds. The odds of success during a funding

round depend on the entrepreneur’s investment in development. In particular, a probability

of success, σ, can be secured by undertaking development investment of the amount D(σ;x),

where D is an increasing, convex function in σ. The development cost function D(σ;x) is

given the form

D(σ;x) = w(
1

1− σ − 1)σ/χD.

The development cost function D(σ;x) has a similar form to that for E(β;x).

There is also a fixed cost, φt, connected with developing a startup project in round t.

This fixed cost rises with the level of wages in the economy. In particular,

φt = wgt−1w φ(t),

where gw > 1 is the gross growth rate in wages (which will be a function of gx). Additionally,

the fixed cost changes by the round of the project, as reflected by the function φ(t). The

shape of the function φ(t) will be parameterized using a polynomial that is pinned down

from the U.S. VC funding-round data.

4.4 The Monitoring Stage

The venture capitalist provides in a funding round the amountD(σ;x) for development. The

entrepreneur may decide to spend some smaller amount D(σ̃;x) ≤ D(σ;x) and siphon off

the difference, D(σ;x)−D(σ̃;x). The entrepreneur uses the difference in funds for his own

consumption. By diverting funds the entrepreneur reduces the odds of success in the current
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funding round; i.e., σ̃ ≤ σ. The venture capitalist can dissuade this fraud by engaging in

monitoring. Assume that the venture capitalist can pick the odds µ of detecting fraud in a

venture during round t according to the strictly increasing, convex cost function, Mt(µ;x),

where

Mt(µ;x) = wgt−1w (
1

1− µ − 1)µ/χM,t.

The cost of monitoring rises with wages in the economy. Additionally, monitoring costs

change by the round of the project, as reflected by the term χM,t; again, χM,t represents

the productivity of this auditing process in round t. Presumably, as the venture capitalist

becomes more familiar with the project, χM,t will rise with t. This feature implies that

the incentive problem will become less severe over time and helps to generate an upward-

sloping funding profile. A polynomial for χM,t will be fit to the U.S. VC funding-round

data. While motivated by the prototypical costly-state-verification paradigms of Townsend

(1979) and Williamson (1986), the monitoring technology employed here is different. In

those frameworks, getting monitored is a random variable—in Williamson (1986) only those

entrepreneurs declaring a bad outcome are monitored, while in Townsend (1979) some frac-

tion of such entrepreneurs are. The audit will detect any fraud with certainty. By contrast,

here everybody gets monitored, but the detection of any fraud is a probabilistic event.

4.5 The Success Stage—Floated Firms

A startup of type x turns into a going concern with productivity x, if successful. A successful

VC-backed firm produces output, o, according to the production process

o = xζkκlλ, with ζ + κ+ λ = 1, (2)

where k and l are the amounts of capital and labor used in production. This structure is

borrowed from Akcigit, Celik, and Greenwood (2016). It results in the firm earning pure

profits that are linear in its productivity, x. The lure of capturing these profits is what

motivates entrepreneurs and venture capitalists. Labor is hired at the wage rate, w, and
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capital at the rental rate, r. The firm’s per period net takings are

T (x;x) = max
k,l
{xζkκlλ − rk − wl}

= x(1− κ− λ)[(
κ

r
)κ(

λ

w
)λ]1/ζ . (P1)

Clearly, as wages rise, which will be a function of the aggregate level of productivity, x,

net takings will shrink for a given level of the firm’s productivity, x. Operating firms last

stochastically with the time-invariant survival rate, s.

A successful VC-backed project is sold for I(x;x), either through an IPO or an M&A,

just before production starts. The (gross) reward for a successful IPO is

I(x;x) =
∞∑
t=1

(sδ)t−1T (x;gt−1x x), (3)

where δ is the market discount factor. If the startup is successful, the entrepreneur must pay

the venture capitalist the amount p. So the entrepreneur will reap the amount I(x;x) − p,

which is taxed at the capital gains rate, τ . If a project is not successful, it moves back to

the evaluation stage, assuming that the contract has not expired.

5 The Financial Contract

The financial contract between the entrepreneur and the venture capitalist is cast now. VC

is a competitive industry so the entrepreneur shops around to secure the financial contract

with the best terms. Venture capitalists covers the cost of research, evaluation, development,

and monitoring. They raise the money to do this from savers, to whom they promise a gross

rate of return of 1/δ. There are no profits on VC activity in equilibrium. The profits that

accrue to the entrepreneur are subject to the rate of capital gains taxation, τ . The analysis

presumes that there is a maximum of T rounds of potential funding. The timing of events

for the contract is shown in Figure 4. The research for the idea is done at the start of the
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Evolution of Project Types across Funding Rounds
Round Number good Number bad
1 ρ (1− ρ)(1− β1)
2 ρ(1− σ1) (1− ρ)(1− β1)(1− β2)
3 ρ(1− σ1)(1− σ2) (1− ρ)(1− β1)(1− β2)(1− β3)
...

...
...

t ρΠt−1
j=1(1− σj) (1− ρ)Πt

j=1(1− βj)

Table 5: The table shows how the number of good and bad projects change across funding
rounds assuming that the venture capitalist starts with a unit mass of ventures.

funding-round cycle or in round zero. At the beginning of a generic funding round, the

venture capitalist evaluates projects and purges the ones that are found to be bad. Goods

projects are then given an injection of cash for development. The venture capitalist monitors

the use of these funds. If malfeasance is detected, the project is terminated. Some projects

will be successful. These are floated in the next period on the stock market. The unsuccessful

projects then start another funding round (assuming the number of funding rounds doesn’t

exceed T ).

Let βt represent the odds of detecting a bad project in round t and σt denote the proba-

bility of success for a good project. Now suppose that a unit measure of new entrepreneurs

approach a venture capitalist for funding. As the funding rounds progress, the numbers of

good and bad projects will evolve as shown in Table 5. For example, of the people initially

applying for funding, the number ρ will have good projects and 1 − ρ will have bad ones.

The venture capitalist will evaluate the applicants and eliminate (1− ρ)β1 bad projects, so

that (1− ρ)(1−β1) bad ones will still remain. Of the good projects, the number ρσ1 will be

successful. So, at the beginning of the second round there will be ρ(1− σ1) good projects in

the pool. After the second-round evaluation, (1−ρ)(1−β1)(1−β2) bad projects will still be

around. Table 5 elaborates how the number of good and bad projects evolves over funding

rounds.
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The odds of a project being good in round t are

Pr(Good|Round = t) =
ρΠt−1

j=1(1− σj)
ρΠt−1

j=1(1− σj) + (1− ρ)Πt
j=1(1− βj)

. (4)

As time goes by, more and more bad projects are purged from the pool. The number of goods

projects will also fall due to the successes. Thus, the odds of being good can rise or fall with

the funding round, depending on which type of projects are exiting the pool the fastest, at

least theoretically. If the odds of being good in the current round are ρΠt−1
j=1(1−σj), then the

odds of being good and still being around in the next round are ρΠt−1
j=1(1−σj)×(1−σt). The

odds of being good and still being around t+i rounds ahead are ρΠt−1
j=1(1−σj)×Πt+i−1

j=t (1−σj).

The contract between the entrepreneur and the venture capitalist will specify for the

length of the relationship: (i) the precision of evaluation, as given by the βt’s; (ii) the

investments in development as reflected by the σt’s; (iii) the exactness of monitoring as

measured by the µt’s; and (iv) the payments that an entrepreneur who finds success in

round t must make to the intermediary, or the pt’s. The contract is summarized by the

outcome of the following maximization problem in sequence space:

C(x;x) = max
{βt,σt,µt,pt}

(1− τ)
T∑
t=1

ρΠt−1
j=1(1− σj)δtσt[I(x;gtxx)− pt], (P2)

subject to:
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1. The round-t incentive constraints

Pr(Good|Round = t)× (1− τ)× {δσt[I(x;gtxx)− pt]

+ (1− σt)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

≥ (1− µt)max
σ̃t

(
D(σt)−D(σ̃t)

+ Pr(Good|Round = t)× (1− τ)× {δσ̃t[I(x;gtxx)− pt]

+ (1− σ̃t)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

)
,

(5)

for t = 1, · · · , T , where Pr(Good|Round = t) is given by (4);

2. The round-0 zero-profit condition

ρ

T∑
t=1

Πt−1
j=1(1−σj)δtσtpt−

T∑
t=1

[ρΠt−1
j=1(1−σj)+(1−ρ)Πt

j=1(1−βj)]δt−1[D(σt)+φt+Mt(µt)]

−
T∑
t=1

[ρΠt−1
j=1(1− σj) + (1− ρ)Πt−1

j=1(1− βj)]δt−1E(βt)−R(
x

x
, e) = 0.

(6)

The objective function in (P2) reflects the fact that VC is a competitive industry. A

contract must maximize the expected return for the entrepreneur, subject to two constraints.

The term I(x;gtxx)− pt gives the payoff to the entrepreneur should the enterprise be floated

in round t. The payoff could come from executing stock options or convertible shares. It

is taxed at the capital gains rate, τ . The maximized value of objective function, C(x;x),

specifies the worth of the financial contract for the entrepreneur. Note for use in the next

section that this expected discounted payoff is a function of the entrepreneur’s idea, x.

Equation (5) is the incentive compatibility constraint for a round-t project. The left-hand
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side gives the expected return to the entrepreneur when he undertakes the level of develop-

ment investment linked with σt. The first term in brackets are the Bayesian odds of having

a good project at the beginning of round t, conditional on the entrepreneur still dealing with

the venture capitalist. The right-hand side gives the return when the entrepreneur deviates

and picks the level of development linked with σ̃t. The level of development represented by

σ̃t maximizes the value of the deviation. The return from deviating will only materialize if

the entrepreneur is not caught cheating, which has the odds 1−µt; if caught cheating, which

occurs with probability µt, then the contract is terminated and the entrepreneur receives

nothing. The incentive constraint has a dynamic element to it. If the entrepreneur invests

less in development today, he lowers the odds that a good project will be successful in the

current period. He increases the probability that a success, if it happens, will occur in the

future; thus, an intertemporal tradeoff is involved.

The last equation, or (6), is the zero-profit constraint. Observe that there is a fixed

cost, φt, connected with operating a startup project in round t. Last, the venture capitalist

must cover the initial development cost, R(x/x, e). Since VC is a competitive industry, the

expected returns from lending will exactly offset the expected costs.

Now, it is easy to see that the ability of the venture capitalist to monitor the entrepreneur

is important. Focus on the incentive constraint (5). If µt = 1, say because the cost of

monitoring is zero, then the left-hand side of the constraint will always exceed the right-

hand side. This transpires no matter what the solution for σ̃t is, as dictated by the right-

hand side of (5). In this situation, the first-best solution to problem (P2) can be obtained.

Alternatively, suppose µt = 0, because the cost of monitoring is infinite. Then, the incentive-

compatible contract specifies that σt = σ̃t. To see this, pull the D(σt) term over onto the

left-hand side of (5). Note that the terms on the left- and right-hand sides are then the same,

except that they involve σt on the left and σ̃t on the right. But σ̃t maximizes the right-hand

side, implying that the right-hand side must then equal the left-hand side. This can only

be the case if σt = σ̃t, which greatly limits the contract and may result in an allocation far

from first-best. So if no monitoring is done, then the incentive constraint holds tightly. Why
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can’t the incentive constraint be slack? Suppose it is slack, implying that the associated

Lagrange multiplier is zero. Then, no monitoring will be done because it would have no

benefit and is costly. But, as just discussed, when µt = 0, the constraint must hold tightly—a

contradiction. Therefore, the incentive constraint (5) always binds.

Lemma 1 (The venture capitalist constantly monitors the entrepreneur) The incentive con-

straint (5) holds tightly for all funding rounds with 0 < µt < 1.

Remark 1 (One-shot versus multi-shot deviations) The incentive constraints in (5) prevent

one-shot deviations from occuring in any funding round. Lemma 4 in the Theory Appendix

establishes that this is equivalent to using a single consolidated round-0 incentive constraint

with multi-shot deviations.

Remark 2 (Self financing) If an entrepreneur has any funds, he should invest them all.

This does not change the generic form of the contract problem. The entrepreneur’s funds

can merely be subtracted from the expected present value of the fixed costs, or the φt’s, in

(6). (See Cole, Greenwood, and Sanchez (2016, Lemmas 1 and 6)). What matters is how

much the entrepreneur borrows, net of his own investment. The entrepreneur’s funds can be

incorporated in problem (P2) by simply transforming the fixed costs.

6 The Choice of Idea

The entrepreneur is free to pick the type of venture, x, that he pitches to the venture

capitalist. He selects the one that maximizes his expected discounted profits. Therefore, x

will solve

V (x) = max
x

C(x;x), (P3)

where the value of the entrepreneur’s contract, or C(x;x), is specified by problem (P2). The

faster profits rise with a venture’s type, x, the higher will be the value of x picked by the

entrepreneur. So if better intermediation implies that profits rise more steeply with x, then
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VC will increase growth. Note that the cost of researching x, or R(x/x, e), is embedded in

the zero-profit condition (6) connected with problem (P2). This problem will give a decision

rule of the form

x = X(x)x.

The function V (x) gives an entrepreneur’s expected discounted payoff from a startup.

7 The Flow of New Startups

Recall that an entrepreneur incurs an opportunity cost in the amount wo to run a project.

Therefore, only those new entrepreneurs with wo ≤ V (x) will choose to engage in a startup.

Now, o is distributed according the cumulative distribution function O(o). Therefore,

O(V (x)/w) entrepreneurs will approach the venture capitalist for funding. Consequently,

the number of new entrants, e, is given by

e = O(V (x)/w). (7)

8 Non-VC Sector

Most firms are not funded by venture capitalists. To capture this, suppose there are always

m firms operating that were not funded by VC. All firms in the non-VC sector are same.

These non-VC firms produce using a production function that is identical to a VC firm with

one exception: their productivity differs. Specifically, they produce in line with

o = zζkκlλ,with ζ + κ+ λ = 1,

where z represents their productivity. Suppose that

z = ωx, with ω < 1.
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Thus, firms in the non-VC segment of the economy are on average less productive than the

ones in the VC segment, but will be dragged along by the latter. The non-VC firm’s profit

maximization problem is

max
k,l
{zζkκlλ − rk − wl}. (8)

One can think about these firms as raising the funds for capital through traditional inter-

mediation at the gross interest rate 1/δ. VC-funded firms also raise capital this way after

they are floated. On this, Midrigan and Xu (2014) argue that producing establishments can

quickly accumulate funds internally and thus rapidly grow out of any borrowing constraints.

Therefore, modeling producing firms as having frictionless access to capital markets may not

be grossly at variance with reality.

9 Balanced-Growth Equilibrium

The analysis focuses on analyzing a balanced-growth path for the model. Along a balanced-

growth path, the rental rate on capital, r, is some fixed number. In particular, the rental

rate on capital will be

r = 1/δ − d, (9)

where δ is the market discount factor and d is the depreciation factor on capital. In balanced

growth, the market discount factor, δ, in turn is given by

δ = δ̂g−εw , (10)

where δ̂ is the representative agent’s discount factor and ε denotes his coeffi cient of relative

risk aversion.3

3 That is, in the background there is a representative consumer/worker who inelastically supplies one
unit of labor and has a utility function (in period 1) of the form∑

t=1

δ̂
t−1

c1−εt /(1− ε),

where ct is his period-t consumption.
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The idea distribution for VC-backed firms will now be characterized. To this end, let

nt represent the number of VC-backed firms that are operating with an idea, x−t, that was

generated t periods ago. Attention will now be turned to specifying the number nt. Now, no

firms will operate in the VC-backed sector with productivity level x, since this type is not

operational yet. Each period, e new entrepreneurs will be funded by the venture capitalist.

Hence, n1 = eρσ1 firms will operate with an idea generated one period ago, x−1. Likewise,

there will be n2 = eρσ1s+ eρ(1− σ1)σ2 firms operating with a two-period-old idea, x−2. So,

the number of firms operating with an idea, x−t, from t ≤ T periods ago is

nt = e

t∑
i=1

ρΠi−1
j=1(1− σj)σist−i, for t = 1, · · · , T. (11)

The venture capitalist only funds entrepreneurs for T periods. Consequently, the number of

operational firms with an idea from more than T periods ago is

nT+j = sjnT , for j ≥ 1. (12)

The total number of VC-backed firms in the economy, n, is given by

n =
T∑
t=1

nt +
∞∑

t=T+1

nt =
T∑
t=1

nt +
nT s

1− s .

In a stationary equilibrium the distribution function over VC-funded firms using an age-t

idea will remain constant; that is, n′t = nt. It is easy to from (11) that this will be true

provided that e and the σj’s are constant.

In balanced growth the wage rate, w, will grow at some constant gross rate, gw. To

determine this growth rate, note that a VC-funded firm with productivity level x will hire

labor in the amount

l(x;w) =
(κ
r

)κ/ζ ( λ
w

)(ζ+λ)/ζ
x, (13)

where again w and r are the wage and rental rates, respectively. For a non-VC-funded firm,
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just replace the x with a z in the above formula. In general equilibrium, the labor market

must clear each period. Suppose that there is one unit of labor available in aggregate. To

calculate the aggregate demand for labor, sum over all operating firms’demands for labor,

both in the VC- and non-VC-backed sectors. Equilibrium in the labor market requires that

T∑
t=1

ntl(x−t;w) +

∞∑
t=T+1

ntl(x−t;w) +ml(z;w) = 1,

where m is the measure of firms in the non-VC sector. Along a balanced-growth path, the

productivity of the latest idea will grow at rate gx. Therefore, the above condition can be

recast as
T∑
t=1

ntl(x−1g
1−t
x ;w) +

∞∑
t=T+1

ntl(x−1g
1−t
x ;w) +ml(ωx;w) = 1.

Using equations (13) and (12), this can be expressed as

(κ
r

)κ/ζ ( λ
w

)(ζ+λ)/ζ
[x−1(

T∑
t=1

ntg
1−t
x +

nT sg
−T
x

1− (s/gx)
) +mωx] = 1.

The solution for wages, w, obtained from the above labor-market clearing condition, is

w = λ
(κ
r

)κ/(ζ+λ)
[x−1(

T∑
t=1

ntg
1−t
x +

nT sg
−T
x

1− (s/gx)
)︸ ︷︷ ︸

=nx

+mωx]ζ/(ζ+λ), (14)

where aggregate productivity, x, is

x ≡ x−1[
∑T

t=1 ntg
1−t
x + nT sg

−T
x /(1− (s/gx)]∑T

t=1 nt + nT s/(1− s)
=
x−1[

∑T
t=1 ntg

1−t
x + nT sg

−T
x /(1− (s/gx)]

n
.

As can be seen, wages rise with the aggregate level of productivity, x, which grows at rate

gx. Therefore, wages will grow at the gross growth rate g
ζ/(ζ+λ)
x , so that

w′

w
≡ gw = gζ/(ζ+λ)x .
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Attention is now turned to determining the growth rate in aggregate productivity, gx.

All new entrepreneurs will pick the same type of project, x. Now

gx = x′/x = x′/x.

Recall that

x = X(x)x,

and

x = x−1[
T∑
t=1

ntg
1−t
x +

nT sg
−T
x

1− (s/gx)
]/n.

Therefore,

gx =
x

x−1
= X(x)[

T∑
t=1

ntg
1−t
x +

nT sg
−T
x

1− (s/gx)
]/n. (15)

This is a nonlinear equation in gx.

It is easy to see that the aggregate capital stock and output grow at the same rate as

wages. The demand for capital by a type-x VC-backed firm is

k(x;w) = (
κ

r
)(1−λ)/ζ(

λ

w
)λ/ζx.

From this it is easy to deduce that k(gxx;gww) = gwk(x;w). The same is true for a non-

VC backed firms; just replace x with z to get k(gxz;gww) = gwk(z;w). Let the aggregate

capital stock in the current period be represented by k and that for next period by k′. Then

k′ =
∑∞

t=1 ntk(gxx−t;gww) + mk(gxz;gww) = gw[
∑∞

t=1 ntk(x−t;w) + mk(z;w)] = gwk, so

that the aggregate capital stock grows at gross rate gw. A similar argument can be used to

show that aggregate output grows at the same rate.

Definition (Balanced-Growth Path) For a given subjective discount factor and coeffi cient
of relative risk aversion, δ̂ and ε, a balanced-growth path consists of (i) a financial contract,
{βt, σt, µt, pt}, between entrepreneurs and the venture capitalist; (ii) a set of labor inputs for
VC- and non-VC-funded firms, l(x;w) and l(z;w); (iii) values for the contract, an IPO,
and a startup, C(x;x), I(x;x), and V (x); (iv) a project type, x, for new entrepreneurs; (v)
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a flow in of new entrepreneurs, e; (vi) a rental rate for capital, r, and a market discount
factor, δ; (vii) an idea distribution for VC-funded firms, {nt}∞t=1; (viii) a wage rate, w; and
(ix) a gross growth rate of aggregate productivity, gx, such that:

1. The financial contract, {pt, σt, µt, βt}, solves problem (P2), given the function I(x;x)

and x, gx, and x. The solution to this problem gives the expected return to a new
entrepreneur from the contract, C(x;x).

2. The VC-funded firm maximizes its profits, given x, r, and w, as specified by problem
(P1). This determines the value of its IPO, I(x;x), as presented in (3). The solution
to the firm’s maximization problem gives the rule for hiring labor (13). Analogously,
a non-VC-funded firm maximizes its profits, given x, r and w, as specified by problem
(8).

3. A new entrepreneur picks the project type, x, to solve problem (P3), given the value of
the contract, C(x;x), as a function of x and x. This determines the expected value of
a startup, V (x).

4. The flow of new entrepreneurs, e, is regulated by (1) and (7), taking as given the value
of the startup, V (x).

5. The rental rate on capital, r, and the market discount factor, δ, are governed by (9)
and (10), given gw.

6. The idea distribution for VC-funded firms, {nt}∞t=1, is specified by (11) and (12).

7. The market-clearing wage rate, w, is given by (14) and grows at the gross rate gw =

g
ζ/(ζ+λ)
x .

8. Aggregate productivity, x, grows at the gross rate gx specified by (15).

The lemma below establishes that the setup will have a balanced-growth path.

Lemma 2 (Balanced Growth) Let x′ = gxx and x′ = gxx, for all time. In the contract

specified by (P2), the new solution will be given by σ
′
t = σt, µ

′
t = µt, β

′

t+1 = βt+1, σ̃
′
t =

σ̃t, p
′
t = gwpt, and C(x′;x′) = gwC(x;x). The gap between the frontier, x, and average

productivity, x, as measured by x/x, is time invariant. The flow of new entrepreneurs, e, is

a constant.

Proof. See Theory Appendix.
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10 Calibration

As discussed in Section 2, VC partnerships are of a limited duration, usually between 7 to 10

years. So, the analysis assumes that an entrepreneur’s contract with a venture capitalist has

7 potential funding rounds each lasting 1.5 years. Thus, partnerships are structured to last

at most 10.5 years. The decreasing returns to scale parameter in the production function

(P1) is taken from Guner, Ventura, and Xu (2008), which requires setting ζ = 0.20. The

exponents for the inputs are picked so that capital earns 1/3 of nonprofit income and labor

receives 2/3. The survival rate of a firm is selected so that on average a publicly listed firm

lives 25 years, as in the U.S. economy. The depreciation rate on capital, 1−d, is taken to be

7 percent. Last, Henrekson and Sanandaji (2016) report that the key personnel connected

with VC startups are taxed at a 15 percent capital gains rate. So, set τ = 0.15.4

The model is calibrated to match several facts. Over the period 1948 to 2015, U.S. GDP

per hours worked grew at 1.8 percent per year. This fact is targeted in the calibration

procedure. The long-run interest rate is set to 4 percent, a typical value. A standard value

of 2 is assigned for the coeffi cient of relative risk aversion. The market discount factor

is the reciprocal of the equilibrium interest rate, and it will change as the growth rate of

the economy, gw, changes. At the calibrated equilibrium, the representative agent’s annual

discount factor is determined by the formula to δ̂ = (1− .04)/(1.018)−2; cf. (10). This yields

a yearly interest rate of 4 percent.

The remaining parameters are jointly calibrated. Still, some data targets play a much

more central role in identifying a parameter. To calibrate the two elasticities of the research

cost function, ι and ξ, the following regression is run using VentureXpert data:

ln(IPO value) = 0.390
(0.154)

∗∗ × ln(VC funding)

+ 0.176
(0.088)

∗∗ × ln(Agg VC funding) +Controls, obs = 1,145,

4 The capital gains tax rate has varied across time in the United States. The 15 percent rate was instituted
under President Bush in 2003. The maximum rate rose to 20 percent in 2012 under President Obama.
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(16)

where the controls are the ln(# of employees), VC firm age at IPO, a 2-digit SIC industry

dummy variable, and a cluster dummy for whether the venture capitalist was located in

California or Massachusetts. Three instrumental variables are also used: capital gains taxes

(which vary across states and time), dependence on external finance (which varies across

industries), and the deregulation dummy. The first coeffi cient gives the impact of a firm’s

VC funding on its IPO value, while the second shows the effect of aggregate VC funding on

the IPO value. The first coeffi cient is used to identify a value for ι and the second for ξ.

To identify ι, the impact of a change in firm-level VC funding on its IPO value is calcu-

lated for the model. This calculation is broken down into two steps. First, the elasticity of

I(x;x) with respect to x is computed. Second, the elasticity of VC funding with respect to

x is totted up numerically. This is done in partial equilibrium to match the results of the

firm-level regression. The ratio of these two elasticities gives the elasticity of market value

with respect to VC funding. Thus, the following object is computed for the model:

IPO Value Elasticity =
d ln IPO/d lnx

d ln(VC Funding)/d lnx
.

Ideally, this should have a value of 0.390. A similar procedure is used to calculate an IPO

elasticity with respect to aggregate VC funding, which has a target value of 0.176.

Another key elasticity in the model is the shape parameter, ν, for the Pareto distribution

governing the opportunity cost of entrepreneurship. This regulates the inflow of entrepre-

neurs. Henrekson and Sanandaji (2016) report that a one percent increase in a country’s

effective tax rate on VC activity leads to a one percent decline in the VC investment-to-GDP

ratio. This elasticity is targeted to recover the shape parameter, ν. The scale parameter, υ,

is normalized to 0.2.

The process for the effi ciency of round-t monitoring, χM,t, is taken to be a cubic:

χM,t = log(a0 + a1 × t+ a2 × t2 + a3 × t3).
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This process requires specifying three parameters, namely a0, a1, a2 and a3. Additionally,

the monitoring parameters are selected to match the venture capitalist’s share of equity by

the duration of the project (this pattern is taken up below). The more effi cient monitoring

is, the higher will be the venture capitalist’s share of equity, as will be seen.

The time profile for the fixed cost, φ(t), will be governed by the quartic

φ(t) = exp(b0 + b1 × t+ b2 × t2 + b3 × t3 + b4 × t4).

Five parameters, b0, b1, b2, b3, and b4, govern this process. The pattern of VC investment

by funding round (discussed below) determines these parameters.

Bernstein, Giroud, and Townsend (2016) estimate the impact of a venture capitalist’s

time cost for monitoring on his investment. To do this, they examine the effect of changes in

airline routes that reduce the commuting time a venture capitalist spends visiting a startup.

They find that the introduction of a new airline route (the treatment) leads to a 4.6 to 5.2

percent increase in VC investment. The average reduction in travel time is significant. The

lead investor visits the company site roughly 20 times per year and spends approximately

12 hours traveling and 5 hours at the company per visit, which amounts to 100 contact

hours annually.5 On average, a treatment saves roughly 2 hours per trip, or 40 hours per

year of a venture capitalist’s time. Accordingly, the treatments correspond to fairly large

reductions in monitoring costs: a reduction of 2 hours per trip translates into a 12.4 percent

reduction in monitoring costs. Bernstein, Giroud, and Townsend (2016) argue that most of

the resources spent by a venture capitalist on monitoring is time. So, assume that monitoring

is done using labor in the model. The effi ciency of monitoring impinges on the success rate

of startups. So, matching, in partial equilibrium, the Bernstein, Giroud, and Townsend’s

(2016) treatment effect helps to tie down the fraction of good ideas, ρ.

Next, projects that are funded by venture capitalists have an average success rate per

funding round of 1.1 percent and a failure rate of 4.7 percent. The calibration procedure

5 The time spent visiting the company is quoted in the unpublished version of Bernstein, Giroud, and
Townsend (2016).
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attempts to match these two statistics. To construct these statistics for the model, note

that the success rate in period t is just the number of IPOs divided by the mass of surviving

firms:

Success Ratet =
IPOst

Surviving Firmst
=

σtρΠt−1
j=1(1− σj)

ρΠt−1
j=1(1− σj) + (1− ρ)Πt

j=1(1− βj).
.

The analogous definition for the failure rate in funding round t is

Failure Ratet =
Failurest

Surviving Firmst
=

βt(1− ρ)Πt−1
j=1(1− βj).

ρΠt−1
j=1(1− σj) + (1− ρ)Πt

j=1(1− βj).
.

On average, a VC-backed company is 57.2 log points larger in terms of employment than

a non-VC-backed firm. This is a calibration target. For the model, the employment ratio is

Employment Ratio =

(
κ
r

)κ/ζ ( λ
w

)(ζ+λ)/ζ
nx/n(

κ
r

)κ/ζ ( λ
w

)(ζ+λ)/ζ
mωx/m

=
1

ω
.

The upshot of the calibration procedure is now discussed. The parameter values used

in the calibration are presented in Table 6. First, the model matches the average success

and failure rates very well, as shown in Table 7. And the model replicates perfectly the

ratio of VC-backed employment to non-VC backed employment. The two IPO elasticities

are duplicated, and the model is extremely close to matching the Henrekson and Sanandaji

(2016) tax rate elasticity. The monitoring-cost treatment effect lies within the range of

estimates reported by Bernstein, Giroud, and Townsend (2016).

Next, note how investment in a project by a venture capitalist increases with the funding

round (see the top panel of Figure 5). This time profile is a calibration target. Given

the limited life span of a VC partnership, there is considerable pressure to bring a project

to fruition as quickly as possible. This is true in the model too, which displays the same

increasing profile of funding. Two features help to generate this. The first is that bad

projects get purged over time through the evaluation process. The second is that the cost

of monitoring drops as the venture capitalist becomes more familiar with project, which
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reduces the incentive problem. Without these features, funding would fall over time. Last,

since investment increases over time, one would expect that the venture capitalist’s share of

the enterprise will too. The bottom panel of Figure 5 illustrates this. The model does very

well on this account. Again, the calibration procedure focuses on this feature of the data.

The time profiles for the success and failure rates are not targeted in the calibration

procedure. As shown in the middle panel of Figure 6, in the data the odds of success decline

by funding round or with the passage of time. While the model captures the average success

across funding rounds very well, it has some diffi culty mimicking the time profile. This may

be because in the model a failed venture has no scrap value, which increases the pressure to

succeed. Data on the scrap value of failed ventures are, unfortunately, not readily available.

Failure rates also decline with time, and the model does very well on this dimension.

Now turn to the bottom panel of Figure 6. Observe that the value of an IPO drops

with the incubation time for the project. In the model, as time passes, the value of a

project declines because aggregate productivity catches up with the productivity of the

entrepreneur’s venture; “the thrill is gone,” so to speak. It is a bit surprising that the

framework can match almost perfectly this feature of the data, which is not targeted.

Finally, it is trivial to recalibrate the model for the situation where there are no spillovers

in the research cost function. This obviously involves setting ξ = 0. The only thing that

needs to be adjusted to recapture the benchmark calibration is the research effi ciency pa-

rameter, χR. Absolutely nothing else changes. The values for ξ and χR in the economy

without spillovers are shown in parentheses in Table 6.

11 Thought Experiments

The analysis stresses the ability of venture capitalist to evaluate, develop, and monitor

startup projects. The importance of these three factors is now investigated one by one and

then the effi ciencies of each debased in tandem to approximate the success rate of non-VC

methods of finance.
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Parameter Values
Parameter value Description Identification
Firms
κ = 1/3× 0.80 Capital’s share Standard
λ = 2/3× 0.80 Labor’s share Standard
1− d = 0.07 Depreciation rate Standard
s = 0.96 Firm survival rate Expected life of Compustat firms
χR = 59.9 (10.9) Research effi ciency, x Growth rate
ι = 2.56 Research cost elasticity, x Regression (16)
ξ = 0.46 (0) Research cost elasticity, e Regression (16)
ν = 0.0150 Pareto shape parameter H&S (2016) tax elasticity
υ = 0.02 Pareto scale parameter Normalization
Consumers
ε = 2 CRRA Standard
δ̂ = 0.994 Discount factor 4% risk-free rate
VC
T = 7 Number of funding rounds Partnership length (10.5 years)
ρ = 0.21 Fraction of goods ideas BG&S treatment effect (2016)
χD = 0.012 Development effi ciency, σ Average success rate
χE = 0.18 Evaluation effi ciency, β Average exit rate
a = {−1.12,−0.12, 0.321,−0.018} Monitoring effi ciency, µ Equity share by round
b = {−1.0, 1.69,−0.533, Fixed costs, φ VC funding by round

0.081,−0.004}
τ = 0.15 Capital gains tax rate H&S (2016)
Non-VC
m = 1.7 Number non-VC firms Relative empl. non-VC firms
ω = 0.56 Relative prod of non-VC firms Relative size of non-VC firms

Table 6: The parameter values used in the baseline simulation.
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Calibration Targets
Target Source Data Model
Economic growth BEA 1.80 1.87
Cash Multiple Gompers et al. (2016, Table 12) 3.8 3.78
Success Rate Puri and Zarutskie (2012, Table VI.B) 1.1 1.39
Failure Rate Puri and Zarutskie (2012, Table VI.B) 4.7 5.35
VC Inv/GDP Henrekson and Sanandaji (2016) 0.2 0.2
VC funding Crunchbase Figure 5
Equity Share Crunchbase Figure 5
IPO Value Elasticity—firm level Regression (16) 0.39 0.39
IPO Value Elasticity—aggregate Regression (16) 0.176 0.176
Tax Elasticity of VC Inv/GDP Henrekson and Sanandaji (2016) -1.0 -0.9
Monitoring-Cost Treatment Bernstein et al. (2016, Tables IAVI & IAVII) 4.6 to 5.3 5.2
Employment ratio Puri and Zarutskie (2012, Table IV) 57.2 57.2

Table 7: All numbers, except for the cash multiple, are in percentages.
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Figure 5: Investment and equity share by funding round—data and model. The upper panel
shows the venture capitalist’s investment by funding round. Funding in the last round is
normalized to 1.0. The lower panel charts the venture capitalist’s share of equity by funding
round.
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Figure 6: The odds of success and failure by funding round and the value of an IPO by the
duration of funding—data and model. The value of an IPO that occurs during first funding
round is normalized to 1.0. None of these profiles is targeted in the calibration.
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11.1 Changes in Monitoring Effi ciency, χM,t

How important is the venture capitalist’s ability to monitor the use of funds by entrepre-

neurs? Figure 7 shows the general equilibrium impact of improving the effi ciency of moni-

toring in the model. To undertake this thought experiment, the monitoring effi ciency profile,

{χM,1, · · · , χM,7}, is changed by scalar, which takes the value of 1 for the baseline calibration.

As monitoring effi ciency improves, there is an increase in the average odds of detecting fraud

across funding rounds (see the top panel). The venture capitalist’s share of equity rises, on

average, because it is now easier for him to ensure that funds are not diverted. Compliance

with the contract can be still be guaranteed when the entrepreneur is given a lower share of

an IPO. As a result of improved monitoring, the venture capitalist can increase investment,

which is reflected by a higher share of VC investment in GDP ( see the middle panel). The

venture capitalist must still earn zero profits. Part of the increased return to the venture

capitalist is soaked up by letting the new entrepreneur be more ambitious about his choice

of technique, which raises the initial cost of research, R(x/x, e); the rest of the increased

return is absorbed by increased investment. So, the economy’s growth rate moves up, which

results in a welfare gain (measured in terms of consumption; see the bottom panel).6

11.2 Changes in Evaluation Effi ciency, χE

The importance of effi ciency in evaluation is examined now, where χE is normalized to 1

for the baseline calibration. The results are displayed in Figure 8. As evaluation becomes

more effi cient, the odds of detecting a bad project increase. Hence, the average failure rate

across funding rounds moves up (see the top panel). The success rate rises, both due to

the purging of bad projects and the resulting increased VC investment. The purging of bad

projects dominates the exit of good ones so that the fraction of good projects in the last

round increases with χE. The fact that it is more profitable to invest is reflected by upward

6 See Akcigit, Celik, and Greenwood (2016, Section 5.1) for details on how the welfare gain is computed.
In the current work, the initial level of consumption across balanced-growth paths is held fixed, though, as
opposed to aggregate productivity.
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Figure 8: Effi ciency in evaluation, χE. The top panel shows how the average failure and
success rates across funding rounds vary with effi ciency in evaluation. The middle panel
illustrates how the odds of a project being good in the seventh round and the VC investment-
to-GDP ratio respond. Growth and welfare are illustrated in the bottom panel.

movement in the VC investment-to-GDP ratio. Economic growth and welfare move up in

tandem as evaluation effi ciency improves (see the bottom panel).

11.3 Changes in Development Effi ciency, χD

Finally, impact of changes in development effi ciency is studied. Again, χD is normalized to

1 for the baseline calibration. As it becomes less expensive to develop a project, the odds of

success improve. The failure rate also rises because fewer good projects remain in the pool

over time. The VC investment-to-GDP ratio moves up, as it is more profitable to fund a

project. Last, economic growth and welfare rise with development effi ciency.
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Figure 9: Effi ciency in development, χD. The top panel shows how the average failure
and success rates across funding rounds vary with effi ciency in development. The middle
panel illustrates how the VC investment-to-GDP ratio responds. Growth and welfare are
illustrated in the bottom panel.
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11.4 Debasing Venture Capital—An Approximation to Non-VC

Forms of Financing

Venture capitalists lend development and evaluation expertise to startups that alternative

forms of finance, such as angel investors, banking, and more recently crowdfunding, do not.

Arguably, venture capitalists are also better at monitoring projects. Wealthy people have

always been willing to lend seed money to startups, as discussed in Section 2. This is what

angel investors do today. The sheer size of financing needed as a startup evolves goes well

beyond an angel investor’s pockets. The average investment per deal of an angel investor

was $510,000 in 2014. In contrast, the average venture capitalist invests $4 million and

$14 million in early-stage and late-stage deals. These investments are 8 times and 28 times

larger than those of angel investors. VC organizations feature substantially higher levels of

professionalism and specialization than angel investors: All the roles of a VC organization

(e.g., evaluation, development, and monitoring) are rolled up into one single angel investor.

To approximate alternative forms of finance, some empirical evidence from Puri and

Zarutskie (2012) is used. They track the performance of VC- and non-VC-financed firms

using the Longitudinal Business Database (LBD). They identify firms in the LBD as VC-

financed if they can be matched to the VentureSource and VentureXpert databases. They

match each VC-financed firm to a non-VC-financed firm based on four characteristics: age,

4-digit SIC code, geographical region, and employment size. They find that VC-financed

and non-VC-financed firms are observationally identical at the time the former first receive

VC financing. Based on this comparison, they report that the ratio of the success rate of

non-VC-financed firms to the success rate of observationally identical VC-financed firms is

0.23.7

To approximate more traditional forms of finance in the model, the effi ciency of develop-

ment, evaluation, and monitoring are all debased in an equiproportional manner to render

7 Venture capitalists could match with better firms based on unobservable characteristics. Given that
startups are very young with little in terms of employment and patents, it might diffi cult to control em-
pirically for this selection effect. To the extent that such selection effects are important, the results in this
section would constitute an upper bound for the effect of VC financing.
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An Alternative form of Finance
Variable Baseline Debased economy
Success 1.4 0.5
Failure 5.4 1.8
VC Inv/GDP 0.20 0.03
Equity Share 66.2 41.6
Growth 1.86 1.05
Welfare loss 0 28.8

Table 8: All numbers are in percentages.

the same average success-rate ratio for a startup. Note that for this ratio to be comparable

with its empirical counterpart, this recalibration is done in partial equilibrium. The 0.23 ra-

tio is reproduced by reducing in tandem development, evaluation, and monitoring effi ciency

to 39 percent of their original values.8 The upshot of this exercise is shown in Table 8.

Alternative forms of finance have a much lower success rate (1.4 versus 0.5 percent) than do

VC-financed projects. Note that the ratio of 0.5/1.4 is larger than 0.23 because there are

general equilibrium effects that partially offset the reduction in financing effi ciency. When

the effi ciency of VC is debased, the failure rate drops from 5.4 to 1.8 percent. The financier’s

share of the project declines considerably. Since monitoring is less effi cient, a larger share

of the project must be given to the entrepreneur to ensure that he will invest all of the

development funds. The drop off in the success rate and the financier’s share of equity lead

to less investment. As a result, growth falls. This generates a large welfare loss.

12 Capital Gains Taxation

Most VC-funded firms in the United States are setup as partnerships. CEOs, central em-

ployees, founders, and investors are paid in terms of convertible equity and stock options.

These financial assets payoff only under certain well-specified contingencies and serve to

align the incentives of key participants. Interestingly, the returns on convertible equity and

stock options are taxed in the United States at the capital gains rate, which is 15 percent.

8 The results are quite similar when only development effi ciency is debased.
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Figure 10: The cross-country relationship between the tax rate on VC activity and the VC
investment-to-GDP ratio—data and model. The numbers are expressed as percentages.

The IRS lets companies assign artificially low values to these instruments when they are

issued. So, effectively, participants are only subject to taxation at the time of an acquisi-

tion/IPO. In other countries the rate of taxation on VC-funded startups is much higher. For

example, it is 30 percent in France, 47.5 percent in Germany, and 72 percent in Italy. In a

cross-country regression analysis, Henrekson and Sanandaji (2016, Table 4) report a strong

negative correlation between capital gains tax rates and VC investment as a percentage of

GDP. The elasticity of the tax rate on VC activity is about -1.0, as mentioned earlier.

Figure 10 shows how VC investment as a percentage of GDP tends to fall with the tax

rate on VC activity. The data are from Henrekson and Sanandaji (2016). To obtain the tax

rates on VC activity, they asked the local offi ces of PricewaterhouseCoopers in 22 countries

to calculate the effective tax rate for a representative VC startup. As the figure shows, the

fitted lines for the data and model match each other quite well. As the capital gains tax rate

rises, not surprisingly, the share of VC investment in GDP declines. It drops from about 0.22

percent, when capital gains are taxed at a 7.4 percent rate, to 0.047 percent, when capital

gains are taxed at a 74 percent rate. Note that the share of VC investment in GDP is very

small, both in the data and model. Yet in the model, VC investment drives all of growth.
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Figure 11: Impact of capital gains taxation. The upper panel shows the impact of capital
gains taxation on economic growth, both for the benchmark economy and the one where
there are no externalities in research. The lower panel illustrates the same for welfare.

The impact of capital gains taxation in the model is also illustrated in Figure 11. As the

capital gains tax rate rises, not surprisingly economic growth declines (see the top panel).

As the capital gains tax rate moves up from -15 percent (a subsidy) to 60 percent, economic

growth in the benchmark economy falls from 2.04 percent to 1.41 percent. As the figure

illustrates, when there is no externality in the research cost function, the effect is muted.

This transpires because as the tax rate is hiked, the number of VC-funded firms drops. With

an externality present, this raises the cost of research. The effects on growth might appear

small, but lowering the capital gains tax rate from 60 percent to 15 percent produces a long-

run welfare gain of 15.4 percent, when ignoring transitional dynamics. Going further from

15 percent to -15 percent generates an additional welfare gain of 5.5 percent, all measured

in terms of consumption. The welfare gains are smaller when the externality is absent.
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13 What about Growth?

Is the recent rise in VC investment reflected in growth statistics? The answer to this question

is nuanced. On the one hand, at the country level VC investment appears to be positively

linked with economic growth. A scatter plot between economic growth and VC investment

for G7 countries is shown in the upper panel of Figure 12. These are developed nations.

As the figure shows, there is a clear positive association between these two variables. The

analysis is extended to G20 countries in the bottom panel of the figure. Now the scatter

plot includes some poorer countries, where VC investment isn’t so prevalent. There is still

a positive association, but not surprisingly it is weaker.

To conduct a more formal analysis, some regression analysis is conducted with a sample

of 37 economies over the period 1995 to 2014. The sample covers 99 percent of world VC

investment and 88 percent of world GDP. In addition, the two-decade sampling period is

divided into four sub-periods, each lasting five years. A country is included in the sample if

its share of world VC investment between 1995 and 2014 is not less than 0.05 percent.9 The

dependent variable in the regression analysis is the median growth rate of real GDP per capita

in each period, while the main explanatory variable is the natural logarithm of the median VC

investment-to-GDP ratio. The regressions include the initial levels of real GDP per capita

and the Barro and Lee (2013) human capital index. These control variables are the two

main factors demonstrated in the empirical literature to be important for economic growth.

Moreover, period dummies are included to control for aggregate shocks to all countries. An

IV approach is also taken to address the endogeneity issues. Two IVs are used. The first,

which follows the strategy pioneered in Barro and Lee (1994), is the median VC investment-

to-GDP ratio for each country during the decade preceding the sample period (i.e., 1985 to

1994). The second is a dummy variable for the legal origin of the country, which is equal

to 1 for common-law countries. The idea is that common-law legal systems foster better

financial development than civil-law legal systems, because of higher judicial independence

9 An exception is Bermuda, which accounted for 0.18 percent of world VC investment. Bermuda is
excluded because it is a tax haven. Companies set up offi ces there, while undertaking virtually no business
activity, just to avoid corporate income taxation.
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Figure 12: Economic growth and VC investment, 1995-2014. The upper panel shows the
relationship between VC investment and growth in G7 countries, while the bottom panel
does the same for the G20.

from the government and the flexibility of the courts to adapt to changing conditions (see

Beck, Demirguc-Kunt, and Levine (2005)).

The main regression results are reported in Table 9. As the table shows, VC and growth

are positively correlated. The IV estimate for the G7 countries in the last regression in

Panel A shows that a 10 percent increase in the VC investment-to-GDP ratio is connected

with a 0.024 percentage point increase in growth. This may seem small, but it implies that

increasing the VC investment-to-GDP ratio from the Japanese level (0.003 percent) to the

U.S. level (0.19 percent) would increase growth by 1.01 percentage points.10

On the other hand, the impact of VC may not be readily apparent in growth statistics

for several reasons. First, technological revolutions, such as the Information Age, may cause

disruptions in an economy. Old forms of businesses are displaced by new forms. Online

retailing is displacing brick and mortar stores, for example. Greenwood and Yorukoglu (1997)

discuss how the dawning of the First and Second Industrial Revolutions were associated with

productivity slowdowns and suggest that the same phenomena characterize the Information

Age. Second, measuring investment and output in the information age is diffi cult. Think

10 Relatedly, Sampsa and Sorenson (2011) estimate, using a panel of U.S. metropolitan statistical areas,
that VC positively affects startups, employment, and regional income.
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VC Investment and Growth: Cross-Country Regressions
Dependent variable Growth of GDP

OLS IV
Pre ln(VC Inv/GDP) Legal origin Both

Panel A: G7
ln(VC Inv/GDP) 0.186** 0.253*** 0.227** 0.240***

(0.0782) (0.0910) (0.0899) (0.0816)
Observations 28 28 28 28
R-squared 0.695
Panel B: 37-Country Sample

0.228** 1.156** 0.421* 0.463*
(0.112) (0.501) (0.254) (0.260)

Observations 148 120 148 120
R-squared 0.295

Table 9: See the main text for a description of the dependent and independent variables.
Pre ln(VC Inv/GDP) refers to the pre-sample VC investment-to-GDP ratio. Standard errors
are in parentheses. ***, **, and * denote significance at the 1, 5 and 10 percent levels.

about the introduction of cell phones, as discussed in Hulten and Nakumura (2017). Cell

phones substitute for traditional land lines, audio players, cameras, computers, navigation

systems, and watches, inter alia. Cell phones have free apps. Between 1988 and 2015, land

lines fell from 1.7 to 0.3 percent of personal consumption expenditures. Since cell phones

constitute 0.15 percent of personal consumption expenditures, this would be measured as a

drop or slowdown in GDP. An iPhone 5 would have cost more than $3.56 million to build in

1991.11 Likewise, global camera production dropped from 120 million units to 40 million over

the 2007 to 2014 period. Additionally, investment may be in intangibles, such as software,

R&D, retraining workers, reconfiguring products and organizational forms, and branding new

products. Corrado, Hulten, and Sichel (2009) estimate that investment in such intangibles

is now as large as that in tangibles. Including intangible investment in GDP accounting

could increase estimates of growth by 10 to 20 percent. McGrattan and Prescott (2005)

11 This 2017 guesstimate was done by Bret Swanson, who calculates that the flash memory, processor,
and broadband communications of an iPhone 5 would have cost $1.44, $0.62, and $1.5 million in 1991. The
cost of these three components adds up to $3.56 million. On top of that, considering the other components
(camera, iOS operating system, motion detectors, display, apps, etc), it would have cost more than $3.56
million to build an iPhone 5 in 1991.
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argue that, after taking intangibles into account, the 1990s was a boom period. Third,

technologies flow across national boundaries. So even countries that don’t innovate will

experience growth from the adoption of new technologies. Out of France, Germany, Japan,

the United Kingdom, and the United States, Eaton and Kortum (1999) find that only the

United States derived most of its growth from domestic innovation. Comin and Hobijn

(2010) document that diffusion lags for new technologies have shrunk over time. Fourth,

firms may park the profits from new innovation offshore to avoid taxation. Accounting for

this could increase productivity growth by 0.25 percentage points over the 2004 to 2008

period, according to Guvenen et al. (2017).

14 Conclusion

Venture capital is important for economic growth. Funding by venture capitalists is positively

associated with patenting activity. VC-backed firms have higher IPO values when they are

floated. Following flotation they have higher R&D-to-sales ratios. VC-backed firms also

grow faster in terms of employment and sales.

An endogenous growth model of the VC process is constructed and taken to the data.

In the framework, entrepreneurs bring ideas to venture capitalists for funding. Venture

capitalists provide seed money to research the ideas. After this projects enter a funding-

round cycle. During each round, projects are: (i) evaluated to assess their ongoing viability;

(ii) those that pass are then provided with VC to develop the project; (iii) the use of funds

is monitored is done to ensure that there is no malfeasance; and (iv) successful projects are

floated on the stock market or sold to other businesses. The evaluation plan, development

funding, the monitoring strategy, and the equity share of the venture capitalist are governed

by a dynamic contract between the entrepreneur and a venture capitalist. The model is

capable of matching several stylized facts of the VC process by funding round. In particular,

it mimics the funding-round profiles for the success and failure rates of projects, the injections

of VC for development, the venture capitalist’s share of equity, and the value of an IPO by
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the time it takes to go to market. This is done while matching the share of VC-backed firms

in total employment and the average size of a VC-backed firm relative to a non-VC-backed

one.

The key personnel involved with starting up the enterprises funded by venture capitalists

are rewarded in the form of convertible equity and stock options. In the United States,

venture capitalists are subject only to capital gains taxation. The rate at which VC-funded

startups are taxed in the United States is low relative to other developed countries. Does

this promote innovative activity? The analysis suggests that raising the tax on VC-funded

startups from the U.S. rate of 15 percent to the Portugese rate of nearly 60 percent would

shave 0.4 percentage points offgrowth and lead to a long-run consumption-equivalent welfare

loss of 15.4 percent.
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15 Data Appendix

15.1 Figures

• Figure 1: The rise of venture capital, 1970 to 2015. Investment by venture capitalists

is obtained from the VentureXpert database of Thomson ONE. The fraction of public

firms backed by VC companies is created by matching firm names in VentureXpert

and CompuStat; the latter are available from Wharton Research Data Services.12

• Figure 2: The share of VC-backed companies in employment, R&D spending, and

patents. The employment and R&D shares of VC-backed public companies are calcu-

lated by matching firm names in VentureXpert and CompuStat, as in Figure 1. The

share of patents for VC-backed public companies is computed by matching firm names

in VentureXpert and the NBER Patent Data Project.13

• Figure 5: Investment and equity share by funding round. Investment in each funding

round is based on the VC-funded deals in Crunchbase between 1981 and 2015. Crunch-

base has better funding-round information than VentureXpert. The vertical axis is the

mean of funding in a round across all deals, from round 1 (i.e., series A) to round 7

(i.e., series G). Funding is converted into millions of constant $2009 using the GDP

deflator. The mean duration of a funding round in Crunchbase is 1.4 years, which is

taken to 1.5 years here. The share of equity transferred to the venture capitalist in each

funding round is calculated as the ratio of VC funding in each round to the post-money

valuation of the company after the VC investment. For each funding round the mean

12 Source link: https://wrds-web.wharton.upenn.edu/wrds/index.cfm?
13 Source link: https://sites.google.com/site/patentdataproject/Home
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equity share across all deals is calculated. The vertical axis is the cumulated share of

equity transferred to the venture capitalist.

• Figure 6: The odds of success and failure by funding round and the value of an IPO by

the duration of funding. The underlying data source is Puri and Zarutskie (2012, Table

VI.B, p. 2271). The success rate refers to firms that have an IPO or that are acquired

by another firm. The acquisitions in Puri and Zarutskie (2012) are converted into

successes by multiplying by 0.629. This is based on the fact that the cash multiple for

acquisitions is 37.1 percent lower than for IPOs, as reported in Achleitner et al. (2012).

In addition, the success and failure rates by funding round are obtained by interpolating

the original annual data using a cubic spline to get a periodicity of 1.5 years. Puri

and Zarutskie (2012, Table V) classify a firm “as having failed if it disappears from

the LBD in its entirety.”The value of an IPO, as a function of the duration of VC

funding, derives from regression (2) in Table 10 (discussed in Section 15.3).

• Figure 10: The cross-country relationship between the tax rate on VC activity and the

VC investment-to-GDP ratio. The source for the cross-country data is Henrekson and

Sanandaji (2016, Table 1) .

• Figure 12: Economic growth and VC investment. VC investment and the growth rate

of real GDP per capita are based on VentureXpert of Thomson ONE and the World

Development Indicators of the World Bank, respectively.

15.2 Tables

• Table 1: Top 30 VC-Backed Companies. As in Figure 1, the list of VC-backed public

companies is gathered by matching firm names in VentureXpert and CompuStat.

• Table 2: VC versus Non-VC-Backed Public Companies. The VC-backed public com-

panies are singled out by matching firm names in VentureXpert and CompuStat. Since

the R&D-to-sales ratio and growth rates can be very volatile across firms, the top and
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bottom 5 percent of the outliers are trimmed in this regression. The results are robust

to changing the trimming threshold (at the 1 percent versus 5 percent level).

• Table 3: VC and Patenting, Firm-Level Regressions. The VC-funded patentees are

identified by matching firm names in VentureXpert and PatentsView.14 The capi-

tal gain taxes are accessed from TAXSIM, an NBER tax simulation program.15 In

calculating the dependence on external finance, 30 percent of selling, general, and ad-

ministrative expenses is taken as intangible investment. The industry-level of private

and federally funded R&D is collected from the Business R&D and Innovation Survey

by the National Science Foundation.16 A truncation adjustment for citations is made

following Bernstein (2015). The industry dummies in this regression are at the 2-digit

SIC level.

• Table 4: VC and Patenting, Industry-Level Regressions. The product of the deregula-

tion dummy and dependence on external finance is used as the IV for the cross term

between VC funding and dependence on external finance. The industry panel is based

on the 4-digit SIC. The industry dummies in this regression are at 2-digit SIC level.

• Table 9: VC Investment and Growth, Cross-Country Regressions. The full sample

covers 37 economies between 1995 and 2014. As in Figure 12, VC investment is from

VentureXpert and the GDP growth rate is from the World Development Indicators.

The Barro and Lee (2013) human capital index is a measure of educational attainment

at the country level. The IVs are the median VC investment-to-GDP ratio (in natural

logarithm) for each country between 1985 and 1994, and a dummy variable for legal

origin (equal to 1 for common-law countries) à la Beck, Demirguc-Kunt, and Levine

(2005).

14 Source link of PatentsView: http://www.patentsview.org/download/.
15 Source link of TAXSIM: http://users.nber.org/~taxsim/state-rates/.
16 Source link of BRDIS: https://www.nsf.gov/statistics/srvyindustry/#tabs-2.
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VC Funding and Years to Go Public
Dependent variable ln(Firm value at IPO, real)

1 2
years btw first VC funding and IPO -0.0470*** -0.0385***

(0.0161) (0.0146)
firm age at IPO -0.0246***

(0.00495)
# of employees at IPO (log) 0.709***

(0.0375)
year dummy for IPO N Y
industry effect N Y

Observations 1,042 1,006
R-squared 0.008 0.627

Table 10: Standard errors are in parentheses. ***, **, and * denote significance at the 1, 5
and 10 percent levels.

15.3 Duration of VC Funding and the Value of an IPO

The relationship between the firm’s value at an IPO and the number of years it received

funding from the venture capitalist is examined using regression analysis. The regressions are

based on public companies funded by venture capitalists between 1970 and 2015. These VC-

backed companies are identified by matching firm names in CompuStat and VentureXpert.

The dependent variable in the regressions is the natural logarithm of the market value of

the firms at IPO (in $2009). A three-year average is used for market value because of the

notorious volatility of share prices following an IPO. IPOs are excluded when they take more

than 11 years for the firms to go public after receiving the first VC funding. This is for two

reasons: (i) the sampling period is formulated to be consistent with the model where the

maximum duration for each VC investment is 10.5 years, and (ii) only 4.5 percent of the

observations occur after 11 years with the data being very noisy. The main explanatory

variable is the number of years between the firm’s first VC funding and the date of its IPO.

The findings are shown in Table 10. The first coeffi cient in regression (2) is used in Figure

6 to plot the decline in the value of an IPO across successive funding rounds.
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16 Theory Appendix

Proofs for Lemmas 2 and 4 are supplied in turn here. Lemma 2 establishes the existence

of a balanced-growth path. Lemma 4 shows that solving the contract problem (P2) subject

to a sequence of one-shot incentive constraints is equivalent to solving it subject to a single

consolidated round-0 incentive constraint that allows for multi-shot deviations. This is

proved using Lemma 3 as an intermediate step.

16.1 Balanced Growth

Lemma 2 (Balanced Growth) There exists a balanced-growth path of the form outlined in

Section 9.

Proof. Suppose that {pt, σt, µt, βt} solves the old problem for x and x. It will be shown that

{gwpt, σt, µt, βt} solves the new one for x′ = gxx and x′ = gxx. First, observe that if x′ = gxx

and x′ = gxx, then I(x′;gtxx
′) = gwI(x;gtxx). This occurs because T (x′;x′t) = gwT (x;xt).

This can be seen from (P1) because x will rise by gx and wages by gw. If p
′
t = gwpt, then it

is immediate from the objective function in (P2) that C(x′;x′) = gwC(x;x). Now, consider

the incentive constraint (5). At the conjectured solution, the left-hand side will inflate by the

factor gw. So will the right-hand side because D(σ′t)−D(σ̃′t) = gw[D(σt)−D(σ̃t)], since all

costs are specified as a function of w. Therefore, the new solution still satisfies the incentive

constraint. Move now to the zero-profit constraint (6). Again, the left-hand side will inflate

by the factor gw, since p
′
t = gwpt, φ

′

t = gwφt, D(σ′t) = gwD(σt), Mt(µ
′
t) = gwMt(µt),

E(β
′

t) = gwE(βt), and R(x′/x′, e) = gwR(x/x, e). This is trivially true for the right-hand

side. Hence, the zero-profit constraint holds at the new allocations. It is easy to deduce from

the right-hand side of (5) that the old solution for σ̃t will still hold. This can be seen by using

the above argument while noting that D1(σ̃
′
t) = gwD1(σ̃t). To sum up, at the conjectured

new solution, the objective function and the constraints all scale up by the same factor of

proportionality gw. By cancelling out this factor of proportionality, the new problem reverts

back to the old one. Likewise, it is easy to deduce that if x solves problem (P3) for x,
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then x′ = gxx solves it when x′ = gxx. The occurs because problem (P3) also scales up

by the factor of proportionality gw. When x/x remains constant along a balanced-growth

path, then the initial research cost of the project will rise at the same rate as wages, gw.

Additionally, V (x) will grow the same rate as wages, w, so from (7) it is apparent that e will

remain constant.

16.2 One-Shot Deviations versus Multi-Shot Deviations

This is an intermediate step toward solving Lemma 4. To this end, it will be shown that if

the incentive constraint (5) holds for round t, when the entrepreneur has not deviated up

to and including round t − 1, then it will also hold when he follows some arbitrary path of

deviations up to and including round t − 1. Let αt represent that the probability that a

project is good at round t as defined by (4). These odds evolve recursively according to

αt+1 =
(1− σt)αt

(1− σt)αt + (1− βt+1)(1− αt)
,

where α1 = ρ/[ρ+ (1−ρ)(1−β1)]. For use in proving Lemma 3, note that αt+1 is increasing

in αt and decreasing in σt. This implies that if the entrepreneur deviates in round t, so that

σ̃t < σt, he will be more optimistic about the future, as αt+1 will be higher. This increases

the value of the α’s for future rounds as well. With this notation, the round-t incentive

constraint (5) then reads

αt(1− τ){δσt[I(x;gtxx)− pt] + (1− σt)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

≥ (1− µt)max
σ̃t

(
D(σt)−D(σ̃t)

+ αt(1− τ){δσ̃t[I(x;gtxx)− pt] + (1− σ̃t)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

)
.

Lemma 3 If the incentive constraint (5) holds for round t, when the entrepreneur has not

deviated up to and including in round t − 1, then it will also hold when he follows some
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arbitrary path of deviations up to and including in round t− 1.

Proof. Suppose that the entrepreneur deviates in some manner before round t. Let α̂t be

the prior associated with this path of deviation. Since the σ̃’s will be less that than the σ’s,

it follows that α̂t > αt. Let σ̂t be the optimal round-t deviation associated with α̂t. Now,

αt(1− τ){δσt[I(x;gtxx)− pt] + (1− σt)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

≥ (1− µt)
(
D(σt)−D(σ̂)

+ αt(1− τ){δσ̂t[I(x;gtxx)− pt] + (1− σ̂t)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

)
,

because σ̃t is maximal when the prior is αt, while σ̂t is not. Next, replace αt with α̂t to get

α̂t{δσt[I(x;gtxx)− pt] + (1− σt)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

≥ (1− µt)
(
D(σt)−D(σ̂t)

+ α̂t{δσ̂[I(x;gtxx)− pt] + (1− σ̂t)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

)
,

since α̂t > αt. Last, if the prior is α̂t, then σ̂t is maximal, so the above equation can be

rewritten as

α̂t(1− τ){δσt[I(x;gtxx)− pt] + (1− σt)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

≥ (1− µt) max
σ̂t

(
D(σt)−D(σ̂t)

+ α̂t(1− τ){δσ̂t[I(x;gtxx)− pt] + (1− σ̂t)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

)
.
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16.3 The Consolidated Round-0 Incentive Constraint

The consolidated round-0 incentive constraint is

(1− τ)
T∑
t=1

ρΠt−1
j=1(1− σj)δtσt[I(x;gtxx)− pt] ≥ max

{σ̃t}Tt=1
{

T∑
t=1

δt−1[ρΠt−1
j=1(1− σ̃j) + (1− ρ)Πt

j=1(1− βj)]

×(1− µt)[D(σt)−D(σ̃t)]

+(1− τ)
T∑
t=1

ρΠt−1
j=1(1− σ̃j)δtσ̃t[I(x;gtxx)− pt]}.

(17)

Lemma 4 (Equivalence of contracts) A contract {βt, σt, µt, pt} solves problem (P2) subject

to the sequence of one-shot incentive constraints (5) if and only if it solves (P2) subject to

the consolidated time-0 incentive constraint (17).

Proof. (Necessity) Suppose that an allocation satisfies the one-shot incentive compatibility

constraints (5) but that it violates the consolidated one (17). This implies that at some

round in the problem with the consolidated constraint it pays to deviate and pick a σ̃t 6=

σt. Pick the last round of deviation (which may be T ). It must be true that σ̃t solves the

maximization problem

(1− µt) max
σ̃t

(
D(σt)−D(σ̃t)

+ α̂t(1− τ){δσ̂[I(x;gtxx)− pt] + (1− σ̃t)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]}

)
,

where α̂t is the prior associated with the path of σ’s up to round t− 1, which may include

previous deviations. But, as was shown in Lemma 3, this is less than the value of sticking

with the contract or

α̂t(1− τ){δσt[I(x;gtxx)− pt] + (1− σt)
T∑

i=t+1

Πi−1
j=t+1(1− σj)δi+1−tσi[I(x;gixx)− pi]},
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when the round-t one-shot incentive constraint (5) holds, as assumed.

(Suffi ciency) Suppose {σt}Tt=1 satisfies the consolidated incentive constraint, but violates

the one-shot incentive constraint at round k. Then, using (4) and (5), it follows that

ρΠk−1
j=1(1−σj)δk−1(1−τ){δσk[I(x;gkxx)−pk]+(1−σk)

T∑
t=k+1

Πt−1
j=k+1(1−σj)δ

t+1−kσt[I(x;gtxx)−pt]}

= (1− τ)

T∑
t=k

ρΠt−1
j=1(1− σj)δtσt[I(x;gtxx)− pt]

< δk−1(1− µk)
(

[ρΠk−1
j=1(1− σj) + (1− ρ)Πk

j=1(1− βj)][D(σk)−D(σ̃k)]

+ρΠk−1
j=1(1−σj)(1−τ){δσ̃k[I(x;gkxx)−pk]+(1−σ̃k)

T∑
t=k+1

Πt−1
j=k+1(1−σj)δ

t+1−kσt[I(x;gtxx)−pt]}
)
.

(18)

The left-hand side gives the payoff in the contract at the optimal solution from round k on,

when using the consolidated incentive constraint, while the right-hand side represents the

payoff from a one-shot deviation at round k. Now the objective function for the contract

can be written as

(1− τ)
k−1∑
t=1

ρΠt−1
j=1(1− σj)δtσt[I(x;gtxx)− pt] + (1− τ)

T∑
t=k

ρΠt−1
j=1(1− σj)δtσt[I(x;gtxx)− pt].

Evaluate this at the optimal solution for the contract when using (17) instead of (5). Next,

in this objective function, replace the payoff from round k on, as represented by the left-hand

side of (18), with the payoff from the one-shot deviation as given by the right-hand side.

This deviation would increase the value of the objective function for the entrepreneur, which

is a contradiction.
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