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Abstract

This paper analyzes the impacts of consumer subsidies in the global market for solar

panels. Consumer subsidies can have at least two effects. First, subsidies shift out

demand and increase equilibrium quantities, holding production costs fixed. Second,

subsidies may encourage firms to innovate to reduce their costs over time. I quantify

these impacts by estimating a dynamic structural model of competition among solar

panel manufacturers. The model produces two key insights. First, ignoring long-run

supply responses can generate biased estimates of the effects of government policy.

Without accounting for induced innovation, subsidies increased global solar adoption

49 percent over the period 2010-2015, leading to over $15 billion in external social

benefits. Accounting for induced innovation increases the external benefits by at

least 22 percent. Second, decentralized government intervention in a global market

is inefficient. A subsidy in one country increases long-run solar adoption elsewhere

because it increases investment in innovation by international firms. This spillover

underscores the need for international coordination to address climate change.
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1 Introduction

Can subsidies to consumers spur firms to innovate? In principle, government subsidies

to consumers that address non-pecuniary externalities can also facilitate cost reductions

for emerging technologies. While economic theory makes predictions about the potential

impact of consumer subsidies on cost-reducing innovation, there is little empirical evidence

on this relationship to inform policy. Crucially, analysis using static economic methods

will understate the impacts of policies that induce technical change.

I study the short- and long-run impacts of consumer subsidies in the market for solar

panels, where government intervention is widespread. Solar power is viewed as a key

technology for mitigating climate change because it can displace conventional electricity

sources that emit greenhouse gases. Over the period 2006-2015, solar panel prices fell by

an order of magnitude due to a combination of innovation, input price reductions, and

subsidies to producers. Manufacturing output increased, facilitating a 35-fold increase in

new solar power capacity in 2015 relative to 2006 (IEA, 2016). Firms in China led this

manufacturing expansion, collectively producing two-thirds of the world’s solar panels

over the period 2010-2015.1

To quantify the impacts of consumer subsidies, I formulate a dynamic structural model

of firm competition based on Ericson and Pakes (1995). Consumer demand for undiffer-

entiated solar panels is static but depends on subsidies and unobserved demand shocks,

both of which vary over time. Incumbent firms compete in quantities (Cournot) to serve

demand in each market. I employ a unique observable measure of technological inno-

vation, the electrical conversion efficiency of solar panels, which I refer to as “technical

efficiency.” Increasing technical efficiency helps firms lower costs by reducing the ma-

terials needed to manufacture solar panels. This gives firms an incentive to make fixed

investments in technical efficiency to lower their costs in order to increase their profits in

the product market. I assume that firms condition only on the current industry state –

firms’ technical efficiencies, a common input price, and demand – and their own private

shocks when making investment decisions, leading to a Markov-Perfect Nash Equilibrium.

To estimate the model, I use market-level data from four regional markets that span the

globe: Germany, Japan, the United States, and a residual market, “Rest of the World.”

I estimate aggregate demand for solar panels (in Watts) in each market to recover price

elasticities and the impact of subsidies on demand. I use the demand estimates and the

1Chinese government subsidies to producers are suspected to have contributed to the expansion of
solar panel manufacturing in China and to have reduced equilibrium prices for solar panels. My empirical
strategy accounts for such unobserved supply subsidies, but I do not directly analyze how subsidies to
producers affected the solar panel market. This paper focuses on subsidies to consumers.
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firm’s first order condition for optimal production to recover marginal production costs.

I then estimate the relationship between technical efficiency and costs. This relationship

is identified using variation in technical efficiency and market shares: under Cournot

competition, firms with lower costs have higher market shares, so a positive correlation

between technical efficiency and market share implies that technical efficiency reduces

costs.

I use a two-step estimator in the spirit of Bajari et al. (2007) to recover the fixed costs

of investment.2 First, I use estimates of the product market model described above, firm

investment policies, and state transitions to forward simulate potential industry paths,

tracking firms’ profits and investment decisions. This approach leverages the insight that

a firm’s value function is equivalent to the expected discounted sum of its future net

profits. I use the simulated value function and the optimality condition of the firm’s

investment problem to estimate the fixed cost parameters via maximum likelihood.3

The fixed cost parameters are identified by variation in the frequency and the expected

benefits of investment in different industry states. Observed firm-level improvements

to technical efficiency are used to recover the frequency of investment in a given state,

and the product market model predicts the benefits – in terms of future profits – of

that investment. The fixed cost parameters rationalize firms’ investment decisions: for

example, if firms were to invest more frequently than observed at a given state they would

increase their gross product market profits, so their decision not to invest more frequently

implies a lower bound on the fixed cost of investment. Variation across industry states

in investment patterns and profits implied by the product market model helps pin down

the parameters. Finally, to allow for strategic interactions among a large number of

firms, I employ an equilibrium refinement for counterfactual simulations grounded in

the experience-based equilibrium of Fershtman and Pakes (2012) and the moment-based

Markov equilibrium of Ifrach and Weintraub (2017).4

I find that subsidies to consumers have economically significant positive impacts on

demand, consistent with prior work.5 Firms with higher technical efficiencies have lower

marginal production costs on average. This finding is robust to the inclusion of time

2Two-step estimators were first introduced for dynamic models by Hotz and Miller (1993) and later
extended to dynamic games (e.g., Aguirregabiria and Mira, 2007; Bajari et al., 2007; Pakes et al., 2007).

3To be precise, the value function can only be simulated up to the unknown parameters of interest.
Conveniently, the value function is linear in parameters, so I forward simulate industry paths once and
then search for the parameters that maximize the likelihood.

4I also use techniques used in recent empirical work to allow for continuous states (e.g., Ryan, 2012;
Sweeting, 2013; Barwick and Pathak, 2015; Kalouptsidi, 2017).

5See, for example: Hughes and Podolefsky (2015); Burr (2016); De Groote and Verboven (2016);
Gillingham and Tsvetanov (2017).
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fixed effects that proxy for unobserved supply shifters – such as production subsidies to

Chinese firms – as well as proxies for learning-by-doing and economies of scale.6 The

results imply that improvements to technical efficiency constituted 3-32% of total cost

reductions over the period 2010-2015, depending on the model specification. I interpret

my preferred specification as a causal impact under the identifying assumption that there

are no unobserved determinants of cost that are correlated with technical efficiency in the

cross section, which is plausible given its robustness to potential confounding variables.

I estimate fixed costs of improving technical efficiency that are in line with reported

expenditures on research and development (R&D) and physical capital expenditures by

a subsample of firms that are publicly owned.

I use the estimated model to quantify the impact of historical consumer subsidies.

Results from counterfactuals that hold firms’ costs fixed suggest that subsidies increased

solar panel adoption (measured in Watts) by 49% over the period 2010-2015. These effects

only account for demand responses and not for dynamic supply responses, implicitly

assuming that innovation was exogenous rather than driven by profit motives. German

subsidies explain over one-third of this increase in adoption, followed by national subsidies

in Japan and in the United States.

I conduct a back-of-the-envelope analysis to quantify the external social benefits at-

tributable to solar subsidies. Solar electricity generation creates a positive non-pecuniary

externality if it displaces electricity generation from coal and natural gas, which emit

harmful air pollution. I combine existing estimates of the external damages from coal and

natural gas electricity – including both local air pollution and greenhouse gas emissions –

with my estimates of the impact of subsidies on solar panel adoption to compute the total

external social benefits of solar subsidies. My central estimate is a present discounted

value of $15.4 billion (in 2017 dollars).

I then account for endogenous firm innovation by allowing firms to reoptimize in a

counterfactual simulation without Germany’s national subsidies. Removing these subsi-

dies lowers firms’ profits, leading firms to invest less frequently than under the baseline

simulation with Germany’s subsidies in place. Production costs are therefore higher than

under the baseline simulation, and the difference between simulated costs with and with-

out German subsidies grows over time. The change in investment activity is significant:

32% of the solar adoption due to increased technical efficiency would not have occurred

in the absence of German subsidies. The vast majority of this marginal adoption occurs

6The subsidies to fixed and variable costs Chinese manufacturers allegedly benefit from are an example
of unobserved supply shifters. The relationship between technical efficiency and cost is robust to including
unobserved costs that vary by manufacturing location (i.e., inside China or outside China) intended to
capture these unobserved subsidies to production.
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outside of Germany, highlighting the spillovers generated by decentralized government

intervention in a global market.

Accounting for both demand and supply responses yields meaningfully different es-

timates of the external social benefits of subsidies than accounting only for demand re-

sponses. I repeat the back-of-the-envelope calculation described above, except that I now

include external benefits from future solar adoption through 2040 attributable to subsidy-

induced innovation during the sample period (2010-2015). This accounts for the fact that

cost reductions due to past innovation affect future costs, and therefore future solar panel

adoption.7 The external benefits increase 22% to $18.8 billion under conservative as-

sumptions. Furthermore, since this analysis focuses on just one margin of endogenous

innovation, it is likely that this estimate considerably understates the full impacts of

subsidies to solar adoption.8

This paper highlights two important points that apply to policy beyond this market.

First, using short-run economic methods to analyze government policy can understate

its true effects and lead to incorrect policy prescriptions. Policy and regulatory analyses

often omit long-run considerations or use ad hoc methods to analyze them.9 My results

show that the resulting bias can be significant: dynamic supply responses such as induced

innovation have the potential to become more important than short-run demand responses

over long time horizons, as technological progress is cumulative. Furthermore, the benefits

of induced innovation will remain even if policies are removed in the future. Second,

decentralized government intervention in a global market is not economically efficient in

general. Innovation spillovers across borders may lead governments to underinvest in new

technologies like solar panels. This effect is distinct from, and compounds, the problem of

free-ridership created by international spillovers in environmental benefits, underscoring

the need for international coordination to address climate change.

7This is in contrast to the demand effect of subsidies, which will cease to affect equilibrium quantities
once subsidies are removed. A level comparison of the impacts of subsidies through (1) only their demand
effects, versus (2) both demand and supply effects, requires accounting for the different time horizon of
the two mechanisms’ impacts.

8This paper is only a first step toward a comprehensive welfare analysis of solar subsidies. The optimal
coordinated policy depends on factors beyond the scope of this paper, such as the extent of spillovers in
the R&D process. The growing literature on directed technical change makes clear that a Pigouvian tax
(or subsidies to clean technologies that approximate a Pigouvian tax) may not be the optimal government
response to climate change (Acemoglu et al., 2016; Aghion et al., 2016; Lemoine, 2017).

9Harrington et al. (2000) compare ex-ante and ex-post estimates of the direct costs of regulations and
find that “unanticipated technological innovation appears to be an important factor” in cases where unit
costs were overstated ex-ante. U.S. Office of Management and Budget (2011) directs agencies to identify
“changing future compliance costs that might result from technological innovation” in their regulatory
analyses. Yet practical analyses still fall short of this ideal. For example, in the regulatory impact analysis
for the Mercury and Air Toxics Standards, U.S. Environmental Protection Agency (2011) acknowledges
but does not quantify the effect of technological innovation on costs.
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Related Literature This paper builds on a large literature on induced innovation in

energy markets (e.g., Newell et al., 1999; Popp, 2001, 2002; Jaffe et al., 2002). This

paper also draws inspiration from research on how innovation responds to changes in

public health policy (Finkelstein, 2004), expansion of prescription drug insurance (Blume-

Kohout and Sood, 2013), and exogenous shifts in market size (e.g., Acemoglu and Linn,

2004; Dubois et al., 2015).10

The novelty of my approach relative to previous research on innovation is the use of

a unique, observable, and verifiable measure of innovation: technical efficiency. Much

of the innovation literature uses data on patents or product introductions, the value of

which are highly variable and difficult to quantify ex-ante. In contrast, technical efficiency

improvements are measured in common units, allowing me to directly model the impact

of individual innovations on costs.

The fact that technical efficiency is observable is also a strength of this approach rel-

ative to the use of estimated measures such as production costs or productivity.11 Over

the past several years, manufacturers in China have benefited from manufacturing subsi-

dies, and thus changes in estimated production costs over time may conflate cost-reducing

innovation with changes in manufacturing subsidies. This could lead to overestimates of

the extent of real resource cost reductions in the industry and therefore the impact of

consumer subsidies on innovation. In contrast, my approach exploits observed consumer

subsidies and an observed measure of investment outcomes. To prevent unobserved pro-

duction subsidies that vary over time from biasing my estimates, I use cross-sectional

variation to identify the causal impact of technical efficiency on production costs.

This paper also contributes to the growing literature on the economics of solar power

(Baker et al., 2013). Several papers have found that past subsidies significantly expanded

demand for solar systems (Hughes and Podolefsky, 2015; Burr, 2016; De Groote and

Verboven, 2016; Gillingham and Tsvetanov, 2017). The consensus of this research is that

many solar incentives are above the level justified by the static environmental benefits of

adoption. Dynamic considerations such as innovation and learning-by-doing may justify

these subsidies in theory (Arrow, 1962; Goulder and Mathai, 2000; van Benthem et al.,

2008), but there is limited empirical evidence to assess and guide policy.12,13

10See also Schmookler (1966) and Pakes and Schankerman (1984).
11Another strand of literature estimates production functions using observed R&D spending. However,

because firms use R&D to achieve multiple objectives, the benefits of R&D may not be fully captured by
this approach (Popp, 2001). A related advantage of my approach is that it relies only on data from the
product market and does not require data on inputs to production.

12In a notable exception, Bollinger and Gillingham (2014) estimate the extent of learning-by-doing
spillovers in solar panel installation, the industry downstream of the firms I study.

13This paper focuses on technological innovation through R&D rather than learning-by-doing. The
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While there is a large body of research on the market for solar systems, there is little

economic research on the upstream industry of solar panel manufacturing. Some studies

attempt to understand historical price reductions and forecast future prices at the indus-

try level using learning curves, but this approach cannot separately identify endogenous

and exogenous technological change (Nordhaus, 2014). Furthermore, this industry-level

analysis conflates many underlying economic phenomena. Recognizing this, Nemet (2006)

decomposes historical price reductions based on observable factors, finding that manufac-

turing scale, solar panel efficiency, and input prices are important explanatory variables.

He concludes that learning-by-doing is not a major factor. Finally, Pillai and McLaughlin

(2013) and Pillai (2015) use static economic models to study solar panel manufacturing.

In contrast to prior studies of this industry, I estimate a dynamic game to answer a broad

economic question.

Road Map The remainder of this paper is organized as follows: Section 2 describes the

recent growth of the market for solar panels, the prevalence and types of consumer subsi-

dies, how solar panels are manufactured, and the importance of technical efficiency to the

industry. Section 3 details a structural model of the industry environment and manufac-

turer behavior. Section 4 introduces the data I use for estimation. Section 5 outlines my

estimation approach, and Section 6 summarizes the estimates. Section 7 describes how I

use these estimates to simulate counterfactual market outcomes and presents the results.

Section 8 concludes.

2 Industry Background

2.1 Economic and Policy Environment

The solar industry has grown rapidly over the past several years due to a combination of

demand and supply factors. Governments around the world have encouraged adoption of

this technology through policies targeting solar power. For example, the United States

Government expended one-third of all electricity subsidies ($5.3 billion) on solar power

in fiscal year 2013 (U.S. Energy Information Administration, 2015). This excludes the

value of state and local subsidies, which may have been as large or larger than Federal

subsidies in some jurisdictions and time periods (Borenstein, 2017). Partly as a result

of these subsidies, solar power was the largest source of electricity capacity additions

in the United States in 2016. The United States is not unique in this regard. China,

model could be extended to incorporate learning-by-doing using methods developed by Benkard (2004).
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Germany, and Japan have provided subsidies for electricity generated by solar panels over

the past decade that helped make these three countries the first, second, and third largest

markets for solar panels in terms of cumulative quantities sold in 2015 (International

Energy Agency, 2016).

The specific mix of policies employed by governments has varied across jurisdictions

and over time. The most common policy mechanisms during the period 2010-2015 can be

classified in two broad categories. The first is subsidies to solar adoption. An example of

this is the Federal Investment Tax Credit in the United States, which provides a tax credit

of 30% for solar investment costs. The second is subsidies to electricity generation from so-

lar technology. Germany, Japan, China, and many other countries have offered payments

for solar electricity in the form of “feed-in tariffs” set at the time of investment. Feed-in

tariffs are prices paid for solar electricity fed onto the electric grid that are independent

of the cost of electricity from alternative sources. Solar Renewable Energy Certificates

from state-level Renewable Portfolio Standards in the United States are another example

of incentives that target solar electricity generation rather than investment.

Taken together, government policies significantly shifted out demand for solar panels.

Figure 1 provides graphical evidence of the impacts of individual subsidies on demand. In

Japan, demand for solar panels was fairly low throughout 2010 and 2011, but increased

after a feed-in tariff was introduced in the wake of the Fukushima Daiichi nuclear disaster.

Furthermore, the equilibrium quantity of solar panels sold fell as the feed-in tariff was

lowered in 2015, despite the fact that prices were slowly but steadily declining over that

year (Figure 1a). The German feed-in tariff predates the sample period, but variation

in the feed-in tariff level over time appears to affect demand: equilibrium quantities fell

after the second quarter of 2012 as feed-in tariffs were lowered, despite the fact that

prices were falling through early 2013 and remained fairly stable thereafter (Figure 1b).

Previous empirical analyses of subnational consumer subsidies found that a majority of

solar adoption was attributable to subsidies (e.g., Hughes and Podolefsky, 2015; Burr,

2016; De Groote and Verboven, 2016; Gillingham and Tsvetanov, 2017).

Supply side developments also contributed to the growth of this market. The global

average price of solar panels fell 75% over the period 2010-2015. Previous analyses at-

tribute historic solar panel price reductions to improvements in technical efficiency by

solar panel manufacturers and reductions in the price of the primary input (Nemet, 2006;

Pillai, 2015). The expansion of manufacturing activity in China, aided by government

subsidies to manufacturers, has also played an important role in the industry’s evolution.

Chinese manufacturers produced roughly two-thirds of all solar panels between 2010 and
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2015.14

While solar panels are the main input to solar systems that generate electricity, the

cost of complementary inputs also plays a role in determining the size of the global solar

panel market. Recognizing this, the U.S. Department of Energy established its SunShot

Initiative in 2011 to encourage cost reductions for both hardware and non-hardware inputs

to solar systems. The costs of complementary hardware (e.g., mounting hardware and

inverters) and installation have fallen over the past several years, and downstream business

models have also contributed to the growth of the solar market. However, solar panels

remain central to efforts to reduce the cost of solar electricity. The SunShot Initiative

recently announced that the solar industry had met its 2020 cost targets for utility-

scale solar systems “largely due to rapid cost declines in solar photovoltaic hardware”

(U.S. Department of Energy, 2017). The SunShot Initiative’s statement cited a detailed

bottom-up cost analysis by Fu et al. (2017) that identified solar panel prices as the primary

driver of recent solar system cost reductions. This research does not specifically attribute

these solar panel price reductions to public or private efforts to reduce the cost of solar

panels, either through government subsidies on the supply side (e.g., for production and

R&D) or the demand side, which is the focus of this study.

These demand and supply developments are inextricably linked. By increasing de-

mand, government policies may have increased the returns to innovation, encouraging

firms to invest in response. If these policy-induced demand shocks did not induce innova-

tion, governments may have been better off had they delayed the use of incentives until

these innovations had occurred.

2.2 Solar Panel Manufacturing

Solar panels convert sunlight into electricity via the photovoltaic effect.15 I study man-

ufacturers of p-type silicon-based photovoltaic panels who collectively produced approx-

imately 88% of the world’s solar panels over 2010-2015 in terms of electricity generating

capacity (Watts).16 I refer to their products as “conventional solar panels” to distinguish

them from solar panels made from alternative semiconducting materials.

Conventional solar panels are produced from highly purified silicon. Manufacturers

14Author’s calculation based on IHS Markit’s PV Suppliers Tracker (2016Q2).
15The terms solar panel and solar module are used interchangeably. I use solar panel throughout this

paper because it is more familiar.
16Author’s calculation based on IHS Markit’s PV Integrated Market Tracker (2016Q2). The 88%

figure includes all manufacturers of p-type silicon-based photovoltaic panels. I use a subset of these
manufacturers to estimate the model due to data limitations. See Section 4 for more details.
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process silicon to create solar cells that generate electricity when exposed to light.17 These

cells are arrayed and assembled into a panel that consists of a frame, backing, circuitry,

lamination to protect cells from the elements, and a glass front.

The fundamental technology produced by manufacturers has not changed significantly

over the past decade, but firms have worked to increase their technical efficiencies and

decrease their production costs. The median technical efficiency of solar panels installed

in the United States rose from 14.1% in 2010 to 17.0% in 2015 (Figure 2; Barbose and

Darghouth, 2017). Firms throughout the industry have increased the technical efficiency

of their solar panels, although there is considerable variation in the firm-level frontier of

(i.e., maximum) technical efficiency in the cross section and in the relative position of

firms over time (Figure 3).

Firms strive to increase their technical efficiencies in order to reduce their production

costs. Technical efficiency determines electricity output from a solar panel holding its

physical size fixed, so efficiency improvements can lower materials costs for a given amount

of electricity output. This is important because materials comprised two-thirds of solar

panel costs during the period under study (Powell et al., 2012).18 Firms cite technical

efficiency as a source of cost reductions in press releases and SEC filings. These statements

also corroborate the role of R&D in enabling advances in technical efficiency. For example,

Trina Solar’s 2014 Form 20-F states: “To reduce raw material costs, we continue to focus

our research and development on improving solar cell conversion efficiency and enhancing

manufacturing yields.”19 Industry analysts report that large manufacturers have “top-

notch” in-house R&D labs, and that this is true of Chinese firms as well as Western firms.

These labs are specific to individual firms, and they do not directly share intellectual

property.20

17Silicon is first doped with boron and formed into blocks of monocrystalline and multicrystalline
material called ingots. These ingots are sliced into very thin wafers roughly 6′′ × 6′′. The wafers are
then doped with phosphorous to create a layer of n-type silicon that forms a junction. The addition of
contacts for conducting electricity and chemical processing renders photovoltaic cells.

18Powell et al. (2012) state that “improved solar cell conversion efficiency is a major driver for c-Si
module [panel] cost reduction, as cost scales inversely with efficiency for all area-dependent cost compo-
nents.” Green (2016) claims that “efficiency... is probably the key both to future photovoltaic electricity
cost reduction and to commercialization of new technologies” and that observed efficiency improvements
by existing manufacturers “contribute increasingly significantly to ongoing cost reduction.”

19Trina Solar also cited the role of technical efficiency improvements in its 2013 Form 20-F. Yingli Solar
has cited efficiency as a key means by which to achieve cost reductions in promotional materials.

20Phone interview with Jade Jones, Senior Analyst at GTM Research (May 26, 2017). While firms
conduct their own in-house research, they may benefit indirectly from knowledge generated by their com-
petitors. For example, the observation that a competitor successfully commercialized an existing technol-
ogy may spur others to do the same. This is consistent with widespread adoption of specific technologies,
such as the ongoing shift toward PERC technology. In addition, past and current government-sponsored
research in many countries may benefit both domestic and international manufacturers.
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Solar panel manufacturers improve their technical efficiency through investments in

R&D and physical capital. These firms primarily use established, off-patent technologies

and innovate to improve their current implementations or commercialize alternative imple-

mentations of these technologies. Research and development advances are operationalized

through investment in physical capital, either through production line upgrades or the

installation of new production lines.21

Despite continual improvements to the production process and to technical efficien-

cies, the firms I study produce a highly commoditized product. Solar panels come in

standardized form factors, with most solar panels composed of either 60 or 72 cells. The

smaller size is most commonly used for residential rooftop applications, while the larger

size is typically used in commercial and utility applications. The electrical properties of

solar panels are also standardized.

3 Model

I model the solar panel manufacturing industry as an imperfectly competitive oligopoly.

There are I incumbent firms who compete in quantities (Cournot) in each regional market

in each discrete time period (quarter). There are M regional markets. Aggregate demand

for undifferentiated solar panels in each market is static but depends on subsidies, which

vary over time. Firms have an infinite horizon and share a common discount factor β.

Each firm is differentiated by its state, technical efficiency: sit = ωit.
22 Firms share the

industry state, st, which is comprised of:

• the distribution of individual firms’ technical efficiencies, ωt = [ω1t ω2t ... ωIt];

• a common input price, wt; and

• aggregate demand in each market, dt = [d1t d2t ... dMt].

In each period, firms first observe the industry state and realize private shocks to invest-

ment. They then compete in the product market and choose whether to invest to lower

their future costs. When making this decision, each firm takes expectations over the

outcome of its investment decision, future demand, the evolution of the input price, and

21This process could be described by a theoretical model in which capital investment is necessary to
capitalize on innovations resulting from R&D (e.g., Lach and Rob, 1996). Lach and Schankerman (1989)
provide empirical evidence consistent with this type of model using data on U.S. manufacturing firms. I
abstract from these details and model the joint process of investing in R&D and physical capital due to
data constraints.

22The notation sit is common in the literature to denote an individual agent’s state. In this context,
the firm’s state (sit) and its technical efficiency (ωit) are equivalent and used interchangeably because
firms are only differentiated on one dimension (technical efficiency).
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investment by its competitors. Finally, investments are implemented and their outcomes

are realized at the beginning of the next period.

3.1 Demand

Consumers demand electricity, a prototypical homogeneous good. Solar panels are one

potential source of electricity. I assume that consumers do not have preferences over

solar panels per se, but instead have preferences over the electricity generating capacity

of undifferentiated solar panels (in Watts).23 I refer to this final good as “solar panels”

throughout the paper.

Aggregate demand for solar panels in each market is static and depends on market-

specific factors,

Qmt = Qm(Pmt; dmt(Smt)), (1)

where Qmt is the quantity of solar panels (in Watts) and Pmt is the price (in $/Watt).

The demand curve Qm(·) is indexed by m to allow the shape of the demand curve to vary

across markets. The demand state in each market, dmt(Smt), depends upon subsidies to

consumers, Smt, and follows an exogenous first-order Markov process.

The static demand specification implies that consumers are not forward-looking. In

reality, potential purchasers of a durable good who expect prices to fall over time, as

has been the case for solar panels, may delay their purchase. Static demand estimation

may therefore understate the magnitude of the true price elasticity (Aguirregabiria and

Nevo, 2013). The static demand specification also implies that consumers do not exit

the market after purchasing solar panels. This rules out changes in the distribution of

consumers over time, such as if early adopters are less price sensitive than late adopters.

In this hypothetical case, static estimation would again understate the price elasticity of

demand (Gowrisankaran and Rysman, 2012).

These theoretical insights are consistent with the limited evidence on demand estima-

tion from the solar market. De Groote and Verboven (2016) estimate demand for solar

systems (not solar panels) using both static and dynamic specifications. The estimated

price coefficient from their baseline model, which abstracts from consumer heterogeneity,

23The assumption that this final good is undifferentiated implies that consumers do not have preferences
over specific brands, in keeping with the commoditized nature of the product outlined in Section 2. The
assumption that consumers do not have preferences over the number of solar panels they purchase is in
keeping with industry convention; firm sales are denominated in Watts rather than the number of solar
panels (with prices denominated in $/Watt). Figure 4 compares two example solar panels to provide
some context for this assumptions.

11



is roughly 40% higher under dynamic demand than static demand. Allowing for con-

sumer heterogeneity further magnifies the price coefficient, to roughly 20% higher than

the dynamic model without heterogeneity. More generally, however, it is possible that

other regional solar markets could display forms of demand or unobserved heterogeneity

that would bias static price coefficients away from zero.

Despite its potential shortcomings, the static model of demand facilitates estimation

of a dynamic model of supply, which is the focus and contribution of this paper relative

to previous studies of the solar market.24 While there were significant reductions in

solar panel prices during the sample period, there are a few features of this market that

ameliorate concern over the potential impact of using a static demand specification. First,

changes in prices and subsidies were countervailing in some markets (see Figure 1b for

an example).25 Second, anecdotes from government and industry publications suggest

that ongoing price reductions were not fully anticipated, even by industry insiders.26

Finally, Gillingham and Tsvetanov (2017) provide support for their assumption of static

demand using data on purchases and a consumer survey in the residential solar market

in Connecticut, in the United States.

3.2 Firm Cost Structure

Firms have constant marginal costs of production, mc (ωit, wt), that depend on firm-

specific technical efficiencies (ωit) and a common input price (wt). Both technical efficiency

and the input price are fixed from the perspective of the firm at the time of product market

competition and are not choice variables in the firm’s static optimization problem. I

assume that product market competition is Cournot, with firms choosing quantities to

maximize profits,

max
qimt

[Pmt(Qmt; dmt(Smt))−mc (ωit, wt)] qimt,

where Pmt(Qmt; dmt(Smt)) is the inverse demand curve corresponding to equation 1. Equi-

librium product market profits for each firm depend only on the firm’s state and the indus-

24It is computationally challenging to estimate models of dynamic demand and dynamic supply, and
as a result it is common in the industrial organization literature to use a parsimonious demand model to
facilitate estimation of a dynamic supply model.

25De Groote and Verboven (2016) cite this fact as a reason that price coefficients were not even more
different between their static and dynamic specifications.

26As one example, the U.S. Energy Information Administration (2016) acknowledged that “EIA, like
many other industry trend watchers, did not anticipate the sharp decline in solar PV costs seen over
the past several years.” Creutzig et al. (2017) chronicle “a history of widespread underestimation of the
growth in PV deployment” and attribute these underestimates to faster than expected solar panel price
declines, among other things.
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try state (which includes the input price and demand states). I denote these equilibrium

product market profits π̄i(st).
27

Firms choose technical efficiency dynamically. If costs are decreasing in technical

efficiency, firms will have an incentive to invest in R&D and physical capital to increase

future technical efficiency and improve their competitive position. Firms make a discrete

decision whether to invest (xit). The firm’s per-period payoff,

πi(xit, st; εit) = π̄i(st)− γxit + σεit(xit),

is comprised of three terms. Each firm earns profits from the product market, π̄i(st), which

do not depend on the firm’s investment choice. The second term consists of a nonrandom

fixed cost, γ, which is paid only if the firm invests (in which case xit = 1). Finally,

firms receive private choice-specific shocks, εit(xit), which are independent and identically

distributed (i.i.d.) according to the Type I extreme value distribution.28 The structural

interpretation of these shocks is a random shock to the fixed cost of investment.29 The

shocks are scaled by the parameter σ.

3.3 State Transitions

I assume the input price (wt) and demand states (dt) are exogenous and evolve according

to independent first-order Markov processes. Each firm’s state evolves stochastically over

one period. I assume the relationship between investment and the evolution of technical

efficiency is one-to-one in order to infer the unobserved investment decision. If a firm

does not invest (xit = 0), its technical efficiency does not change. If a firm does invest

(xit = 1), the change in its technical efficiency is νit, which is i.i.d. across firms and time

with support νit ∈ (0,∞). To summarize, technical efficiency evolves according to

ωit+1 = ωit + xitνit.

Although the outcomes of R&D activities are inherently stochastic, firms must upgrade

existing capital or install new capital to implement the advances realized through R&D.

This is the economic basis for the assumption that the investment I model always yields

a non-zero improvement in technical efficiency. The stochastic nature of the investment

27Firms share a common profit function which is indexed by i to illustrate its dependence on firm i’s
state. Profits could equivalently be expressed as π̄(sit, st) or π̄(ωit, st), since sit ≡ ωit.

28This distributional assumption is common in the discrete choice literature due to the analytic form
it implies for conditional choice probabilities.

29Modeling the innovation process as an outcome of fixed cost investments is guided by the industry
background discussed in Section 2.2.
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outcome captures the uncertainty inherent in adapting R&D advances from laboratory

pilot lines to large-scale production.

The distribution of technical efficiency across firms (ωt) evolves over one period as a

result of firm actions and the resulting realizations of technical efficiency improvements.

3.4 Equilibrium

I assume firms use symmetric pure strategies that depend only on the current state and

their private information, leading to a Markov-Perfect Nash Equilibrium (Maskin and

Tirole, 1988). Each firm’s strategy, denoted ζi(st, εit), is a mapping from states and

private shocks to actions (i.e., quantities sold in each market and a binary investment

decision). The firm’s value function at the time of its investment decision is,

Vi (st; ζi, ζ−i, εit) = max
xit∈{0,1}

π̄i(st)− γxit + σεit(xit) +βE [Vi (st+1; ζi, ζ−i, εit+1)| st, xit] ,

where the expectation is taken with respect to i’s investment outcome (νit), investment

by i’s competitors, future realizations of the exogenous demand and input price states,

and i’s own future cost shocks. ζ−i denotes the strategies of firms other than firm i.

Markov-Perfect Nash Equilibrium requires that each firm’s strategy is optimal given the

common strategy used by its competitors,

Vi (st; ζi, ζ−i, εit) ≥ Vi (st; ζ
′
i, ζ−i, εit) ,

for all firms (i), states (s), shocks (ε), and alternative strategies (ζ ′).

4 Data

I employ data on the global solar panel market from IHS Markit and Lawrence Berkeley

National Laboratory. IHS Markit’s PV Module Intelligence Service provides data on

the solar panel supply chain on a quarterly basis from January 2010 through March

2016. These data include sales by regional market and production activities by country

of production. I use the sales data to construct a dataset at the firm-market-quarter

level that includes sales for all firms and prices for a subset of firms. Total firm sales are

denominated in Watts (W) of electricity generating capacity and prices are in dollars per

Watt ($/W). The data are at the firm level and do not include sales of individual solar

panel models. I focus on four regional markets: Germany, Japan, the United States, and

the Rest of the World. I complement these with data on firms that vary over time but
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not across markets, including each firm’s production capacity and quarterly production

throughout the supply chain (i.e., wafers, cells, and modules). Quarterly data on the

global spot price of polysilicon, the primary input to solar panel production, also comes

from IHS Markit.

The measure of each firm’s technology comes from Lawrence Berkeley National Labo-

ratory’s Tracking the Sun dataset.30 The dataset contains the characteristics of installed

solar systems throughout the United States. These characteristics include the manufac-

turer, model, and electrical conversion efficiency of the solar panels utilized in each system.

After removing missing data, the dataset contains over 425,000 systems installed between

January 2010 and December 2015. I use these data to construct summary statistics of the

state of each firm’s technology on a quarterly basis. In my empirical analysis, I focus on

the frontier of electrical conversion efficiency, tracking the maximum electrical conversion

efficiency sold by each firm over time. This is the observed measure of technical efficiency

I refer to throughout the paper.

Data on market-specific subsidies to consumers that vary over time come from the

International Energy Agency’s Photovoltaic Power Systems Programme and national gov-

ernments. For Germany and Japan, I construct a panel dataset of the feed-in tariff level

in each market over time (represented graphically in Figure 1). For the United States, I

use the Investment Tax Credit (ITC) and the tax advantage of accelerated depreciation,

both of which depend on the cost of the solar system rather than the amount of electricity

it generates. I use a subsidy of 40% of the solar panel purchase price to summarize federal

solar subsidies in the United States.31 Finally, for the residual market, I use the feed-in

tariff from Italy as a proxy for subsidies in all other markets. Italy was chosen because

the Italian government offered generous feed-in tariffs during the first half of the sample

period, and because Italy was a large solar market: in each year from 2010 to 2012, Italy

was either the first- or second-largest national solar market in the world (International

Energy Agency, 2013).32 The feed-in tariffs are all units of local currency per unit of

electricity output.33

30The August 2016 version of this dataset was downloaded from https://openpv.nrel.gov.
31The ITC is a tax credit for 30% of investment costs. Borenstein (2017) estimates that accelerated

depreciation is equivalent to a 12.6% to 15.2% reduction is the cost of a solar system after state incentives
and the ITC. I approximate this by assuming accelerated depreciation is worth 10% of total costs. While
accelerated depreciation benefits are not available to households that purchase their own solar panels,
they are available to businesses that purchase solar panels either for their own use or for leasing to
households. I also experimented with using state-level subsidies, including incentives from the California
Solar Initiative, but my use of aggregate national data on solar panel sales makes it difficult to separately
identify the impacts of these state-level subsidies. My analysis also omits the value of net metering.

32I also experimented with creating an index of subsidies from major solar markets, but I found that
the Italian subsidies alone outperformed the indices I tried in terms of model fit.

33Feed-in tariffs are paid per unit of electricity output, not per unit solar capacity installed, as described
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I also collect ancillary data to use as instrumental variables from multiple sources. The

global price of silver comes from the London Fix via The Silver Institute. Data on inter-

national trade restrictions come from the United States Government and the European

Commission. I describe the use of these ancillary data in more detail in Section 5.

Table 1 contains summary statistics for the four markets. Germany, Japan, and the

United States comprise 48% of cumulative sales over the period 2010-2015 (in terms of

electricity generating capacity). There are 15 firms in the sample that comprise approx-

imately 70% of the global conventional solar panel market. The collective market share

of these firms was stable over the sample period despite entry and exit in the competitive

fringe, which is omitted from this analysis due to data constraints. While some of the 15

firms are not active in every market at the beginning of the sample period, all 15 firms

are active in all markets during the sample period. Instances of firms not being active

in a market are rare, as summarized by the average number of firms in each market over

all time periods.34 The final three columns summarize the distribution of market shares

across firms within a given time period (pooling across time periods). The median mar-

ket share in each region ranges from 2.7-5.5%, but market shares for some firms in some

periods are much larger: the 90th percentile ranges from 14.4-19.5%. However, this is

not driven by a small number of large firms that dominate the industry: the cumulative

global market share of each firm ranges from 2-13%. These market shares motivate the

use of a model of imperfect competition to characterize the product market.

in Section 2. The units of the feed-in tariffs have no impact on the model, as they are all scaled by
estimable parameters that have no economic interpretation in isolation. The product of each feed-in
tariff and its coefficient gives the impact of that subsidy on demand, and this product is invariant to
changes in the feed-in tariff’s units.

34The model outlined in Section 3 does not endogenize market entry but instead implicitly assumes
firms compete in every market in every time period. While this assumption is not required for demand
or production cost estimation, it affects equilibrium profits under the model and therefore may affect the
dynamic parameter estimates and counterfactual simulations. These effects should be negligible, both
because instances of firms not being active in all four markets are infrequent and because they occur at
the beginning of the sample when costs were high, and therefore equilibrium quantities and profits were
low relative to later periods.
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5 Model Estimation

5.1 First Step: Estimate Product Market Model,

State Transitions, and Investment Policy Function

Demand I assume the demand curve in equation 1 is a constant elasticity demand curve

and estimate the model in logs,

lnQmt = α0m + α1m lnPmt + α2mSmt + εDmt. (2)

I use data on feed-in tariff levels described in Section 4 for the subsidy variable, Smt,

for the markets of Germany, Japan, and Rest of the World. For the United States, I

model the subsidy as a function of the solar panel price, because the primary federal solar

incentives depend on the cost of a solar system rather than its electricity output. See

Section 4 for further details.

I instrument for price to account for potential endogeneity using two sets of instru-

ments. In the first, I use the price of two inputs – polysilicon and silver – that comprise

the first and second largest materials cost shares over the sample period.35 These two

instruments vary over time but not across markets because polysilicon and silver are

traded globally. I augment them with indicator variables for the presence of trade re-

strictions that create differential variation in prices across markets and are assumed to be

uncorrelated with unobserved demand shocks.

I construct a second set of instruments for the price of solar panels in market m using

the average price of solar panels in other markets. These instruments are valid under the

assumption that supply shocks are correlated across markets but demand shocks are not

(Hausman, 1996; Nevo, 2001). This assumption would be violated by demand shocks that

affect multiple markets and are not captured in the market-specific subsidies to consumers

included as regressors.

The demand states are the demand curve intercepts,

dmt = α0m + α2mSmt + εDmt, (3)

which must be estimated because the demand parameters (α) and shocks (εD) are not

observed. I recover dmt using the coefficients from estimating equation 2.

35Silicon forms the core of conventional solar cells, and silver is used to construct contacts on the front
and back of conventional solar cells to create an electrical circuit. See Section 2 for a more detailed
description of the manufacturing process.
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Production Costs I infer marginal costs from the firm’s first order condition for opti-

mal production and the demand estimates under the maintained assumption that firms

compete in quantities (Cournot) with constant marginal costs and non-binding capacity

constraints. Firm i’s first order condition for market m and time t is

dπimt
dqimt

= Pmt +
dPmt
dqimt

qimt −mcimt = 0.

The firm equalizes the marginal benefit and marginal cost of increasing the quantity it

sells, accounting for the direct benefit and cost of producing one more unit (Pmt and

mcimt) as well as the inframarginal impact of depressing the equilibrium price on all its

units (dPmt/dqimt · qimt). Under constant elasticity demand, marginal costs are

mcimt = Pmt

(
1 +

1

α1m

qimt
Qmt

)
,

where α1m is the price elasticity of demand.

I parameterize these inferred costs to quantify the impact of technical efficiency im-

provements on production costs. I use a parametric form that is motivated by the eco-

nomics of the industry. The measure of technical efficiency used in this study is similar

to productivity in that it acts as a multiplier on the cost of materials in a manner similar

to that of total factor productivity in a production function:

mcimt = ω̃β1it w
β2
t exp(β0 + εSit)

where ω̃it is observed firm-specific technical efficiency, wt is the observed common input

price, β0 is an unobserved time-invariant common scale parameter, and εSit is an unob-

served firm-specific shock. The economic model formulated in Section 3 is in terms of

cost-indexed technical efficiency, ωit. There is a one-to-one mapping between observed

technical efficiency and cost-indexed technical efficiency: ωit = ω̃β1it . The econometric

model is used to estimate the parameter β1 governing this relationship.36,37 I estimate

36Observed technical efficiency, ω̃it, is the fraction of solar radiation that a solar panel converts into
electricity, while the technical efficiency measure used in the economic model, ωit, is in terms of production
costs. The latter measure is used for convenience: I leverage cost-indexed technical efficiency along with
properties of the underlying economic game to simplify the state space when solving the model for
counterfactuals in Section 7. This is without loss of generality; the two measures are interchangeable
under the assumption that firms know the mapping from observed to cost-indexed technical efficiency,
which is necessary for firms to make investment decisions in the real world.

37I assume that each firm’s cost is determined by its maximum efficiency and focus on this measure
throughout the paper. This is consistent with my focus on technological innovation that advances the ca-
pabilities of the firm, and it is also a practical solution to the unavailability of data on the full distribution
of technical efficiencies within a firm due to a lack of product-level data from all markets. In Section 6
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this cost function in logs,

ln(mcimt) = β0 + β1 ln(ω̃it) + β2 ln(wt) + εSit. (4)

I include time period and firm fixed effects in some specifications to capture unobserved

factors that shift costs independently of variation in the input price and innovations

in technical efficiency. I use ordinary least squares to estimate equation 4 under the

assumption that εSit is i.i.d. over firms and time.38 This model quantifies the relationship

between technical efficiency and marginal cost. The sign and magnitude of β1 dictate

whether and how much technical efficiency improvements lower costs, and therefore the

incentive firms face to innovate in response to changes in demand.

State Transitions I estimate a vector autoregression model for the evolution of the

exogenous states: [
wt

dt

]
= R0 +R1

[
wt−1

dt−1

]
+ ξt (5)

where both R0 and ξt are diagonal by assumption. I use ordinary least squares to sepa-

rately estimate this model for each exogenous state (Hamilton, 1994).

I use forward simulation to construct the endogenous distribution of technical efficien-

cies by aggregating individual firm states. The evolution of individual firms’ states and

the distribution of firms’ states are characterized by the investment policy function.

Investment Policy Function The investment policy function characterizes the invest-

ment behavior of firms conditional on their own state and the industry state. Consistent

estimates of the policy function are necessary for estimation of the dynamic parameters.

The ideal approach would be to use a nonparametric estimation strategy to capture this

unknown and potentially complex function. This is infeasible in my setting, however,

both because states are continuous and because firms’ technical efficiencies are increasing

over time. Instead, I adopt a data-driven approach to approximate the investment pol-

icy function using a parametric specification that balances the benefits of a very flexible

I assess the robustness of this assumption by estimating an alternative model in which production costs
depend on the mean – rather than the maximum – technical efficiency in the U.S.

38Technical efficiency and the input price are both fixed from the perspective of the firm at the time
of product market competition. The use of time period fixed effects helps to account for the possibility
of correlation in errors across firms within a time period. The i.i.d. errors assumption rules out serial
correlation in errors within a firm. Allowing for an unobserved, serially correlated component of costs
would substantially complicate the analysis.
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specification with the potential pitfalls of overfitting.

I do this in two stages. First, I begin with a large set of candidate regressors and use

lasso for variable selection. I model the discrete decision to invest by estimating a logit

model via penalized maximum likelihood:

min
µ

1

N

∑
i,t

−xitf(ωit, st)
′µ+ ln [1 + exp (f(ωit, st)

′µ)] + λ‖µ‖1.

The candidate regressors in f(ωit, st) are cubic polynomials in the following variables: the

firm’s technical efficiency, the mean and standard deviation of the industry distribution

of technical efficiency, the input price, and the four demand states; as well as first-order

interactions between the firm’s technical efficiency and all other variables listed previously.

The tuning parameter λ is selected by leave-one-out cross-validation.39 I then model

the investment choice using a logit model and estimate the parameters via maximum

likelihood,

min
µ̃

1

N

∑
i,t

−xitf̃(ωit, st)
′µ̃+ ln

[
1 + exp

(
f̃(ωit, st)

′µ̃
)]
,

where f̃(ωit, st) contains only the non-zero regressors selected in the first stage. This

two-step approach to policy function estimation is inspired by the attractive properties of

ordinary least squares after model selection via lasso (Belloni and Chernozhukov, 2013).

I assume the outcome of the investment process is drawn from a stationary distribution

conditional on making the decision to invest, as described in Section 3. I use nonparamet-

ric tests to assess this assumption in Appendix D. The test results are broadly consistent

with my modeling assumption, although they have low power due to small sample size.

I fit the distribution of investment levels using a gamma distribution. The gamma dis-

tribution captures the skewed nature of investment levels in the data and outperforms

other candidate distributions – weibull, lognormal, and beta – in terms of the Akaike

information criterion.

5.2 Second Step: Estimate Dynamic Parameters

I estimate the parameters of the investment cost function using a forward simulation

estimator based on Bajari et al. (2007). This approach simulates industry paths based on

the theoretical model and estimates from the first step in order to find parameters that

make observed investment behavior optimal.

39The selected regressors are unchanged using k-fold cross-validation with k = 5 and k = 10.

20



Firm i’s per-period payoff first introduced in Section 3 is

πi(xit, st; εit) = π̄i(st)− γxit + σεit(xit). (6)

The firm’s ex-ante value function, before realizing its private shocks, can be written as an

expected discounted sum of per-period payoffs,

Vi (st; ζ) = E

[
∞∑
τ=0

βτπi(xit+τ , st+τ ; εit+τ )

]
, (7)

where the expectation is over current and future values of the private shocks (εit) and

future values of the states (st). The dependence of per-period payoffs on strategies (ζ)

is subsumed into xit. I follow Bajari et al. (2007) by rewriting equation 6 as the inner

product of two vectors and substituting it into equation 7 to give

Vi (st; ζ) = E

[
∞∑
τ=0

βτ
[
π̄i(st+τ ) −xit+τ εit+τ (xit+τ )

]]
· θ = Wi(st; ζ) · θ, (8)

where θ = [ 1 γ σ ]′. Vi(st; ζ) is linear in parameters because the per-period payoff is

linear in parameters. As a result, Wi(st; ζ) does not depend on θ and only needs to be

simulated once for a given strategy profile.

I use forward simulation to approximate Wi(st; ζ) under the optimal strategy profile.

For each initial state st, I construct a vector containing the elements of per-period payoffs

using parameter estimates from the first step at τ = 0. Product market profits, π̄i(st),

are treated as known and computed using the closed-form solution to the product market

game.

The firm’s investment decision is stochastic due to the presence of a private shock. I

compute the probability of investment based on the first-stage policy function estimates.

I then draw from the estimated policy function’s error distribution. Each firm’s draw

determines that firm’s investment. I use this information to increment the second and

third elements of Wi(st; ζ).40

40I first integrate out the private shocks from firm i’s per-period payoff in equation 6 so that the second
and third terms of Wi(st; ζ) are given by predictions from the policy function estimated in the first stage,

Eεit [πi(xit, st; εit)] = π̄i(st)− γpi(xit = 1|st) + σ

κ − ∑
xit∈{0,1}

pi(xit|st) ln (pi(xit|st))

 ,
where pi(xit|st) is the probability that firm i chooses action xit at state st, and κ is Euler’s constant. The
final term follows from the assumption that εit is drawn i.i.d. from the Type I extreme value distribution.
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I construct the next period’s state using the firms’ simulated investment decisions.

If a firm does not invest, its state does not change; if it invests, the change in its state

(νit) is drawn from the distribution of technical efficiency improvements. Collectively, all

firms’ actions determine the industry’s endogenous state in the next period. Finally, I use

the estimated transition process for the exogenous states to predict the input price and

demand states in the next period. I repeat this for 200 periods (50 years) to generate

one discounted sum of product market profits, investment costs, and random shocks, up

to the parameters θ.41 I simulate 250 of these industry paths from each initial state and

take the mean to approximate Wi(st; ζ). The discount factor, β ≈ 0.974, corresponds to

an annual discount factor of 0.9 used in prior literature (e.g., Ryan, 2012).

To estimate θ, I use Ŵi(st; ζ) to implement a maximum likelihood estimator based on

the firm’s optimal investment decision. Appendix E describes my approach in detail.

6 Estimation Results

6.1 First Step Estimates

Demand Table 2 presents the estimated price elasticities of demand (α̂1m from equa-

tion 2). Each column presents estimates from a different model specification, and each

row corresponds to a different market (m). There are two main takeaways. First, the

estimated price elasticities across all models and markets range between -1.3 and -2.2,

with most coefficients falling between -1.3 and -1.5.42 Second, the ordinary least squares

and instrumental variables estimates are not statistically distinguishable, and the point

estimates are quite similar in most cases. The similar point estimates could be because

secular reductions in costs drive much of the observed price variation during the sample

period and help trace out the demand curve even without instrumental variables.

To assess the robustness of these estimates, I estimate equation 2 with subsidy levels

in logs rather than in levels for the markets with feed-in tariffs.43 The results, presented

41The length of the forward simulation is arbitrary and is selected to ensure that the discounted profits
from the terminal period are small relative to the discounted sum of profits over all periods. With an
annual discount rate of 0.9, the discount factor for the 200th quarter – equivalent to the 50th year – is
approximately 0.005, so that one dollar of profit in that period is worth only 0.5 cents from the perspective
of the firm in period 0.

42My estimates lie within the wide range of previous estimates in the literature. Gillingham and Tsve-
tanov (2017) estimate a static demand elasticity of -0.65 using microdata from Connecticut. Coefficient
estimates from De Groote and Verboven (2016) imply a static elasticity of close to -6.3 based on aggregate
data from Flanders. Burr (2016) uses microdata from California to estimate long-run elasticities ranging
from -1.6 to -4.7 across different time periods and model specifications. These papers estimate demand
for residential solar systems, whereas I estimate demand for solar panels.

43This applies to Germany, Japan, and the residual market. The subsidy in the U.S. market is modeled
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in Table B1, are not statistically distinguishable from the baseline estimates presented in

Table 2.

The specification that uses prices from other markets as instruments for price serves as

the baseline specification used to estimate the supply model. I plot the resulting demand

states with and without subsidies in Figure A1 to illustrate the impact of subsidies on

demand. The higher, solid lines are the subsidy-inclusive demand states (d̂mt). These

are derived using the estimated parameters from equation 2 and the definition of the

demand states in equation 3. The lower, dashed lines are the counterfactual demand

had the subsidies not been in place. I recover counterfactual demand by subtracting the

estimated impact of subsidies on demand (d̂mt−α̂2mSmt). Both are in terms of the natural

logarithm of quantity, as they represent the demand curve intercept from the constant

elasticity specification. The shaded area represents the portion of demand attributable to

the subsidies included in this analysis.

Production Costs I first provide graphical evidence that suggests technical efficiency

reduces costs: Figure 5 shows that there is a positive correlation between technical effi-

ciency and market share in the raw data. This plot displays demeaned data within each

market and time period, so that it only reflects cross-sectional variation. Each point on

the graph is a local mean of the underlying data. This positive correlation is consistent

with higher technical efficiency lowering costs for firms, which would lead to higher market

share under a model of Cournot competition.

Figure 6 presents an analogous plot of the cross-sectional relationship between tech-

nical efficiency and production cost. Costs are recovered from the demand estimates and

competition model as described in Section 5. The downward slope of these points shows

that higher technical efficiency is associated with lower costs in the cross-section, after

eliminating time series variation that could induce spurious correlation and undermine

identification.

Table 3 presents the coefficient on technical efficiency across several alternative speci-

fications of equation 4. The negative relationship between cost and technical efficiency is

evident in all specifications despite the fact that the identifying assumptions under each

model are different due to their use of different variation. The first specification includes

only technical efficiency and a constant as regressors and produces a large negative co-

efficient. The second specification, which includes the common, time-varying input price

(wt), produces a significantly attenuated coefficient on technical efficiency, highlighting the

as a fraction of the solar panel price since the primary subsidy available for the entire U.S. market is the
Investment Tax Credit, which is worth 30% of solar system costs.
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importance of accounting for time series variation in input prices. The third specification

includes time period fixed effects to flexibly capture time series variation in unobserved

costs. The input price is not included in this regression because it only varies over time

and is therefore no longer identified. This further attenuates the coefficient on techni-

cal efficiency. In the final columns, I replicate the second and third specifications with

the addition of firm fixed effects to capture unobserved firm-specific factors that affect

cost and may be correlated with technical efficiency. These specifications generate slightly

more negative coefficients on technical efficiency than the specifications without firm fixed

effects. While there is variation in magnitudes across all the specifications, each model

suggests that marginal costs are lower when technical efficiency is higher. The model es-

timates in columns 2-5 imply that improvements to technical efficiency constituted 3-32%

of total cost reductions over the period 2010-2015.

The qualitative results in Table 3 are robust to a range of alternative specifications

summarized in Appendix C.1. I first allow the unobserved costs captured by time period

fixed effects to vary for firms that manufacture in China and those that do not. Firms

in China allegedly benefit from government subsidies that are unobserved and vary over

time; interacting time period fixed effects with manufacturer location may account for this

to the extent that the timing and the magnitude of subsidies are common across Chinese

manufacturers. This more flexible specification has a negligible effect on the coefficient of

interest (Table C1a). I also assess the robustness of the main results to the inclusion of

measures of production capacity and past production, which proxy for economies of scale

and experience (Tables C1b and C1c). Including these additional covariates attenuates the

coefficient of interest. However, these additional variables have little impact on the final

model, which includes time period and firm fixed effects. This suggests that differences in

the coefficient of interest between the baseline specification and alternative specifications

in the less restrictive models may be driven by firm-specific factors that are correlated

with, but not due to, economies of scale and experience.

This paper focuses on the firm’s maximum technical efficiency as an observable mea-

sure of innovation that leads to lower production costs, as discussed in Section 5. To assess

the importance of this restriction, I present results from an alternative model in which

production costs depend on the mean – rather than the maximum – technical efficiency

in the U.S. market in Table C1d. The coefficient of interest is qualitatively similar in

all cases and statistically indistinguishable in the specification used for estimation of the

dynamic parameters.

A final possibility I consider is that consumers demand technical efficiency.44 By

44Quantities are measured in Watts, so increasing technical efficiency – holding fixed the number of
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abstracting from this mechanism, my approach may understate firms’ returns to increasing

technical efficiency. This could bias the investment cost estimates downward. While the

full impact of relaxing this assumption on the counterfactual simulations is difficult to

assess without estimating a model that allows for product differentiation, I discuss this

possibility in more detail and present additional robustness analysis in Appendix C.2.

I use the model in column 3 of Table 3 for dynamic estimation because it relies only on

cross-sectional variation and is therefore a conservative estimate, and because it does not

include other dynamic choice variables, such as production capacity and past production,

that would significantly complicate the analysis. This estimate identifies the causal impact

of technical efficiency on the cost of production under the assumption that there are no

omitted factors that are correlated with both technical efficiency and cost. I use the time

period fixed effects recovered from estimation of the model in column 3 as the common,

time-varying input price for estimating the dynamic model (i.e., wt).

State Transitions Table A1 presents estimates of the state transition process for the

input price and demand states (equation 5). The estimated transition process is station-

ary, as all eigenvalues of R lie within the unit circle.

Investment Policy Function The first-stage lasso procedure selects a small subset of

the candidate regressors: a constant, the firm’s technical efficiency (ωit), and the interac-

tion of the firm’s technical efficiency and the industry average technical efficiency (ωitω̄t).

As discussed in Section 5, I fit the distribution of investment levels using a gamma dis-

tribution. Figure A2 provides an assessment of the fit of the investment policy function

and the parameterization of the investment outcome by comparing the industry aver-

age technical efficiency over time from the data to the analogous summary statistic from

the forward simulation procedure used in estimation. The investment policy function’s

predictions track industry investment reasonably well despite its parsimony.

6.2 Second Step Estimates

Investment cost estimates are presented in Table 4. All numbers are in millions of dollars.

The fixed cost point estimate is $107 million.45 In the data, investments occur slightly less

often than once per year, so these estimates imply annual investment costs directed toward

solar panels a firm produces – increases the firm’s output in the model. This mechanical impact of
technical efficiency on quantities captures much of the benefit of increased technical efficiency from the
perspective of the firm and is the focus of this analysis.

45Confidence intervals are constructed via bootstrap, resampling residuals from each stage of estimation
prior to forward simulation 500 times.
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improving technical efficiency of about $95 million. This is in line with accounting data:

according to annual reports for a subset of the firms in this sample that are publicly traded,

median R&D expenditures are about $20 million and median annual capital expenditures

are about $200 million over the sample period.

7 Counterfactual Simulations

7.1 Short-Run Impacts of Subsidies

I first treat past advances in technical efficiency in the industry as exogenous and compare

market equilibria with and without consumer subsidies. This provides a quantitative as-

sessment of the “short-run” impacts of subsidies on equilibrium quantities and associated

external social benefits accounting for only demand responses. This preliminary exercise

requires only the demand and production cost estimates from Section 6.1 and does not

require solving the dynamic model. I recover counterfactual demand states without sub-

sidies from the results of demand estimation and solve for the product market equilibrium

with and without subsidies.

Solar Adoption Subsidies increased the quantity of solar panels sold (in Watts) by

49% globally over the period 2010-2015 relative to sales in the absence of subsidies. The

subsidies increased total solar panel market revenues by 60%, partly because subsidies

in Germany and Italy encouraged substantial solar adoption in earlier years when costs

(and therefore prices) were higher. Figure 7 plots model predictions for solar panel sales

over time with and without subsidies. Figure 8 presents a regional decomposition of the

solar adoption attributable to subsidies. Based on the model’s estimates, German subsi-

dies contributed 36% of the increase in demand attributable to subsidies, with Japanese

subsidies contributing 30% and subsidies in the United States contributing 27%.

External Benefits The external social benefits attributable to consumer subsidies de-

pend on the quantity of solar panels adopted due to subsidies, the amount of electricity

the solar panels produce, the external damages associated with alternative electricity gen-

eration sources that solar electricity displaces, and the social discount rate. To construct a

back-of-the-envelope estimate of the external benefits attributable to consumer subsidies,

I consider a range of values for each of these.46 Electricity generation estimates for each

regional market come from PVWatts, a publicly available engineering tool that predicts

46This calculation of external benefits builds on Gillingham and Tsvetanov (2017).
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solar electricity generation for different locations and solar system configurations.47 I con-

struct estimates of lifetime solar generation based on potential electricity output in one

location in each of the four markets.48 Estimates of the external damages attributable

to electricity generation from coal and natural gas, including both local air pollution and

greenhouse gases, come from Muller et al. (2011).

My central estimate of the external benefits due to the solar subsidies studied in this

paper is $15.4 billion. Alternative assumptions imply external benefits that range from

$7.0 to $56.1 billion (all in 2017 dollars).49 This range reflects uncertainty about the

parameters underlying this calculation. In addition, the subsidies studied in this paper

do not capture all national and subnational policies that support solar. Thus, these

estimates are meant to be illustrative of the potential order of magnitude of external

benefits generated by solar subsidies. This is not a comprehensive assessment of the

subsidies’ benefits: a complete assessment of solar subsidies requires accounting for their

long-run impacts allowing for both demand and supply responses, which I address in the

next section.

7.2 Long-Run Impacts of Subsidies

To assess the long-run impacts of consumer subsidies, accounting for both demand and

supply responses, I solve the dynamic model utilizing the estimates from Section 6. This

requires some simplification of the state space due to computational constraints and for

economic plausibility. In industries with a large number of firms, such as solar panel

manufacturing, it would be computationally demanding for each firm to track and predict

the current and future state of every one of its individual competitors. As an alternative,

I assume that firms track moments of the distribution of firm states. This approach is

inspired by the experience-based equilibrium concept of Fershtman and Pakes (2012) and

the moment-based Markov equilibrium of Ifrach and Weintraub (2017). I assume that

firm strategies depend only on their own state and a set of functions of the state space,

s̃t, that is of lower dimension than the full state space, st. I leverage the fact that under

47PVWatts is developed by the National Renewable Energy Laboratory and accessible via
http://pvwatts.nrel.gov.

48I use the PVWatts default weather data for Germany, Japan, and the United States. I use the default
weather data from a search for “Italy” to calculate electricity generated from subsidies in the residual
market because the Italian feed-in tariff is used in demand estimation for the residual market.

49The central estimate is based on avoided damages from natural gas electricity generation
($0.0203/kWh in 2017), a solar system lifetime of 25 years, and a discount rate of 3%. The low end
estimate is based on natural gas, a lifetime of 20 years, and a discount rate of 7%. The high end estimate
is based on avoided damages from coal electricity generation ($0.0516/kWh in 2017), a lifetime of 30
years, and a discount rate of 3%.
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Cournot competition, market equilibrium depends on the sum of firms’ costs rather than

the full distribution of firms’ costs, and I assume that firm strategies depend only on their

own state and the modified state space, s̃t ≡ (
∑

i ωit, wt, dt). This modified state space

contains all the information needed to fully determine the product market equilibrium,

conditional on the parameters that govern demand and production costs.50

I use value function approximation methods to solve for the equilibrium of the model

with and without historical subsidies to consumers. In each case, I search for optimal pol-

icy functions given the estimates from Section 6 and the appropriate demand states (with

and without subsidies). These counterfactual policy functions, which describe investment

behavior, reveal how firms’ technical efficiencies would have evolved in the absence of

consumer subsidies and what share of the increase in industry average technical efficiency

is attributable to consumer subsidies. I then solve for the counterfactual product market

equilibrium in each regional market over time, allowing me to compute the impact of

consumer subsidies on solar panel adoption and compare these long-run impacts to the

short-run impacts estimated above. Finally, I use these results to perform a back-of-the-

envelope calculation using existing estimates of the environmental benefits of solar panel

adoption to quantify the change in external benefits attributable to the subsidies.

Solar Adoption I focus on a counterfactual that removes only German subsidies to

highlight the potential for the impacts of policies to spill over across countries in a global

market. Removing subsidies lowers firms’ profits, leading firms to invest less frequently,

production costs to be higher than under the baseline simulation, and the difference

between simulated costs with and without German subsidies to grow over time. The

change in investment activity is significant: 32% of the solar adoption due to increased

technical efficiency would not have occurred in the absence of German subsidies. This

translates to a change in solar adoption over 2010-2015 of 0.7%, as under the conservative

baseline production cost specification technical efficiency only constitutes about 3% of

the sample period cost reductions. The vast majority of this marginal adoption occurs

outside of Germany.

A central insight of this paper is that innovation responses by firms can swamp the con-

temporaneous impacts of subsidies over long time horizons. Furthermore, the innovation

induced by past subsidies continues to generate benefits in the future, even if subsidies

are phased out. This is especially relevant given that national governments have reduced

50To be precise, this property holds for Cournot competition when firms have constant marginal costs
and the equilibrium is an interior solution in which all firms produce non-zero quantities and no production
constraints bind. See Bergstrom and Varian (1985) for a clear derivation. This is a special case of a broad
class of aggregative games.
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subsidies in recent years, including in the major markets of Germany, Japan, and China.

The U.S. Investment Tax Credit is currently scheduled to be phased down over the period

2019-2022. As a result, comparing solar adoption during 2010-2015 with and without

endogenous innovation by firms will understate the long-run impacts of subsidies. To

provide a level comparison, I estimate the discounted external social benefits attributable

to innovation over a longer time horizon.

External Benefits Accounting for endogenous innovation by firms yields meaningfully

different estimates of the external benefits of subsidies than accounting only for demand

responses. The results are summarized in Table 5. The first row summarizes estimates of

the external social benefits attributable to subsidies, accounting only for their short-run

effects through demand responses. The second row’s estimates include these benefits and

the additional benefits that accrue due to supply responses induced by German subsidies

that lowered solar panel production costs. The columns reflect a range of assumptions used

to construct the present discounted value of external benefits from solar panel adoption.51

The external benefits increase 22% to $18.8 billion under the baseline assumptions.

The magnitude of external benefits is sensitive to the assumptions used in this back-

of-the-envelope calculation, ranging from $8 to $70 billion between the low and high

cases. However, the increase in benefits due to subsidy-induced innovation is less sensitive,

ranging from 14.4% to 24%.

These counterfactual simulations are based on the most conservative specification of

the production cost model in Table 3. The long-run impacts of subsidies may exceed

the short-run impacts under alternative specifications. For example, estimates from the

cost specification that includes both time and firm fixed effects suggest that the causal

effect of technical efficiency on costs may be larger than that used in this counterfactual

simulation. This could imply that the counterfactual results understate the impact of

subsidies on innovation, and therefore understate the external social benefits generated

51The estimates in the first column are based on the avoided external damages of electricity generation
from natural gas, a 25-year lifetime for solar panels, and a discount rate of 3%. Electricity generation
estimates come from NREL’s PVWatts tool using one location for each of the four regional markets in this
study. The second column uses electricity output based on the location with the least sunlight (Germany),
external damages from natural gas, a 20-year lifetime for solar panels, and a discount of 7%. The final
column uses electricity output based on the location with the most sunlight (the United States), external
damages from coal, a 30-year lifetime for solar panels, and a discount of 3%. For each specification, the
dynamic impacts include both the present value of external benefits due to solar adoption induced by
subsidies over 2010-2015, and also the present value of additional solar panels installed for x years after
the sample years. For x, I use the assumed lifetime for solar panels under each scenario. The benefits
from these future adoptions are discounted at the same rate used to discount benefits from solar adoption
during the sample period. For these calculations, I hold market structure, costs, and subsidies fixed as
of the final period in the data (2015Q4).
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by subsidies. Furthermore, since this analysis focuses on just one margin of endogenous

innovation, it is likely that these estimates understate the full impacts of subsidies to solar

adoption.

8 Conclusion

I study the impact of consumer subsidies for solar panels on solar adoption and innovation

by firms. I estimate a dynamic model to recover structural parameters governing the

product market and firms’ investments in innovation. I find that subsidies to consumers

have a significant impact on demand and firms’ revenues, and that improvements to

technical efficiency significantly reduce production costs.

I use these estimates to evaluate the short- and long-run impact of solar subsidies.

First, I conduct a short-run counterfactual simulation that allows demand to respond to

subsidies but holds production costs fixed. I find that solar panel subsidies increased

equilibrium quantities by roughly 50% over the period 2010-2015. This subsidy-induced

solar adoption generates external social benefits of over $15 billion by replacing elec-

tricity from conventional, polluting sources with solar electricity. Second, I conduct a

long-run counterfactual simulation that allows for both demand and supply responses,

endogenizing firm investment in technical efficiency with and without observed subsidies

in Germany. I find that accounting for induced innovation increases the external social

benefits attributable to subsidies by at least 22%. This estimate includes future benefits

from solar adoption over the 2010-2040 time period to account for the persistent effects

of innovation. Much of these benefits are generated by solar adoption outside Germany.

These findings demonstrate that consumer subsidies can indeed induce innovation but

that national governments may not be able to appropriate the resulting innovation when

markets are global in scope.

While the insights in this paper extend to similar policies, including a Pigouvian tax

on emissions, I do not explicitly consider the implications of other forms of government

intervention in the market for solar panels. The prevalence of subsidies to solar panel man-

ufacturers raises the question of what the relative benefits of subsidies to consumption and

production are in practice, both in terms of economic efficiency and distribution. Subsidies

to production have led to trade actions against Chinese manufacturers by the European

Union and the United States, which I am studying in a separate project. However, the

results in this paper highlight that trade disputes could affect innovation incentives and

thereby have long-run impacts in addition to the short-run impacts of trade restrictions

on consumers, producers, and the environment.
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The welfare implications of my results depend on additional assumptions. If policy-

makers are constrained to use consumer subsidies to solar power rather than a technology-

neutral Pigouvian tax, a globally coordinated subsidy equal to the marginal external ben-

efits of solar generation may be optimal if innovation is entirely appropriated by firms.

However, this is unlikely to be the case, both because firms may learn from their competi-

tors and because poor future performance could lead firms to exit the market. Both of

these forces would lead firms to underinvest in innovation relative to the social optimum.

To address this, I plan to incorporate a range of assumed innovation spillovers into the

model to quantify how welfare changes as a function of both subsidies and innovation

spillovers.

The optimal coordinated policy to address climate change may require a mix of mea-

sures that extend beyond carbon pricing. For example, public support for R&D could be

justified by the existence of knowledge spillovers or the impact of targeted R&D on the

direction of innovation (Acemoglu et al., 2012). There is a growing literature on the opti-

mal mix of R&D subsidies and carbon pricing to address climate change (e.g., Acemoglu

et al., 2016; Aghion et al., 2016; Lemoine, 2017), and this remains an important area for

future research.
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Figure 1: Graphical Evidence that Subsidies Increase Demand
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Notes: Plots of quarterly observations of each market’s shipments, average price, and subsidy level. Both
figures are suggestive of the impact of subsidies on demand. Figure 1b shows that equilibrium quantities
fell in Germany after 2012Q2 as feed-in tariffs were lowered, despite the fact that prices were falling
through early 2013 and remained fairly stable thereafter. Figure 1a shows that demand for solar panels
was fairly low throughout 2010 and 2011, but increased after a feed-in tariff was introduced in the wake
of the Fukushima Daiichi nuclear disaster. Furthermore, the equilibrium quantity of solar panels sold fell
as the feed-in tariff was lowered in 2015, despite the fact that prices were slowly but steadily declining
over that year.

Data Source: IHS Markit and the International Energy Agency.
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Figure 2: Industry Technical Efficiency is Increasing over Time
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Notes: This plot shows the industry-wide progression of technical efficiency based on data from the United
States solar market. During the sample period of 2010-2015, the median technical efficiency of solar panels
installed in the U.S. rose from 14.1% in to 17.0%. These data include thin-film and high-efficiency n-type
silicon solar panels, whereas I focus on conventional p-type silicon solar panels.

Source: Barbose and Darghouth (2017).

Figure 3: Firm-Specific Technical Efficiencies over Sample Period
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Notes: This plot shows the firm-level progression of technical efficiency for a sample of firms based on data
from the United States solar market. This figure shows that while firms throughout the industry have
increased the technical efficiency of their solar panels, there is variation in firm-level technical efficiencies
in the cross section and in the relative position of firms over time.

Data Source: Lawrence Berkeley National Laboratory’s Tracking the Sun dataset (openpv.nrel.gov).
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Figure 4: Comparison of Two Solar Panels

Output (Watts) 275 330
Size (cells) 60 72
Technical Efficiency (%) 16.8 17.0
Relative Price ($/W) 1.00 1.01

Notes: Individual solar panels are rated at different output levels, come in a few different standardized
physical sizes (measured here by the number of solar cells), and can be different colors. Despite the
differences between these two example solar panels in physical size, power output, and appearance, their
prices are very similar when measured using the industry convention of $/Watt.

Data Source: Prices and product details retrieved for two models made by Canadian Solar from

https://ressupply.com on September 24, 2017.
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Figure 5: Cross-Sectional Relationship between Technical Efficiency and Market Share
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Notes: Binned scatterplot of residual variation in market shares and technical efficiencies within each
market and time period. Each point on the graph is a local mean of the underlying data. The plot
is constructed using raw data without any economic assumptions. The upward slope of these points is
consistent with higher technical efficiency lowering costs for firms: under Cournot competition, this would
yield higher market shares for firms with higher technical efficiencies.

Data Source: Author’s calculations using data described in Section 4.

Figure 6: Cross-Sectional Relationship between Technical Efficiency and Cost
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Notes: Binned scatterplot of residual variation in estimated marginal costs and technical efficiencies
within each market and time period. Each point on the graph is a local mean of the underlying data.
Marginal costs are inferred from the firm’s first order condition for optimal production using estimated
demand parameters, and technical efficiencies are observed in the data. The downward slope of these
points shows that higher technical efficiency is associated with lower costs in the cross-section.

Data Source: Author’s calculations based on the model estimation described in Section 5 using data

described in Section 4.
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Figure 7: Short-Run Counterfactual: Impact of Subsidies on Solar Adoption
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Notes: Plot of solar panel sales over time with and without subsidies holding firms’ production costs fixed
as estimated. The higher, solid line represents the model predictions based on historical subsidies. The
lower, dashed line represents the counterfactual equilibrium quantities based on solving for the product
market equilibrium after removing subsidies. The shaded area represents the portion of sales attributable
to the subsidies included in this analysis.

Data Source: Author’s calculations based on the model estimation described in Section 5 and counter-

factual exercise described in Section 7 using data described in Section 4.

Figure 8: Short-Run Counterfactual: Decomposition of Subsidy-Induced Solar Adoption
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Notes: Plot of solar panel sales over time attributable to subsidies in each region holding firms’ production
costs fixed as estimated. This plot breaks out the shaded area represented in Figure 7 by market.

Data Source: Author’s calculations based on the model estimation described in Section 5 and counter-

factual exercise described in Section 7 using data described in Section 4.
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Table 1: Summary Statistics by Market

Sales Active Firms Market Shares
Market (GW) Mean Max 10% 50% 90%
Germany 14.8 14.9 15 0.5 4.6 15.2
Japan 22.3 14.7 15 0.2 2.7 19.5
ROW 59.8 15.0 15 1.2 5.5 14.4
USA 18.0 13.7 15 0.3 4.9 18.7

Notes: Summary statistics for the four regional markets studied. Cumulative sales are measured in
Gigawatts (109 Watts). Germany, Japan, and the United States comprised roughly half of global demand
during the period 2010-2015. All 15 firms are active in every market during the sample period, although
there are some periods in which some firms are not active in every market. Market shares are constructed
in each market and time period, and then pooled across time periods within each market to summarize
the distribution of market shares. There are 24 time periods for each market.

Data Source: Author’s calculations using data described in Section 4.

Table 2: Estimated Demand Elasticities

Model
OLS IV: Input Price IV: Other Prices

Germany −1.82∗∗ −2.20∗∗ −1.88∗∗

(0.78) (0.97) (0.83)
Japan −1.63∗∗∗ −1.37∗∗∗ −1.51∗∗∗

(0.24) (0.22) (0.22)
Rest of World −1.39∗∗∗ −1.32∗∗∗ −1.41∗∗∗

(0.22) (0.25) (0.22)
USA −1.49∗∗∗ −1.38∗∗∗ −1.48∗∗∗

(0.26) (0.26) (0.26)

Min. F-stat 34.49 88.23
Observations 96 96 96

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Models estimated within market.

Notes: Estimated price elasticities of demand (α̂1m from equation 2). The dependent variable is the
natural logarithm of price. Each row corresponds to a different market (m) and each column presents
estimates from a different model specification. The first column presents estimates of equation 2 using
ordinary least squares. The second column includes the following instruments for price: the price of
polysilicon, the price of silver, and indicator variables for the presence of trade restrictions. The final
column uses the prices of solar panels in markets other than the market of interest as instruments for the
observed price in the market of interest.

Data Source: Author’s calculations based on the model estimation described in Section 5 using data

described in Section 4.
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Table 3: Relationship between Marginal Cost and Technical Efficiency

(1) (2) (3) (4) (5)

ln(ω̃it) −5.44∗∗∗ −0.92∗∗∗ −0.18∗ −1.80∗∗∗ −0.31∗

(0.16) (0.10) (0.10) (0.13) (0.16)
ln(wt) 0.66∗∗∗ 0.60∗∗∗

(0.01) (0.01)

Time Period FE X X
Firm FE X X
Observations 1,352 1,352 1,352 1,352 1,352
Adjusted R2 0.47 0.89 0.92 0.90 0.92

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Data include 24 periods (T) for 4 markets (M).

Notes: This table presents coefficients from alternative specifications of the model in equation 4. The
dependent variable is the natural logarithm of estimated marginal cost. The first row contains the coeffi-
cients on the regressor of interest, observed technical efficiency. The second row contains the coefficients
on the common, time-varying price of polysilicon (wt). There is a robust negative relationship between
cost and technical efficiency (both in natural logarithms). The attenuation of coefficients from the first
specification to all other specifications highlights the importance of conditioning on other factors that
vary over time, such as observable input prices (wt) and unobservable cost shifters (time period fixed
effects).

Data Source: Author’s calculations based on the model estimation described in Section 5 using data

described in Section 4.

Table 4: Investment Cost Parameter Estimates

Parameter Point Estimate Confidence Interval
γ 107.1 (61.1, 436.8)
σ 21.3 (10.2, 256.7)

Notes: This table presents estimates of the fixed cost of investing in technical efficiency improvements (γ)
and the scale parameter on the private choice-specific shocks (σ). Confidence intervals are constructed
via bootstrap, resampling residuals from each stage of estimation prior to forward simulation 500 times.
All numbers are in millions of dollars.

Data Source: Author’s calculations based on the model estimation described in Section 5 using data

described in Section 4.
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Table 5: Counterfactual External Benefits (billion $)

Baseline Low High

Short-Run (without innovation) 15.4 7.0 56.1
Long-Run (with innovation) 18.8 8.0 69.5
Difference (%) 22.0 14.4 23.9

Notes: This table presents external benefits based on two sets of counterfactuals. The first row summa-
rizes estimates of the external social benefits attributable to subsidies, accounting only for their short-run
effects through demand responses. The second row’s estimates include these effects and the additional
benefits that accrue due to solar panel cost reductions induced by German subsidies. The columns reflect
three different sets of assumptions used to construct the present discounted value of external benefits
from solar panel adoption. See Section 7 for details on the underlying assumptions.

Data Source: Author’s calculations based on model simulation described in Section 7 using model esti-

mates described in Section 6.
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Appendix A Additional Figures and Tables

Figure A1: Estimated Demand States with and without Subsidies
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Notes: The higher, solid lines are the subsidy-inclusive demand states recovered from estimating equa-
tion 2. The lower, dashed lines are the counterfactual demand had the subsidies not been in place. Both
are in terms of the natural logarithm of quantity, as they represent the demand curve intercept from
equation 2. The shaded area represents the portion of demand attributable to the subsidies included in
this analysis. ROW denotes the residual market (“Rest of the World”).

Data Source: Author’s calculations based on the model estimation described in Section 5 using data

described in Section 4.
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Figure A2: Fit of Forward Simulation: Average Technical Efficiency
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Notes: This figure provides an assessment of the fit of the investment policy function by comparing
the industry average technical efficiency (i.e., the unweighted average of firms’ maximum conversion
efficiencies) over time from the data to the analogous summary statistic from the forward simulation
procedure used in estimation of the dynamic parameters.

Data Source: Author’s calculations based on the model estimation described in Section 5 using data

described in Section 4.
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Table A1: Estimates of Exogenous State Transitions

w Germany Japan ROW USA

Constant −0.035 0.736 2.885 4.227 1.605
(0.017) (0.396) (1.129) (1.545) (0.817)

lag(w) 0.960
(0.028)

lag(Germany) 0.742
(0.138)

lag(Japan) 0.531
(0.183)

lag(ROW) 0.428
(0.210)

lag(USA) 0.722
(0.148)

Σ̂ξ 0.0032 0.16 0.054 0.075 0.076
Observations 23 23 23 23 23

Note: Estimated separately via OLS with input cost (w) in logs.

Notes: This table presents coefficients from estimation of the vector autoregression model for exogenous
states described by equation 5. The estimates are consistent with a stationary process for exogenous
states, as the point estimates of the lag coefficients are all less than one in absolute value.

Data Source: Author’s calculations based on the model estimation described in Section 5 using data

described in Section 4.
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Appendix B Robustness: Demand Estimates

Table B1: Estimated Demand Elasticities:

Subsidy Measures (Feed-in Tarrifs) in Logs rather than Levels

Model
OLS IV: Input Price IV: Other Prices

Germany −2.53∗∗∗ −2.82∗∗∗ −2.59∗∗∗

(0.51) (0.61) (0.53)
Japan −1.47∗∗∗ −1.08∗∗∗ −1.30∗∗∗

(0.31) (0.27) (0.28)
Rest of World −1.43∗∗∗ −1.36∗∗∗ −1.44∗∗∗

(0.22) (0.25) (0.22)
USA −1.49∗∗∗ −1.38∗∗∗ −1.48∗∗∗

(0.26) (0.26) (0.26)

Min. F-stat 22.52 58.23
Observations 96 96 96

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Models estimated within market.

Notes: Estimated price elasticities of demand (α̂1m from equation 2). The dependent variable is the
natural logarithm of price. Each row corresponds to a different market (m) and each column presents
estimates from a different model specification. The first column presents estimates of equation 2 using
ordinary least squares. The second column includes the following instruments for price: the price of
polysilicon, the price of silver, and indicator variables for the presence of trade restrictions. The final
column uses the prices of solar panels in markets other than the market of interest as instruments for the
observed price in the market of interest. The coefficients are not statistically distinguishable from the
baseline estimates presented in Table 2. The coefficients for the U.S. market are unchanged because the
subsidies for that market are a function of the solar panel price.

Data Source: Author’s calculations based on the model estimation described in Section 5 using data

described in Section 4.
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Appendix C Robustness: Marginal Cost Estimates

C.1 Alternative Specifications of the Production Cost Model

Table C1: Results under Alternative Production Cost Specifications

(a) Includes Time Period x Chinese Manufacturer FEs

(1) (2) (3) (4) (5)

ln(ω̃it) −5.44∗∗∗ −0.92∗∗∗ −0.18∗ −1.80∗∗∗ −0.32∗∗

(0.16) (0.10) (0.10) (0.13) (0.16)
ln(wt) 0.66∗∗∗ 0.60∗∗∗

(0.01) (0.01)

Period x China FE X X
Firm FE X X
Observations 1,352 1,352 1,352 1,352 1,352
Adjusted R2 0.47 0.89 0.91 0.90 0.91

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Data include 24 periods (T) for 4 markets (M).

(b) Includes Scale Measure

(1) (2) (3) (4) (5)

ln(ω̃it) −5.13∗∗∗ −0.88∗∗∗ −0.15 −1.77∗∗∗ −0.26
(0.16) (0.10) (0.10) (0.14) (0.16)

ln(wt) 0.65∗∗∗ 0.60∗∗∗

(0.01) (0.01)

Time Period FE X X
Firm FE X X
Observations 1,352 1,352 1,352 1,352 1,352
Adjusted R2 0.49 0.89 0.91 0.90 0.92

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Data include 24 periods (T) for 4 markets (M).

(c) Includes Experience Measure

(1) (2) (3) (4) (5)

ln(ω̃it) −3.19∗∗∗ −0.62∗∗∗ −0.10 −1.16∗∗∗ −0.29∗

(0.17) (0.10) (0.10) (0.15) (0.16)
ln(wt) 0.61∗∗∗ 0.54∗∗∗

(0.01) (0.01)

Time Period FE X X
Firm FE X X
Observations 1,352 1,352 1,352 1,352 1,352
Adjusted R2 0.60 0.89 0.91 0.91 0.92

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Data include 24 periods (T) for 4 markets (M).

(d) Mean instead of Maximum Technical Efficiency

(1) (2) (3) (4) (5)

ln(ω̃it) −6.34∗∗∗ −1.18∗∗∗ −0.21∗ −1.65∗∗∗ −0.35∗∗

(0.16) (0.12) (0.13) (0.14) (0.16)
ln(wt) 0.63∗∗∗ 0.60∗∗∗

(0.01) (0.01)

Time Period FE X X
Firm FE X X
Observations 1,239 1,239 1,239 1,239 1,239
Adjusted R2 0.57 0.88 0.91 0.90 0.91

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Data include 24 periods (T) for 4 markets (M).

Notes: These tables present coefficients from alternative specifications of the model in equation 4. The dependent variable is
the natural logarithm of estimated marginal cost. The first row contains the coefficients on the regressor of interest, observed
technical efficiency. The second row contains the coefficients on the common, time-varying price of polysilicon (wt). The
finding that technical efficiency lowers production cost is robust: in model 3, the specification used to estimate the dynamic
model, the coefficient on technical efficiency in each of these alternative models is statistically indistinguishable from the
baseline specification in Table 3.
Data Source: Author’s calculations based on the model estimation described in Section 5 using data described in Section 4.
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C.2 Potential Demand Impacts of Technical Efficiency

This paper studies the impact of consumer subsidies on cost-reducing innovation by focus-

ing on endogenous technical efficiency improvements by firms to lower their future costs.

The baseline model treats all solar panels as homogeneous conditional on their electricity

output. This model captures the mechanical effect of increased technical efficiency on

output: if a firm increases the technical efficiency of its solar panels and therefore can

produce more electricity from an individual solar panel, consumers will be willing to pay

more for that individual solar panel. However, this approach abstracts from potential

demand effects of increased technical efficiency that are not captured by electricity gen-

eration potential. This implies that, for example, consumers are indifferent between 10

solar panels with 16.5% efficiency and 11 solar panels with 15% efficiency, holding the

physical size of the solar panels constant.

In reality, consumers may be willing to pay more to get the same electricity generation

capacity from a smaller number of solar panels due to costs for space, mounting hardware,

electrical equipment, and labor that scale with the area of the solar system (Fu et al.,

2017). By focusing only on costs and omitting this potential demand effect, the main

results may understate the impact of technical efficiency on profits. This would, in turn,

bias my investment cost estimates downward and potentially affect the conclusions of

counterfactual analysis.

To provide a sense of the importance of this assumption, I use a normalization to

account for this demand effect based on the optimization problem of a downstream firm

that incorporates insights from the cost model in Fu et al. (2017). This captures the

benefits of higher efficiency solar panels to consumers in a reduced-form manner.52 The

resulting cost estimates are contained in Table C2. The estimated coefficients on technical

efficiency are larger than the baseline coefficients in Table 3, as expected. However, the

additional impact of allowing for this demand effect is smaller than the magnitude of the

pure cost effect estimated in the baseline model.

52This is meant to provide some insight into the potential ramifications of relaxing the assumption
that solar panels are undifferentiated conditional on output. An alternative would be to estimate a
differentiated products model, directly estimating consumers’ preferences for technical efficiency (and
potentially other characteristics such as warranty and brand). Incorporating this into the full model
would require modification of firms’ optimization problem.
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Table C2: Relationship between Marginal Cost and Technical Efficiency:

Prices and Quantities Normalized by Efficiency

(1) (2) (3) (4) (5)

ln(ω̃it) −5.80∗∗∗ −1.17∗∗∗ −0.29∗∗∗ −2.20∗∗∗ −0.43∗∗∗

(0.16) (0.10) (0.10) (0.14) (0.17)
ln(wt) 0.67∗∗∗ 0.60∗∗∗

(0.01) (0.01)

Time Period FE X X
Firm FE X X
Observations 1,352 1,352 1,352 1,352 1,352
Adjusted R2 0.48 0.88 0.92 0.90 0.92

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Data include 24 periods (T) for 4 markets (M).

Notes: This table presents coefficients from alternative specifications of the model in equation 4. These
are based on a data normalization that account for the possible demand effects of increasing technical
technical efficient. The coefficients on technical efficiency are larger in magnitude than the baseline
coefficients in Table 3, consistent with a modest impact of technical efficiency on demand.

Data Source: Author’s calculations based on the model estimation described in Section 5 using data

described in Section 4.
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Appendix D Investment Outcomes

The model in Section 3 assumes that firms make a discrete choice of whether to invest, and

that the improvement in technical efficiency conditional on investing, νit, is i.i.d. across firms

and time. I use data on technical efficiency to assess whether this assumption is reasonable. To

summarize, the tests that follow fail to reject this assumption, although they have low power

due to small sample size.

Comparison of Efficiency Improvements by Firm The assumption on νit implies

that all firms draw from the same distribution. To assess this visually, I plot observed changes

in technical efficiency by firm in Figure D1a. I formalize this comparison by applying the

Kolmogorov-Smirnov test to each pair of firms under the null hypothesis that each pair of sets

of observed changes in technical efficiency are drawn from the same distribution. I compute p-

values, pool them across all the pairwise combinations, and evaluate the distribution of p-values

at three quantiles:

10% 50% 90%

0.08 0.36 0.87

While this pooled comparison of individual tests is informal, the distribution of p-values is not

heavily skewed toward zero. I also use a Kruskal-Wallis rank sum test for a joint (rather than

pairwise) comparison under the null hypothesis that all firm-level samples originate from the

same distribution. The result is a p-value of 0.09.

Comparison of Efficiency Improvements by Time Period I plot observed changes

in technical efficiency by date in Figure D1b. I apply the Kolmogorov-Smirnov test to each pair

of time periods under the null hypothesis that each pair of sets of observed changes in technical

efficiency are drawn from the same distribution. I compute p-values, pool them across all the

pairwise combinations, and evaluate the distribution of p-values at three quantiles:

10% 50% 90%

0.29 0.68 0.95

I use a Kruskal-Wallis rank sum test for a joint (rather than pairwise) comparison under the

null hypothesis that all firm-level samples originate from the same distribution. The result is a

p-value of 0.24.

Serial Correlation Perhaps the most important economic implication of the assumption on

νit is that it rules out serial correlation in a given firm’s outcomes over time. To assess this, I

plot the autocorrelation function by firm in Figure D2. This visual test relies on a small number

of non-missing observations in the time series for each firm because firms rarely invest, so it is

only suggestive. Still, I informally interpret the plots as failing to reject the null that νit is not

serially correlated within a firm.
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Figure D1: Investment Realizations

(a) Investment Realizations (νit) by Firm (i)
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(b) Investment Realizations (νit) by Date (t)
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Figure D2: Autocorrelation of Investment Level (νit) within a Firm
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Appendix E Dynamic Parameter Estimation

The firm’s investment optimization problem is:

Vi (st) = max
xit∈{0,1}

π̄i(st)− γxit + σεit(xit) + βE [Vi (st+1)| st, xit] ,

where the dependence of the value function on strategies (ζ), private shocks (εit), and

parameters (θ) are omitted for clarity. Under the assumption that the choice-specific error

terms – εit(xit) – are i.i.d. Type I extreme value, the ex-ante probability of investment is:

Pr(xit = 1) =
exp(v1)

exp(v0) + exp(v1)

where

v0 =
1

σ

(
π̄i(st) + βE [Vi (st+1)| st, xit = 0]

)
and

v1 =
1

σ

(
π̄i(st)− γ + βE [Vi (st+1)| st, xit = 1]

)
.

The log-likelihood is:

lnL(θ|x) =
∑
i

∑
t

(1− xit)v0 + xitv1 − ln (exp(v0) + exp(v1))

Evaluating the log-likelihood requires knowledge of E [Vi (st+1)| st, xit]. I recover this ex-

pectation using a combination of forward simulation and value function approximation as

described in Section 5.53 I rewrite Vi(st) as Wi(st; ζ) · θ and forward simulate expected

profits, investments, and private shocks for all the states observed in the data in a prelim-

inary step to estimate Wi(st; ζ). I then use Ŵi(st; ζ) to evaluate V̂i(st) at a given choice of

θ and model the value function as a flexible parametric function of the underlying state

variables, V̂i(st; θ) = f(st)
′λ. For f(st), I use a third-degree polynomial expansion of the

vector [ ωit ω̄t sd(ωt) dmt wt ], where I use the mean and standard deviation to sum-

marize the distribution of technical efficiencies (ωt). This is similar to the specification

used for the first-stage reduced-form investment policy function. I estimate λ via ordinary

53In principle this could be done entirely via forward simulation, without the use of value function
approximation, by drawing from the set of possible next period states for each state observed in the data
and forward simulating the value function (up to parameters) for each of these draws. The computational
burden of this approach grows linearly with the number of draws used to compute the multidimensional
integral defined by the expectation operator, so I use value function approximation to allow for a large
number of draws.
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least squares.

I use this parametric approximation to recover E [Vi (st+1)| st, xit] by drawing from

the distribution of states that can be reached in one period from each state observed in

the data – conditional on the firm’s investment choice, xit – and use that evaluate the

log-likelihood. Finally, I search over θ, repeating these steps for each candidate parameter

value, to maximize the log-likelihood.
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