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Abstract

The Bartik instrument is formed by interacting local industry shares and national
industry growth rates. We show that the Bartik instrument is numerically equivalent
to using local industry shares as instruments in a GMM estimator and discuss how
different asymptotics imply different identifying assumptions. We argue that in most
applications the identifying assumption is in terms of industry shares. Finally, we show
how to decompose the Bartik instrument into the weighted sum of the just-identified
instrumental variables estimators. These weights measure how sensitive the parame-
ter estimate is to each instrument. We illustrate our results through four applications:
estimating the inverse elasticity of labor supply, estimating local labor market effects of
Chinese imports, estimating the fiscal multiplier using defense spending shocks, and
using simulated instruments to study the effects of Medicaid expansions.
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The Bartik instrument is named after Bartik (1991), and popularized in Blanchard and
Katz (1992).1 These papers define the instrument as the local employment growth rate
predicted by interacting local industry employment shares with national industry employ-
ment growth rates. The Bartik approach and its variants have since been used across many
fields in economics, including labor, public, development, macroeconomics, international
trade, and finance. Indeed, as we discuss at the end of the introduction, numerous instru-
ments have the same formal structure, including simulated instruments (Currie and Gruber
(1996a) and Currie and Gruber (1996b)).

Our goal is to open the black box of the Bartik instrument by formalizing its struc-
ture and unpacking the variation that the instrument uses. In our exposition, we focus
on the canonical setting of estimating the labor supply elasticity, but our results apply
more broadly wherever Bartik-like instruments are used. For simplicity, consider the cross-
sectional structural equation linking wage growth to employment growth

yl = τ + β0xl + εl ,

where yl is wage growth in location l, xl is the employment growth rate, and εl is a struc-
tural error term that is correlated with xl . Our estimand of interest is β0, the inverse elas-
ticity of labor supply. We use the Bartik instrument to estimate β0. The Bartik instrument
combines two accounting identities. The first is that employment growth is the inner prod-
uct of industry shares and local industry growth rates:

xl = ∑
k

zlkglk,

where zlk is the share of location l’s employment in industry k, and glk is the growth rate of
industry k in location l. The second is that we can decompose the industry-growth rates as

glk = gk + g̃lk,

where gk is the industry growth rate and g̃lk is the idiosyncratic industry-location growth
rate. The Bartik instrument is the inner product of the industry-location shares and the
industry component of the growth rates; formally, Bl = ∑k zlkgk.

We first show that the Bartik instrument is numerically equivalent to a generalized
method of moments (GMM) estimator with the local industry shares as instruments and

1The intellectual history of the Bartik instrument is complicated. The earliest use of a shift-share type de-
composition we have found is Perloff (1957, Table 6), which shows that industrial structure predicts the level of
income. Freeman (1980) is one of the earliest uses of a shift-share decomposition interpreted as an instrument:
it uses the change in industry composition (rather than differential growth rates of industries) as an instrument
for labor demand. What is distinctive about Bartik (1991) is that the book not only treats it as an instrument,
but also, in the appendix, explicitly discusses the logic in terms of the national component of the growth rates.
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a weight matrix constructed from the national growth rates. The intuition is that the varia-
tion in outcomes is at the location (l) level, and the only component of the instrument that
varies at the local level is the industry shares. Under the natural asymptotic assumption of
fixed number of time periods and industries, and locations growing to infinity, the GMM
estimator suggests that the identifying assumption for the Bartik instrument is best stated
in terms of local industry composition.

Using the industry shares as instruments does, however, rely on a stronger identifying
assumption than using the Bartik instrument directly. The Bartik instrument imposes a re-
striction on a weighted sum of the industry shares and the error terms (E[∑k zlkgkεl ] = 0),
whereas the identification condition for using the industry shares as instruments imposes
an orthogonality condition on each of the industry shares (E[zlkεl ] = 0, ∀k). Under the as-
sumption of fixed number of industries and time periods, however, we view the difference
between these two assumptions as hard to motivate.

We consider alternative asymptotics that allow for other identifying assumptions. In
our first departure, we consider settings where the number of time periods go to infinity,
but we fix the number of locations. This setting is a relabelling of our benchmark case. Here,
the instrument is the national growth rates (interacted with local industry composition).
So the identifying assumption is best stated in terms of the national growth rates. As an
example of this setting, which we discuss more below, is Nakamura and Steinsson (2014),
where the instrument is national defense spending shocks.

In our second departure, we allow the number of industries to go to infinity. This set-up
provides a robust justification for an important distinction between an orthogonality con-
dition in terms of the Bartik instrument, and in terms of the industry shares as instruments.
We construct an argument formally identical to that in Kolesar et al. (2015) of “many in-
valid instruments”. The set-up allows the industry shares to enter the error term directly,
making each industry share an invalid instrument. However, if there are many industries
and the direct effect of each industry is independent of its first stage coefficient, then as the
number of industries goes to infinity the misspecification “averages out.” Borusyak, Hull,
and Jaravel (2018) and Adao, Kolesar, and Morales (2018) develop additional results about
this asymptotic setting.

We next show how to measure the relative importance of each industry share in de-
termining parameter estimates. We build on Rotemberg (1983) and decompose the Bartik
estimator into a weighted sum of the just-identified instrumental variable (IV) estimators
using each industry share (zlk) as a separate instrument. The weights, which we refer to as
Rotemberg weights, are simple to compute and sum to 1. They are a scaled version of the
Andrews, Gentzkow, and Shapiro (2017) sensitivity-to-misspecification parameter, and tell
us how sensitive the overidentified estimate of β0 is to misspecification (i.e., endogeneity)
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in any instrument. The weights depend on the covariance between the kth instrument’s
fitted value of the endogenous variable and the endogenous variable itself.

We use these Rotemberg weights to assess the plausibility of the “many invalid in-
struments” view of the Bartik instrument. The key observation is that the many invalid
instruments asymptotics imply that in the limit no single instrument “matters” very much.
In contrast, in our empirical examples the Rotemberg weights tend to be quite skewed,
with the top five industries accounting for about half of the positive weight. We show
analytically in a special case that the many invalid instrument asymptotics imply that the
Rotemberg weight on any given industry goes to zero. We conduct Monte Carlo simula-
tions designed to mimic U.S. industry composition and growth rates. Even when there are
over 200 instruments, if the instruments with the five largest Rotemberg weights are mis-
specified in a way that is correlated with the first-stage coefficient, then the Bartik estimates
are biased.

We suggest researchers perform three relatively standard tests of the identifying as-
sumption. First, researchers should test how balanced instruments are across potential
confounders. Researchers should conduct these tests both in terms of the overall instru-
ment as well as the high Rotemberg weight industries. This dimension-reduction focuses
researchers’ argument for their identifying assumption to instruments that matter in their
estimate. Naturally, it is always possible to control for observable confounders, but fol-
lowing the logic of Altonji, Elder, and Taber (2005) and Oster (Forthcoming), movements
in point estimates when conditioning on observable confounders suggest the potential im-
portance of unobserved confounders.

Second, in settings where there is a pre-period, researchers can test for parallel pre-
trends. We suggest that researchers examine parallel pre-trends in terms of the overall Bar-
tik instrument, as well as in terms of the industries that receive a large Rotemberg weight.
Failure of parallel pre-trends in terms of any given instrument suggests misspecification in
that instrument, and so raises questions about the broader research design.

Third, researchers can consider alternative estimators and also perform overidentifica-
tion tests. Under the null of constant effects, alternative estimators should deliver similar
point estimates, and the divergence of point estimates across estimators is typically inter-
preted as reason to worry.2 An alternative interpretation of such divergence emphasized
by Kolesar et al. (2015) is that it is evidence of misspecification. A direct way of assessing
the importance of misspecification is to perform overidentification tests.3

2Angrist and Pischke (2008, pg. 213) write: “Check overidentified 2SLS estimates with LIML. LIML is less
precise than 2SLS but also less biased. If the results come out similar, be happy. If not, worry...”

3While a rejection of the null of exogeneity is sometimes interpreted as evidence of heterogeneous treat-
ment effects, without additional assumptions that are typically context specific, overidentified linear IV with
unordered treatments has no obvious local average treatment effect (LATE) interpretation (e.g., Kirkeboen,
Leuven, and Mogstad (2016) and Hull (2018)). Moreover, some papers using Bartik instruments test overiden-
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We note two limitations to our analysis. First, we assume locations are independent
and so ignore the possibility of spatial spillovers or correlation.4 Second, we assume that
the data consist of a series of steady states.5

To summarize, we view our contribution as explaining identification in the context of
Bartik instruments in two senses. First, our GMM result shows that Bartik is numerically
equivalent to using industry shares as instruments. Hence, we argue that under plausible
asymptotics, the identifying assumption is best stated in terms of industry shares. Second,
we build on Andrews, Gentzkow, and Shapiro (2017) to provide tools to measure the “iden-
tifying variation,” and formalize how to use Rotemberg weights to highlight the subset of
instruments to which the estimated parameter is most sensitive to endogeneity.

Applications: We illustrate our results through four applications. In our first applica-
tion, we look at the canonical example of estimating the inverse elasticity of labor supply
in US Census data using decadal differences from 1980-2010 and instrumenting for labor
demand with the Bartik instrument. We first show that the national growth rates explain
less than one percent of the variance of the Rotemberg weights. Second, the weights are
skewed, with about a third of the weight on the top five industries. A concrete exam-
ple of the comparisons being made by the estimator is comparing changes in employment
growth and wage growth in places with more and less oil and gas extraction. Third, indus-
try shares, including oil and gas extraction, are correlated with many observables, includ-
ing the immigrant share, which is thought to predict innovations in labor supply. Fourth,
an overidentification test rejects the null of exogeneity, and alternative estimators deliver
substantively different point estimates.

In our second application, we estimate the effect of Chinese imports on manufactur-
ing employment in the United States (using the China shock of Autor, Dorn, and Hanson
(2013)). We first show that the growth rates of imports from China to other high-income
countries explain about 30% of the variance in the Rotemberg weights. Second, the two
highest weight industries are games and toys and electronic computers. Hence, a concrete
example of the comparisons being made by the estimator is comparing outcomes in loca-
tions with high and low shares of the electronic computers industry. Interestingly, Autor,
Dorn, and Hanson (2013, pg. 2138) discuss that one might be worried that computer share
is correlated with demand shocks and so would not be a valid instrument. Third, the in-
dustries that get the most weight tend to be in more educated areas. Fourth, we examine
pre-trends among the industries with high weights and find that none of the comparisons

tifying restrictions and thus explicitly embrace the constant effects interpretation (e.g., Beaudry, Green, and
Sand (2012) and Hornbeck and Moretti (2018)).

4Monte, Redding, and Rossi-Hansberg (2017) document the presence and economic importance of spatial
spillovers through changes in commuting patterns in response to local labor demand shocks.

5See Jaeger, Ruist, and Stuhler (2018) for discussion of out-of-steady-state dynamics in the context of immi-
gration.
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implied by the industries (i.e., places with more and less of the industry) exhibits flat pre-
trends and effects that are dramatically larger in the 2000s (when the China shock was
largest). Fifth, alternative estimators deliver substantively different point estimates and
overidentification tests reject the null of exogeneity.

In our third application, we examine the use of defense spending shocks to estimate the
fiscal multiplier following Nakamura and Steinsson (2014). This setting is a relabelling of
the canonical Bartik setting. To map to the Bartik setting, the equivalent of local industry
shares times time is the national industry growth rates times location, and the equivalent
of the national industry rates is location industry shares. We find that the weights are quite
skewed, with the most weight placed on Northeastern states.

In our final application, we extend our set-up to the simulated instruments framework
of Currie and Gruber (1996a) and Currie and Gruber (1996b). The key idea is that the
variation is at the level of the eligibility type, where an eligibility type is a unique pattern
of Medicaid eligibility across state-years among the households in the fixed population
used to build the simulated instrument (in this case, the 1986 Current Population Survey).
To map to the Bartik setting, the equivalent of the industry shares is state-year indicators of
Medicaid eligibility for different eligibility types, and the equivalent of the national growth
rates are the national population shares of each eligibility type.

We consider estimating the effect of Medicaid eligibility on schooling attainment as in
(Cohodes et al., 2016). We use the Rotemberg weights to show which state-year Medicaid
eligibility changes—and which household characteristics—drive the estimates. We find
that the expansions between 1980 and 1997 had the largest effect for low-income house-
holds (less than 10,000 dollars in 1986 USD), while post-1996 expansions had the largest
effect for higher-income households (greater than 10,000 dollars in 1986 USD). These pol-
icy changes were concentrated in Missouri, Minnesota, New Jersey and Washington, DC. In
terms of household characteristics, we find that most weight is on households below twelve
thousand dollars in household income, and in households with between two to four kids.
Moreover, changes during school age receive the largest weight.

Besides these four examples, a much broader set of instruments is Bartik-like. We de-
fine a Bartik-like instrument as one that uses the inner product structure of the endogenous
variable to construct an instrument. This encompasses at least three instruments. First, the
“immigrant enclave” instrument introduced by Altonji and Card (1991) interacts initial im-
migrant composition of a place with immigration flows from origin countries. Second, re-
searchers, such as Greenstone, Mas, and Nguyen (2015), interact pre-existing bank lending
shares with changes in bank lending volumes to instrument for credit supply. Third, Ace-
moglu and Linn (2004) interact age-group spending patterns with demographic changes to
instrument for market size. We discuss these examples in greater detail in Appendix A.
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Literature: A vast literature of papers uses Bartik-like instruments, and many of these
discuss the identifying assumptions in ways that are close to the benchmark results in this
paper. For example, Baum-Snow and Ferreira (2015, pg. 50) survey the literature and state
that the “validity [of the Bartik instrument]...relies on the assertion that neither industry
composition nor unobserved variables correlated with it directly predict the outcomes of
interest conditional on controls.” Similarly, Beaudry, Green, and Sand (2012) provide a
careful discussion of identifying assumptions in the context of an economic model. We
only intend to claim novelty for the formalism along this dimension.

Beyond the vast literature of papers using Bartik-like instruments, this paper is also
related to a growing literature that comments on specific papers (or literatures) that use
Bartik-like instruments. This literature includes at least three papers: Christian and Bar-
rett (2017), which comments on Nunn and Qian (2014), Jaeger, Joyce, and Kaestner (2017),
which comments on Kearney and Levine (2015), and Jaeger, Ruist, and Stuhler (2018),
which comments on the use of the immigrant enclave instrument. Relative to this liter-
ature, our goal is to develop a formal econometric understanding of the Bartik instrument
and provide methods to increase transparency in its use.

1 Equivalence between Bartik IV and GMM with industry shares

We first show that the Bartik instrument is numerically equivalent to using industry shares
as instruments. We begin this section by setting up the most general case: panel data with
K industries, T time periods, and controls. Through a series of special cases, we then build
up to the main result that Bartik is (numerically) equivalent to using local industry shares
as instruments. To focus on identification issues, we discuss infeasible Bartik, where we
assume that we know the common national component of industry growth rates. Section 2
discusses asymptotics.

1.1 Full panel setup

We begin by setting up the general panel data case with K industries and T time periods.
This set-up most closely matches that used in empirical work. It allows for the inclusion of
both location and time fixed effects as well as other controls.

We are interested in the following structural equation:

ylt = Dltρ + xltβ0 + εlt.

In the canonical setting, l indexes a location, t a time period, ylt is wage growth, Dlt is a
vector of Q controls which could include location and time fixed effects, xlt is employment
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growth and εlt is a structural error term. The estimand of interest is β0. We assume that
the ordinary least squares (OLS) estimator for β0 is biased and we need an instrument to
estimate β0.

In this section, we focus on numerical equivalence of different estimators, and so leave
the sampling process unspecified. When we next study the consistency of these estimators,
we consider three asymptotic sampling frames: one where we fix K and T, and let L → ∞;
second, where we fix T and let both L, K → ∞; and in a third we fix K and L, and let
T → ∞. In all cases, we will assume that the units are drawn in an independent and
identically distributed manner, but allow for within-unit correlation.

The Bartik instrument exploits the inner product structure of employment growth. Specif-
ically, employment growth is the inner product of industry shares and industry-location
growth rates

xlt = ZltGlt =
K

∑
k=1

zlktglkt,

where Zlt is a 1× K row vector of industry-location-time period shares, and Glt is a K × 1
vector of industry-location-time period growth rates where the kth entry is glkt. We de-
compose the industry-location-period growth rate into industry-period, and idiosyncratic
industry-location-period components:

glkt = gkt + g̃lkt.

We fix industry shares to an initial time period, so that the Bartik instrument is the inner
product of the initial industry-location shares and the industry-period growth rates:6

Blt = Zl0Gt = ∑
k

zlk0gkt,

where Gt is a K× 1 vector of the industry growth rates in period t (the kth entry is gkt), and
Zl0 is the 1× K vector of industry shares in location l.

Hence, we have a standard two-stage least squares set-up where the first-stage is a
regression of employment growth on the controls and the Bartik instrument:

xlt = Dltτ + Bltγ + ηlt.

6 If εlt are correlated with growth rates, and the εlt are serially correlated, then future shares will be en-
dogenous. This potential for serial correlation motivates fixing industry shares to some initial period. Beaudry,
Green, and Sand (Forthcoming, pg. 18-19) discuss Bartik instruments and advocate updating the shares under
the assumption that the error term is not serially correlated.
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1.2 Equivalence in three special cases

We build up to the result that the Bartik instrument is numerically equivalent to using
industry shares as instruments through three special cases.

Two industries and one time period

With two industries whose shares sum to one and one time period, the Bartik instrument
is identical to using one of the industry shares as an instrument. To see this, expand the
Bartik instrument:

Bl = zl1g1 + zl2g2,

where g1 and g2 are the industry components of growth. Since the shares sum to one, we
can write the second industry share in terms of the first, zl2 = 1 − zl1, and simplify the
Bartik instrument to depend only on the first industry share:

Bl = g2 + (g1 − g2)zl1.

Because the only term on the right hand side with a location subscript is the first industry
share, the cross-sectional variation in the instrument comes from the first industry share.
Substitute into the first-stage:

xl = γ0 + γBl + ηl = γ0 + γg2︸ ︷︷ ︸
constant

+ γ(g1 − g2)︸ ︷︷ ︸
coefficient

zl1 + ηl .

This equation shows that the difference between using the first industry share and Bartik
as the instrument is to rescale the first stage coefficients by the difference in the growth
rates between the two industries (1/g1−g2). But whether we use the Bartik instrument or
the first industry share as an instrument, the predicted employment growth (and hence
the estimate of the inverse elasticity of labor supply) would be the same. Hence, with two
industries, using the Bartik instrument in TSLS is numerically identical to using zl1 (or zl2)
as an instrument.

Two industries and two time periods

In a panel with two time periods, if we interact the time-invariant industry shares with
time, then Bartik is equivalent to a special case of using industry shares as instruments. To
see this result, we specialize to two industries, and define the Bartik instrument so that it
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varies over time:
Blt = g1tzl10 + g2tzl20 = g2t + (g1t − g2t)zl10,

where g1t and g2t are the industry-by-time growth rate for industry 1 and 2. Because we
fix the shares to an initial time-period, denoted by zlk0, the time variation in Blt comes from
the difference between g1t and g2t.

To see the relationship between the cross-sectional and panel estimating equations, re-
strict our panel setup to have the vector of controls consist solely of location and time fixed
effects. Then the first-stage is

xlt = τl + τt + Bltγ + ηlt.

Now substitute in the Bartik instrument and rearrange the first stage:

xlt = τl + (τt + g2tγ)︸ ︷︷ ︸
≡τ̃t

+zl10 (g1t − g2t)γ︸ ︷︷ ︸
≡γ̃t

+ηlt. (1.1)

This first-stage is more complicated than in the cross-sectional case because there is a time-
varying growth rate multiplying the time-invariant industry share.

To recover the equivalence between Bartik and using shares as instruments in the panel
setting, write g1t − g2t = (g11 − g21) + (∆g1 − ∆g2)1(t = 2), where ∆g1 = g12 − g11, ∆g2 =

g22 − g21, and 1 is the indicator function. Then, rewrite the first stage as

xlt = τl + zl10(g11 − g21)γ︸ ︷︷ ︸
≡τ̃l

+ (τt + g2tγ)︸ ︷︷ ︸
≡τ̃t

+zl10 1(t = 2)(∆g1 − ∆g2)γ︸ ︷︷ ︸
≡γ̃t

+ηlt. (1.2)

We can now see the equivalence between Bartik and using the shares as instruments:

xlt = τ̃l + τ̃t + zl101(t = 2)(∆g1 − ∆g2)γ + ηlt (Bartik)

xlt = τ̃t + τ̃t + zl101(t = 2)γ̃ + ηlt. (Industry Shares)

In this case, again γ̃ = γ/(∆g1 − ∆g2). If we view zl10 as the effect of exposure to
a policy, then γ̃ captures the “unscaled” effect on xlt, while γ is rescaled by the size of
the policy, where the size of the policy is the dispersion in national industry growth rates,
∆g1t − ∆g2t.

Viewing the growth rates as a measure of policy size and the industry shares as mea-
sures of exposure emphasizes a useful connection to difference-in-differences. In some
settings, there are more than two time periods, and there is a pre-period before a policy
takes effect. In this case, we can write the reduced form in terms of the Bartik instrument,
or, alternatively, in terms of industry shares interacted with time:
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ylt = τl + τt + γβBlt + ε̃︸︷︷︸
ηlt β+εlt

ylt = τl + τt + ∑
s 6=s0

1(s = t) γ̃s︸︷︷︸
γ∆gs

βzl10 + ε̃︸︷︷︸
ηlt β+εlt

.

In this case, the testable implication of parallel pre-trends is that γtβ = 0 for t < s0, where
s0 demarcates the pre-period. Relative to a setting in which there is no pre-period, settings
with pre-periods provide additional ways of testing the design using the standard tools of
applied microeconomics and potentially add credibility to the use of a Bartik instrument.

K industries and one time period

Finally, we show that with K industries as instruments in a generalized method of moments
(GMM) estimator set-up with a specific weight matrix, the Bartik estimator is identical to
using the set of industry shares as instruments.

To prove this result, we introduce some additional notation. Let G be the K × 1 vector
of industry growth rates, let Z be the L × K matrix of industry shares, let Y be the L × 1
vector of outcomes, let X be the L× 1 vector of endogenous variables, let B = ZG be the
L × 1 vector of Bartik instruments, and let W be an arbitrary K × K matrix. Finally, let
MD = IL − D(D′D)−1D′ denote the annhilator matrix for D, the L× Q matrix of controls.
We denote X⊥ = MDX and Y⊥ = MDY to be the residualized X and Y. We define the
Bartik and the GMM estimator using industry shares as instruments:

β̂Bartik =
B′Y⊥

B′X⊥
; and β̂GMM =

X⊥′ZWZ′Y⊥

X⊥′ZWZ′X⊥
.

The following proposition says when Bartik and GMM are numerically equivalent.

PROPOSITION 1.1. If W = GG′, then β̂GMM = β̂Bartik.

Proof. See appendix B.

Hence, the Bartik instrument and industry shares as instruments are numerically equiv-
alent for a particular choice of weight matrix.

REMARK 1.1. When ∑K
k=1 zlk = 1, there are K− 1 instruments and not K instruments. In practice,

any of the K industries can be dropped by subtracting off that industry’s growth rate from the G
vector, and the Bartik instrument will maintain its numerical equivalence from Proposition 1.1. To
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see the intuition behind this, suppose that ∑k zlk = 1∀l. Consider the first stage regression:

xl = γ0 + γ1Bl + ηl .

Now add and subtract γ1 ∑k zlkgj from the right hand side:

xl = γ0 + γ1 ∑
k

zlkgj︸ ︷︷ ︸
γ0+γ1gj

+γ1 ∑
k

zlk(gk − gj)︸ ︷︷ ︸
Bl−gj

+ηl . (1.3)

This expression generalizes our result from the two industry and one time period example. It says
that normalizing the growth rates by a constant gj changes the first-stage intercept and does not
affect the slope estimate. Hence, the first-stage prediction is unaffected.

1.3 Summary

With K industries and T time periods, the numerical equivalence involves creating K × T
instruments (industry shares interacted with time periods). Then an identical GMM result
holds as we proved in the cross-section with K industries. Extending the result is notation-
ally cumbersome so we leave the formal details to Appendix C. We now turn to discussing
how these finite sample results map into identification conditions.

2 Asymptotic consistency and identifying assumptions

The previous section established finite sample equivalence between the GMM estimator,
using industry shares as instruments and industry growth weights in the weight matrix,
and the TSLS IV estimator using the Bartik instrument. We now discuss the consistency of
these estimators under different asymptotic regimes and the implied identification condi-
tions.

To fix ideas, the difference between estimator and estimand is:

β̂− β =
B′ε⊥

B′X⊥
=

X⊥′ZWZ′ε⊥

X⊥′ZWZ′X⊥
, (2.1)

where W = GG′. In the subsections below, we outline what assumptions are necessary for
this difference to converge in probability to zero. This also requires that the denominator
converges to a constant in the limit, which we assume. Hence, we focus on the necessary
identification conditions for the numerator to converge to zero.

Since the goal of asymptotics is to approximate the distributional behavior of estimators
in finite samples, the appropriate asymptotic assumption will vary by application. We
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encourage researchers to be explicit about which asymptotic framework they are using
(and why). Section 4.4 provides some data-driven guidance.

2.1 Case 1: Fix K, fix T and let L→ ∞

The first case is an application of standard theorems for GMM. In this case, we fix the
number of industries and time periods, and hence view the gkt as non-stochastic. As a
result, the identification condition when we treat the instruments as industry shares (times
time period) is:

E

[
zlk01(s = t)εlt|Dl

]
= 0, ∀k, s, t.

This condition is stronger than the condition implied by using the Bartik instrument
directly where it is only the weighted sum of industry shares that is zero. Formally:

∑
k

∑
s

gksE

[
zlk01(s = t)εlt|Dl

]
= 0, ∀t.

It is typically hard, however, to motivate why the gkt would have the special property that
would cause the misspecification in each instrument to exactly cancel out. Hence, given
these asymptotics, we view the condition that each instrument (initial industry share times
time period) is orthogonal to the error term as the reasonable identification condition.

2.2 Case 2: Fix K, fix L, and let T → ∞.

Second, consider the case where the number of locations and industries is fixed, and in-
stead the number of time periods grows. This case switches the positions of the Gt vector
of national industry growth rates to form the moment condition, and the initial industry
shares, Zl , to form the GMM weight matrix.7 Here, the equivalence between Bartik and
GMM implies viewing the instrument as national industry growth rates times location,
and the weight matrix is the outer product of the local industry shares. The Bartik version
imposes that the first-stage coefficients are proportional to industry-location shares.

Following the arguments of case 1, the natural identification condition is then

E

[
gkt1(s = l)εlt|Dl

]
= 0, ∀k, s, l.

7Formally, we redefine the matrix notation that constructs the LT × 1 vector of the Bartik instrument, B. In
slight abuse of notation, let G be an LT × LK matrix, where each industry’s growth rate in a given period is
multiplied by a location fixed effect. Then, let Z be an LK × 1 vector of the K × 1 vectors of industry-location
shares. Then we can write, B = GZ, and similar to the results in Section 1, using B in a just-identified TSLS
setting is identical to GMM with a weight matrix defined as W = ZZ′.
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This identification assumption would fail if places that respond more to industry k’s shock
also have endogeneous innovations that occur at the same time.

2.3 Case 3: Let K → ∞, fix T = 1, and let L→ ∞

Finally, we consider a setting where the number of industries goes to infinity along with the
number of locations. Relative to the knife-edge condition in Case 1, these asymptotics gen-
erate a set of restrictions on the properties of the gkt such that an alternative identification
condition holds. Any given industry share might be an invalid instrument. The key idea is
that the invalid effects of the instruments averages out because there are a large number of
national industry growth rates (gkt) that are randomly assigned. Hence, the consistency ar-
gument relies on the number of instruments, K, growing to infinity along with the number
of locations.

For simplicity, we assume that T = 1, but little would change with any fixed T. Our
results in this section closely follow Kolesar et al. (2015), who term this case the many
invalid instrument case.

Let εl = Zlλ + ul , and then define the instrumental variables setup as

Yl = Xl β0 + Dlρ + Zlλ + ul︸ ︷︷ ︸
εl

Xl = ZlGπ1 + Dlπ2 + νl .

If λ = 0, then the same standard assumptions from Case 1 above hold, and the vector of Zl

is a valid instrument. However, if λ 6= 0, then the industry shares Zl have a direct effect on
the outcome of interest. A key simplification in our analysis is that we treat the G as known
datapoints, and not estimated. Borusyak, Hull, and Jaravel (2018) provide a more general
treatment of these asymptotics that, among other things, allows for estimation of the G.8

We make the same standard assumptions as Kolesar et al. (2015), and highlight two
assumptions.9 First, the number of instruments grows with the sample size:

ASSUMPTION 1. For some 0 ≤ cK < 1

KL/L = cK + o(L−1/2).

Second, the first-stage is non-zero, and the direct effect and the growth rates are uncor-
related:

8Adao, Kolesar, and Morales (2018) discuss inference in a version of this setting.
9We list the full set of assumptions in Appendix D.
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ASSUMPTION 2. π1 6= 0 and plimK,L→∞ λ′Z⊥′Z⊥G/L = 0.

Under these assumptions, the TSLS estimate using Bl = ZlGl is a consistent estimator
of β.10

To see the logic of this case most clearly, consider a simpler set-up where each instru-
ment is binary, there are no controls, and each location only has one industry.11 In this case,
Assumption 2 simplifies to:

λ′Z′ZG/L = ∑
k

ωL,kλkgk

where ωL,k = ∑l Zlk/L is the share of locations that have industry k. The economic inter-
pretation of this condition is that the direct effect of industry composition on wage growth
is independent of the direct effect of industry composition on employment growth, and the
share of locations that have industry k goes to zero. For example, it allows for the possi-
bility that places with industry k systematically have higher wage growth, but says that
this endogeneity is independent of the growth rate (when averaged across k). If the gk are
random shocks, then this condition holds.

3 Opening the black box of the Bartik estimator

The previous sections showed that under standard panel asymptotics, the Bartik instru-
ment is equivalent to using industry shares (interacted with time fixed effects) as instru-
ments. Thus, the Bartik estimator combines many instruments using a specific weight ma-
trix.

Empirical work using a single instrument is transparent because there is a clear and
small number of covariances that enter the estimator. With many instruments, it is less
intuitive how the estimator combines the different instruments. This lack of intuition un-
derlies much of the empirical work using Bartik instruments, where it is hard to explain
what variation in the data drives estimates, and can often feel like a black box.

In this section, we show how to open the black box of the Bartik estimator. First, we
decompose the Bartik estimator into a weighted combination of just-identified estimates
based on each instrument. This decomposition increases the transparency of the estimator
because the weights highlight the industries whose variation in the data drives the overall
Bartik estimate. Building on Andrews, Gentzkow, and Shapiro (2017) (AGS), we show that
these weights can be interpreted as sensitivity-to-misspecification elasticities. High-weight

10See Appendix D for a more formal statement. Note that in this setting, in contrast to Kolesar et al. (2015),
it is not necessary to adjust for the many instruments in choice of estimator, since the instrument Bl is a scalar.
This relies on the fact that the choice of G is known ex ante, and still gives first-stage power (e.g. π1 6= 0).

11This example is nearly identical to Kolesar et al. (2015, Section 2).
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instruments are more sensitive to misspecification, and hence are the instruments that are
most important for researchers to defend.

3.1 Decomposing the Bartik estimator

We first present a finite sample decomposition of the linear overidentified GMM estima-
tor due to Rotemberg (1983).12 For expositional simplicity, we use a single cross-section,
though it is straightforward to extend results to the fixed T panel.

Consider the minimization problem of estimating a scalar β0, using K empirical mo-
ment conditions ĝ(β) = Z′(Y⊥ − X⊥β), where we have residualized for a matrix of control
variables D, and a K× K weight matrix Ŵ:

β̂ = arg minβ ĝ(β)′Ŵĝ(β).

Define a K× 1 vector, Ĉ(Ŵ), which also depends on the instrument set, Z, and the endoge-
nous variable X⊥:

DEFINITION 3.1. Let
Ĉ(Ŵ) = ŴZ′X⊥ and ĉk(Ŵ) = ŴkZ′X⊥,

where Ŵk is the kth row of Ŵ.

We index a solution for β̂ by Ŵ: β̂(Ŵ). The following result (which is a special case of
Rotemberg (1983, Proposition 1)) decomposes β̂(Ŵ) into the contribution from each of the
K just-identified regressions.

PROPOSITION 3.1. Let

β̂(Ŵ) =
Ĉ(Ŵ)′Z′Y⊥

Ĉ(Ŵ)′Z′X⊥
, α̂k(Ŵ) =

ĉk(Ŵ)Z′kX⊥

∑k′ ĉk′(Ŵ)Z′kX⊥
, and β̂k = (Z′kX⊥)−1Z′kY⊥.

Then:

β̂(Ŵ) =
K

∑
k=1

α̂k(Ŵ)β̂k,

where ∑K
k=1 α̂k(Ŵ) = 1.

Proof. See appendix B.

Proposition 3.1 has three implications. First, mirroring our results from Section 2.1, the
validity of each just-identified β̂k depends on the exogeneity of a given Zk, and hence for

12Andrews (2017, Section 3.1) reports this decomposition for constant-effect linear instrumental variables.
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fixed K, the overall estimate’s consistency is not related to the choice of Ŵ. Second, the
α̂k(Ŵ) weights sum to 1, and differ depending on the choice of Ŵ. Finally, for some k,
α̂k(Ŵ) can be negative, and thus the overidentified IV estimate may lie outside of the range
of the just-identified estimates.

We now look at the Rotemberg weights for the Bartik estimator.

REMARK 3.1. The Rotemberg weights for the Bartik instrument are given by:

α̂k(GG′) =
gkZ′kX⊥

∑K
k=1 gkZ′kX⊥

=
γ̂gkZ′kX⊥

γ̂B′X⊥
=

X̂Bartik′
k X⊥

X̂Bartik′X⊥
, (3.1)

where gk is the kth entry in G, and X̂Bartik
k is the L× 1 vector of the fitted values from the first-stage

regression using the full Bartik instrument, but applying the coefficient to the kth industry.

Contrast Bartik’s Rotemberg weights with the weights that arise from TSLS using the
industry shares as instruments:

REMARK 3.2. The Rotemberg weights from TSLS are given by:

α̂k((Z⊥′Z⊥)−1) =
π̂kZ′kX⊥

∑K
k=1 π̂kZ′kX⊥

=
X̂TSLS′

k X⊥

X̂TSLS′X⊥
, (3.2)

where π̂k is the kth entry in (Z⊥′Z⊥)−1Z′X⊥, which is the first stage regression when using all K
industries as instruments, and π̂kZk = X̂TSLS

k is the L× 1 vector of fitted values based on the kth

industry.

This comparison lets us see two points. First, the Bartik and TSLS estimators are iden-
tical when the TSLS first-stage coefficients are proportional to gk (the national growth
rates).13 Second, the weights reflect the covariance between the kth instrument’s fitted value
of the endogenous variable and the endogenous variable itself. To understand this covari-
ance, let X̂k be a first stage fitted value using the kth instrument (e.g., gkZk or π̂kZk) so that
Cov(X̂k, X) = Var(X̂k) + ∑j 6=k Cov(X̂k, X̂j) + Cov(X̂k, ε̂), where ε̂ = X −∑K

k=1 X̂k. If the in-
struments are mutually orthogonal, then all the covariance terms are zero. If, in addition,
the coefficients on the instruments come from a regression (i.e., in TSLS), then the covari-
ance with the error term is also zero. Under these two assumptions, the weights measure
the share of first-stage partial R2 that is attributable to each instrument and all weights are
positive.14 If we relax these two assumptions, then negative weights are possible.15

13In the limit, this occurs when E[G|Z] = E[G]. This assumption also implies that the first stage coefficient
for Bartik TSLS is 1. See Appendix G for details.

14Angrist and Imbens (1995, Theorem 2) present a related result where the instruments are mutually orthog-
onal and they study TSLS so the weights are all positive.

15To generate mutually orthogonal instruments, we could take the PCA components of the industry shares.
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3.2 Interpreting the weights

To interpret these weights, we move from finite samples to population limits. We first state
the standard assumptions such that GMM estimators are consistent for all sequences of
Ŵ matrices. We then consider local-to-zero asymptotics (e.g., Conley, Hansen, and Rossi
(2012)) to interpret the Rotemberg weights in terms of sensitivity-to-misspecification as
discussed in AGS. As such, the results in this section are largely special cases of AGS.

The Rotemberg weights depend on the choice of weight matrix, Ŵ. Given standard as-
sumptions, the choice of weight matrix does not affect consistency or bias of the estimates,
and only affects the asymptotic variance of the estimator (there is a rich literature studying
how to optimize this choice).

When some of the instruments are not exogeneous, however, the population version of
the Rotemberg weights measures how much the overidentified estimate of β0 is affected by
this misspecification. To allow for this interpretation, we modify our estimating equation:

ylt = Dltρ + xltβ0 + Vltκ + εlt,

where we assume that for some k, E[ZlktVlt|Dlt] 6= 0. We follow Conley, Hansen, and Rossi
(2012, Section III.C) and AGS (pg. 1569) and allow κ to be proportional to L−1/2 such that
we have local misspecification. We make the following standard regularity assumptions:

ASSUMPTION 3 (Identification and Regularity). (i) the data {{xlt, Zlt, Dlt, Vlt, εlt}T
t=1}L

l=1

are independent and identically distributed with K and T fixed, and L going to infinity;

(ii) E[εlt] = 0, E[Vlt] = 0 and Var(ε̃) < ∞;

(iii) E[zlktεlt|Dlt] = 0 for all values of k; E[zltVlt] = ΣZV , where ΣZV is a 1× K covariance
vector with at least one non-zero entry; and E[Zltx⊥lt ] = ΣZX⊥ is a 1× K covariance vector
with all non-zero entries (xlt is a scalar), and ΣZX⊥,k is the kth entry; and

(iv) Var(zlktεlt) < ∞, Var(zlktVlt) < ∞ and Var(zlktx⊥lt ) < ∞ for all values of k.

We first establish the population version of α̂k(Ŵ):

LEMMA 3.1. If Assumption 3 holds and plimL→∞ ŴL = W where W is a positive semi-definite
matrix, then

plim
L→∞

α̂k(Ŵ) = αk(W) =
ΣZX⊥WkΣZX⊥,k

ΣZX⊥WΣ′ZX⊥
.

Proof. See appendix B.

We now present results about the asymptotic behavior of our estimators with misspec-
ification.
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PROPOSITION 3.2. We assume that Assumption 3 holds and plimL→∞ ŴL = W where W is a
positive semi-definite matrix.

If κ = L−1/2, then

(a)
√

L(β̂k − β0) converges in distribution to a random variable β̃k, with E[β̃k] =
ΣZV,k

ΣZX⊥ ,k
and

(b)
√

L(β̂− β0) converges in distribution to a random variable β̃, with E[β̃] = ∑K
k=1 αk(W)E[β̃k] =

∑K
k=1 αk(W)

ΣZV,k
ΣZX⊥ ,k

.

Proof. See appendix B.

This proposition shows that in the presence of misspecification, the estimator is asymp-
totically biased. Two useful corollaries follow:

COROLLARY 3.1. Suppose that β0 6= 0. Then the percentage bias can be written in terms of the
Rotemberg weights:

E[β̃]

β0
= ∑

k
αk(W)

E[β̃k]

β0
. (3.3)

COROLLARY 3.2. Under the Bartik weight matrix (W = GG′),

E[β̃]

β0
= ∑

k

gkΣZX⊥,k

G′Σ′ZX⊥

E[β̃k]

β0
. (3.4)

The first corollary interprets the αk(W) as a sensitivity-to-misspecification elasticity. Be-
cause of the linear nature of the estimator, it rescales the AGS sensitivity parameter to be
unit-invariant, and hence is comparable across instruments.16 Specifically, αk(W) is the
percentage point shift in the bias of the over-identified estimator given a percentage point
change in the bias from a single industry. The second corollary gives the population version
of Bartik’s Rotemberg weights.

An alternative approach to measuring sensitivity is to drop an instrument and then re-
estimate the model. Let β̂(Ŵ−k) be the same estimator as β̂(Ŵ), except excluding the kth

instrument and define the bias term for β̂(Ŵ−k) as β̃(Ŵ−k) = β̂(Ŵ−k)− β.

PROPOSITION 3.3. The difference in the bias from the full estimator and the estimator that leaves

16 AGS (pg. 1558) write: “The second limitation is that the units of [our sensitivity vector] are contingent
on the units of [the moment condition]. Changing the measurement of an element [j of the moment condi-
tion] from, say, dollars to euros, changes the corresponding elements of [the sensitivity vector]. This does not
affect the bias a reader would estimate for specific alternative assumptions, but it does matter for qualitative
conclusions about the relative importance of different moments.”
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out the kth industry is:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
β

= αk(W)
E[β̃k]

β
− αk(W)

1− αk(W) ∑
k′ 6=k

αk′(W)
E[β̃k′ ]

β
.

If E[β̃k′ ] = 0 for k′ 6= k, then we get a simpler expression:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
β

= αk(W)
E[β̃k]

β
.

Proof. See appendix B.

As emphasized by AGS (Appendix A.1), dropping an instrument and seeing how es-
timates change does not directly measure sensitivity. Instead, this measure combines two
forces: the sensitivity of the instrument to misspecification, and how misspecificed the in-
strument is relative to the remaining instruments.

To summarize, researchers should report the instruments associated with the largest
values of αk. The reason is twofold: first, reporting the instruments with the largest αk

provides a more concrete way to describe the empirical strategy. Second, to the extent that
the researcher is concerned about misspecification, these are the instruments that are most
worth probing.

3.3 Normalization

When the industry shares sum to one, the instruments are linearly dependent and so we
can write each instrument as a function of the remaining K − 1 instruments. This fact has
a couple implications. First, following Remark 1.1, we can drop any industry through
normalization by subtracting off gj from all the growth rates, and leave our point estimates
unchanged. Second, the fact that we can drop any one industry means that the Rotemberg
weights are not invariant to the choice of which industry to drop. To take an extreme
example, suppose industry j has the largest weight. Then, by dropping industry j through
normalization, a researcher could make industry j have a weight of zero, but the Bartik
estimate would remain the same.

To address this issue, in applications where the industry shares sum to one, we report
Rotemberg weights that come from demeaning the (unweighted) industry growth rates. In
Appendix E, we show that this normalization is the average of the K possible normaliza-
tions of dropping each of the industries.

To understand the intuition for why the normalization matters, return to the two indus-
try example: suppose we think that Bartik is biased in this case. Does the bias arise from
the fact that the industry 1 share is correlated with the error term, or that the industry 2
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share is correlated with the error term? Conceptually, it is not meaningful to distinguish
between these two possibilities, because industry 1 and 2 shares are exactly negatively cor-
related. Hence, saying the bias is correlated with industry 1 is the same as saying the bias
is correlated with industry 2. In this case, our normalization assigns weight 0.5 to each
industry.

3.4 Aggregation

Below, we consider applications with panel data and multiple time periods. As a result, the
underlying instruments are industry shares interacted with time fixed effects. Rather than
reporting results at the level of αk,t, we report αk = ∑t αk,t, or, sometimes, αt = ∑k αk,t. It is
typically easier to think about the variation coming from a cross-sectional difference, rather
than the variation coming from a cross-sectional difference in a particular time period.
When aggregating to the kth industry, we report β̂k, which comes from using Blkt = zlk0gkt,
the Bartik instrument built from just the kth industry, as the instrument.

To interpret such an aggregated α in terms of the underlying misspecification, suppose
that β̃kt = β̃k∀t then

β̃ = ∑
k

αk ∑
t

αkt

αk
β̃kt = ∑

k
αk β̃k ∑

t

αkt

αk
= ∑

k
αk β̃k.

These equations say that the αk measures the sensitivity to misspecification where we as-
sume that the endogeneity associated with the kth industry is constant across time.

4 Testing the plausibility of the identifying assumptions

The identifying assumptions necessary for consistency are typically not directly testable.
However, it is possible to partially assess their plausibility. We first focus on the assump-
tions from Section 2.1; in the context of the canonical setting of estimating the inverse elas-
ticity of labor supply, the identifying assumption is that industry composition (Zl0) does
not predict innovations to labor supply (εlt).17 For applications where this exclusion re-
striction may not hold, we discuss a test of the plausibility of “averaging out” asymptotics
from Section 2.3.

4.1 Empirical Test 1: Correlates of industry composition

It is helpful to explore the relationship between industry composition and location char-
acteristics that may be correlated with innovations to supply shocks. This relationship

17In Appendix H, we write down an economic model which allows us to derive this statement more precisely.
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provides an empirical description of what the variation is correlated with, and the types of
mechanisms that may be problematic for the exclusion restriction.

Since we argued in footnote 6 that it is typically desirable to fix industry shares to an
initial time period (Zl0), we recommend considering the correlation with initial period char-
acteristics, as this reflects the instruments’ cross-sectional variation. If Zl0 is correlated with
potential confounding factors, this can imply that there are omitted variables biasing esti-
mation. Naturally, it is always possible to control for observable confounders, but following
the logic of Altonji, Elder, and Taber (2005) and Oster (Forthcoming), movements in point
estimates when conditioning on observable confounders suggest the potential importance
of unobserved confounders. Looking at industries with the largest Rotemberg weights fo-
cuses attention on the instruments where confounding variables are most problematic.

4.2 Empirical Test 2: Pre-trends

In some applications, there is a policy change in period s0. As we discussed in Section
1.2, a researcher can use this sharp policy change to implement difference-in-differences
research design. The analogy to difference-in-differences is most straightforward when the
shares are fixed over time (emphasizing the point in footnote 6). In this case, the industry
shares measure the exposure to the policy change, while the national growth rates proxy
for the size of the policy change.18 In these settings, it is natural to test for pre-trends. We
recommend looking at pre-trends in terms of the instruments with the largest Rotemberg
weights, as well as looking at pre-trends in terms of the overall Bartik instrument. We
suspect that researchers will be more comfortable with the plausibility of their empirical
design if parallel pre-trends are satisfied for the instruments to which their estimates are
most sensitive to misspecification. For more details on pre-trends tests, see DiNardo and
Lee (2011).

4.3 Empirical Test 3: Alternative estimators and overidentification tests

Under the assumptions in Section 2.1, there are many moment conditions that must hold,
and it is possible to use the full set of industry shares (Zl0) with a more flexible weight
matrix, instead of the Bartik estimator. The simplest approach would be to use the TSLS
estimator; however, in finite samples, the overidentified TSLS estimator is biased. As a re-
sult, we encourage researchers to use three alternative estimators which have better prop-
erties with many instruments: the Modified Bias-corrected TSLS (MBTSLS) estimator from
Anatolyev (2013) and Kolesar et al. (2015), the Limited Information Maximum Likelihood
(LIML) estimator and the HFUL estimator from Hausman et al. (2012).

18Some examples of this include Autor, Dorn, and Hanson (2013) and Lucca, Nadauld, and Chen (Forthcom-
ing).
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These estimators may not give the same estimates, as their underlying assumptions are
different. We follow Kolesar et al. (2015, pg. 481-2) and interpret differences between HFUL
and LIML on the one hand, and MBTSLS and TSLS on the other, as pointing in the direction
of potential misspecfication. The reason is that LIML and HFUL are maximum likelihood
estimators and so exploit cross-equation restrictions while both MBTSLS and TSLS are two-
step estimators and so do not exploit these cross-equation restrictions. Comparing these
estimates, along with the Bartik TSLS estimate, provides a useful first pass diagnostic for
misspecification concerns. If these estimators agree, then researchers can be more confident
in their identifying assumption.

Overidentification tests provide more formal tests for misspecification. These estima-
tors permit test statistics under different assumptions. For the HFUL estimator, we suggest
the overidentification test from Chao et al. (2014), and for LIML estimator, we use the Cragg
and Donald (1993) statistic, as suggested by Kolesar et al. (2015).19 Conceptually, the overi-
dentification test asks whether the instruments are correlated with the error term beyond
what would be expected by chance, and relies on the validity of at least one of the instru-
ments.

When overidentification tests reject, and when HFUL and LIML differ from MBTSLS
and Bartik TSLS, these findings point to misspecification. In this case, researchers should
be especially interested in the high Rotemberg weight industries, as these are the industries
where the estimates are most sensitive to misspecification.

One reaction to the divergence between various estimators and failure of the overiden-
tification tests is that this tends to happen in any heavily overidentified setting. Kolesar
et al. (2015, Table 3 and 4) present results from these estimators and tests in the Angrist and
Krueger (1991) data, and find that overidentification tests do not reject the null of common
effects, and the LIML and MBTSLS estimates are numerically very similar (though TSLS
and LIML estimates diverge due to many instruments bias). Hence, we view failure of
overidentification tests and differences between estimators as informative about problems
with the underlying estimates.

An alternative approach to overidentifying tests (e.g., by Beaudry, Green, and Sand
(2012) and others) is to construct multiple Bartik instruments using different vectors of
national growth rates, and then testing whether these different weighted combinations of
instruments estimate the same parameter. Often, the correlation between the Bartik instru-
ments constructed with different growth rates is quite low. This fact is interpreted as re-
assuring because it suggests that exploiting “different sources of variation” gives the same
answer.

We recommend that researchers use the Rotemberg weights to quantify what varia-

19Code to implement both overid tests are available on request and will be posted on Github.
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tion each Bartik instrument is using, and whether the two Bartik instruments use different
sources of variation. Specifically, researchers can report the top-5 Rotemberg weights across
the two instruments and also their rank correlation. If these statistics are low, then the two
Bartik instruments are likely using different sources of variation and the conclusion dis-
cussed above is warranted.20

4.4 Empirical Test 4: Using the Rotemberg weights to assess the plausibility of
many invalid instrument asymptotics

Under the assumption of many invalid instrument asymptotics (as in Section 2.3), we show
that in a special case the Rotemberg weight on any given instrument goes to zero. Hence, to
the extent that there are a few large Rotemberg weights, then the many invalid instrument
asymptotics is not a good approximation to the finite sample behavior of the estimator.

We first present an analytical result in the special case we discussed in Section 2.3 where
instruments are binary.

PROPOSITION 4.1. Suppose that gk and g̃lk are mean zero. Also suppose that locations are ran-
domly assigned a single industry so that zlk is equal to 1 for one k and zero for all other k′ 6= k. If
limL→∞

K
L = constant and for any L z̄L,k = ∑l zlk is bounded by a constant, then

lim
L→∞

αk(GG′) = 0.

Proof. See Appendix B.

This proposition says that under the many invalid instrument asymptotics the weight
on each industry goes to zero. In contrast, in our applications, we typically find that a few
industries get large weight, implying that the estimator could still be biased through the
direct effects of those industries.

We now present Monte Carlo evidence for the more general version of this point. Our
simulations are broadly designed to mimic properties of industry growth rates and indus-
try shares in the U.S. See Appendix F for details.

The first four rows of Table 1 show how the misspecification can average out. The first
row shows that when λ = 0, OLS is biased, and (infeasible) Bartik is unbiased. Rows 2

20To illustrate the theoretical distinction between looking at correlations between Bartik instruments and
comparing Rotemberg weights implied by the two instruments, in Appendix I we produce an example where
only one industry has identifying power, but the two instruments are uncorrelated and find the same β̂. While
this example might seem like a theoretical curiosity, in our empirical settings we typically find that a small
number of industries provide most of the identifying variation and the variation in the growth rates explains
little of the variation in the Rotemberg weights. Hence, there is typically scope for different national growth
rates that produce weakly correlated Bartik instruments to rely on the same “identifying variation” (that is,
have similar Rotemberg weights).
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through 4 show the effect of allowing the λ term to be non-zero: in particular, we scale
the variance of the λk terms relative to the variance of the gk term. In these simulations,
infeasible Bartik remains unbiased.

The last two rows of Table 1 show that even with many instruments, the Bartik estimate
can be biased when there are a few industries with high Rotemberg weights. Both rows
deviate from row 3 by replacing the λk with the realized draw of gk for five industries.
In Row 5, the five industries with the smallest (in absolute value) Rotemberg weights are
replaced, and the Bartik estimator is unbiased, similar to rows 1-4. However, in Row 6, we
replace the five industries with the largest (in absolute value) Rotemberg weights, and the
Bartik estimator is no longer approximately unbiased, even though all other industries’ gk

and λk are uncorrelated. We view this as a consequence of the large share—50%—of the
Rotemberg weights for the top 5 industries. This degree of sensitivity to misspecification in
a few instruments is empirically realistic: in our empirical applications, the top 5 industries
tend to also have shares of the positive weights that are around 0.5.

Finding a few high Rotemberg weight industries raises concerns about the extent to
which bias in a given industry may affect the overall bias of the estimator. Diffuse Rotem-
berg weights, however, are a necessary but not sufficient condition for the many invalid
instrument asymptotics and do not, by themselves, show that these asymptotics provide a
good guide to the finite sample properties of the estimator.

5 Empirical example I: Canonical Setting

We now present empirical examples to make our theoretical ideas concrete, specifically
focusing on using our empirical tests from Section 4. Our first example is the canonical
setting of estimating the inverse elasticity of labor supply. We begin by reporting the main
estimates and then report the industries with the highest Rotemberg weight. We then probe
the plausibility of the identifying assumption for these instruments.

5.1 Dataset

We use the 5% sample of IPUMS of U.S. Census Data (Ruggles et al. (2015)) for 1980, 1990
and 2000 and we pool the 2009-2011 ACSs for 2010. We look at continental US commuting
zones and 3-digit IND1990 industries.21 In the notation given above, our y variable is earn-
ings growth, and x is employment growth. We use people aged 18 and older who report
usually working at least 30 hours per week in the previous year. We fix industry shares at
the 1980 values, and then construct the Bartik instrument using 1980 to 1990, 1990 to 2000

21There are 228 non-missing 3-digit IND1990 industries in 1980. There are 722 continental US commuting
zones.
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and 2000 to 2010 leave-one-out growth rates. To construct the industry growth rates, we
weight by employment. We weight all regressions by 1980 population.

We use the leave-one-out means to construct the national growth rates to address the
finite sample bias that comes from using own-observation information. Specifically, using
own-observation information allows the first-stage to load on the idiosyncratic industry-
location component of the growth rate, g̃lk, which is endogeneous. This finite sample bias
is generic to overidentified instrumental variable estimators and is the motivation for jack-
knife instrument variable estimators (e.g. Angrist, Imbens, and Krueger (1999)). In practice,
because we have 722 locations, using leave-one-out to estimate the national growth rates
matters little in point estimates.22

5.2 Rotemberg weights

We compute the Rotemberg weights of the Bartik estimator with controls, aggregated across
time periods. The distribution of sensitivity is skewed, so that a small number of instru-
ments have a large share of the weight: Table 2 shows that the top five instruments account
for almost a third (0.592/1.968) of the positive weight in the estimator. These top five in-
struments are: oil and gas extraction, motor vehicles, other,23, guided missiles, and blast
furnaces.

These weights give a way of describing the research design that reflects the variation
in the data that the estimator is using, and hence makes concrete for the reader what types
of deviations from the identifying assumption are likely to be important. In this canon-
ical setting, one of the important comparisons is across places with greater and smaller
shares of oil and gas extraction. Hence, the estimate is very sensitive to deviations from the
identifying assumption related to geographic variation in employment share in oil and gas
extraction. Interestingly, a common short-hand to talk about Bartik is to discuss the fate of
the automobile industry (e.g. Bound and Holzer (2000, pg. 24)), and this analysis confirms
that the motor vehicle industry plays a large role in the Bartik instrument.

Finally, Panel B shows that the national growth rates are weakly correlated with the
sensitivity to misspecification elasticities. In contrast, the elasticities are quite related to the
variation in the industry shares across locations—Var(zk). This observation explains why
the industries with high weight tend to be tradables: almost by definition, tradables have
industry shares that vary across locations, while non-tradables do not.24

22In Appendix J, we show that with a leave-one-out estimator of the gk component, the Rotemberg weights
do not sum to one. In our applications below, when we compute the Rotemberg weights we use simple aver-
ages so that the weights sum to one.

23 The “Other” industry is the “N/A” code in the IND1990 classification system.
24This logic is the basis of Jensen and Kletzer (2005)’s measure of the offshorability of services; as Jensen and

Kletzer (2005) recognize, there are other reasons for concentration besides tradability.
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5.3 Testing the plausibility of the identifying assumption

Test 1: Correlates of 1980 industry shares Table 3 shows the relationship between 1980
characteristics of commuting zones and the share of the top 5 industries in Table 2, as well
the overall Bartik instrument using 1980 to 1990 growth rates. First, the R2 in these re-
gressions are quite high: for example, we can explain 43% of the variation in share of the
“other” industry via our covariates. Second, “other,” oil and gas extraction, blast furnaces,
and the overall Bartik instrument are statistically significantly correlated with the share of
native-born workers. In the immigrant enclave literature, the share of native born (immi-
grant share) is thought to predict labor supply shocks.

Test 3: Alternative estimators and overidentification tests Rows 1 and 2 of Table 4 report
the OLS and IV estimates, with and without for the 1980 covariates as controls (we discuss
these covariates below) and makes two main points. First, the IV estimates are bigger
than the OLS estimates. Second, the Bartik results are sensitive to the inclusion of controls,
though these are not statistically distinguishable.

Rows 3-6 of Table 4 report alternative estimators as well as overidentification tests. We
focus on column (2), where we control for covariates. TSLS with the Bartik instrument and
LIML are quite similar. This finding is typically viewed as reassuring. In contrast, TSLS and
MBTSLS are similar, while HFUL is substantially larger. The different point estimates sug-
gest the presence of misspecification. In column (4), we see that the overidentification tests
reject the null that all instruments are exogenous, which also points to misspecification.

Test 4: Plausibility of many invalid instrument asymptotics As previously discussed,
Table 2 shows that the top five instruments account for almost a third (0.592/1.968) of the
positive weight in the estimator. This finding suggests that the many invalid instrument
asymptotics do not provide a good approximation to the finite sample performance of the
estimator.

6 Empirical example II: China shock

We estimate the effect of Chinese imports on manufacturing employment in the United
States using the China shock approach of Autor, Dorn, and Hanson (2013) (ADH).

6.1 Specification

It is helpful to write main regression specification of ADH in our notation. The paper is
interested in a regression (where we omit covariates for simplicity, but include them in the
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regressions):

ylt = β0 + βxlt + εlt, (6.1)

where ylt is the percentage point change in manufacturing employment rate, and xlt =

∑k zlktgUS
kt is import exposure, where zlkt is contemporaneous start-of-period industry-location

shares, and gUS
kt is a normalized measure of the growth of imports from China to the US in

industry k. The first stage is:

xlt = γ0 + γ1Blt + ηlt, (6.2)

where Blt = ∑k zlkt−1ghigh-income
kt , the z are lagged, and ghigh-income

kt is a normalized measure
of the growth of imports from China to other high-income countries (mainly in Europe).

We focus on the TSLS estimate in column (6) of Table 3 of ADH, which reports that a
$1,000 increase in import exposure per worker led to a decline in manufacturing employ-
ment of 0.60 percentage points. Our replication produces a coefficient of 0.62.

6.2 Rotemberg weights

As in the canonical setting, despite a very large number of instruments (397 industries) the
distribution of sensitivity is skewed so that in practice a small number of instruments get
a large share of the weight. Table 5 shows that the top five instruments receive about half
of the absolute weight in the estimator (0.628/1.379). These instruments are games and toys,
electronic computers, household audio and video, computer equipment and telephone ap-
paratus. Except for games and toys, these industries are different than the ones that ADH
emphasize when motivating the empirical strategy.25

Relative to the canonical setting, negative weights are less prominent and the variation
in the national growth rates (or, imports from China to other high-income countries) ex-
plains more of the variation in the sensitivity elasticities. Even so, the gk component only
explains about thirty percent (0.5812) of the variance of the Rotemberg weights.

6.3 Testing the plausibility of the identifying assumption

Test 1: Correlates of 1980 industry shares Table 6 shows the relationship between the
covariates used in ADH and the top industries reported in Table 5. First, relative to the

25“The main source of variation in exposure is within-manufacturing specialization in industries subject to
different degrees of import competition...there is differentiation according to local labor market reliance on
labor-intensive industries...By 2007, China accounted for over 40 percent of US imports in four four-digit SIC
industries (luggage, rubber and plastic footwear, games and toys, and die-cut paperboard) and over 30 percent
in 28 other industries, including apparel, textiles, furniture, leather goods, electrical appliances, and jewelry”
(pg. 2123).
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canonical setting, the controls explain less of the variation in shares. Second, electronic
computers, computer equipment manufacturing as well as the overall measure are both
concentrated in more college educated areas; in contrast, games and toys is concentrated
in places with fewer college educated workers. This pattern emphasizes that researchers
should be concerned about other trends potentially affecting manufacturing employment
in more educated areas. Interestingly, the identifying assumption related to the computer
industry is precisely one that ADH worry about.26

Test 2: Parallel pre-trends We construct our pre-trend figures as follows. We use fixed
1980 shares as the instruments, and plot the reduced form effect of each industry on manu-
facturing employment.27 We then convert the growth rates to levels and we index the levels
in 1970 to 100. Standard errors are constructed using the delta method. For the aggregate
Bartik, we use the industry shares fixed in 1980, and aggregate them using growth rates
from 1990 to 2000.

Figure 1 shows the plots and displays several interesting patterns. First, all of the panels
diverge from classic pre-trends figures, which show no trends in the pre-periods and then
a sharp change at the date of the treatment. Second, as was true in the covariates in Table
6, the patterns in electronic computers (Panel B) and computer equipment (Panel D) are
similar to the aggregate, with the decline in manufacturing from 1990 to 2007 undoing
growth from 1970 to 1990. Note that Panel B and D shows comparisons of places with
more and less of these particular industries in 1980, while the outcome is employment for
all manufacturing industries.

Test 3: Alternative estimators and overidentification tests Rows 1 and 2 of Table 7 report
the OLS and IV estimates using Bartik, with and without for the 1980 covariates as controls,
though these are not statistically distinguishable for the IV estimates. Rows 3-6 of Table 7
shows alternative estimators as well as overidentification tests. We focus on column (2),
where we control for covariates. The estimates range from half the size of the baseline Bar-
tik TSLS estimate (MBTSLS), to several times the size (LIML). The divergence between the
two-step estimators (TSLS with Bartik, TSLS and MBTSLS) and the maximum likelihood es-
timators (LIML and HFUL) is evidence of misspecification. Similarly, the overidentification
tests reject. Combined, the movement in the estimates across estimators is not reassuring28,

26ADH (pg. 2138): “Computers are another sector in which demand shocks may be correlated [across coun-
tries], owing to common innovations in the use of information technology.”

27In unreported results, we find that this specification delivers the same point estimate as the time-varying
(but lagged) shares that ADH use, albeit with larger standard errors. See Figure A1 for the analogous figures
using fixed 1990 shares. And Figure A2 shows analogous figures for the time-varying shares.

28 Angrist and Pischke (2008, pg. 213) write: “Check overidentified 2SLS estimates with LIML. LIML is less
precise than 2SLS but also less biased. If the results come out similar, be happy. If not, worry...”
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and the failure of the overidentification tests points to potential misspecification.

Test 4: Plausibility of many invalid instrument asymptotics As previously discussed,
Table 5 shows that the top five instruments account for almost half (0.628/1.379) of the positive
weight in the Bartik estimator. This finding suggests that the many invalid instrument
asymptotics do not provide a good approximation to the finite sample performance of the
estimator.

7 Empirical example III: defense spending shocks

In our third application, we examine the use of defense spending shocks to estimate the
fiscal multiplier following Nakamura and Steinsson (2014). To map to the Bartik setting,
the equivalent of local industry shares times time is the national industry growth rates
times location, and the equivalent of the national industry rates is initial location industry
share (the average level of military spending in that state relative to state output in the first
five years of the sample). Notably, Nakamura and Steinsson (2014) implement both TSLS
using the initial location industry share, and TSLS using the Bartik measure.

In Table 8, we report the Rotemberg weights associated with their benchmark specifica-
tion (Table 2, column 2 of their paper). Consistent with the previous examples, the weights
are very skewed: the top region receives half of the positive weight (1.001/1.933).

8 Empirical example IV: simulated instruments

Finally, we look at a simulated instrument (Currie and Gruber (1996a) and Currie and Gru-
ber (1996b)) application. Specifically, we look at Cohodes et al. (2016), which studies the
effect of Medicaid expansion on educational attainment. We begin by discussing how to
map the simulated instrument example to our setting. We then compute the sensitivity
elasticities to illustrate how the weights can be useful for researchers to clarify their identi-
fying variation.

8.1 A simulated instrument as a Bartik instrument

A simplified version of the estimating equation in Cohodes et al. (2016) is

yl = βxl + εl ,

where yl is the educational attainment of people living in location l, and xl is the average
Medicaid eligibility of people living in location l. They are concerned that xl is endogenous
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to the population’s other characteristics (e.g., a poor state will have a high share of its
population eligible for Medicaid), and so want to instrument for eligibility using variation
in laws across states and time.

To write the simulated instrument in our notation, we first write the endogenous vari-
able, xl , as an inner product. Specifically, suppose that that there are K eligibility “types”
indexed by k, zlk is an indicator for whether eligibility type k is eligible in location l, and
glk is the share of people living in location l who are of eligibility type k. Then, {zlk}K

k=1

is a description of the legal environment in location l and we can write the endogenous
variable in inner product form: xl = ∑k zlkglk.

The instrument is built by replacing the glk—the location shares of eligibility types—
with gk—the national shares of the eligibility types. The simulated instrument is then

Sl = ∑
k

zlkgk,

and measures the share of people in location l who would be eligible if each location had the
national distribution of eligibility types. Thus, under plausible asymptotics the instrument
is the cross-state differences in eligibility for each eligibility type.

We take a top-down approach to defining eligibility types. An eligibility type is a
unique combination of eligibility across all 51 states (and 28 years used in the estimates)
among the individuals in the 1986 CPS. Among the 48,036 children in the 1986 CPS, we
find 18,881 distinct eligibility types. Cohodes et al. (2016) use 11 birth cohorts (born from
1980 to 1990) and the average eligibility of each cohort from age 0 to 17, and separate whites
and non-whites. So the instrument is defined at the level of eligibility type × cohort × age
× white. Hence, there are 7,476,876 distinct instruments. The large number of instruments
explains why Currie and Gruber (1996b, pg. 446) describe a simulated instrument as “a
convenient parameterization of legislative differences.”

8.2 Rotemberg weights

Whereas in the canonical and ADH settings the top five instruments receive a quantitatively
large share of the weight, here, because they account for a small share of the instruments,
the top five instruments receive a small share of the weight. As a result, to understand what
variation matters in point estimates, we project the instruments into lower-dimensional
space along two dimensions. The first dimension is the state-year variation in laws that
underlies the instruments.29 The second dimension is the characteristics of households

29First, we sum the weights across birth-cohort × age × race, to have the weight for each eligibility type.
Second, for each eligibility type we code the state-years in which Medicaid eligibility changed. (There are 1,372
distinct state-years (out of a total of 51 × 27 = 1377 possible state-years) where some eligibility type has a
change in eligibility.) Third, so that the weights continue to sum to one, we divide the Rotemberg weight for
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affected by the different instruments.30

Figure 2 summarizes the state-year eligibility changes that drive estimates, and hence
the state-years a researcher should be looking for potential confounds. There are several
things to note. First, the empirical strategy leverages variation that is spread throughout
time. Second, there are a few large spikes. The notable spike is in 1990, which generated
changes in eligibility in all 51 states (and DC).31 Third, the figure highlights the six most im-
portant state-law changes. These occur later in the sample. The bottom panels decompose
the weights into those applying to lower- and “higher”-income families (where the cutoff
is $10,000 1986 dollars). This decomposition shows that later law changes affect higher
income households.

Figure 3 summarizes which types of households get more weight in estimates. Panel
A shows that the estimator places the most weight on families with 3 children. Panel B
shows that the estimator generally weights lower income households more, except that
there is some non-monotonicity: the poorest households are always eligible and so get no
weight in estimates, and there are some higher-income households where variation matters
more. Panel C shows the estimator places the most weight on variation that occurs at
schooling ages (e.g. 5-16), with less weight in early childhood. This analysis complements
the robustness analysis in Cohodes et al. (2016, Table 5 and 6).

9 Summary

The central contribution of this paper revolves around understanding identification and the
Bartik instrument. Our first set of formal results relate to identification in the sense typically
used by econometricians. We show that Bartik is numerically equivalent to a GMM esti-
mator with the industry shares as instruments. We then argue that under plausible asymp-
totics the identifying assumption is best stated in terms of the industry shares—the national
growth rates are simply a weight matrix. Our second set of formal results relate to identifi-
cation in the sense often used by practitioners: we show how to compute which of the many
instruments “drive” the estimates. Building on Andrews, Gentzkow, and Shapiro (2017) we

the eligibility type by the number of state-year policy changes experienced by that eligibility type. Finally, we
sum up the these normalized weights at the state-year level.

30First, we sum the weights across birth-cohort × age × race, to have the weight for each eligibility type.
Second, we compute the average of various characteristics of the households in the 1986 CPS that make up
each eligibility type. Finally, we sort eligibility types based on the characteristics and compute the sum of the
Rotemberg weights within bins defined by the characteristics.

31This law change is the 1990 Federal budget which mandated coverage of children ages 6 through 18
in families with income at or below 100% of the federal poverty line (whether or not they were receiv-
ing AFDC assistance). See https://kaiserfamilyfoundation.files.wordpress.com/2008/04/
5-02-13-medicaid-timeline.pdf for a description of Medicaid law changes. Last accessed January 26,
2018.

31
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show that these weights can be interpreted as sensitivity-to-misspecification elasticities and
so highlight which identifying assumptions are most worth discussing and probing.

We then pursued a number of applications to illustrate what can be learned from our
results. Our results clarify the set of reasonable concerns a consumer of the Bartik literature
should have. We hope that researchers will use the results and tools in this paper to be
clearer about how identification works in their papers: both in the econometric sense of
stating the identifying assumption, and in the practical sense of showing what variation
drives estimates.
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Table 1: Monte Carlo evidence on many invalid instruments

OLS Feasible Bartik Infeasible Bartik Top 5 αk share

Ê
[
β̂
]

Ê
[
β̂
]

Med[β̂] Ê [F] Ê
[
β̂
]

Med[β̂] Ê [F] Ê Med
(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) Standard 2.73 1.95 1.98 33.63 1.98 2.01 35.59 0.50 0.50
(2) σ2

λk
= 0.2σ2

gk
2.73 1.94 1.98 32.18 1.97 2.01 34.07 0.49 0.49

(3) σ2
λk

= 1.0σ2
gk

2.73 1.94 1.98 34.40 1.97 2.00 36.36 0.50 0.51
(4) σ2

λk
= 5.0σ2

gk
2.72 1.93 1.94 35.05 1.96 1.97 36.97 0.50 0.51

(5) σ2
λk

= 1.0σ2
gk

, 2.73 1.94 1.98 33.66 1.97 2.00 35.62 0.50 0.51
λk = gk (smallest 5 αk)
(6) σ2

λk
= 1.0σ2

gk
, 2.75 2.55 2.57 34.00 2.56 2.58 35.93 0.50 0.51

λk = gk (largest 5 αk)

Notes: This table reports Monte Carlo simulations of the performance of the Bartik estimator. The true value of β is 2. Column
(1) reports OLS estimates. Column (2) through (4) report feasible Bartik estimates, where the growth rates are estimated using
a leave-one-out estimator. Column (2) is the mean of the β̂, column (3) is the median, and column (4) reports the mean of the
first stage F-statistics. Columns (5) to (7) repeat the same exercise, except that it reports infeasible Bartik where we use the true
value of gk to construct the Bartik instrument. Columns (8) and (9) report the mean and median share of the positive weight for
the top-5 Rotemberg weight industries. Row (1) reports a simulation where the Bartik instrument is valid. Rows (2) through (4)
add a component of the error term ∑k zlkλk where λk is drawn independently of gk. Rows (5) and (6) replace 5 draws of the λk
with the gk for the kth industry where the five industries are selected on the basis of the Rotemberg weights: Row (5) picks the
five industries with the smallest weights (in absolute value) and row (6) repeats the exercise with the industries with the five
largest weights. In these simulations there are 800 locations and 228 industries, where the industry shares are drawn from the
empirical distribution of 3 digit IND1990 industries in 1980. All random variables are normally distributed and the variances are
as follows: σ2

gk
= 0.0046, σ2

glk
= 0.01, σ2

gl
= 0.001, and σ2

ε = 0.0245. The Table reports the mean and median values of β̂ across
2000 simulation runs. See Appendix F for additional details.
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Table 2: Summary of Rotemberg weights: canonical setting

Panel A: Negative and positive weights
Sum Mean Share

Negative -0.968 -0.003 0.444
Positive 1.968 0.006 0.501

Panel B: Correlations of Industry Aggregates
αk gk βk Var(zk)

αk 1
gk -0.049 1
βk -0.085 0.047 1
Var(zk) 0.576 -0.164 -0.019 1

Panel C: Variation across years in αk
Sum Mean

1980 0.461 0.002
1990 0.177 0.001
2000 0.362 0.002

Panel D: Top 5 Rotemberg weight industries
α̂k gk β̂k 95 % CI Ind Share

Oil+Gas Extraction 0.231 -0.002 1.778 (1.25,2.85) 1.601
Motor Vehicles 0.139 -0.012 1.381 (1.2,1.65) 5.006
Other 0.093 -0.019 1.344 (-10,10) 4.840
Guided Missiles 0.070 0.029 0.392 (-4.1,.75) 1.074
Blast furnaces 0.059 -0.034 1.176 (.8,2.6) 1.831

Panel E: Summary of β̂k
Mean Median 25th P 75th P Share Negative

βk 1.637 0.775 2.181 -0.609 0.349

Notes: This table reports statistics about the Rotemberg weights. In all cases, we report
statistics about the aggregated weights, where we aggregate a given industry across years
as discussed in Section 3.4. Panel A reports the share and sum of negative weights. Panel
B reports correlations between the weights, as well as the national component of growth
(gk), the just-identified coefficient estimates, and the variation in the industry shares across
locations (Var(zk)). Panel C reports variation in the weights across years. Panel D reports
the top five industries according to the Rotemberg weights. The gk is the national indus-
try growth rate, βk is the coefficient from the just-identified regression, the 95% confidence
interval is the weak instrument robust confidence interval using the method from Cher-
nozhukhov and Hansen (2008) over a range from -10 to 10, and Ind Share is the industry
share (multiplied by 100 for legibility). Panel E reports statistics about the dispersion in the
β̂k. The “Other” industry is the “N/A" code in the IND1990 classification system.
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Table 3: Relationship between industry shares and characteristics: canonical setting

Oil+gas Motor Vehicles Other Guided Missiles Blast Furnaces Bartik (1980 shares)

Male 40.94 -25.86 98.73 36.14 14.14 -0.64
(8.39) (7.61) (14.91) (18.38) (7.21) (0.05)

White 1.07 -23.61 -34.41 14.85 -32.32 -0.08
(3.09) (28.37) (7.66) (14.84) (13.66) (0.06)

Native Born 10.96 -3.92 21.25 -42.83 -14.99 -0.19
(2.94) (5.38) (6.95) (41.64) (6.85) (0.04)

12th Grade Only -32.51 64.36 26.75 -68.41 16.09 0.35
(7.53) (17.72) (8.88) (27.39) (8.25) (0.06)

Some College -9.51 23.24 24.12 28.93 -40.43 0.63
(4.63) (22.71) (7.12) (25.74) (11.00) (0.07)

Veteran -10.57 19.09 -142.65 86.93 111.08 0.55
(7.05) (41.04) (22.65) (43.69) (30.84) (0.12)

# of Children -2.75 45.35 -57.66 11.33 5.53 0.27
(4.62) (23.48) (13.46) (21.27) (9.77) (0.06)

1980 Population Weighted Yes Yes Yes Yes Yes Yes
N 722 722 722 722 722 722
R2 0.22 0.11 0.43 0.25 0.21 0.58

Notes: Each column reports results of a single regression of a 1980 industry share on 1980 characteristics. Each characteristic is
standardized to have unit standard deviation. The final column is the Bartik instrument constructed using the growth rates from
1980 to 1990. Results are weighted by 1980 population. Standard errors in parentheses. The “Other” industry is the “N/A" code
in the IND1990 classification system.
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Table 4: OLS and IV estimates: canonical setting

∆ Emp Coefficient Equal Over ID test
(1) (2) (3) (4)

OLS 0.71 0.63 [0.69]
(0.06) (0.07)

TSLS (Bartik) 1.75 1.28 [0.14]
(0.34) (0.15)

TSLS 0.74 0.67 [0.08] 1014.05
(0.06) (0.07) [0.00]

MBTSLS 0.76 0.69 [0.17]
(0.04) (0.06)

LIML 1.60 1.42 [0.86] 2820.96
(0.06) (0.06) [0.00]

HFUL 2.85 2.69 [0.00] 804.19
(0.15) (0.13) [0.00]

Year and CZone FE Yes Yes
Controls No Yes
1980 Population Weighted Yes Yes
Observations 2,166 2,166

Notes: This table reports a variety of estimates of the inverse elasticity of labor supply. The
regressions are at the commuting zone level and the instruments are 3-digit industry-time
periods (1980-1990, 1990-2000, and 2000-2010). Column (1) does not contain controls, while
column (2) does. The TSLS (Bartik) row uses the Bartik instrument. The TSLS row uses
each industry share (times time period) separately as instruments. The MBTSLS row uses
the estimator of Anatolyev (2013) and Kolesar et al. (2015) using each industry share (times
time period) separately as instruments. The LIML row shows estimates using the limited
information maximum likelihood estimator. Finally, the HFUL row uses the HFUL estima-
tor of Hausman et al. (2012). The J-statistic comes from Chao et al. (2014). The p-value for
the equality of coefficients compares the adjacent columns with and without controls. The
controls are the 1980 characteristics (interacted with time) displayed in Table 3. Results are
weighted by 1980 population. Standard errors are in parentheses and are constructed by
bootstrap over clusters.
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Table 5: Summary of Rotemberg weights: Autor, Dorn, and Hanson (2013)

Panel A: Negative and positive weights
Sum Mean Share

Negative -0.379 -0.001 0.477
Positive 1.379 0.003 0.523

Panel B: Correlations of Industry Aggregates
αk gk βk Var(zk)

αk 1
gk 0.581 1
βk -0.005 -0.041 1
Var(zk) 0.154 -0.038 0.054 1

Panel C: Variation across years in αk
Sum Mean

1990 0.329 0.001
2000 0.671 0.002

Panel D: Top 5 Rotemberg weight industries
α̂k gk β̂k 95 % CI Ind Share

Games and Toys 0.182 174.841 -0.151 (-0.40,0.20) 0.270
Electronic Computers 0.182 85.017 -0.620 (-1.55,-0.05) 1.091
Household Audio and Video 0.130 118.879 0.287 (-0.10,5.70) 0.378
Computer Equipment 0.076 28.110 -0.315 (-1.60,0.20) 0.519
Telephone Apparatus 0.058 37.454 -0.305 (-10.00,10.00) 0.920

Panel E: Summary of β̂k
Mean Median 25th P 75th P Share Negative

βk -0.909 -0.514 0.734 -1.687 0.633

Notes: This table reports statistics about the Rotemberg weights. In all cases, we report
statistics about the aggregated weights, where we aggregate a given industry across years
as discussed in Section 3.4. Panel A reports the share and sum of negative Rotemberg
weights. Panel B reports correlations between the weights, as well as the national com-
ponent of growth (gk), the just-identified coefficient estimates, and the variation in the in-
dustry shares across locations (Var(zk)). Panel C reports variation in the weights across
years. Panel D reports the top five industries according to the Rotemberg weights. The
gk is the national industry growth rate, βk is the coefficient from the just-identified regres-
sion, the 95% confidence interval is the weak instrument robust confidence interval using
the method from Chernozhukhov and Hansen (2008) over a range from -10 to 10, and Ind
Share is the industry share (multiplied by 100 for legibility). Panel E reports statistics about
the dispersion in the β̂k.
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Table 6: Relationship between industry shares and characteristics: Autor, Dorn, and Hanson (2013)

Games Electronic Household audio Computer Telephone China
and toys computers and video equipment apparatus to other

Share Empl in Manufacturing 0.01 0.21 0.08 0.21 -0.07 0.57
(0.03) (0.18) (0.08) (0.15) (0.06) (0.07)

Share College Educated -0.08 0.20 0.01 0.22 -0.07 0.30
(0.03) (0.11) (0.04) (0.10) (0.06) (0.06)

Share Foreign Born 0.01 -0.01 -0.02 -0.01 -0.08 0.15
(0.01) (0.04) (0.01) (0.04) (0.03) (0.03)

Share Empl of Women 0.05 -0.04 -0.08 -0.02 -0.02 0.10
(0.03) (0.12) (0.05) (0.12) (0.07) (0.06)

Share Empl in Routine 0.04 -0.37 0.06 -0.36 -0.01 -0.08
(0.03) (0.14) (0.05) (0.12) (0.07) (0.13)

Avg Offshorability 0.02 0.33 0.00 0.29 0.23 -0.24
(0.02) (0.10) (0.05) (0.08) (0.04) (0.09)

1980 Population Weighted Yes Yes Yes Yes Yes Yes
N 1,444 1,444 1,444 1,444 1,444 1,444
R2 0.02 0.08 0.01 0.08 0.05 0.22

Notes: Each column reports a separate regression. The regressions are two pooled cross-sections, where one cross section is 1980
shares on 1990 characteristics, and one is 1990 shares on 2000 characteristics. Each characteristic is standardized to have unit
standard deviation. The final column is constructed using 1990 to 2000 growth rates. Results are weighted by the population in
the period the characteristics are measured. Standard errors in parentheses.

42



Table 7: OLS and IV estimates: Autor, Dorn, and Hanson (2013)

∆ Emp Coefficients Equal Over ID Test
(1) (2) (3) (4)

OLS -0.38 -0.17 [0.00]
(0.07) (0.04)

TSLS (Bartik) -0.68 -0.62 [0.33]
(0.09) (0.11)

TSLS -0.46 -0.22 [0.00] 872.69
(0.07) (0.06) [0.00]

MBTSLS -0.61 -0.33 [0.00]
(0.07) (0.05)

LIML -1.57 -2.07 [0.82] 1348.50
(0.82) (3.52) [0.00]

HFUL -1.14 -1.13 [0.64] 1141.08
(0.04) (0.04) [0.00]

Year and Census Division FE Yes Yes
Controls No Yes
Observations 1,444 1,444

Notes: This table reports a variety of estimates of the effect of rising imports from China on
US manufacturing employment. The regressions are at the CZ level and include two time
periods (1990 to 2000, and 2000 to 2007). The TSLS row is our replication of Column (1)
and Column (6) of Table 3 in ADH. Column (1) does not contain controls, while column (2)
does. The TSLS (Bartik) row uses the Bartik instrument. The TSLS row uses each industry
share (times time period) separately as instruments. The MBTSLS row uses the estimator
of Anatolyev (2013) and Kolesar et al. (2015) using each industry share (times time period)
separately as instruments. The LIML row shows estimates using the limited information
maximum likelihood estimator. Finally, the HFUL row uses the HFUL estimator of Haus-
man et al. (2012). The J-statistic comes from Chao et al. (2014). The p-value for the equality
of coefficients compares the adjacent columns with and without controls. The controls are
the contemporaneous characteristics displayed in Table 6. Results are weighted by start of
period population. Standard errors are in parentheses.
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Table 8: Summary of Rotemberg weights: Nakamura and Steinsson (2014)

Panel A: Negative and positive weights
Sum Mean Share

Negative -0.933 -0.155 0.600
Positive 1.933 0.483 0.400

Panel B: Correlations of Aggregates
αk gk βk

αk 1
gk 0.877 1
βk 0.081 0.111 1

Panel C: Top 5 Rotemberg weight (region times growth rates)
α̂k gk β̂k 95 % CI

CT MA ME NH RI VT 1.001 1.825 1.739 (1.6,1.9)
TX OK LA AR 0.400 1.202 1.185 (.95,1.4)
CA WA OR AK HI 0.295 1.614 5.727 (5.25,6.25)
MO KS IA NE MN SD ND 0.237 0.964 -1.841 (-2.25,-1.45)
NC SC GA FL -0.133 0.771 5.647 (5.05,6.3)

Panel D: Summary of β̂k
Mean Median 25th P 75th P Share Negative

βk 1.514 1.846 5.040 -2.016 0.400

Notes: This table reports statistics about the Rotemberg weights. In all cases, we report
statistics about the aggregated weights, where we aggregate a national growth rate time re-
gion as discussed in Section 3.4. Panel A reports the share and sum of negative Rotemberg
weights. Panel B reports correlations between the weights, as well as the national compo-
nent of growth (gk) and the just-identified coefficient estimates. Panel C reports the top
five regions times national growth rates according to the Rotemberg weights. The gk is the
share of defense spending in the region, βk is the coefficient from the just-identified regres-
sion, the 95% confidence interval is the weak instrument robust confidence interval using
the method from Chernozhukhov and Hansen (2008). Panel D reports statistics about the
dispersion in the β̂k.
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Figure 1: Pre-trends for high Rotemberg weight industries: Autor, Dorn, and Hanson (2013)
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Notes: These figures report pre-trends for the overall instrument and the top-5 Rotemberg
weight industries as reported in Table 5. The Figures fix industry shares at the 1980 val-
ues and report the effect of these industry shares on manufacturing employment. We run
regressions in growth rates and then convert to levels. We normalize 1970 to 100, and com-
pute the standard errors using the delta method.



Figure 2: Rotemberg weights by state-year policy changes and income
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Notes: These figures report the state-year policy changes to which the estimates are most
sensitive to misspecification. The figure is constructed by weighting the state-year Medi-
caid eligibility changes that go into the definition of eligibility types. The state-year Medi-
caid eligibility changes are weighted by the number of such changes experienced by each
eligibility type so that the bars in Panel (a) sum to one (if an eligibility type experiences
more state-year eligibility changes, then each state-year eligibility change it experiences re-
ceives less weight in the figure). Because the figures represent policy changes the first year
is 1981. Within each year, each of the rectangles indicates a single state. In Panel (a), the
bars sum to one. Panels (b) and (c) split the eligibilility types by their mean income and so
the combination of Panels (b) and (c) sum to Panel (a).



Figure 3: Rotemberg weights by charactestics
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Notes: These figures report the characteristics of the eligibility types to which the estimates
are most sensitive to misspecification. Each of the three panels reports computing the av-
erage characteristics of each eligibility type, sorting the eligibility types according to the
characteristic, and then reporting bin sums of the Rotemberg weights. Thus, in each figure
the weights sum to one.
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A Instruments encompassed by our structure

We now discuss three other instruments that our encompassed by our framework. This list
cannot be exhaustive, but illustrates the widespread applicability of our results.

A.1 Immigrant enclave instrument

Altonji and Card (1991) are interested in the effects of immigration on native wages, but are
concerned that the correlation between immigrant inflows and local economic conditions
may confound their estimates. To fit our notation, let xl denote the number of newly arriv-
ing immigrants in location l in a given interval. Let k denote one of K countries of origin
and let zlk denote the share of people arriving from origin country k living in location l.
Hence, ∑L

l=1 zlk = 1, ∀k. In contrast, in the industry-location setting it is the sum over k that
sums to one. Let gk denote the number of people arriving from origin k. The instrument
comes from lagging the zlk. Once we lag z, say zlk0 in some initial period, then let ilk be the
number of immigrants from origin country k arriving in destination l. Then define glk =

ilk
zlk0

to be the hypothetical flow of immigrants from k that would have to have occurred to have
generated the extent of flows; this allows us to write xl = ∑k zlk0glk. Then rather than us-
ing the glk that makes this an identity, the researcher uses gk = ∑l ilk = ∑l glkzlk0. (This is
analogous to in the industry-location setting weighting the glk by the zlk to compute the gk,
rather than equal-weighting across locations).

A.2 Bank lending relationships

Greenstone, Mas, and Nguyen (2015) are interested in the effects of changes in bank lending
on economic activity during the Great Recession. They observe county-level outcomes and
loan origination by bank to each county. In our notation, let xl be credit growth in a county,
let zlk be the share of loan origination in county l from bank k in some initial period, and
let glk be the growth in loan origination in county l by bank k over some period. Then
xl = ∑k zlkglk.

The most straightforward Bartik estimator would compute ĝ−l,k =
1

L−1 ∑l′ 6=l gl′k. How-
ever, Greenstone, Mas, and Nguyen (2015) are concerned that there is spatial correlation in
the economic shocks and so leave-one-out is not enough to remove mechanical correlations.
One approach would be to instead leave out regions. Instead, they pursue a generalization
of this approach and regress:

glk = gl + gk + εlk, (A1)

where the gl and gk are indicator variables for location and bank. Then the ĝl captures the
change in bank lending that is common to a county, while ĝk captures the change in bank
lending that is common to a bank. To construct their instrument, they use B̂l = ∑k zlk ĝk,
where the ĝk comes from equation (A1).

A.3 Market size and demography

Acemoglu and Linn (2004) are interested in the effects of market size on innovation. Natu-
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rally, the concern is that the size of the market reflects both supply and demand factors: a
good drug will increase consumption of that drug. To construct an instrument, their basic
observation is that there is an age structure to demand for different types of pharmaceuti-
cals and there are large shifts in the age structure in the U.S. in any sample. They use this
observation to construct an instrument for the change in market size.

In our notation, zlk is the share of spending on drug category l that comes from age
group k. Hence, ∑k zlk = 1. Then glk is the growth in spending of age group k on drug
category l. Hence, xl = ∑k zlkglk. To construct an instrument, they use the fact that there
are large shifts in the age distribution. Hence, they estimate ĝk as the increase in the number
of people in age group k, and sometimes as the total income (people times incomes) in age
group k. This instrument is similar to the “China shock” setting where for both conceptual
and data limitation issues glk is fundamentally unobserved and so the researcher constructs
ĝk using other information.

B Omitted proofs

Proposition 1.1

Proof.

β̂GMM =
X⊥

′
ZGG′Z′Y⊥

X⊥′ZGG′Z′X⊥

=
X⊥

′
BB′Y⊥

X⊥′BB′X⊥

= β̂Bartik,

where X⊥
′
B is a scalar and so cancels.

Proposition 3.1

Proof. The proof is algebra:

α̂k(Ŵ)β̂k =
ĉk(Ŵ)Z′kX⊥

∑K
k=1 ĉk(Ŵ)Z′kX⊥

(Z′kX⊥)−1Z′kY⊥ =
ĉk(Ŵ)Z′kY⊥

∑K
k=1 ĉk(Ŵ)Z′kX⊥

(A1)

K

∑
k=1

α̂k(Ŵ)β̂k =
∑K

k=1 ĉk(Ŵ)Z′kY⊥

∑K
k=1 ĉk(Ŵ)Z′kX⊥

(A2)

=
Ĉ(Ŵ)′Z′Y⊥

Ĉ(Ŵ)′Z′X⊥
. (A3)
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Proof of Lemma 3.1.

Proof. Note that

α̂k(Ŵ) =
X⊥′ZŴkZ′kX⊥

X⊥′ZŴZ′X⊥
(A4)

=

(
∑l,t x⊥lt Zlt

)
Ŵk
(
∑l,t zlktx⊥lt

)(
∑l,t x⊥lt Zlt

)
Ŵ
(
∑l,t Zltx⊥lt

) . (A5)

Since our data is i.i.d. and the variance of x⊥lt Zlt is bounded, the law of large numbers holds
as L→ ∞.

Proof of Proposition 3.2

Proof. First, note that

β̂k =
∑l,t zlkty⊥lt
∑l,t zlktx⊥lt

= β0 +
∑l,t zlkt(L−1/2Vlt + εlt)

∑l,t zlktxlt

β̂k − β0 = L−1/2 ∑l,t zlktVlt

∑l,t zlktxlt
+

∑l,t zlktεlt

∑l,t zlktxlt
.

The second term goes to zero because E[zlktεlt] = 0. The first term goes to zero as L → ∞.
Finally, since our summand terms have bounded variance, the law of large numbers holds.
A similar argument holds for the broader summand.

The asymptotic bias of β̃k follows from Proposition 3 of AGS. A sketch of the proof for
this case follows:

√
L(β̂k − β0) =

∑l,t zlktVlt

∑l,t zlktxlt
+
√

L
∑l,t zlktεlt

∑l,t zlktxlt
√

L(β̂k − β0)−
∑l,t zlktVlt

∑l,t zlktxlt
=
√

L
∑l,t zlktεlt

∑l,t zlktxlt
.

Since ∑l,t zlktVlt
∑l,t zlktxlt

converges to ΣZV,k
ΣZX⊥ ,k

, this implies that
√

L(β̂k − β0) converges in distribu-

tion to a normally distributed random variable β̃k with E[β̃k] =
ΣZV,k

ΣZX⊥ ,k
. Finally, since

α̂k(Ŵ) converges in probability to αk(W), by a similar argument this implies that
√

L(β̂−
β0) converges in distribution to a normally distributed random variable β̃ with E[β̃] =

∑k αk(W)
ΣZV,k

ΣZX⊥ ,k
= ∑k αk(W)E[β̃k].
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Proposition 3.3

Proof. Consider the difference in the bias for the two estimators:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
= ∑

k′
αk′(W)E[β̃k′ ]− ∑

k′ 6=k
αk′(W−k)E[β̃k′ ] (A6)

= αk(W)E[β̃k] + ∑
k′ 6=k

(αk′(W)− αk′(W−k))E[β̃k′ ]. (A7)

Now, consider αk′(W) − αk′(W−k). If W = GG′, then C(W) = GB′X⊥ and αk′(W) =
gk′Zk′X

⊥

∑k′ gk′Zk′X⊥
. If W−k = G−kG′−k, then αk′(W−k) =

gk′Zk′X
⊥

∑k′ 6=k gk′Zk′X⊥
, or αk′(W−k) = αk′(W)/(1−

αk(W)).32 This gives:

E
[
β̃(Ŵ)− β̃(Ŵ−k)

]
= αk(W)E[β̃k] + ∑

k′ 6=k

(
αk′(W)− αk′(W)

1− αk(W)

)
E[β̃k′ ] (A8)

= αk(W)E[β̃k]−
αk(W)

1− αk(W) ∑
k′ 6=k

(αk′(W))E[β̃k′ ]. (A9)

Proposition 4.1

Proof.

αk =
gkZ′kX

∑k gkZ′kX

αk =
gk z̄L,kgk + gk z̄L,k ∑l,st.zlk=1 g̃lk

∑k

(
gk z̄L,kgk + gk z̄L,k ∑l,st.zlk=1 g̃lk

)
αk =

g2
k z̄L,k + gk z̄L,k ∑l,st.zlk=1 g̃lk

∑k

(
g2

k z̄L,k + gk z̄L,k ∑l,st.zlk=1 g̃lk

)
Note that as L→ ∞, the numerator remains bounded for any k, but the denominator grows.
Hence, αk → 0.

C Equivalence with K industries, L locations, and controls

The two stage least squares system of equations is:

ylt = Dltρ + xltβ + εlt (A1)
xlt = Dltτ + Bltγ + ηlt, (A2)

32Note that with TSLS, these results would not hold, as the estimates for the first stage parameters after
dropping an industry would be different.
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where Dlt is a 1× S vector of controls. Typically in a panel context, Dlt will include location
and year fixed effects, while in the cross-sectional regression, this will simply include a
constant. It may also include a variety of other variables. Let n = L × T, the number of
location-years. For simplicity, let Y denote the n × 1 stacked vector of ylt, D denote the
n× L stacked vector of Dlt controls, X denote the n× 1 stacked vector of xlt, G the stacked
K × T vector of the gkt, and B denote the stacked vector of Blt. Denote PD = D(D′D)−1D′

as the n × n projection matrix of D, and MD = In − PD as the annhilator matrix. Then,
because this is an exactly identified instrumental variable our estimator is

β̂Bartik =
B′MDY
B′MDX

. (A3)

We now consider the alternative approach of using industry shares as instruments. The
two-equation system is:

ylt = Dltρ + xltβ + εlt (A4)
xit = Dltτ + Zltγt + ηlt, (A5)

where Zlt is a 1× K row vector of industry shares, and γt is a K × 1 vector, and, reflecting
the lessons of Section 1.2, the t subscript allows the effect of a given industry share to be
time-varying. In matrix notation, we write

Y = Dρ + Xβ + ε (A6)
X = Dτ + Z̃Γ + η, (A7)

where Γ is a stacked 1× (T × K) row vector such that

Γ = [γ1 · · · γT] , (A8)

and Z̃ is a stacked n× (T × K) matrix such that

Z̃ =
[

Z� 1t=1 · · · Z� 1t=T
]

, (A9)

where 1t=t′ is an n× K indicator matrix equal to one if the nth observation is in period t′,
and zero otherwise. � indicates the Hadamard product, or pointwise product of the two
matrices. Then, using the Z̃ as instruments, the GMM estimator is:

β̂GMM =
X′MDZ̃ΩZ̃′MDY
X′MDZ̃ΩZ̃′MDX

, (A10)

where Ω is a KT × KT weight matrix.

PROPOSITION C.1. If Ω = GG′, then β̂GMM = β̂Bartik.
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Proof. Start with the Bartik estimator,

β̂Bartik =
B′MDY
B′MDX

(A11)

=
G′Z̃′MDY
G′Z̃′MDX

(A12)

=
X′MDZ̃GG′Z̃′MDY
X′MDZ̃GG′Z̃′MDX

, (A13)

where the second equality follows from the definition of B, and the third equality follows
because X′MDZ̃G is a scalar. By inspection, if Ω = GG′, then β̂GMM = β̂Bartik.

D Consistency under Many Invalid Instruments

D.1 Setup

For simplicities’ sake, we will fix the number of controls, and focus on the many instru-
ments version of this proof. These assumptions follow almost directly from Kolesar et al.
(2015). Our general instrumental variables model follows as:

Yl = Xl β0 + Dlρ + Zlλ + εl (A1)
Xl = ZlGπ1 + Dlπ2 + νl . (A2)

Let Y be the L-component vector with Yl as its lth element, X the L-component vector with
lth element Xl , ε the L-component vector with lth element εl , the L-component vector with
lth element Xl , D be the L× S-matrix with lth row equal to Dl , Z be the L× KL-matrix with
lth row equal to Zl and B = Z′G be the L-component vector with the lth element Bl = Z′l G.
Let Z̄ = (Z, D) be the full matrix of exogeneous variables. If ∑k zlk = 1 , we drop one of the
Z instruments such that the full rank condition holds below. Finally, let PD = D(D′D)−1D′

and MD = I− PD. Recall we write MDX = X⊥.
These parameters can be used to define the following matrix ΛL:

ΛL =

(
ΛL,11 ΛL,12
ΛL,12 ΛL,22

)
=
(

λ Gπ1
)′ Z⊥′Z⊥ ( λ Gπ1

)
. (A3)

ASSUMPTION 4 (Instruments and exogeneous variables). (i) Zl ∈ RKL , G ∈ RKL , Dl ∈
RS, εl ∈ R, νl ∈ R, for l = 1, . . . , L, L = 1, . . . are triangular arrays of random variables
with (G, Zl , Wl , εl , ηl), l = 1, . . . , L exchangeable.

(ii) Z̄ is full column rank with probability one.

ASSUMPTION 5 (Model). (εl , νl)
′|Z, D, G are iid with mean zero, positive definite covariance

matrix Σ and finite fourth moments.

ASSUMPTION 6 (Number of instruments). For some 0 ≤ cK < 1,

KL/L = cK + o(L−1/2). (A4)
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ASSUMPTION 7 (Concentration parameter). For some positive semidefinite 2× 2 matrix Λ with
Λ22 > 0,

ΛL/L→p Λ and E[ΛL/L]→ Λ. (A5)

ASSUMPTION 8 (Zero correlation). Λ12 = 0.

DEFINITION D.1. Let

β̂bartik =
(

B′X⊥
)−1 (

B′Y⊥
)

. (A6)

THEOREM D.1. Assume Assumptions 4, 5, 6, 7,8 hold. Then,

βbartik − β0 = 0. (A7)

Proof. Note the reduced-form for βbartik:

(Yl Xl) = Z′l(ψ1 Gπ1) + D′l(ψ2 π2) + V ′l , (A8)

where ψ1 = λ+ Gπ1β0, ψ2 = δ+π2β0 and Vl = (εl + νl β, νl)
′, and let V be the L× 2 matrix

with lth row equal to V ′l . Let Π = (ψ1, π1), and Y
⊥
= MD(Y X). Finally, let Ω = E[VlV ′l ].

Then, let

Γ =

(
1 0
−β0 1

)
. (A9)

Thus,

Σ = Γ−1′ΣΓ−1 =

(
Σ11 + 2Σ12β0 + Σ22β2

0 Σ12 + Σ22β0
Σ21 + Σ22β0 Σ22

)
(A10)

First, note by Lemma A.3 of Kolesar et al. (2015) that

Y
⊥′

Y
⊥

/L→p Ψ + Ω (A11)

Y
⊥′

PZ⊥Y
⊥

/L→p Ψ + αKΩ, (A12)

where

Ψ =

(
Λ11 + 2Λ12β0 + Λ22β2

0 Λ12 + Λ22β0
Λ12 + Λ22β0 Λ22

)
. (A13)

Note that under the Assumption 8, this simplifies to

Ψ =

(
Λ11 + Λ22β2

0 Λ22β0
Λ22β0 Λ22

)
. (A14)

Then, under a slight modification, we now show that

Y
⊥′

PB⊥Y
⊥

/L→p Ψ + αKΩ, (A15)
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First, note that

E[V′PB⊥V/L|Z⊥, GL] = (1/N)Σ (A16)

since Bl is scalar. Fix a ∈ R2. By an identical argument to Kolesar et al. (2015) for Lemma
A.3,

Var(V′PB⊥V/L) = O(L−2), (A17)

with a slight difference from Kolesar et al. (2015) because the rank of B = 1. Hence

V′PB⊥V/L→p 0. (A18)

This is standard in a just-identified setting.
Next, note by the same argument from Kolesar et al. (2015) in Lemma A.3,

ΠZ⊥,′PB⊥V/L→p 0. (A19)

This follows from Assumption 5, since E[Π′Z⊥′PB⊥V/L] = 0, and from the fact that

Var(Π′Z⊥′PB⊥V/L) = E
[
Var(Π′Z⊥′PB⊥V|Z⊥, Π, G)

]
(A20)

= (a′Σa)E
[
Π′Z⊥′PB⊥Z⊥Π/N2

]
(A21)

= (a′Σa)Γ−1′E
[
ΛL/N2] Γ−1 = O(1/L). (A22)

where

Γ =

(
1 0
−β 1

)
. (A23)

This comes from the fact that the entries of Π′Z⊥′PB⊥Z⊥Π can be written as

(Π′Z⊥′PB⊥Z⊥Π)(11) = λZ⊥′Z⊥G(G′Z⊥′Z⊥G)−1)−1G′Z⊥′Z⊥λ + 2β0π1G′Z⊥′Z⊥λ + π1G′Z⊥′Z⊥Gπ1β2
0

(A24)

(Π′Z⊥′PB⊥Z⊥Π)(12) = λZ⊥′ZGπ1 + π1G′Z⊥′Z⊥Gπ1β0 (A25)

(Π′Z⊥′PB⊥Z⊥Π)(21) = λZ⊥′ZGπ1 + π1G′Z⊥′Z⊥Gπ1β0 (A26)

(Π′Z⊥′PB⊥Z⊥Π)(22) = π1G′Z⊥′Z⊥Gπ1β2
0. (A27)

Then,

Y
⊥′

PB⊥Y
⊥

/L = Π′Z⊥′PB⊥Z⊥Π/L + Π′Z⊥′PB⊥V/L + V′PB⊥Z⊥Π/L + V′PB⊥V/L (A28)
→p Ψ. (A29)

Finally, it follows that

β̂bartik →p Ψ12

Ψ22
= β0. (A30)
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E Normalization

This appendix presents results to understand the role of normalizations. Following Remark
1.1 we always “drop” industry k by subtracting off gk from all the growth rates. Proposi-
tion E.1 shows that the bias coming each instrument can be written as a weighted aver-
age of the bias coming from the remaining K − 1 instruments. Corollary E.1 shows how
the Rotemberg weight gets shifted across instruments depending on which instrument is
dropped. Finally, corollary E.2 shows that the average of the K normalizations is to set the
unweighted mean of the growth rates to zero.

PROPOSITION E.1. If the ∑K
k=1 zlk = 1∀l, then we can write

E[β̃k] = ∑
j 6=k

ωj,kE[β̃ j]

where ωj,k =
ΣZX⊥j

∑j′ 6=k ΣZX⊥
j′

and E[β̃ j] =
ΣZVj

ΣZX⊥j
.

Proof. Recall that
E[β̃k] =

ΣZVk

ΣZX⊥k
.

When ∑K
k=1 zlk = 1, then ∑K

k=1 ΣZX⊥k
= 0 and ∑K

k=1 ΣZVk = 0. Then we can write

ΣZVk = −∑
j 6=k

ΣZVj

and
ΣZX⊥k

= −∑
j 6=k

ΣZX⊥j
.

Then:

E[β̃k] =
ΣZVk

ΣZX⊥k

(A1)

= ∑
j 6=k

ΣZVj

∑j′ 6=k ΣZX⊥j′

(A2)

= ∑
j 6=k

ΣZX⊥j

∑j′ 6=k ΣZX⊥j′

ΣZVj

ΣZX⊥j

(A3)

= ∑
j 6=k

ωj,kE[β̃ j], (A4)

where ωj,k =
ΣZX⊥j

∑j′ 6=k ΣZX⊥
j′

and E[β̃ j] =
ΣZVj

ΣZX⊥j
.

COROLLARY E.1. Let ∑K
k=1 zlk = 1∀l. Let {αk(GG′)}K

k=1 be the set of sensitivity-to-misspecification
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elasticities given a weight matrix formed by a set of growth rates G. Now renormalize the growth
rates by subtracting off gk. Define αj,k(GG′) = αj((G − gk)(G − gk)

′) to be the resulting sensi-
tivity to misspecification elasticities (which imply that we have “zeroed out” the kth instrument).
Then:

αj,k(GG′) = αj(GG′) + ωj,kαk(GG′),

where ωj,k =
ΣZX⊥j

∑j′ 6=k ΣZX⊥
j′

.

Proof. Write:

αj,k(GG′) =
(gj − gk)ΣZX⊥j

∑j′(gj′ − gk)ΣZX⊥j′

(A5)

=
gjΣZX⊥j

∑j′(gj′ − gk)ΣZX⊥j′

−
gkΣZX⊥j

∑j′(gj′ − gk)ΣZX⊥j′

(A6)

=
gjΣZX⊥j

∑j′ gj′ΣZX⊥j′

−
gkΣZX⊥j

∑j′ gj′ΣZX⊥j′

, (A7)

because gk ∑j′ ΣZX⊥j′
= 0. Then:

αj,k(GG′) = αj(GG′)−
gkΣZX⊥j

∑j′ gj′ΣZX⊥j′

ΣZX⊥k
ΣZX⊥k

(A8)

= αj(GG′)− αk(GG′)
ΣZX⊥j

ΣZX⊥k

. (A9)

Recall that ΣZX⊥k
= −∑j 6=k ΣZX⊥j

. So that: −
ΣZX⊥j
ΣZX⊥k

=
ΣZX⊥j

∑j 6=k ΣZX⊥j
= ωj,k. Hence:

αj,k(GG′) = αj(GG′) + ωj,kαk(GG′).

COROLLARY E.2. The average of the K normalizations is:

αj(GG′)avg = αj(GG′)−
ΣZX⊥j

K

[
∑K

k=1 gk

∑K
k=1 gkΣZX⊥k

]
.

If ∑K
k=1 gk = 0, then αj(GG′)avg = αj(GG′).
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Proof. Note that we have two expressions for ωj,k = −
ΣZX⊥j
ΣZX⊥k

=
ΣZX⊥j

∑j 6=k ΣZX⊥j

αj(GG′)avg =
1
K

K

∑
k=1

αj,k(GG′) (A10)

=
1
K

K

∑
k=1

[
αj(GG′) + ωj,kαk(G′G)

]
(A11)

=
1
K

K

∑
k=1

[
αj(GG′)−

ΣZX⊥j

ΣZX⊥k

αk(G′G)

]
(A12)

= αj(GG′)− 1
K

K

∑
k=1

ΣZX⊥j

ΣZX⊥k

gkΣZX⊥k

∑K
j′=1 gj′ΣZX⊥j′

 (A13)

= αj(GG′)−
ΣZX⊥j

K

[
∑K

k=1 gk

∑K
k=1 gkΣZX⊥k

]
. (A14)

F Appendix: Simulation details

We report simulations with 228 industries, where this reflects the number of non-missing
IND1990 3 digit industries in 1980. Similarly, we use 800 locations to correspond (loosely)
to PUMAs. We assume (possibly unlike in the data) that the locations are independent,
and simulate from the empirical distribution of industry shares. Finally, we anchor the
properties of the industry-location growth rates to the U.S. data.

The top panel of Table A1 reports the empirical variances of industry employment
growth with PUMAs and 3 digit industries, while the bottom panel reports the overall vari-
ances of industry-location growth rates. In all simulations, we begin by randomly drawing
industry shares for each location (with replacement) from the empirical distribution of in-
dustry shares, as well as gk, g̃lk and gl terms, which we assume to be normally distributed.
We use these terms to construct an xl , and then draw a random error term εl for each loca-
tion. To create endogeneity in OLS, we add the gl term to εl .

In all simulations, the true value of β is assumed to be 2. We also consider a many
invalid instrument simulation where we add an additional component to the error term
ε̃l = ∑k zlkλk, where λk is drawn independently of gk, and vary the size of the variance of
λk. Finally, to show how the Rotemberg weights matter, in two simulations, we set λk = gk
for five industries; in the first case, the five industries with the small Rotemberg weights (in
absolute value), and in the second, the five industries with the largest Rotemberg weights.

G When the first-stage coefficient is one

PROPOSITION G.1. Let Gl be the K × 1 vector of industry-location growth rates in location l
and let Zl be the 1 × K row vector of industry shares in location l. Suppose that Gl and Zl are
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independent. Then E[Gl |Zl ] = E[Gl ] and the expectation of the first stage coefficient from using
the Bartik instrument is 1. For notational simplicity, we suppress notation that residualizes for
controls.

Proof. Note that we can write Gl = G + G̃l where G is the vector of national growth rates
and G̃l is a K × 1 vector made up of g̃lk. Similarly, Bl = ZlG. Hence, the population
expression is:

Var(Xl) = Var(ZlGl) = Var(ZlG + ZlG̃l) (A1)

= Var(ZlG) + 2Cov(ZlG, ZlG̃) + Var(ZlG̃), (A2)

The probability limit of the first-stage coefficient is then:

plimL→∞γ =
Cov(Bl , Xl)

Var(Bl)
= 1 +

Cov(ZlG, ZlG̃)

Var(ZlG)
. (A3)

Hence, whether the first stage coefficient is 1 depends on the properties of Cov(ZlG, ZlG̃l).
We now show that a sufficient condition for Cov(ZlG, ZlG̃l) = 0 is that E[Gl |Zl ] = E[Gl ].

Cov(ZlG, ZlG̃l) = E[ZlGZlG̃l ]−E[ZlG]E[ZlG̃l ] (A4)
= E[ZlGZl(Gl − G)]−E[ZlG]E[Zl(Gl − G)] (A5)
= E[ZlG(Gl − G)′Zl ]−E[ZlG]E[Zl(Gl − G)] (A6)
= E[ZlE[G(Gl − G)′|Zl ]Zl ]−E[ZlE[G|Zl ]]E[ZlE[(Gl − G)]|Zl ] (A7)
= E[ZlE[G(Gl − G)′]Zl ]−E[Zl ]E[G]E[Zl ]E[(Gl − G)]] (A8)
= 0. (A9)

The first line is the definition of covariance, the second line is the definition of G̃l , the third
line takes the transpose of a scalar, the fourth line is the law of iterated expectations, the
fifth line is the assumption that G and Z are independent, and the sixth follows from the
fact that E[Gl − G] = 0 and Cov(G, Gl − G) = 0.

H An economic model

We consider L independent locations indexed by l. Labor is homogeneous so that the wage
in location l in period t is wlt. The labor supply curve in location l in period t is:

ln NS
lt = σlt + θ ln wlt. (A1)

Here, NS
lt is the quantity of labor supplied and σlt is a location-period-specific shifter of the

level of labor supply. The local labor supply elasticity, θ, is the parameter of interest and is
common across industries and locations.

The demand curve for industry k in location l at time t is given by

ln ND
lkt = Tlkαlkt − φ ln wlt. (A2)
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Here, ND
lkt is the quantity of labor demanded, Tlk is a fixed factor that generates persis-

tent differences in industry composition, αlkt is the time-varying industry-location level
of labor demand, and φ is the common elasticity of local labor demand. Letting αlt =
ln (∑k exp{Tlkαlkt}) be the aggregated location-specific shifter of labor demand, the location-
level demand curve is:

ln ND
lt = αlt − φ ln wlt. (A3)

The equilibrium condition in market l in period t is a labor market clearing condition:
Nlt = NS

lt = ∑k ND
lkt = ND

lt . We let x̃t = ln xt and dxt be the per-period change in xt.
To construct the infeasible Bartik instrument, write the change in log employment in

an industry-location, and then label the components of this decomposition in the same
notation as the previous section:33

dÑlkt = dαkt︸︷︷︸
gkt

−
(

φ

θ + φ
dαlt −

φ

θ + φ
dσlt

)
︸ ︷︷ ︸

glt

+ Tlkdαlkt − dαkt︸ ︷︷ ︸
g̃lkt

.

Define zlk0 ≡ exp(Tlkαlk0)
∑k′ exp(Tlk′αlk′0)

to be the industry shares in period 0.34 Then the infeasible Bartik
instrument that isolates the industry component of the innovations to demand shocks is
Blt = ∑k zlk0dαkt.

In differences and with only two time periods, the equation we are interested in esti-
mating is:

(dw̃lt+1 − dw̃lt) = (τt+1 − τt) + β(dÑlt+1 − dÑlt) + (εlt+1 − εlt) (A4)

where we have differenced out a location fixed effect, εlt is an additive error term and the
goal is to recover the inverse labor supply elasticity β = 1

θ . Traditional OLS estimation of
equation (A4) is subject to concerns of endogeneity and hence the Bartik instrument may
provide a way to estimate β consistently.

H.1 The model’s empirical analogue

It is instructive to compare the population expressions for β̂OLS and β̂Bartik:

β̂OLS =
1
θ

θ
(θ+φ)2 Var(dαlt+1 − dαlt)− φ

(θ+φ)2 Var(dσlt+1 − dσlt) +
φ−θ
φ+θ Cov(dαlt+1 − dαlt, dσlt+1 − dσlt)

θ
(θ+φ)2 Var(dαlt+1 − dαlt)︸ ︷︷ ︸

demand

+ φ
θ

φ
(θ+φ)2 Var(dσlt+1 − dσlt)︸ ︷︷ ︸

supply

+ φ
(θ+φ)2 Cov(dαlt+1 − dαlt, dσlt+1 − dσlt)︸ ︷︷ ︸

covariance

β̂Bartik =
1
θ

Cov[dαlt+1 − dαlt, ∑k zlk0(dαkt+1 − dαkt)]− Cov[dσlt+1 − dσlt, ∑k zlk0(dαkt+1 − dαkt)]

Cov[dαlt+1 − dαlt, ∑k zlk0(dαkt+1 − dαkt)] + Cov[dσlt+1 − dσlt, ∑k zlk0(dαkt+1 − dαkt)]
.

33Combine equation (A1) and (A3) to have the following equilibrium wage equation: ln wlt = 1
θ+φ αlt −

1
θ+φ σlt. Then substitute in to equation (A2) for the equilibrium wage, take differences, and add and subtract a
dαkt.

34Note that ND
lkt

ND
lt

=
exp(Tlkαlkt−φ ln wlt)

exp(αlt−φ ln wlt)
=

exp(Tlkαlkt)
exp(αlt)

=
exp(Tlkαlkt)

exp(ln(∑k exp{Tlkαlkt}))
=

exp(Tlkαlkt)
∑k exp{Tlkαlkt}

.

60



We see that for β̂OLS to be consistent, an important sufficient condition is that there are no
changes in supply shocks, or Var(dσlt+1 − dσlt) = 0. In contrast, for β̂Bartik to be consistent,
industry composition must not be related to innovations in supply shocks, or Cov[dσlt+1 −
dσlt, ∑k zlk0(dαkt+1 − dαkt)] = 0. Bartik is invalid if the innovations in the supply shocks
are predicted by industry composition. For example, Bartik would not be valid if dσlt+1 −
dσlt = dσ̃lt+1 − dσ̃lt + ∑k zlk0(dσkt+1 − dσkt). The relevance condition is that Cov[dαlt+1 −
dαlt, ∑k zlk0(dαkt+1 − dαkt)] 6= 0. A necessary condition for instrument relevance is that
there is variation in the innovations to demand shocks between at least two industries.

The condition for Bartik to be consistent is weaker than for OLS, since the variance of the
innovations to the supply shocks enters into the location-level component of growth (glt)
and Bartik removes these (but not their correlation with demand shocks). The observation
that the Bartik estimator does not include the variance of the innovations to the supply
shocks helps explain why Bartik tends to produce results that “look like” a demand shock.

In this model, any given industry share would be a valid instrument. The exclusion re-
striction is that the industry share does not predict innovations to supply shocks: Cov(dσlt+1−
dσlt, zlk0) = 0. The relevance condition is that Cov[dαlt+1 − dαlt, zlk0] 6= 0, which says that
the industry share is correlated with the innovations in the demand shocks.

I Using growth rates to test overidentification restrictions

We consider a setting where only one instrument has first stage power. We consider a
researcher choosing two sets of weights. We show that given one set of weights, denoted
by G1, and all but one entry in a second vector G2, it is possible to generate two instruments
that have a covariance of 0 and lead to identical parameter estimates. In this case, however,
both Bartik instruments use the same identifying variation and so finding that they are
uncorrelated does not imply that they leverage different sources of variation.

PROPOSITION I.1. Suppose that Z′Z is full rank. Suppose that only the first entry in Z′X (a K× 1
vector) is non-zero. Since we assume that the Z constitute a valid instrument, then only the first
entry in Z′Y is non-zero. Suppose that we are given two sets of weights, G1 and G2, with G1,1 6= 0
and G2,1 6= 0. Suppose we leave the last entry of the second vector unknown (G2,K). Use these two
sets of weights to construct two Bartik instruments: B1 = ZG1 and B2 = ZG2. Assume further
that all the entries in G′1Var(Z) are non-zero. Then it is always possible to find G2,K such that:

1. The two Bartik instruments lead to identical parameter estimates.

2. The two Bartik instruments are uncorrelated.

The proof shows that the first constraint is always satisfied, and derives an expression
for the second constraint.

Proof. The first constraint is that:

β̂1 = β̂2 (A1)
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where for j ∈ {1, 2} β̂ j = G′jZ
′Y(G′jZ

′X)−1. Since only the first entries in Z′X and Z′Y are
nonzero, we have:

G′jZ
′Y(G′jZ

′X)−1 =
∑k Gj,kZ′kY
∑k Gj,kZ′kX

(A2)

=
Gj,1Z′1Y + ∑K

k=2 Gj,kZ′kY

Gj,1Z′1X + ∑K
k=2 Gj,kZ′kX

(A3)

=
Gj,1Z′1Y + ∑K

k=2 Gj,k0

Gj,1Z′1X + ∑K
k=2 Gj,k0

(A4)

=
Z′1Y
Z′1X

, (A5)

where this derivation uses the fact that only the first entry in Z′X (and Z′Y) is nonzero.
Hence, if G1,1 6= 0 and G2,1 6= 0, β̂1 = β̂2, which is true by assumption. Hence, the first
constraint always holds.

The second constraint is that the covariance between the two Bartik instruments is zero:

Cov(B1, B2) = E[B1B2]−E[B1]E[B2] (A6)
= E[(ZG1)(ZG2)]−E[ZG1]E[ZG2] (A7)
= E[(ZG1)

′(ZG2)]−E[ZG1]E[ZG2] (A8)
= G′1E[Z′Z]G2 − G′1E[Z′]E[Z]G2 (A9)
= G′1[E[Z′Z]−E[Z′]E[Z]]G2 (A10)
= G′1Var(Z)G2, (A11)

where this exploits the fact that B1,l is a scalar so we can take the transpose, and G1 and G2
are non-stochastic so that we can pull them out of the expectation. Let T = G′1ΣZ, where
ΣZ = Var(Z). So we can write this first constraint as:

TG2 = 0. (A12)

Note that T is 1× K. By assumption, the last entry in T are nonzero. We now construct an

expression for this entry. To make TG2 = 0, we need ∑K
k=1 TkG2,k = 0⇒ G2,K = −∑K−1

k=1 TkG2,k
TK

.

J The Rotemberg weights with leave-one-out

The formulas we present in Section 3 apply to the case where the weights are common to
all locations (i.e., we compute the national industry growth rates using a weighted average
that included all locations). Here we present the formulas for the αk that obtain when we
use leave-one-out growth rates to construct the Bartik estimator. We note a few things. First,
the numerical equivalence between GMM and Bartik obtains in the limit as the number of
locations goes to infinity when we use a leave-one-out estimator. Second, when we use a
leave-one-out estimator, the weights sum to one in the limit as the number of locations goes
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to infinity. (For notational simplicity we suppress notation that residualizes for controls.)
First, we derive how the leave-location-l-out estimator of G, which we denote by G−l ,

relates to the overall average, G and the location-specific Gl (L is the number of locations):

G =
L− 1

L
G−l +

1
L

Gl ⇒ G−l =
L

L− 1
G− 1

L− 1
Gl .

Second, we derive a version of Proposition 3.1 with the leave-one-out estimator of G.
Note that the instrument constructed using leave-l-out growth rates in location l is: Bl,−l =
Zl
( L

L−1 G− 1
L−1 Gl

)
where G and Gl are K × 1 vectors and Zl is a 1× K vector (and Z will

be the L× K stacked matrix). Then:

Bl,−l = Zl

(
L

L− 1
GL −

1
L− 1

Gl

)
(A1)

Bl,−l =
L

L− 1
ZlG−

1
L− 1

ZlGl (A2)

Bl,−l =
L

L− 1
Bl −

1
L− 1

Xl , (A3)

where the observation is that ZlGl = Xl . Then the stacked version is:

B−l =
L

L− 1
B− 1

L− 1
X,

where B is the vector of Bl and B−l is the vector of Bl,−l .
Then:

β̂ =
B′−lY
B′−lX

(A4)

=

( L
L−1 B− 1

L−1 X
)′ Y( L

L−1 B− 1
L−1 X

)′ X (A5)

=

( L
L−1 (ZG)− 1

L−1 X
)′ Y( L

L−1 (ZG)− 1
L−1 X

)′ X . (A6)

As before:

βk =
Z′kY
Z′kX

. (A7)

Then one can show:

αk =
L

L−1 gkZ′kX− 1
L−1 X′Yβ−1

k

∑k
L

L−1 gkZ′kX− 1
L−1 X′X

. (A8)

By inspection, ∑k αk 6= 1. However, as L → ∞ the sum converges to 1 as the leave-one-out
terms drop out.
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Table A1: Growth summary statistics

Mean Variance

Wage Growth 0.0006
Panel A: Industry:

Puma 3 Digit Emp. Growth 0.0443 0.0044
Panel B: Pooled:

Puma 3 Digit Emp. Growth 0.0472 0.0364
Notes: This table reports a variance decomposition of industry and industry-location
growth rates. Panel A reports the means and variances of industry growth rates. Panel
B reports the means and variance of industry-location growth rates.
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Figure A1: Pre-trends for high Rotemberg weight industries (1990 shares): Autor, Dorn,
and Hanson (2013)
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Notes: These figures report pre-trends for the overall instrument and the top-5 Rotemberg
weight industries as reported in Table 5. The Figures fix industry shares at the 1990 val-
ues and report the effect of these industry shares on manufacturing employment. We run
regressions in growth rates and then convert to levels. We normalize 1970 to 100, and com-
pute the standard errors using the delta method.



Figure A2: Pre-trends for high Rotemberg weight industries (time-varying shares): Autor,
Dorn, and Hanson (2013)
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Notes: These figures report pre-trends for the overall instrument and the top-5 Rotemberg
weight industries as reported in Table 5. The Figures update industry shares as in the
benchmark ADH regressions and report the effect of these industry shares on manufactur-
ing employment. We run regressions in growth rates and then convert to levels. Because
1970 shares are not available in the data, we normalize 1980 to 100, and compute the stan-
dard errors using the delta method.
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