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Abstract

Nonlinear �ltering�that is the computation of the conditional distribution of a latent state vector

given the available information�is generally an in�nite dimensional problem for which no closed form

solution exists. This paper uses the perturbation method to derive an approximate �lter for models

in which the hidden state follows a linear Gaussian transition equation, but the observation equation

is nonlinear and non-Gaussian. Key features of the proposed approximate �lter are: (1) it is �nite

dimensional which reduces the dimension of the problem; (2) it is characterized by a �nite number

of su�cient statistics that are Markovian; (3) the number of su�cient statistics increases linearly

with the order of the approximation; (4) as in the case of Kalman �lter, the equations governing the

dynamics of the su�cient statistics are available in closed form, which makes the computation fast

and straightforward. Explicit formulas are derived for stochastic volatility models. The intended

use of the perturbation �lter is in applications in which the state reduction is essential, such as the

dynamic stochastic choice problems in which decision-maker does not observe all the relevant states.

Keywords: nonlinear state space systems; Bayes updating; stochastic volatility.

JEL Classi�cation: C22; C58.

1 Introduction

This paper proposes a perturbation method to solve the nonlinear �ltering problem, that is the problem

of computing the conditional distribution of a latent state vector given the available information. While

the traditional expansion based methods such as the extended Kalman �lter (EKF) aim at linearizing the

nonlinear observation equation (see, e.g., Anderson and Moore, 1979), our method approximates directly

∗Corresponding Author: Department of Economics, Georgetown University, 37th St NW & O St NW, Washington, DC
20007. Email: Ivana.Komunjer@georgetown.edu
†Rice University, 6100 Main Street, Houston, TX 77251. Email: natalia.sizova@rice.edu

Acknowledgments: This paper was presented at 2015 NBER-NSF Time Series conference in Vienna, 2015 Midwest
Econometrics Group meeting at FRB of St. Louis, The Society for Computational Economics 2016 CEF conference in
Bordeaux, as well as seminars at Indiana University, University of Washington, USC, and Northwestern University. We
thank seminar participants for helpful comments and suggestions.

1



the object of interest: the conditional distribution of a latent state vector given the current information,

also known in the literature as the nonlinear �lter.1 The key features of the proposed method are:

(i) closed form solutions for increasing orders of approximation, unlike in the case of EKF which is a

�rst-order approximation method; (ii) no curse of dimensionality unlike in the case of discretization

or randomization methods such as particle �ltering; (iii) fast computation as in the case of Kalman

�ltering; (iv) ability to deliver reasonable approximations even in nonlinear state-space models that

are not separable in the disturbances, case in which EKF fails to update based on observations. The

latter is particularly relevant in the context of stochastic volatility models which are nonseparable in

the observation errors. Finally, it is worth emphasizing that our approximation has a clear asymptotic

interpretation. This feature is important if one is interested in embedding our �ltering method within

an estimation procedure, or else within a structural dynamic stochastic choice model with imperfect

information.

In the most general form, the problem of computing the conditional distribution of a latent state

vector given the available information is an in�nite dimensional problem for which no closed form solution

exists. Thus, some approximation to the nonlinear �lter is needed. This problem has spun a vast

literature that transgresses the boundaries of several �elds. We limit our short review of this literature

to the techniques applied in economics and �nance. We start with the results that obtain in two special

cases often assumed in structural economic models: discrete and linear Gaussian state space models. In

their robust control model, Hansen and Sargent (2007, 2010) obtain closed-form solutions in the linear

case and in the case with a discrete unobserved state with two values. Kalman �lter can be used in the

linear model. The optimal rule in the discrete model follows a simple Bayes updating that tracks two

probabilities.

Stochastic volatility models, which are the leading example in this paper, are by construction nonlin-

ear. Some approximation to the nonlinear �lter in these models is therefore needed. A well-established

approach that yields accurate approximations to the posterior density at the expense of computing time

and tractability is the particle �lter, also known as the sequential Monte Carlo method. Particle �ltering

has been widely applied to the structural models in macroeconomics; see, e.g., Fernández-Villaverde

and Rubio-Ramírez (2007) for the �rst application of the particle �lter in this context, and the book by

Herbst and Schorfheide (2016) for state-of-the-art computational techniques. Applications of the particle

�lter to the stochastic volatility models can be found in Shephard and Pitt (1999) and Polson, Stroud,

and Müller (2008).2

1Some authors use the term ��lter� di�erently, as a �ltering algorithm or a posteriori state estimate.
2There exists a large body of work on stochastic volatility �ltering. Ruiz (1994) and Harvey, Ruiz, and Shephard (1994)

apply the Kalman �lter within the quasi-maximum likelihood estimation. Although the Kalman �lter is not optimal in
their setup, the resulting pseudo-posterior density can yield consistent quasi-maximum likelihood estimates of the model
parameters. This approach can be applied to the dynamics that allow for linearization in the latent state after a suitable
transformation, but cannot be extended to more general observation equations. Similar to other methods that extend
the notion of the Kalman �lter to non-linear settings, this method lacks asymptotic interpretation beyond the �rst-order
approximation. Jacquier, Polson, and Rossi (1994) suggest a new Bayesian (MCMC) approach to �ltering stochastic
volatility. This approach approximates the posterior density by a random sample. Shephard and Pitt (1997) and Kim,
Shephard, and Chib (1998) o�er improved algorithms for the method. The advantage of the Monte Carlo methods is that
they provide an accurate way to generate posterior densities of the unobserved volatilities. However, the de-facto state
variables for this approximation include all the random draws from the posterior distribution, which makes any Monte
Carlo method di�cult to incorporate within a dynamic stochastic choice model. Similar to the particle �lter, the MCMC
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The approximation method proposed in this paper is based on the perturbation approach. The main

idea is simple: if the problem is smooth enough and admits a closed form solution in a special case,

then an approximate solution can be obtained by considering small deviations of the problem around

this case. The idea, dating back to the seminal paper by Fleming (1971), has been used to obtain

approximate solutions to stochastic control problems around solutions obtained in the deterministic

steady state (see, Bensoussan, 1988; Judd, 1996; Schmitt-Grohé and Uribe, 2004; Fernández-Villaverde

and Rubio-Ramírez, 2006; Justiniano and Primicieri, 2008; Fernández-Villaverde, Guerrón-Quintana,

Rubio-Ramírez, and Uribe, 2011; Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramírez, 2015).

Unlike this prior work, we apply the perturbation method to approximate the nonlinear �lter. The

resulting approximation is a posterior density that at a given level accuracy depends on a �nite number

of su�cient statistics that are Markovian. In particular, we approximate the nonlinear �lter around the

uninformative case, in which the observation density carries no information about the latent state. Our

approximations take a form similar to the Edgeworth and Gram-Charlier expansions (see, e.g., Sorenson

and Stubberud, 1968; Kizner, 1969). However, unlike these expansions which rely on the polynomial

approximations to the dynamic equations, our method directly approximates the density functions.

Hence, our method is invariant with respect to variable transformations.

The algorithm of the proposed perturbation �lter is as follows. Normalize the unobserved state to

have mean zero. Let the perturbation parameter be the scale of the unobserved state in the observation

density. At time t = 0, initialize the prior distribution of the latent state to be equal to its unconditional

density. The conditional density of the latent state at time t = 1 based on observations at time t = 1

is calculated from the prior using the transition equation and the Bayes updating rule. This recursive

formula is nonlinear and generally impossible to solve analytically. The idea then is to replace it with a

polynomial expansion in the perturbation parameter. The approximate �lter at time t = 1 is obtained

by truncating all of the terms in this polynomial expansion above the required level of approximation.

Use this approximate �lter to initialize the prior distribution of the latent state for the next step t = 2.

Proceed with the same steps for all t to the end of the sample. Due to the linearity of the transition

equation, this algorithm results in a non-expanding set of su�cient Markovian statistics that de�ne the

approximation at each time t.

The leading example used in this paper is the stochastic volatility model, in which the return rt and

its volatility expσt follow:

rt+1 = ρrt + (expσt)εt+1,

σt+1 = (1− λ)σ̄ + λσt + ηωt+1, (1)

and where εt is iid with a density pε on R satisfying E(εt) = 0 and E(ε2t ) = 1, ωt is iid standard Gaussian,

and εt and ωt are independent. The above is a central model of asset returns in the �nancial literature

(see, e.g., Hull and White, 1987; Ghysels, Harvey, and Renault, 1996; Shephard, 2004). It also appears

in the general equilibrium asset pricing models that capture the e�ect of uncertainty in the �nancial

approach depends on a large number of state variables, which complicates its use. Creal (2012) provides a survey of
sequential Monte Carlo methods in economics and �nance.
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markets (see, e.g., Bansal and Yaron, 2004; Bollerslev, Tauchen, and Zhou, 2009); as well as in the

macroeconomic (DSGE) models that study the negative e�ect of volatility on various macroeconomic

indicators (see, e.g., Justiniano and Primicieri, 2008; Fernández-Villaverde, Guerrón-Quintana, Rubio-

Ramírez, and Uribe, 2011; Caldara, Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramírez, and Yao,

2011).

Though all our derivations are speci�c to the model in (1), our method easily generalizes to the

state space models with linear Gaussian transition equations and nonlinear non-Gaussian observation

equations. In particular, the perturbation �lter can be applied to the models with unobserved time

varying coe�cients in the observation equation, as well as to the models with unobserved probabilities

of extreme events and unobserved expected growths. The correlation between εt and ωt in the stochastic

volatility model (leverage e�ect) can be accommodated by expanding the unobserved state to the bi-

variate process (σt+1, σt), as done in the particle �ltering literature. The perturbation �lter formulated

in this paper also has important limitations. For instance, it relies on the underlying Markov structure of

the problem, and, therefore, cannot be applied to stochastic volatility models with fractional integration.

The remainder of the paper is organized as follows. Section 2 describes the setup. The perturbation

method and its application to the nonlinear �lter are presented in Section 3. Section 4 discusses the

robustness of our results and possible extensions. A Monte Carlo experiment is presented in Section 5.

The �nal section concludes.

As a matter of notation, for any real function f : R→ R, [f(x)]+ = max(f(x), 0) denotes the positive

part of f , while [f(x)]− = −min(f(x), 0) denotes the negative part of f . In what follows, L1(R) is the

collection of equivalence classes of measurable real functions f : R→ R whose L1 norm ‖f‖1 =
´
|f |dλ is

�nite. Here, the measure space is (R,B(R), λ) with λ denoting the Lebesgue measure. L+
1 (R) denotes the

positive cone in L1(R), i.e. L+
1 (R) = {f ∈ L1(R) : f > 0}. We also let R∗ ≡ R\{0}. To denote derivatives

of functions, we interchangeably use the notation: ∂f(x)/∂x = f ′(x) = fx(x) = f (1)(x) = f(1)(x),

depending on the context. The degree of approximation is denoted by a bracketed superscript, as in

f [1](x), for example.

2 Model and Assumptions

We focus on a class of nonlinear and non-Gaussian state space models that take the form:

yt+1 = exp(ηxt)εt+1

xt+1 = λxt + ωt+1,
(2)

for every t > 0, where x0 ∈ R is drawn from a distribution with density p0, {εs}s>1 and {ωs}s>1 are

iid sequences of random variables drawn from distributions with densities pε (mean 0 and variance 1)

and ϕ (standard Gaussian), respectively, and {εs}s>1, {ωs}s>1, and x0 are independent.3 While we

restrict ωt to be Gaussian, we allow quite general choices for the distribution of εt. In particular, εt is

not restricted to be Gaussian, and is allowed to exhibit thick tails, property particularly important in

3Extensions to general state space models with vector valued variables and nonlinear non-Gaussian observation equations
are considered in Section 4.4.
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�nancial applications. The stochastic volatility model (1) is a special case of the state space model (2)

with yt+1 = (rt+1 − ρrt) exp(−σ̄) and xt+1 = (σt+1 − σ̄)/η.

The two parameters appearing in the model (2) are: η ∈ R and λ ∈ R, where the latter is further
restricted to lie strictly inside the unit interval. The parameter η will play a particularly important role

in our analysis, which is why we shall keep explicit reference to η in the expressions to follow. We shall

however drop the reference to λ, and will treat its value as being �xed.

While we assume yt ∈ R to be observed, xt ∈ R remains latent. Thus, the model in (2) is a hidden

Markov model (see, e.g., Meyn and Tweedie, 1993, for de�nitions). Because of its observation equation,

the model is both non-linear and non-Gaussian, with the observation density p(y | x, η) given by

p(y | x, η) = exp(−ηx)pε (exp(−ηx)y) .

The transition density q(x′ | x) is however Gaussian,

q(x′ | x) = ϕ(x′ − λx).

Let it = (y1, . . . , yt) (it ∈ It) denote the information at time t, and let ht = (x0, x1, y1, . . . , xt, yt)

(ht ∈ Ht) denote the time t history. The time t information is the portion of the time t history known

at time t. We shall consider the density p0 of x0 as an element in L1(R). The object of interest is the

nonlinear �lter, i.e. the conditional density of xt given time t information it. Hereafter, we maintain the

following assumptions.

Assumption 1. p0 > 0 on R and pε > 0 on R.

Assumption 2. |λ| < 1.

Assumption 3. pε ∈ C1(R), supu∈R |upε(u)| <∞, and supu∈R |u2p′ε(u)| <∞.

The role of Assumption 1 is twofold: �rst, it ensures that the observation density p(y | x, η) is

everywhere strictly positive. Second, it implies that the sequence of probability densities πt(η, p0) ∈
L1(R2t+1) of histories ht de�ned by:

πt(η, p0)[x0, x1, y1, . . . , xt, yt] = p0(x0)

t∏
s=1

p(ys | xs−1, η)q(xs | xs−1),

satis�es πt(η, p0) > 0 on Ht. As a consequence, the conditional density pt(η, p0) of xt given time t

information is well de�ned and given by:

pt(η, p0)[xt] =

´
Rt πt(η, p0)(x0, x1, y1, . . . , xt, yt)dx0dx1 . . . dxt−1´

Rt+1 πt(η, p0)(x0, x1, y1, . . . , xt, yt)dx0dx1 . . . dxt−1dxt
, (3)

and has the property that pt(η, p0) > 0 on R for every it ∈ It. Equation (3) de�nes a functional process

{pt(η, p0)}t>0 where each pt(η, p0) is an element in L1(R) satisfying pt(η, p0) > 0 on R for every it ∈ It
(i.e. pt is a probability density), that is parameterized by it ∈ It. In the terminology of Bertsekas and

Shreve (1978, De�nition 7.12), pt(η, p0) is a stochastic kernel. Equation (3) also makes it clear that each
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pt(η, p0) depends on the value of η as well as the choice of the prior p0. Thus di�erent choices of priors

result in di�erent processes {pt(η, p0)}t>0.

Under Assumption 2, the Markov chain {xt}t>0 is positive recurrent, geometrically ergodic and its

stationary distribution is Gaussian with mean 0 and variance σ2 ≡ (1 − λ2)−1 (see, e.g. Meyn and

Tweedie, 1993). In what follows, we denote by p the corresponding stationary density,

p(x) =
1√

2πσ2
exp

(
− x2

2σ2

)
.

It then follows that {(xt, yt+1)′}t>0 is a positive recurrent Markov chain with stationary distribution that

has a density p(x)p(y | x, η). Existence of a unique stationary density for {xt}t>0 shall be important

for our purposes. It will allow us to pick p as a prior density for x0, choice which proves convenient for

computation purposes. As we shall later show in Section 4.3, our approximation results are robust to

the choice of prior.

Assumption 3 plays several roles. First, by requiring that the probability density pε of the observa-

tion error εt be continuously di�erentiable on R, this assumption implies that the observation density

p(y | x, η) is a smooth enough function of the parameter η to justify the use of local approximation meth-

ods, such as Taylor's expansions around a particular value η = 0. Second, the boundedness conditions in

Assumption 3 allow to de�ne dominating functions that are instrumental in applying the Lebesgue dom-

inated convergence theorem in our proofs. Lastly, this assumption combined with additional conditions

on pε is also used to establish the irrelevance of the choice of prior.

3 Perturbation Approach

The starting point of our approach is a recursive formulation of the nonlinear �lter. It is indeed straight-

forward to show (see, e.g., Lemma 10.4 Bertsekas and Shreve, 1978) that starting with a prior p ∈ L1(R)

the conditional density pt(η, p) in (3) can be calculated recursively as:4

p1(η, p) = φ(p, y1, η)

pt+1(η, p) = φ (pt(η, p), yt+1, η) , t > 1 (4)

where φ : L1(R)× R× R→ L1(R), and

φ(f, y, η)[x′] ≡
´
q(x′ | x)p(y | x, η)f(x)dx´

p(y | x, η)f(x)dx
. (5)

In general, the recursion (4) cannot be solved analytically. The starting point of the perturbation

method is to look for the case in which a closed form solution to (4) is available, then approximate pt in

a neighborhood of that particular solution. The solution which we consider is the unconditional density

of xt, obtained in the limit case in which the observation density p(y | x, η) is not informative about

the latent state. This amounts to approximating the conditional density pt of the state around the case

4This recursive formulation for pt(η, p0) remains of course valid even if we start with a di�erent prior p0 6= p. Here, for
the reasons of prior irrelevance, we focus on the case p0 = p.
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η = 0, in which case p(yt+1 | xt, 0) = pε(yt+1). In this uninformative case, the solution to the �ltering

equation (4) is known and equal to

pt(0, p) = p for all t > 0.

The idea then is to use Taylor-series expansions of φ around η = 0 and recursively construct the

corresponding perturbed densities. For example, at the �rst order, starting with p
[1]
0 (η, p) = p construct

p
[1]
1 (η, p) = φ(p

[1]
0 (η, p), y1, 0) + φη(p

[1]
0 (η, p), y1, 0)η.

Notice that on the right-hand side, we have replaced the nonlinear function φ(p
[1]
0 (η, p), y1, ·) with its �rst

order Taylor approximation around η = 0: φ(p
[1]
0 (η, p), y1, 0) + φη(p

[1]
0 (η, p), y1, 0)η. We then proceed to

show that p
[1]
1 (η, p) ∈ L1(R), and that

‖p1(η, p)− p[1]
1 (η, p)‖1 = o(|η|) a.s. (6)

so that we can call p
[1]
1 (η, p) a �rst order approximation to p1(η, p). The construction of higher order

approximations follows along the same lines, with higher order Taylor approximations to φ. The above

construction clearly requires that φ(f, y, ·) be a di�erentiable function, property which we shall formally

establish below.

Though the property in (6) guarantees that the approximate density p
[1]
1 (η, p) is close to p1(η, p) in

L1 distance as η gets small, this by itself does not guarantee that the moments of p
[1]
1 (η, p) approximate

those of pt(η, p). To guarantee the latter, we would like a property of the kind∣∣∣∣ˆ
R
xkp1(η, p)[x]dx−

ˆ
R
xkp

[1]
1 (η)[x]dx

∣∣∣∣ = o(|η|), a.s. for every k > 1.

Since the above is implied by ‖(·)kp1(η, p)[·]−(·)kp[1]
1 (η, p)[·]‖1 = o(|η|) a.s., we are conducted to consider

the di�erentiability properties of the mapping Φk : L1(R)× R× R→ L1(R) where

Φk(f, y, η)[x] = xkφ(f, y, η)[x], k > 0. (7)

Of course, when k = 0, Φk simply reduces to φ.

Given f ∈ L+
1 (R) and y ∈ R∗, we �rst establish the Fréchet di�erentiability of Φk(f, y, ·) : R→ L1(R)

on R, i.e. that for every η ∈ R there exists a continuous linear map Φk
η(f, y, η) : R→ L1(R), such that

lim
h→0

‖Φk(f, y, η + h)− Φk(f, y, η)− Φk
η(f, y, η)h‖1

|h|
= 0.

The following result formally establishes di�erentiability and provides an expression for the derivative.5

Lemma 1. Let Assumptions 1 to 3 hold, and take any k > 0. Then, for any f ∈ L+
1 (R) such that

5We use subscripts to denote the partial derivatives with respect to a variable, i.e. pη(y | x, η) ≡ ∂p(y | x, η)/∂η.
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´
|x|k+1f(x)dx <∞, and any y ∈ R∗, Φk(f, y, ·) is Fréchet di�erentiable on R, with derivative

Φk
η(f, y, η)[x′] = (x′)k

{´
q(x′ | x)pη(y | x, η)f(x)dx´

p(y | x, η)f(x)dx
−
[´
q(x′ | x)p(y | x, η)f(x)dx

] [´
pη(y | x, η)f(x)dx

][´
p(y | x, η)f(x)dx

]2
}
.

The above property is crucial in showing that not only p
[1]
1 (η, p) (and recursively constructed p

[1]
t (η, p),

t > 1) approximates p1(η, p) (and pt(η, p), t > 1) in L1 norm as η gets small, but also that the moments

of the �rst approximate the moments of the second. The proof of Lemma 1 relies on the Lebesgue

dominated convergence theorem, which requires an integrable dominating function. The latter is easy

to construct provided the �rst argument f of Φk(f, y, η) has bounded moment of order k+ 1, in a sense

that
´
|x|k+1f(x)dx < ∞. Since we intend to apply the result of Lemma 1 recursively to the densities

pt(η, p) it remains to establish the behavior of their moments. This is done in the following lemma.

Lemma 2. Let Assumptions 1 to 3 hold, and take any k > 1. Then, for any η ∈ R and any initial

density p0 such that ˆ
R
|x|kp0(x)dx <∞,

the sequence of conditional densities {pt(η, p0)}t>1 satis�es

ˆ
R
|x|kpt(η, p0)[x]dx <∞ a.s. for every t > 1.

Put in words, Lemma 2 says that when it comes to integrability, the properties of the prior p0

transfer to those of the entire sequence of conditional densities {pt(η, p0)}t>1 initiated at the prior p0.

In particular, letting p0 = p, which is Gaussian and satis�es
´
|x|kp(x)dx <∞ for every k > 1, ensures

that for every t > 1 and every k > 1,
´
|x|kpt(η, p)[x]dx <∞ a.s.. Thus, we will be able to apply Lemma

1 to establish the di�erentiability of Φk(pt(η, p), yt+1, ·).
We are now able to state our main result, which establishes the �rst order approximation to pt(η, p).

Theorem 1 (First order approximation). Let Assumptions 1 to 3 hold. Consider

p
[1]
t (η, p)[x] ≡ p(x) [1 +A1,tηx] ,

where

A1,t = λ [A1,t−1 − ψ1(yt)] , t > 1, A1,0 = 0,

and ψ1(y) = 1 + yp′ε(y)/pε(y). Then p1
t (η, p) ∈ L1(R),

´
|p[1]
t (η, p)(x)|dx = 1, and

´
|xkp[1]

t (η, p)[x]|dx <
∞, a.s. and for every k > 1. Moreover, p

[1]
t (η, p) is a �rst order approximation to pt(η, p) in a sense

that for every t > 1,

‖pt(η, p)− p[1]
t (η, p)‖1 = o(|η|) a.s.ˆ ∣∣∣xk(pt(η, p)[x]− p[1]

t (η, p)[x]
)∣∣∣ dx = o(|η|) a.s. for every k > 1.

There are three important features of the above result. First, the approximate density p
[1]
t (η, p) is
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summarized by one su�cient statistic A1,t which has the Markov property. There are few cases in which

the exact conditional densities pt(η, p) are known to satisfy this condition. One example is a model with

a discrete unobserved state that takes a few values, such as a model indicator in Hansen and Sargent

(2010). Another example is a linear Gaussian state space model considered in Hansen and Sargent

(2007). In this model, the su�cient statistics are the mean and variance of a normal density, which

are updated through the Kalman �ltering equations. Kalman �lter is however no longer applicable in

nonlinear models such as the one considered here. Theorem 1 shows that the updating equation for the

su�cient statistic A1,t now explicitly depends on the density pε of the observation error through the ψ1

function. For instance, if pε is Gaussian, then ψ1(y) = 1 − y2, while if pε is Student-t density with ν

degrees of freedom, ψ1(y) = 1− (ν+1)y2

ν−2+y2
.

Second, the density proposed in Theorem 1 is a local approximation to the exact nonlinear �lter.6

This feature of our approach is similar to that of the EKF, which too is a local approximation method

(see, e.g. Anderson and Moore, 1979, for details). There are however fundamental di�erences. EKF

relies on the linear approximations to observation and transition equations (rather then densities). If ε

has zero mean, then the linearization of yt+1 = exp(ηxt)εt+1 around the �ltered x̂t and the zero shock

is yt+1 ≈ exp(ηx̂t)εt+1. That is, the linearized observation equation in the extended Kalman �lter is

uninformative about xt. As a result, no observed information is utilized in updating the conditional

density of xt, and the latter remains equal to the prior p. In contrast to the EKF technique, the

perturbation approach expands densities. Therefore, even if the observation equation is nonseparable

in the error εt, case often ruled out by the EKF literature, the approximate conditional densities of xt

utilize the information in yt.

Third, the conditional densities p
[1]
t (η, p) not only approximate pt(η, p) to the �rst order in L1 norm,

but it also holds that all the moments under p
[1]
t (η, p) approximate those under pt(η, p). This follows

from the second result of Theorem 1 since∣∣∣∣ˆ xkpt(η, p)[x]dx−
ˆ
xkp

[1]
t (η, p)[x]dx

∣∣∣∣ 6 ˆ ∣∣∣xk (pt(η, p)[x]− p[1]
t (η, p)[x]

)∣∣∣ dx.
The proof of Theorem 1 exploits the recursive construction of the approximation p

[1]
t (η, p), and is by

induction. The details are given in Appendix.

An important property that the approximation in Theorem 1 shares with Edgeworth and Gram-

Charlier expansions (see, e.g., Sorenson and Stubberud, 1968; Kizner, 1969) is that the posterior density

is nearly Gaussian. Though both expansions take a form of a polynomial expansion around the uncondi-

tional normal distribution, in the case of our approximation this is not an a priori assumption but rather

an outcome of the Taylor decomposition with respect to η around zero. There is another key di�erence

in the two types of expansions: while the Edgeworth and Gram-Charlier expansions result from polyno-

mial approximations to the dynamic equations, our method directly approximates the density functions.

Hence, our method is invariant with respect to variable transformations.

6As noted by Kim, Kim, Schaumburg, and Sims (2008), the local accuracy of perturbation methods is often su�cient
in econometric applications involving simulations and forecasts.
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4 Extensions

We now discuss several important extensions of the approximation result in Theorem 1. First, we

consider perturbations with respect to some nonlinear transformation of the perturbation parameter.

Second, we give formal conditions under which higher-order perturbation approximations are valid, and

we derive explicit formulas for second- and third-order approximate �lters.7 Third, we establish that the

choice of the prior is irrelevant. And �nally, we provide the heuristics of how the perturbation �lter is

constructed in a general state space model with linear Gaussian transition and non-linear non-Gaussian

observation equation.

4.1 Non-linear change of variables

As noted by Judd (2002), the performance of local perturbation methods can be substantially improved

by appropriate changes of variables. The idea is to improve the performance of the perturbation approx-

imation at large values of η by considering perturbations with respect to some nonlinear transformation

of η. Currently, the literature provides little guidance on the optimal choice of transformations. Our

proposal is to try di�erent transformation families and choose the one that yields the smallest �lter

errors.

Consider a function S : R → R, η 7→ S(η), such that S(0) = 0 and consider approximations to the

nonlinear �lter in terms of the new perturbation parameter ς ≡ S(η). If S is continuously di�erentiable

and S′(0) 6= 0, we can locally invert S in a neighborhood of zero, and express η in terms of the new

perturbation parameter ς = S(η). This simple transformation leads to the following result.

Corollary 1. Let the assumptions of Theorem 1 hold. Consider a transformation S ∈ C2(R) such that

S(0) = 0 and S′(0) 6= 0. Let

p
[1]
t (ς, p)[x] ≡ p(x)

[
1 +

A1,t

S′(0)
ςx

]
,

where

A1,t = λ [A1,t−1 − ψ1(yt)] , t > 1, A1,0 = 0.

Then p
[1]
t (ς, p) is a �rst order approximation to pt(η, p) in ς = S(η), in a sense that for every t > 1,

‖pt(η, p)− p[1]
t (ς, p)‖1 = o(|ς|) a.s.ˆ ∣∣∣xk(pt(η, p)[x]− p[1]

t (ς, p)[x]
)∣∣∣ dx = o(|ς|) a.s. for every k > 1.

As an example, we consider a transformation that maps η ∈ R to a bounded set. We de�ne a

particular transformation for which the new perturbation parameter ς = S(η) measures the degree of

informativeness of the observation yt+1 about the latent state xt. In particular, say that informativeness

is measured by the signal-to-noise ratio. The signal about xt is proportional to η
2. Denote the average

magnitude of the noise expressed in the same units by s2, 0 < s < ∞. Therefore, the informativeness

of yt+1 about xt is measured by η2/(η2 + s2), which we set to be equal to [S(η)]2. To make this

7Appendix B.1 contains detailed derivations for the second-order �lter. The expressions for the third-order approxima-
tion are provided without proof in Appendix B.2
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transformation injective, we can de�ne S(η) so that it inherits the sign of η. Therefore, ς = S(η) ∈ (−1, 1)

in the presence of the noise. Note that S(0) = 0 and S′(0) = s−1 6= 0.

4.2 Higher order approximations

Establishing higher order approximations to the nonlinear �lter hinges on the existence of higher order

derivatives of the mapping Φk(f, y, ·) in (7). This in turn requires stronger di�erentiability and bound-

edness requirements on the density pε of the observation error in (2). In what follows, let n ∈ N denote

the desired level of approximation.

Assumption 3'. pε ∈ Cn(R), supu∈R |uj+1p
(j)
ε (u)| <∞ for j = 0, . . . , n.

Note that the conditions in Assumption 3 are equivalent to those of the new Assumption 3' obtained

in the special case n = 1, i.e., the approximation is to the �rst order. Under this stronger di�erentiability

assumption, we now have the following result on the di�erentiability of Φk(f, y, ·).

Lemma 3. Let Assumptions 1, 2 and 3' hold, and take any k > 0. Then, for any f ∈ L+
1 (R) such that´

|x|k+nf(x)dx < ∞, and any y ∈ R∗, Φk(f, y, ·) is n-times Fréchet di�erentiable on R, with nth order

derivative Φk
(n)(f, y, ·) that can be computed recursively as:

Φk
(n)(f, y, η) =

1´
p(y | x, η)f(x)dx

(
(x′)k

ˆ
q(x′ | x)p(n)(y | x, η)f(x)dx

− n!
n∑
j=1

´
p(n+1−j)(y | x, η)f(x)dx

(n+ 1− j)!
Φk

(j−1)(f, y, η)

(j − 1)!

)
,

with

p(n)(y | x, η) = (−x)n exp(−ηx)
n∑
j=0

n!

(n− j)!j!
∑ j!

b1! . . . bj !

1

1!b1 . . . j!bj
p(r)
ε (exp(−ηx)y) [y exp(−ηx)]r,

where the second sum ranges over all di�erent solutions in nonnegative integers (b1, . . . , bj) of b1 + 2b2 +

· · ·+ jbj = j and where r is de�ned as r = b1 + · · ·+ bj.

Compared with Lemma 1 which establishes the �rst order di�erentiability of Φk(f, y, ·), the above

result requires stronger integrability conditions: one now needs |x|k+n to be integrable with respect to

the �rst argument f of Φk(f, y, η), where n denotes the desired order of di�erentiation.

Based on the result of Lemma 3, the construction of higher order approximations to the nonlinear

�lter then proceeds as follows. For any desired order n > 1, start at p
[n]
0 (η, p) = p, and construct

p
[n]
1 (η, p) = φ(p

[n]
0 (η, p), y1, 0) +

1

1!
φ(1)(p

[n]
0 (η, p), y1, 0)η + · · ·+ 1

n!
φ(n)(p

[n]
0 (η, p), y1, 0)ηn.

On the right-hand side of the above equality, we have now replaced the nonlinear function φ(p
[n]
0 (η, p), y1, ·)

with its nth order Taylor approximation around η = 0. The nth order di�erentiability result of Lemma
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3 immediately implies that

‖p1(η, p)− p[n]
1 (η, p)‖1 = o(|η|n) a.s.

and

ˆ ∣∣∣xk(p1(η, p)[x]− p[n]
1 (η, p)[x]

)∣∣∣ dx = o(|η|n) a.s. for every k > 1,

so that we can call p
[n]
1 (η, p) an nth order approximation to p1(η, p). The expressions for p

[n]
t (η, p) are

obtained recursively following the steps analogous to the ones used in the proof of Theorem 1.

Speci�cally, at order n = 2 one obtains:

p
[2]
t (η, p)[x] = p(x)

[
1 +A1,tηx+

1

2

(
A2,t +A2

1,t

)
η2(x2 − σ2)

]
, t > 1 (8)

where σ2 = (1− λ2)−1

A1,t = λ [A1,t−1 − ψ1(yt)] , t > 1, A1,0 = 0

A2,t = λ2 [A2,t−1 + ψ2(yt)] , t > 1, A2,0 = 0,

and ψ1(y) = 1 + yp′ε(y)/pε(y), ψ2(y) = yp′ε(y)/pε(ζt) + y2
[
p′′ε (y)/pε(y)− (p′ε(y)/pε(y))2

]
. Detailed

derivations are in Appendix B.1.

As before, the dynamics of the su�cient statistics A1,t and A2,t depends on the density pε of the

shock εt in the observation equation. For example, if εt is Gaussian, the su�cient statistics evolve as:

A1,t = λ
[
A1,t−1 + y2

t − 1
]
,

A2,t = λ2
[
A2,t−1 − 2y2

t

]
If on the other hand εt is Student t-distributed with ν degrees of freedom, then:

A1,t = λ

[
A1,t−1 +

(ν + 1)y2
t

ν − 2 + y2
t

− 1

]
,

A2,t = λ2

[
A2,t−1 − 2

(ν + 1)y2
t

ν − 2 + y2
t

+
(ν + 1)y4

t(
ν − 2 + y2

t

)2
]
.

The expression for the third-order approximate �lter and the dynamics of the corresponding su�cient

statistics is in Appendix B.2.

It is important to note that our approach does not su�er from the instability problem noted in

some works of the DSGE literature that use the perturbation methods of order 2 and above (see, Kim,

Kim, Schaumburg, and Sims, 2008; Andreasen, Fernández-Villaverde, and Rubio-Ramírez, 2017). First,

unlike in the DSGE literature, we do not approximate the transition equations. Instead, we are directly

approximating the probability densities. Moreover, we do not approximate p
[n]
t (η, p)[x] as a polynomial

12



in p
[n]
t−1(η, p)[x]. If we did, we had to apply a pruning method to keep the system stable. However,

in our case, the stability of p
[n]
t (η, p)[x] directly follows from the stability of processes for the su�cient

statistics. These statistics are actual derivatives of the true conditional density with respect to η at

η = 0. Because the dynamics of these derivatives are not approximated, there is no need to apply the

pruning method to the dynamics of the su�cient statistics.

4.3 Choice of prior density

Our perturbation approximation in Theorem 1 is computed under the assumption that x0 is drawn from

the stationary distribution with density p. This of course is likely to not be the case, which raises the

question of sensitivity of our results to departures from p0 = p. We shall now show that the choice of the

prior density is generally irrelevant, as the nonlinear �lter pt(η, p0) �forgets� the prior p0 exponentially

fast. For this, we impose the following additional assumptions.

Assumption 4.
´
R | ln |u||pε(u)du <∞.

Assumptions 3 and 4 ensure that the nonlinear �lter is stable, in a sense that its long run behavior

does not depend on the choice of the initial density p0. Assumption 4 in particular holds if the density

pε remains bounded above at zero, and if is �rst moment is �nite. The following result formalizes the

notion of �lter stability.

Lemma 4. Let Assumptions 1-4 hold. For any initial distribution p0 such that for some γ > 0,

ˆ
R

exp(γ|x|)p0(x)dx <∞, (9)

there exists a positive constant c > 0 such that we have

lim sup
t→∞

t−1 ln ‖pt(η, p0)− pt(η, p)‖1 < −c a.s. (10)

Put in words, the �lter �forgets� the prior density p0 exponentially fast. This property is particularly

useful for our purposes because it guarantees that we can approximate the conditional density pt(η, p0)

started from any p0 by approximating pt(η, p), i.e. the �lter started from the stationary distribution.

4.4 Heuristics for general nonlinear models

In order to explicitly derive the equations governing the dynamics of su�cient statistics in Theorem 1

we have relied heavily on the functional form of the observation equation in (2): yt+1 = exp(ηxt)εt+1.
8

Though useful in the context of stochastic volatility models, the exponential form in the observation

equation may not always be appropriate. Thus, we now present a heuristic derivation of the perturbation

�lter in a more general framework in which the state xt is possibly vector valued, and the observation

equation is of a general nonlinear form. This added generality, however, comes at a cost of less explicit

formulas.

8Similarly, the Kalman �ltering equations rely heavily on linearity and Gaussianity of state space models.
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As before, xt is a latent state, which is now allowed to be a k-vector (1 6 k < ∞) normalized to

have mean zero, E(xt) = 0. We still require that the dynamics of xt be linear Gaussian, so that the

expectation E(Pj(xt)|xt+1) of a j-order polynomial Pj in xt is a j-order polynomial in xt+1 (1 6 j 6 n).

We denote the transition density by q(x′|x) as before.

Rather than specifying the functional form of the observation equation, we now take as a starting

point the observation density p(y|x, η) of the state space model, which we assume can be written as

p(y|ηx). Here, the perturbation parameter η ∈ R is still scalar but the observations yt can be vector

valued. We further assume that the density p(y|ηx) is su�ciently smooth, and that it can be expanded

as a polynomial in η up to the desired level n of approximation. The resulting approximation p[n](y|ηx)

is an n-order polynomial in ηx. For example, the �rst-order approximation p[1](y|ηx) to p(y|ηx) is:

p[1](y|ηx) = p(y|0) +
[∂p(y|z)

∂z

∣∣∣
z=0

]>
ηx.

To derive the perturbation �lter in this general case we again work directly with the recursive updating

rule for pt(η, p̄)[x] in (4):

pt+1(η, p̄)[x′]

(ˆ
p(y|ηx)pt(η, p̄)[x]dx

)
=

(ˆ
q(x′|x)p(y|ηx)pt(η, p̄)[x]dx

)
.

The idea is to: (i) approximate the above updating rule by replacing p(y|ηx) with its n-order approxi-

mation p[n](y|ηx); (ii) conjecture a polynomial solution for p
[n]
t (η, p̄)[x] in the form

p
[n]
t (η, p̄)[x] = p̄(x)

1 +
n∑
j=1

1

j!
Pj,t(x)ηj

 ,
where Pj,t(x) are j-order polynomials in x with time-varying coe�cients; and, �nally, (iii) obtain the

dynamics of these coe�cients by substituting the conjectured solution in the approximate updating rule

and equating the terms of the same order in η.

For example, consider the linear approximation, n = 1. Suppose that E(xt|xt+1) = Λxt+1, where Λ

is a k × k matrix. The conjectured �rst order approximation p
[1]
t (η, p̄) to the nonlinear �lter takes the

form

p
[1]
t (η, p̄)[x] = p̄(x)

[
1 +A>1,txη

]
,

where A1,t is a vector of the same size as x. Next, substitute p
[1]
t (η, p̄) in the approximate recursive

updating rule, in which p(y|ηx) has been approximated by p[1](y|ηx). Equating the terms that are linear

in η on both sides of the resulting equation, and taking into account that
´
q(xt+1|x)f(x)p̄(x)dx =

p̄(xt+1)E(f(xt)|xt+1) for any function f(xt), yields

A1,t+1 = Λ>

(
A1,t +

1

p(y|0)

∂p(y|z)
∂z

∣∣∣∣∣
z=0

)
. (11)
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5 Monte Carlo Experiment

In this section we assess the accuracy of the proposed perturbation �lter through a Monte Carlo ex-

periment. To measure the performance of our �ltering technique we check how well the �lters obtained

at various orders of approximation match the conditional moments of the latent state vector. We con-

sider the �rst two conditional moments of xt and denote them by µ∗1,t = E(xt|it) and v∗t = V(xt|it),
respectively. Speci�cally,

µ∗1,t =

ˆ
xpt(η, p̄)[x]dx and v∗t =

ˆ (
x− µ∗1,t

)2
pt(η, p̄)[x]dx.

Suppose µ̂1,t is the conditional mean from a candidate �lter, and v̂t and µ̂2,t are the conditional central

and non central second moments, respectively. For example, for the perturbation �lter of order n,

µ̂1,t =

ˆ
xp

[n]
t (η, p̄)[x]dx, µ̂2,t =

ˆ
x2p

[n]
t (η, p̄)[x]dx, and v̂t =

ˆ
(x− µ̂1,t)

2 p
[n]
t (η, p̄)[x]dx.

We use the following notations for the corresponding unconditional moments:

µ∗1 =

ˆ
xp̄(x)dx, µ∗2 =

ˆ
x2p̄(x)dx, and v∗ =

ˆ
(x− µ∗1)2 p̄(x)dx.

Then the moment-based measures of accuracy are de�ned as follows:

eI =
E(µ̂1,t − µ∗1,t)2

E(µ∗1 − µ∗1,t)2
,

eII =
E(µ̂1,t − xt)2

E(µ∗1 − xt)2
,

eIII =
E(v̂t − v∗t )2

E(v∗ − v∗t )2
,

eIV =
E(µ̂2,t − x2

t )
2

E(µ∗2 − x2
t )

2
.

The error eI measures how well the candidate �lter approximates the �rst conditional moment of xt

relative to the uninformative case. It can be constructed for the observed data if we have a method

to calculate the true conditional mean µ∗1,t. Alternatively, we can use the true realization of xt, which

is known in simulations, to construct the error eII . This error is minimized at the true conditional

mean, and, therefore, also measures the accuracy of estimating the �rst conditional moment. Further,

we consider the error eIII that measures the accuracy of estimating the second moment relative to the

uninformative case. Similarly to eI , this measure relies on the knowledge of the true conditional moment

v∗t . In contrast, error eIV depends on x2
t which is observed in simulations. Note that according to the

results of Theorem 1, each of the above errors should decrease with the order of approximation.

As a benchmark, we consider the performance of a �lter with global convergence properties, namely

the particle �lter (or sequential MCMC method). The particle �lter is a global approximation method, in

which the conditional density of xt given it is discretized into a number of particles M . As M →∞, the
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conditional moments calculated from the discretized density converge to the true ones (see, e.g., Crisan

and Doucet, 2002). We use the version of the particle �lter with re-sampling that results in a stable �lter

(see, e.g., Douc, Fort, Moulines, and Priouret, 2009). In particular, the algorithm of the particle �lter is

as follows. We start the sequence with M random draws from the stationary distribution with density

p, {x(i)
0 }Mi=1. The associated empirical probability function is denoted by pP (x0|i0). Recursively, for each

period t, we update pP (xt|it) to pP (xt|it+1) by re-sampling from {x(i)
t }Mi=1 using the importance sampling

step. That is, we re-sample from {x(i)
t }Mi=1 with probability weights proportional to p(yt+1|x(i)

t , η). Next,

we move to the next period by sampling x
(i)
t+1 from q(xt+1|x(i)

t ). The corresponding empirical probability

function is denoted by pP (xt+1|it+1).

Note that in our nonlinear example the actual conditional moments of xt are not available in closed

form. Therefore, the true values of µ∗1,t and v
∗
t are not known. However, they can be well approximated

by the particle �lter obtained using a large value of M . In simulations, we use M = 105 to estimate the

true µ∗1,t and v
∗
t . Using M = 104 yields very close estimates of the conditional moments.

Another important metric that can be used to compare di�erent �lters is their tractability. In the

absence of restrictions on tractability, the particle �lter with M = 105 should be certainly preferred to

all of the other methods compared in this section. However, the intended use of the proposed methods

is within larger structural models in which agents make optimal decisions dynamically for each t. The

particle �lter with M particles results in a system with M additional Markov state variables, which

complicates the model solution and interpretation. As a proxy for tractability we record the computa-

tional speed of di�erent �ltering methods, which we report relative to the speed of our perturbations

methods, i.e., we normalize the average performance of our perturbation methods to 1. We compare

computing times on a personal computer with Intel Core 2Quad processor 3.00GHz and 8.00GB of RAM

and approximate the results to few digits.

We should stress that in applications in which the �ltering is done only once for the given data set,

the running time is not usually an issue. The problem arises, however, when �ltering is embedded in a

larger optimization problem, such as for example a dynamic (stochastic) optimal choice problem with

unobserved states. In this case, a decision maker needs to choose an optimal action based on the current

realization of the nonlinear �lter (which is the current realization of M particles for the particle �lter)

taking into account her optimal actions in every hypothetical realization of the nonlinear �lter in the

next period (for the particle �lter, it is a realization of M particles next period). The optimal decision

in the next period in turn depends on the optimal actions for every hypothetical realization of the state

two periods from now, and so on. Thus, in the context of dynamic (stochastic) choice problems, the

running time is an indicator for the computational complexity.

For the perturbation �lter, we consider the �rst-, second-, and third-order approximate �lters in which

pt(η, p̄) is approximated around the zero signal-to-noise ratio, as described in Section 4.1. The parameter

that de�nes the relative level of the noise is calibrated in an independently simulated sample. For the

particle �lter, we consider a moderate number of particles M = 105 and a small number of particles

M = 10. The latter depends on only 10 additional states and, therefore, it is a viable alternative to the

perturbation �lter in dynamic (stochastic) choice models with unobserved states.
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Table 1: Monte Carlo Simulations Parameters

Parameters Model I Model II Model III

ρ 0 0.03 -0.04

σ̄ -0.316 -2.70 -1.70

λ 0.969 0.93 0.80

η 0.056 0.15 0.19

For simulations we consider the stochastic volatility model in (1):

rt+1 = ρrt + (expσt)εt+1,

σt+1 = (1− λ)σ̄ + λσt + ηωt+1,

for which the latent state is xt = (σt − σ̄)/η and the observed value is yt = (rt − ρrt−1) exp(−σ̄).

Under the �rst simulation scheme, εt is standard normal and, under the second simulation scheme, it is

standardized t-distributed.

We calibrate parameters of the Gaussian model for the stock index data at three sampling frequencies.

First, we use the estimates of the continuous-time model in Andersen, Benzoni, and Lund (2002) to

obtain parameter values in daily units. This calibration is labeled as Model I. Second, we estimate the

stochastic volatility model on monthly and annual data of the CRSP value-weighted index from January,

1926 to December, 2015 provided by the Wharton Research Data Services (WRDS). The parameters are

obtained by likelihood maximization. On monthly data, the estimates are labeled as Model II and for

annual data, the estimates are labeled as Model III. All of the parameters are summarized in Table 1.

For the model with t-distributed shocks, εt is standardized t(ν) where ν = 1/0.139 as estimated by

Bollerslev (1987) for S&P 500 returns. We run 10000 simulations divided in four independent samples

with 200 additional burn-in observations each. The comparison results are given in Tables 2 and 3.

It is clear that the particle �lter withM = 104 particles approximates the true density very well with

mean-squared error for the �rst conditional moment between 0.001 and 0.003. However, this method is

on average 2×104 slower than perturbation methods. The particle �lter with a small number of particles

M = 10 runs faster but it is still 120 slower than the analytic methods and its accuracy in matching the

conditional moments is worse than the accuracy of the unconditional mean and variance. For the model

with normally distributed innovations, we need particle �lter with at least M = 100 in order to match

the performance of the perturbation �lter; and with M around 200 - 500 in the case with t-distributed

εt+1. The results with M = 100 are also provided in Tables 2 and 3.

The performance of the perturbation methods depends on the parameter values of the model and the

distribution of the shocks. Notably, the mean-square error in matching the �rst-order moment by the

third-order perturbation �lter is between 0.01 and 0.09 for the t-distributed shocks, while it is between

0.169 and 0.324 for the normally-distributed shocks.

17



Table 2: Simulations: �lters comparison, normal distribution

The table reports accuracy and computational speed of perturbation and particle �lters in simulations from model
(1) with normally distributed shock εt+1 . Consider µ∗

1,t that is the estimate of E(xt|it) based on a particle �lter
with M = 105 particles. Also, v∗t is the estimate of V(xt|it). For each method we estimate the corresponding
µ̂1,t and v̂t. Additionally, we compute µ̂2,t that estimates E(x2t |it). The approximation errors are de�ned as
follows: eI = E(µ̂1,t − µ∗

1,t)
2/E(µ∗

1 − µ∗
1,t)

2, eII = E(µ̂1,t − xt)2/E(µ∗
1 − xt)2, eIII = E(v̂t − v∗t )2/E(v∗ − v∗t )2, and

eIV = E(µ̂2,t−x2t )2/E(µ∗
2−x2t )2. The parameters of the simulations are given in Table 1. The number of particles

in the particle �lter is denoted as M . The perturbation parameter for the perturbation �lter is the signal-to-noise
ratio. Running times are given relative to the average running time of the perturbation �lter.

Method Running Time eI eII eIII eIV

Model I

Particle M = 10,000 20000× 0.003 0.609 0.002 0.668

Particle M = 100 1500× 0.704 0.919 0.156 0.913

Particle M = 10 120× 4.453 2.465 1.011 1.457

Perturbation I-order 1 1.022 1.093 1 0.892

Perturbation II-order 1 1.022 1.093 0.267 0.857

Perturbation III-order 1 0.169 0.650 0.267 0.775

Model II

Particle M = 10,000 20000× 0.002 0.614 0.002 0.622

Particle M = 100 1500× 0.236 0.712 0.111 0.719

Particle M = 10 120× 2.012 1.366 0.644 1.336

Perturbation I-order 1 0.835 0.940 1 0.818

Perturbation II-order 1 0.835 0.940 0.649 0.821

Perturbation III-order 1 0.324 0.738 0.649 0.725

Model III

Particle M = 10,000 20000× 0.003 0.829 0.011 0.839

Particle M = 100 1500× 0.381 0.901 0.583 0.910

Particle M = 10 120× 2.194 1.213 3.589 1.222

Perturbation I-order 1 0.373 0.886 1 0.874

Perturbation II-order 1 0.373 0.886 0.499 0.875

Perturbation III-order 1 0.207 0.860 0.499 0.873
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Table 3: Simulations: �lters comparison, t-distribution

The table reports accuracy and computational speed of perturbation and particle �lters in simulations from
model (1) with t-distributed shock εt+1 . Consider µ∗

1,t that is the estimate of E(xt|it) based on a particle �lter
with M = 105 particles. Also, v∗t is the estimate of V(xt|it). For each method we estimate the corresponding
µ̂1,t and v̂t. Additionally, we compute µ̂2,t that estimates E(x2t |it). The approximation errors are de�ned as
follows: eI = E(µ̂1,t − µ∗

1,t)
2/E(µ∗

1 − µ∗
1,t)

2, eII = E(µ̂1,t − xt)2/E(µ∗
1 − xt)2, eIII = E(v̂t − v∗t )2/E(v∗ − v∗t )2, and

eIV = E(µ̂2,t−x2t )2/E(µ∗
2−x2t )2. The parameters of the simulations are given in Table 1. The number of particles

in the particle �lter is denoted as M . The perturbation parameter for the perturbation �lter is the signal-to-noise
ratio. Running times are given relative to the average running time of the perturbation �lter.

Method Running Time eI eII eIII eIV

Model I

Particle M = 10,000 20000× 0.001 0.656 0.003 0.717

Particle M = 100 1500× 2.413 1.493 0.441 1.127

Particle M = 10 120× 4.884 1.953 4.391 3.876

Perturbation I-order 1 0.514 0.861 1 0.845

Perturbation II-order 1 0.514 0.861 0.082 0.819

Perturbation III-order 1 0.066 0.682 0.082 0.791

Model II

Particle M = 10,000 20000× 0.002 0.656 0.002 0.662

Particle M = 100 1500× 0.415 0.779 0.196 0.785

Particle M = 10 120× 7.724 3.405 1.166 2.759

Perturbation I-order 1 0.616 0.890 1 0.833

Perturbation II-order 1 0.616 0.698 0.134 0.842

Perturbation III-order 1 0.090 0.698 0.134 0.712

Model III

Particle M = 10,000 20000× 0.003 0.853 0.012 0.861

Particle M = 100 1500× 0.623 0.929 1.201 0.936

Particle M = 10 120× 8.528 2.172 8.243 1.935

Perturbation I-order 1 0.128 0.875 1 0.879

Perturbation II-order 1 0.128 0.875 0.090 0.880

Perturbation III-order 1 0.010 0.856 0.090 0.865

19



The performance of the perturbation methods as measured by errors eII and eIV is less sensitive to

the distributional assumptions and closer to the performance of the particle �lter with M = 104. Based

on the metric eII , the R2 in predicting xt by the particle �lter with M = 104 is between 0.15 and 0.39.

The same R2 for the third-order approximation �lter is between 0.14 and 0.35. Based on the metric eIV ,

the R2 in predicting x2
t by the particle �lter withM = 104 is between 0.14 and 0.33. The same R2 for the

third-order approximation �lter is between 0.13 and 0.29. Overall, the Monte Carlo evidence supports

the theoretical results regarding the behavior of the proposed perturbation �lter, and indicates that

in the stochastic volatility models considered, third-order approximations perform as well as a particle

�lter with a large number of particles (M = 104), however with substantially faster computation speeds

(1:20,000).

6 Conclusion

This paper proposes a new local approximation method that can be used to approximate the nonlinear

�lter at increasing orders of accuracy. As for any local method, one expects the behavior of the approxi-

mation to decay for large deviations of the perturbation parameter. In order to extend the radius of good

performance of the perturbation approximation, one or more of the following standard adjustments may

be applied: Padé instead of Taylor approximations (e.g., Judd, 1996; Baker and Graves-Morris, 1996),

change of variables (Judd, 2002; Fernández-Villaverde and Rubio-Ramírez, 2006), and using condition-

ally local approximations along the path of xt. The latter is especially promising as it allows for larger

deviations from the steady state.9 The conditional perturbation approach starts with an assumption

that the time t conditional density of xt given the information it can substantially deviate from the

unconditional density, but all the subsequent shocks are small. Note that this conditional approach

is markedly di�erent from the methods which linearize the dynamics around the �ltered value of the

state vector. The latter technique involves only changing the reference point from the unconditional

expectation to the conditional expectation. In contrast, the truly conditional approach rede�nes the

entire reference distribution (see, e.g., Sorenson and Stubberud, 1968, for a similar idea). We view this

conditional approximation approach as an interesting extension of the work presented here, and we leave

it for future research.
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A Proofs

Proof of Lemma 1. Consider the mapping Φk : L1(R)× R× R→ L1(R) given by:

Φk(f, y, η)[x′] ≡ (x′)k
´
q(x′ | x)p(y | x, η)f(x)dx´

p(y | x, η)f(x)dx
, k > 0

with

p(y | x, η) = exp(−ηx)pε (exp(−ηx)y)

q(x′ | x) = ϕ(x′ − λx).

Throughout the proofs we shall use the following implication of Assumption 3 and the property in (??):

for any y ∈ R∗,

p(y | x) =
1

|y|
|exp(−ηx)ypε(exp(−ηx)y)| ,

so for any y ∈ R∗,

sup
x∈R

p(y | x) 6
1

|y|
sup
u∈R
|upε(u)| <∞.

We �rst need to show that Φk is well de�ned. For this, consider �rst the denominator: for any

f ∈ L+
1 (R), η ∈ R and y ∈ R∗ we have

0 <

ˆ
p(y | x, η)f(x)dx 6

supu∈R |upε(u)|
|y|

ˆ
f(x)dx <∞.

Similarly, for the numerator∣∣∣∣(x′)k ˆ q(x′ | x)p(y | x, η)f(x)dx

∣∣∣∣ 6 |x′|kϕ(0)
supu∈R |upε(u)|

|y|

ˆ
f(x)dx <∞.

Moreover,

ˆ
|Φk(f, y, η)[x′]|dx′ =

´ ∣∣´ (x′)kq(x′ | x)p(y | x, η)f(x)dx
∣∣ dx′´

p(y | x, η)f(x)dx
,

so for k = 0,

Φ0(f, y, η) > 0 and

ˆ
Φ0(f, y, η)[x′]dx′ = 1,

so Φ0(f, y, η) ∈ L+
1 (R). For k > 1, using the fact that for a, b ∈ R, (|a|+ |b|)k 6 Ck

(
|a|k + |b|k

)
for
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some 1 6 Ck <∞, we have

ˆ
|Φk(f, y, η)[x′]|dx′ 6

´ ´
|x′|kq(x′ | x)p(y | x, η)f(x)dxdx′´

p(y | x, η)f(x)dx

6

´ ´
(|x′ − λx|+ |λx|)k q(x′ | x)p(y | x, η)f(x)dxdx′´

p(y | x, η)f(x)dx

6 Ck

{´ ´
|x′ − λx|kq(x′ | x)p(y | x, η)f(x)dxdx′´

p(y | x, η)f(x)dx
+

´
|λx|kp(y | x, η)f(x)dx´
p(y | x, η)f(x)dx

}
6 Ck

{ˆ
|u|kϕ(u)du+

1
|y| supu∈R |upε(u)|´
p(y | x, η)f(x)dx

ˆ
|λx|kf(x)dx

}

6 Ck

{
2k/2√
π

Γ

(
k + 1

2

)
+

1
|y| supu∈R |upε(u)|´
p(y | x, η)f(x)dx

ˆ
|λx|kf(x)dx

}
<∞ a.s.

for any f ∈ L+
1 (R) such that

´
|x|kf(x)dx <∞. This establishes that Φk(f, y, η) ∈ L1(R) for k > 1.

Now, �x any f ∈ L+
1 (R) and y ∈ R∗, and write

Φk(f, y, η)[x] =
Nk(f, y, η)[x]

D(f, y, η)

with Nk(f, y, ·) : R→ L1(R) and D(f, y, ·) : R→ R given by

Nk(f, y, η)[x′] ≡ (x′)k
ˆ
q(x′ | x)p(y | x, η)f(x)dx, D(f, y, η) ≡

ˆ
p(y | x, η)f(x)dx.

Note that D(f, y, ·) is a real function such that D(f, y, ·) > 0 on R, so we can use the product rule for

Fréchet derivatives to show that if Nk(f, y, ·) : R → L1(R) and D(f, y, ·) : R → R are di�erentiable on

R with derivatives Nk
η (f, y, ·) : R→ L1(R) and Dη(f, y, ·) : R→ R, respectively, so is Φk(f, y, ·) and

Φk
η(f, y, η) =

Nk
η (f, y, η)

D(f, y, η)
− Nk(f, y, η)Dη(f, y, η)

[D(f, y, η)]2

We now show that both Nk(f, y, ·) and D(f, y, ·) are di�erentiable on R. We start with D(f, y, ·). Since
pε ∈ C1(R), we have

pη(y | x, η) ≡ ∂p(y | x, η)

∂η

= −x exp(−ηx)
[
pε (exp(−ηx)y) + exp(−ηx)yp′ε (exp(−ηx)y)

]
so that for every y ∈ R∗,

|pη(y | x, η)| 6 |x|
|y|

[
sup
u∈R
|upε(u)|+ sup

u∈R
|u2p′ε(u)|

]
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So if ˆ
R
|x|f(x)dx <∞,

Lebesgue dominated convergence theorem implies that D(f, y, ·) is di�erentiable on R with

Dη(f, y, η) =

ˆ
pη(y | x, η)f(x)dx. (12)

To establish the di�erentiability of Nk(f, y, ·), we consider the limit as h→ 0 of

1

|h|

∥∥∥∥ˆ (·)kq(· | x)p(y | x, η + h)f(x)dx−
ˆ

(·)kq(· | x)p(y | x, η)f(x)dx− h
ˆ

(·)kq(· | x)pη(y | x, η)f(x)dx

∥∥∥∥
1

=
1

|h|

∥∥∥∥ˆ (·)kq(· | x) [p(y | x, η + h)− p(y | x, η)− hpη(y | x, η)] f(x)dx

∥∥∥∥
1

=
1

|h|

ˆ ∣∣∣∣(x′)k ˆ q(x′ | x)
[
p(y | x, η + h)− p(y | x, η)− hpη(y | x, η)

]
f(x)dx

∣∣∣∣ dx′
6
ˆ ˆ

|x′|kq(x′ | x)

∣∣p(y | x, η + h)− p(y | x, η)− hpη(y | x, η)
∣∣

|h|
f(x)dxdx′. (13)

Consider �rst the value k = 0; then from (13) we have

1

|h|

∥∥∥∥ˆ q(· | x)p(y | x, η + h)f(x)dx−
ˆ
q(· | x)p(y | x, η)f(x)dx− h

ˆ
q(· | x)pη(y | x, η)f(x)dx

∥∥∥∥
1

6
ˆ ˆ

q(x′ | x)

∣∣p(y | x, η + h)− p(y | x, η)− hpη(y | x, η)
∣∣

|h|
f(x)dxdx′

=

ˆ ∣∣p(y | x, η + h)− p(y | x, η)− hpη(y | x, η)
∣∣

|h|
f(x)dx

=

ˆ ∣∣pη(y | x, η + h∗)− pη(y | x, η)
∣∣f(x)dx,

since by the mean value theorem there exists h∗ ∈ (0, h) such that

p(y | x, η + h)− p(y | x, η) = hpη(y | x, η + h∗).

Now,

∣∣pη(y | x, η + h∗)− pη(y | x, η)
∣∣ 6 ∣∣pη(y | x, η + h∗)

∣∣+
∣∣pη(y | x, η)

∣∣
6 2
|x|
|y|

[
sup
u∈R
|upε(u)|+ sup

u∈R
|u2p′ε(u)|

]
so if ˆ

R
|x|f(x)dx <∞,

we can again use the Lebesgue dominated convergence theorem to pass the limit inside the integral and
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establish that N0(f, y, ·) is di�erentiable on R with derivative

N0
η (f, y, η)[x′] =

ˆ
q(x′ | x)pη(y | x, η)f(x)dx. (14)

Now consider the case k > 1 in (13):

1

|h|

∥∥∥∥ˆ (·)kq(· | x)p(y | x, η + h)f(x)dx−
ˆ

(·)kq(· | x)p(y | x, η)f(x)dx− h
ˆ

(·)kq(· | x)pη(y | x, η)f(x)dx

∥∥∥∥
1

6
ˆ ˆ (

|x′ − λx|+ |λx|
)k
q(x′ | x)

∣∣p(y | x, η + h)− p(y | x, η)− hpη(y | x, η)
∣∣

|h|
f(x)dxdx′

6 Ck

ˆ [
2k/2√
π

Γ

(
k + 1

2

)
+ |λx|k

] ∣∣p(y | x, η + h)− p(y | x, η)− hpη(y | x, η)
∣∣

|h|
f(x)dx,

where as before Ck is a constant (1 6 Ck < ∞) such that (|a|+ |b|)k 6 Ck
(
|a|k + |b|k

)
with a, b ∈ R.

Then, using a reasoning similar to that above, if both
´
|x|f(x)dx < ∞ and

´
|x|k+1f(x)dx < ∞, it

follows that Nk(f, y, ·) is di�erentiable on R with derivative

Nk
η (f, y, η)[x′] = (x′)k

ˆ
q(x′ | x)pη(y | x, η)f(x)dx, k > 1. (15)

Combining both results (14) and (15) then gives

Nk
η (f, y, η)[x′] = (x′)k

ˆ
q(x′ | x)pη(y | x, η)f(x)dx, k > 0. (16)

Finally, combining (12) and (16) then establishes that for k > 0, Φk(f, y, ·) is di�erentiable on R with

derivative:

Φk
η(f, y, η)[x′] = (x′)k

{´
q(x′ | x)pη(y | x, η)f(x)dx´

p(y | x, η)f(x)dx
−
[´
q(x′ | x)p(y | x, η)f(x)dx

] [´
pη(y | x, η)f(x)dx

][´
p(y | x, η)f(x)dx

]2
}
.

Proof of Lemma 2. The reasoning is by induction. Assume that for t > 0, pt(η, p0) is such that

ˆ
R
|x|kpt(η, p0)[x]dx <∞ a.s. (17)

We now proceed to show that pt+1(η, p0) then also satis�es the above property. For this, note that

ˆ
R
|x′|kpt+1(η, p0)[x′]dx′ =

´
R
´
R |x

′|kq(x′ | x)p(y | x, η)pt(η, p0)[x]dxdx′´
R p(y | x, η)pt(η, p0)[x]dx

Now, using the fact that for any k > 1 there exists Ck > 1 such that
(
|a|+ |b|

)k
6 Ck

(
|a|k + |b|k

)
(where
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a, b ∈ R), we have
ˆ
R
|x′|kq(x′ | x)dx′ 6

ˆ
R

[|x′ − λx|+ |λx|]kq(x′ | x)dx′

6 Ck

[ˆ
R
|x′ − λx|kq(x′ | x)dx′ + |λx|k

]
=

ˆ
R
|u|kϕ(u)du+ |λx|k

= 2k/2/
√
πΓ((k + 1)/2) + |λx|k,

so for any y ∈ R∗,

ˆ
R
|x′|kpt+1(η, p0)[x′]dx′ 6

2k/2√
π

Γ

(
k + 1

2

)
+

´
R |λx|

kp(y | x, η)pt(η, p0)[x]dx´
R p(y | x, η)pt(η, p0)[x]dx

6
2k/2√
π

Γ

(
k + 1

2

)
+

1
|y| supu∈R |upε(u)|´

R p(y | x, η)pt(η, p0)[x]dx

ˆ
R
|λx|kpt(η, p0)[x]dx

<∞,

where the last inequality follows from Assumptions 2, 3 and from the property in (17). This then

establishes the desired property at t+ 1.

Proof of Lemma 3. As in the proof of Lemma 1, we write

Φk(f, y, η)[x] =
Nk(f, y, η)[x]

D(f, y, η)

with f ∈ L+
1 (R), y ∈ R∗, Nk(f, y, ·) : R→ L1(R) and D(f, y, ·) : R→ R given by

Nk(f, y, η)[x′] ≡ (x′)k
ˆ
q(x′ | x)p(y | x, η)f(x)dx, D(f, y, η) ≡

ˆ
p(y | x, η)f(x)dx.

Note that D(f, y, ·) is a real function such that D(f, y, ·) > 0 on R. The idea now is to recursively

apply the product rule for Fréchet derivatives to show that if Nk(f, y, ·) : R → L1(R) and D(f, y, ·) :

R→ R are n-times di�erentiable on R with nth order Fréchet derivatives Nk
(n)(f, y, ·) : R→ L1(R) and

D(n)(f, y, ·) : R→ R, respectively, then so is Φk(f, y, ·).
We now show that both Nk(f, y, ·) and D(f, y, ·) are n-times di�erentiable on R. We start with

D(f, y, ·). Since p(y | x, η) = exp(−ηx)pε(exp(−ηx)y) with pε ∈ Cn(R), using Leibnitz's formula we

obtain

p(n)(y | x, η) ≡ ∂np(y | x, η)

∂ηn

=

n∑
j=0

n!

(n− j)!j!
[pε(exp(−ηx)y)](j)(−x)n−j exp(−ηx),

where the jth order derivative of the composite function pε(exp(−ηx)y) can be obtained from Faà di
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Bruno's formula,

[pε(exp(−ηx)y)](j) =
∑ j!

b1! . . . bj !
p(r)
ε (exp(−ηx)y)

j∏
i=1

(
y(−x)i exp(−ηx)

i!

)bi
,

where the sum ranges over all di�erent solutions in nonnegative integers (b1, . . . , bj) of b1+2b2+. . .+jbj =

j and where r is de�ned as r = b1 + · · ·+ bj . Thus,

[pε(exp(−ηx)y)](j) =
∑ j!

b1! . . . bj !
p(r)
ε (exp(−ηx)y) [y exp(−ηx)]r(−x)j

1

1!b1 . . . j!bj
,

which combined with the above yields

p(n)(y | x, η) (18)

= (−x)n exp(−ηx)

n∑
j=0

n!

(n− j)!j!
∑ j!

b1! . . . bj !
p(r)
ε (exp(−ηx)y) [y exp(−ηx)]r

1

1!b1 . . . j!bj
.

In particular, for n = 1 and n = 2, the above formula correctly yields

p(1)(y | x, η) = −x exp(−ηx)
[
pε(exp(−ηx)y) + p(1)

ε (exp(−ηx)y)y exp(−ηx)
]

which was the expression found in Lemma 1, and

p(2)(y | x, η) (19)

= x2 exp(−ηx)
[
pε(exp(−ηx)y) + 3p(1)

ε (exp(−ηx)y)y exp(−ηx) + p(2)
ε (exp(−ηx)y) [y exp(−ηx)]2

]
.

It follows from (18), that for every y ∈ R∗,

∣∣p(n)(y | x, η)
∣∣ 6 |x|n

|y|

n∑
j=0

cj sup
u∈R
|uj+1p(j)

ε (u)|,

where c0, . . . , cn are positive �nite constants. So if

ˆ
R
|x|nf(x)dx <∞,

Lebesgue dominated convergence theorem implies that D(f, y, ·) is n-times di�erentiable on R with

D(n)(f, y, η) =

ˆ
p(n)(y | x, η)f(x)dx. (20)
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To establish the nth order Fréchet di�erentiability of Nk(f, y, ·), we consider the limit as h→ 0 of

1

|h|

∥∥∥∥∥
ˆ

(·)kq(· | x)p(n−1)(y | x, η + h)f(x)dx−
ˆ

(·)kq(· | x)p(n−1)(y | x, η)f(x)dx

− h
ˆ

(·)kq(· | x)p(n)(y | x, η)f(x)dx

∥∥∥∥∥
1

6
ˆ ˆ

|x′|kq(x′ | x)

∣∣p(n−1)(y | x, η + h)− p(n−1)(y | x, η)− hp(n)(y | x, η)
∣∣

|h|
f(x)dxdx′ ≡ Ik. (21)

Consider �rst the value k = 0; then from (21) we have

I0 =

ˆ ∣∣p(n−1)(y | x, η + h)− p(n−1)(y | x, η)− hp(n)(y | x, η)
∣∣

|h|
f(x)dx

=

ˆ ∣∣p(n)(y | x, η + h∗)− p(n)(y | x, η)
∣∣f(x)dx,

for some h∗ ∈ (0, h), where the second equality comes from the mean value theorem applied to p(n−1)(y |
x, ·), which holds because p(y | x, ·) ∈ Cn(R). Now,

∣∣p(n)(y | x, η + h∗)− p(n)(y | x, η)
∣∣ 6 ∣∣p(n)(y | x, η + h∗)

∣∣+
∣∣p(n)(y | x, η)

∣∣
6 2
|x|n

|y|

n∑
j=0

cj sup
u∈R
|uj+1p(j)

ε (u)|,

where as before c0, . . . , cn are positive �nite constants that come from (18). So if

ˆ
R
|x|nf(x)dx <∞,

we can again use the Lebesgue dominated convergence theorem to pass the limit inside the integral and

establish that N0(f, y, ·) is n-times Fréchet di�erentiable on R with nth order derivative

N0
(n)(f, y, η)[x′] =

ˆ
q(x′ | x)p(n)(y | x, η)f(x)dx. (22)

Now consider the case k > 1 in (13):

Ik 6
ˆ ˆ (

|x′ − λx|+ |λx|
)k
q(x′ | x)

∣∣p(n−1)(y | x, η + h)− p(n−1)(y | x, η)− hp(n)(y | x, η)
∣∣

|h|
f(x)dxdx′

6 Ck

ˆ [
2k/2√
π

Γ

(
k + 1

2

)
+ |λx|k

] ∣∣p(n−1)(y | x, η + h)− p(n−1)(y | x, η)− hp(n)(y | x, η)
∣∣

|h|
f(x)dx,

where as before Ck is a constant (1 6 Ck < ∞) such that (|a|+ |b|)k 6 Ck
(
|a|k + |b|k

)
with a, b ∈ R.

Then, using a reasoning similar to that above, if both
´
|x|nf(x)dx < ∞ and

´
|x|k+nf(x)dx < ∞, it
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follows that Nk(f, y, ·) is n-times Fréchet di�erentiable on R with nth order derivative

Nk
(n)(f, y, η)[x′] = (x′)k

ˆ
q(x′ | x)p(n)(y | x, η)f(x)dx, k > 1. (23)

Combining both results (22) and (23) then gives

Nk
(n)(f, y, η)[x′] = (x′)k

ˆ
q(x′ | x)p(n)(y | x, η)f(x)dx, k > 0. (24)

Finally, combining (20) and (24) then establishes that for k > 0, Φk(f, y, ·) is n-times Fréchet di�er-

entiable on R. The nth order Fréchet derivative Φk
(n)(f, y, ·) of Φk(f, y, ·) can be computed recursively

as:

Φk
(n)(f, y, η) =

1

D(f, y, η)

Nk
(n)(f, y, η)− n!

n∑
j=1

D(n+1−j)(f, y, η)

(n+ 1− j)!
Φk

(j−1)(f, y, η)

(j − 1)!

 .

Combining the above with (20) and (24) gives:

Φk
(n)(f, y, η) =

1´
p(y | x, η)f(x)dx

(
(x′)k

ˆ
q(x′ | x)p(n)(y | x, η)f(x)dx

− n!
n∑
j=1

´
p(n+1−j)(y | x, η)f(x)dx

(n+ 1− j)!
Φk

(j−1)(f, y, η)

(j − 1)!

)
,

with p(n)(y | x, η) as given in (18).

Proof of Theorem 1. The proof is by induction. In what follows, pt(η) = pt(η, p) and p
[1]
t (η) = p

[1]
t (η, p),

i.e. we drop the reference to the prior (the latter being the stationary density p of xt).

Recursion t = 1 We have:

p1(η) = φ(p, y1, η).

Now, consider the following

p
[1]
1 (η) = φ(p, y1, 0) + φη(p, y1, 0)η.

The idea is to show that p
[1]
1 (η) ∈ L1(R), and that

‖p1(η)− p[1]
1 (η)‖1 = o(|η|) a.s.ˆ ∣∣∣xk (p1(η)[x]− p[1]

1 (η)[x]
)∣∣∣ dx = o(|η|) a.s. for every k > 1,

so that we can call p
[1]
1 (η) a �rst order approximation to p1(η).

Note that for any prior density p0

φ(p0, y1, 0)[x] =

´
q(x | x0)pε(y1)p0(x0)dx0´

pε(y1)p0(x0)dx0
=

ˆ
q(x | x0)p0(x0)dx0,
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so φ(·, y1, 0) is a linear operator that is independent of y1. We can write

φ(p0, y1, 0) = Lp0 with Lp0(x) ≡
ˆ
q(x | x0)p0(x0)dx0.

Notice that if p0 = p, i.e. if we start with the unconditional distribution of xt, then

Lp = p.

For the second term, note that from Lemma 1 we have:

φη(p0, y1, η)[x] =

´
q(x | x0)pη(y1 | x0, η)p0(x0)dx0´

p(y1 | x0, η)p0(x0)dx0
−
[´
q(x | x0)p(y1 | x0, η)p0(x0)dx0

] [´
pη(y1 | x0, η)p0(x0)dx0

][´
p(y1 | x0, η)p0(x0)dx0

]2
so that

φη(p0, y1, 0)[x] =

[
−
ˆ
q(x | x0)x0p0(x0)dx0

]
ψ1(y1) +

[ˆ
q(x | x0)p0(x0)dx0

] [ˆ
x0p0(x0)dx0

]
ψ1(y1)

= −ψ1(y1)

{ˆ
q(x | x0)x0p0(x0)dx0 −

[ˆ
q(x | x0)p0(x0)dx0

] [ˆ
x0p0(x0)dx0

]}
.

When the prior is chosen as p0 = p, then

ˆ
q(x | x0)p(x0)dx0 = p(x)
ˆ
x0p(x0)dx0 = 0

ˆ
q(x | x0)x0p(x0)dx0 = λxp(x)

This is because

ˆ
q(x | x0)x0p(x0)dx0 =

ˆ
x0

1√
2π

exp

(
−(x− λx0)2

2

)
1√

2πσ2
exp

(
− x2

0

2σ2

)
dx0

=

ˆ
1√

2π(1 + λ2σ2)

1√
2π σ2

1+λ2σ2

x0 exp


(
x0 − λ σ2

1+λ2σ2x
)2

2 σ2

1+λ2σ2

 exp

[
− x2

2(1 + λ2σ2)

]
dx0

=

[
λ

σ2

1 + λ2σ2
x

]
1√

2π(1 + λ2σ2)
exp

[
− x2

2(1 + λ2σ2)

]
= λx

1√
2πσ2

exp

(
− x2

2σ2

)
,

where we have used the fact that 1 + λ2σ2 = σ2.

Combining all of the above, we get:

p
[1]
1 (η)[x] = p(x)− ηψ1(y1)λxp(x) = p(x) [1− ηψ1(y1)λx] .
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Notice that for every y1 ∈ R,
ˆ
|p[1]

1 (η)[x]|dx =

ˆ
|1− ηψ1(y1)λx|p(x)dx <∞, so p

[1]
1 (η) ∈ L1(R).

Moreover,
´
p

[1]
1 (η)[x]dx = 1. In addition, since

´
|x|kp(x)dx < ∞ for any k > 1, for any y1 ∈ R∗, by

the Fréchet di�erentiability of φ(p, y1, ·) : R→ L1(R) established in Lemma 1 (case k = 0) we have:

‖φ(p, y1, η)− φ(p, y1, 0)− φη(p, y1, 0)η‖1 = o(|η|) (25)

So letting

A1,0 = 0, A1,1 = λ [A1,0 − ψ1(y1)]

we have:

‖p1(η)− p[1]
1 (η)‖1 = o(|η|) a.s. where p

[1]
1 (η)[x] = p(x) [1 +A1,1ηx] .

It is clear that
´
|xkp[1]

1 (η)[x]|dx <∞ for every k > 1, and

ˆ ∣∣∣xk (p1(η)[x]− p[1]
1 (η)[x]

)∣∣∣ dx =

ˆ ∣∣∣xkφ(p, y1, η)[x]− xkφ(p, y1, 0)[x]− xkφη(p, y1, 0)[x]η
∣∣∣ dx

=
∥∥∥Φk(p, y1, η)− Φk(p, y1, 0)− Φk

η(p, y1, 0)η
∥∥∥

1

= o(|η|)

where the last equality uses the di�erentiability of Φk(p, y1, η) established in Lemma 1. This completes

the proof of the result for t = 1.

Recursion any t. Start with p
[1]
t (η) with p

[1]
t (η)[x] ≡ p(x) [1 +A1,tηx], and

A1,t = λ [A1,t−1 − ψ1(yt)] ,

where we know that

‖pt(η)− p[1]
t (η)‖1 = o(|η|) a.s.ˆ ∣∣∣xk (pt(η)[x]− p[1]

t (η)[x]
)∣∣∣ dx = o(|η|) a.s. for every k > 1. (26)

Then let p
[1]
t+1(η)[x] = p(x) [1 +A1,t+1ηx] with

A1,t+1 = λ [A1,t − ψ1(yt+1)] ,

and show that the same properties as in (26) hold at t+ 1.
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Write pt(η) = p
[1]
t (η) + ρt where ‖ρt‖1 = o(|η|), and let

p̃t+1(η) ≡ φ(pt(η), yt+1, 0) + φη(pt(η), yt+1, 0)η

= φ(p
[1]
t (η) + ρt, yt+1, 0) + φη(p

[1]
t (η) + ρt, yt+1, 0)η.

As before:

φ(pt(η), yt+1, 0)[x] =

ˆ
q(x | xt)pt(η)[xt]dxt,

φη(pt(η), yt+1, 0)[x] = −ψ1(yt+1)

{ˆ
q(x | xt)xtpt(η)[xt]dxt −

[ˆ
q(x | xt)pt(η)[xt]dxt

] [ˆ
xtpt(η)[xt]dxt

]}
so

φ(p
[1]
t (η) + ρt, yt+1, 0)[x] =

ˆ
q(x | xt)p(xt) [1 +A1,tηxt] dxt +

ˆ
q(x | xt)ρt(xt)dxt

=

ˆ
q(x | xt)p(xt)dxt +

ˆ
q(x | xt)p(xt)A1,tηxtdxt +

ˆ
q(x | xt)ρt(xt)dxt

= p(x) +A1,tη

ˆ
q(x | xt)p(xt)xtdxt +

ˆ
q(x | xt)ρt(xt)dxt

= p(x) [1 + λA1,tηx] +

ˆ
q(x | xt)ρt(xt)dxt

and

φη(p
[1]
t (η) + ρt, yt+1, 0)[x] = −ψ1(yt+1)

{ˆ
q(x | xt)xt{p[1]

t (η)[xt] + ρt(xt)}dxt

−
[ˆ

q(x | xt){p[1]
t (η)[xt] + ρt(xt)}dxt

] [ˆ
xt{p[1]

t (η)[xt] + ρt(xt)}dxt
]}

.

Now we separately consider the three terms above. First

ˆ
q(x | xt)xt{p[1]

t (η)[xt] + ρt(xt)}dxt

=

ˆ
q(x | xt)xtp[1]

t (η)[xt]dxt +

ˆ
q(x | xt)xtρt(xt)dxt

=

ˆ
q(x | xt)p(xt)xtdxt +A1,tη

ˆ
q(x | xt)p(xt)x2

tdxt +

ˆ
q(x | xt)xtρt(xt)dxt

= λxp(x) +A1,tη[1 + λ2x2]p(x) +

ˆ
q(x | xt)xtρt(xt)dxt.

Next, as from our calculations above

ˆ
q(x | xt){p[1]

t (η)[xt] + ρt(xt)}dxt = p(x) + λA1,tηxp(x) +

ˆ
q(x | xt)ρt(xt)dxt,
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and �nally

ˆ
xt{p[1]

t (η)[xt] + ρt(xt)}dxt = A1,tη

ˆ
p(xt)x

2
tdxt +

ˆ
xtρt(xt)dxt

= A1,tησ
2 +

ˆ
xtρt(xt)dxt.

In the above, we have used the facts that:

ˆ
q(x | xt)p(xt)xtdxt = λxp(x)

ˆ
p(xt)x

2
tdxt = σ2

ˆ
q(x | xt)p(xt)x2

tdxt =
[
1 + λ2x2

]
p(x).

Now, combine all of the above to get

φη(p
[1]
t (η) + ρt, yt+1, 0)[x] = −ψ1(yt+1)λxp(x) +Rt+1(x)

where

Rt+1(x) ≡ −ψ1(yt+1)

{
A1,tη[1 + λ2x2]p(x) +

ˆ
q(x | xt)xtρt(xt)dxt

−
[
p(x) + λA1,tηxp(x) +

ˆ
q(x | xt)ρt(xt)dxt

] [
A1,tησ

2 +

ˆ
xtρt(xt)dxt

]}

= −ψ1(yt+1)

{
A1,tη[1− σ2 + λ2x2]p(x) +

ˆ
q(x | xt)xtρt(xt)dxt − p(x)

ˆ
xtρt(xt)dxt

−
[
λA1,tηxp(x) +

ˆ
q(x | xt)ρt(xt)dxt

] [
A1,tησ

2 +

ˆ
xtρt(xt)dxt

]}
(27)

Note that

‖Rt+1‖1 6 |ψ1(yt+1)|

{
|A1,tη|(1 + λ2σ2) +

ˆ ∣∣∣∣ˆ q(x | xt)xtρt(xt)dxt
∣∣∣∣ dx+

∣∣∣∣ˆ xtρt(xt)dxt

∣∣∣∣
+

[
|A1,tησ

2|+
∣∣∣∣ˆ xtρt(xt)dxt

∣∣∣∣] [|λA1,tη|
ˆ
|x|p(x)dx+

ˆ ∣∣∣∣ˆ q(x | xt)ρt(xt)dxt
∣∣∣∣ dx]

}
,

and

ˆ ∣∣∣∣ˆ q(x | xt)xtρt(xt)dxt
∣∣∣∣ dx 6

ˆ ˆ
q(x | xt)|xtρt(xt)|dxtdx =

ˆ
|xtρt(xt)|dxt∣∣∣∣ˆ xtρt(xt)dxt

∣∣∣∣ 6 ˆ |xtρt(xt)|dxtˆ ∣∣∣∣ˆ q(x | xt)ρt(xt)dxt
∣∣∣∣ dx 6

ˆ ˆ
q(x | xt)|ρt(xt)|dxtdx =

ˆ
|ρt(xt)|dxt
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so using (26) it follows that ‖Rt+1‖1 = O(|η|). Putting everything together

p̃t+1(η)[x] = p(x) [1 + λ (A1,t − ψ1(yt+1)) ηx] +

ˆ
q(x | xt)ρt(xt)dxt + ηRt+1(x)

= p
[1]
t+1(η)[x] +

ˆ
q(x | xt)ρt(xt)dxt + ηRt+1(x).

Now let

R̃t+1(x) ≡
ˆ
q(x | xt)ρt(xt)dxt + ηRt+1(x). (28)

Then,

‖pt+1(η)− p[1]
t+1(η)‖1 = ‖pt+1(η)− p̃t+1(η)− R̃t+1‖1

6 ‖pt+1(η)− p̃t+1(η)‖1 + ‖R̃t+1‖1
= ‖φ(pt(η), yt+1, η)− φ(pt(η), yt+1, 0)− φη(pt(η), yt+1, 0)η‖1 + ‖R̃t+1‖1
= o(|η|) + ‖R̃t+1‖1

where we have used the Fréchet di�erentiability of φ(pt(η), yt+1, ·) at η = 0. For the second term, notice

that

‖R̃t+1‖1 6
ˆ ∣∣∣∣ˆ q(x | xt)ρt(xt)dxt

∣∣∣∣ dx+ |η|‖Rt+1‖1

6 ‖ρt‖1 + |η|‖Rt+1‖1
= o(|η|),

where we have used the fact that ‖Rt+1‖1 = O(|η|). Thus

‖pt+1(η)− p[1]
t+1(η)‖1 = o(|η|) a.s. (29)

It is clear that for every k > 1,
´
|xkp[1]

t+1(η)[x]|dx <∞, so it remains to show that

ˆ ∣∣∣xk (pt+1(η)[x]− p[1]
t+1(η)[x]

)∣∣∣ dx = o(|η|) a.s. for every k > 1 (30)

Following the same reasoning as above, the property (30) follows from the Fréchet di�erentiability of

Φk(pt(η), yt+1, ·) established in Lemma 1, provided we can show that

ˆ ∣∣∣xkR̃t+1(x)
∣∣∣ dx = o(|η|) a.s. for every k > 1.
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From (28), we have

‖(·)kR̃t+1(·)‖1 6
ˆ
|x|k

∣∣∣∣ˆ q(x | xt)ρt(xt)dxt
∣∣∣∣ dx+ |η|‖(·)kRt+1(·)‖1

6 ‖(·)kρt(·)‖1 + |η|‖(·)kRt+1(·)‖1,

where the �rst term on the right-hand side of the last inequality is o(|η|) by (17). We now establish that

moreover ‖(·)kR̃t+1(·)‖1 = O(|η|). From (27), we have:

ˆ
|xkRt+1(x)|dx 6

|ψ1(yt+1)|

{
|A1,tη|

ˆ
|xk[1− σ2 + λ2x2]|p(x)dx+

ˆ ∣∣∣∣xk ˆ q(x | xt)xtρt(xt)dxt
∣∣∣∣ dx+

∣∣∣∣ˆ xtρt(xt)dxt

∣∣∣∣
+

[
|A1,tησ

2|+
∣∣∣∣ˆ xtρt(xt)dxt

∣∣∣∣] [|λA1,tη|
ˆ
|x|k+1p(x)dx+

∣∣∣∣xk ˆ q(x | xt)ρt(xt)dxt
∣∣∣∣ dx]

}
.

Now, using the fact that for every k > 1, there exists a 1 6 Ck < ∞, such that (|a| + |b|)k 6

Ck
(
|a|k + |b|k

)
(a, b ∈ R), we obtain

ˆ ∣∣∣∣xk ˆ q(x | xt)xtρt(xt)dxt
∣∣∣∣ dx 6

ˆ ˆ
|xk|q(x | xt)|xtρt(xt)|dxtdx

6
ˆ ˆ

(|x− λxt|+ |λxt|)k q(x | xt)|xtρt(xt)|dxtdx

6 Ck

ˆ ˆ (
|x− λxt|k + |λxt|k

)
q(x | xt)|xtρt(xt)|dxtdx

6 Ck

{
2k/2√
π

Γ

(
k + 1

2

)ˆ
|xtρt(xt)|dxt + |λ|k

ˆ
|xk+1
t ρt(xt)|dxt

}
= o(|η|)

where the last equality uses (17). The latter also implies that
∣∣´ xtρt(xt)dxt∣∣ 6 ´ |xtρt(xt)|dxt = o(|η|),

and that

ˆ ∣∣∣∣xk ˆ q(x | xt)ρt(xt)dxt
∣∣∣∣ dx 6

ˆ ˆ
|xk|q(x | xt)|ρt(xt)|dxtdx

6
ˆ ˆ

(|x− λxt|+ |λxt|)k q(x | xt)|ρt(xt)|dxtdx

6 Ck

ˆ ˆ (
|x− λxt|k + |λxt|k

)
q(x | xt)|ρt(xt)|dxtdx

6 Ck

{
2k/2√
π

Γ

(
k + 1

2

) ˆ
|ρt(xt)|dxt + |λ|k

ˆ
|xkt ρt(xt)|dxt

}
= o(|η|).

Combining all of the above yields ‖(·)kR̃t+1(·)‖1 = O(|η|). This establishes the result at t+ 1.
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Proof of Corollary 1. As before, we drop any reference to the prior p. By triangle inequality,

‖pt(η)− p[1]
t (ς)‖1 6 ‖pt(η)− p[1]

t (η)‖1 + ‖p[1]
t (ς)− p[1]

t (η)‖1,

where p
[1]
t (η) is the �rst-order perturbation approximation from Theorem 1. As is shown in Theorem 1,

the �rst term ‖pt(η)− p[1]
t (η)‖1 is o(|η|) on R. For the second term, note that

p
[1]
t (ς)[x]− p[1]

t (η)[x] = p(x)xA1,t

[
S(η)

S′(0)
− η
]

= p(x)xA1,t

[
1

2

S′′(ξ)

S′(0)
η2

]
,

where the second equality follows by the mean-value theorem, S(η) = S(0) + S′(0)η + 1/2S′′(ξ)η2 =

S′(0)η + 1/2S′(ξ)η2, and ξ belongs to the interval with endpoints 0 and η. Therefore,

‖p[1]
t (ς)− p[1]

t (η)‖1 = |A1,t|
1

2

|S′′(ξ)|
|S′(0)|

√
2

π
η2 = o(|η|) a.s.

since as η goes to zero, |S′′(ξ)| converges to |S′′(0)| < ∞. Finally, note that any o(|η|) sequence is also
o(|ς|), because limη→0 S(η)/η = S′(0), which is �nite.

Proof of Lemma 4. Under Assumption 3, we have for any y ∈ R∗ ≡ R \ {0},

p(y | x, η) =
1

|y|
|exp(−ηx)ypε(exp(−ηx)y)| ,

so for any y ∈ R∗,

sup
x∈R

p(y | x, η) 6
1

|y|
sup
u∈R
|upε(u)| <∞.

Under Assumption 2, there exists a function V : R→ [1,+∞) such that

SV ≡ sup
x∈R

´
R q(x

′ | x)V (x′)dx′

V (x)
<∞ and lim

|x|→∞

´
R q(x

′ | x)V (x′)dx′

V (x)
= 0. (31)

Since q(x′ | x) = 1√
2π

exp(−(x′ − λx)2/2), it su�ces to take V (x) = exp(γ|x|) with γ > 0, since then

ˆ
R
q(x′ | x)V (x′)dx′ =

1√
2π

ˆ
R

exp

[
−(x′ − λx)2

2

]
exp

[
γ|x′|

]
dx′

=
1√
2π

ˆ
R

exp

[
−u

2

2

]
exp [γ|u+ λx|] du

= exp [−γλx]
1√
2π

ˆ −λx
−∞

exp

[
−u

2 + 2γu

2

]
du+ exp [γλx]

1√
2π

ˆ +∞

−λx
exp

[
−u

2 − 2γu

2

]
du

= exp[γ2/2]

{
exp [−γλx]

1√
2π

ˆ −λx+γ

−∞
exp

[
−v

2

2

]
dv + exp [γλx]

1√
2π

ˆ +∞

−λx−γ
exp

[
−v

2

2

]
dv

}
= exp[γ2/2] {exp [−γλx] Φ(−λx+ γ) + exp [γλx] (1− Φ(−λx− γ))}
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where Φ(·) denotes the standard normal cdf. Thus

´
R q(x

′ | x)V (x′)dx′

V (x)
= exp[γ2/2]

{
exp(−γλx)

exp(γ|x|)
Φ(−λx+ γ) +

exp(γλx)

exp(γ|x|)
(1− Φ(−λx− γ))

}
. (32)

Since |λ| < 1,

sup
x∈R

exp(−γλx)

exp(γ|x|)
<∞ and sup

x∈R

exp(γλx)

exp(γ|x|)
<∞

lim
|x|→∞

exp(−γλx)

exp(γ|x|)
= 0 and lim

|x|→∞

exp(γλx)

exp(γ|x|)
= 0

so combining the above with (32) gives (31).

Therefore, since for any y ∈ R∗, supx∈R p(y | x, η) < ∞, for any ν > 0 one may choose a constant

c > 0 large enough so that ΓC(y) 6 νΓR(y), where for any set A ⊂ R

ΓA(y) ≡ sup
x∈A

p(y | x, η)

´
R q(x

′ | x)V (x′)dx′

V (x)
, (33)

and the set C ≡ {x : |x| > c} is a complement of a bounded subset of R, the latter satisfying the local

Doeblin property (for state space models with linear Gaussian transition equation, every bounded set is

locally Doeblin; see p. 1238 in Douc, Fort, Moulines, and Priouret (2009) for details).

Under Assumptions 3 and 2, assumptions (H1) and (H2) inDouc, Fort, Moulines, and Priouret (2009)

are satis�ed, with K = R∗. We now check the remaining assumptions in their Theorem 1. We start with

their condition (12): for some constant δ ∈ (0, 1)

lim inf
T→∞

T−1
T∑
t=1

1R∗(yt) > (1 + δ)/2 a.s. (34)

Recall that {(xt, yt+1)′}t>0 is a positive recurrent Markov chain with stationary distribution that has a

density p(x)p(y | x, η). Moreover, {(xt, yt+1)′}t>0 satis�es the law of large numbers, i.e. for any prior

density p0 and any measurable function f : R2 → [0,+∞) satisfying
´
R2 f(x, y)p(x)p(y | x, η)dxdy <∞,

we have

T−1
T∑
t=0

f(xt, yt+1)→
ˆ
R2

f(x, y)p(x)p(y | x, η)dxdy a.s.

Letting f(xt, yt+1) = 1R∗(yt+1), then gives lim infT→∞ T
−1
∑T

t=1 1R∗(yt) = 1 a.s. so condition (34) is

satis�ed.

To check conditions (13) and (14) we use the results of Corollary 5 in Douc, Fort, Moulines, and

Priouret (2009). We need

ˆ
R2

[ln ΓR(y)]+p(x)p(y | x, η)dxdy <∞. (35)

For this, combining (33), (31) and the expression for the observation density p(y | x, η) we have, for any
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y ∈ R∗,

ΓR(y) 6

{
sup
x∈R

[exp(−ηx)pε(exp(−ηx)y)]

}
SV

6 SV
1

|y|
sup
u∈R
|upε(u)|

so by letting K ≡ |ln (SV supu∈R |upε(u)|)|, we have 0 < K <∞ and

[ln ΓR(y)]+ 6 K + |ln |y||

Thus

ˆ
R

[ln ΓR(y)]+p(y | x, η)dy 6 K +

ˆ
R
|ln |y|| p(y | x, η)dy

6 K + |ηx|+
ˆ
R
| ln |z||pε(z)dz,

provided
´
R | ln |z||pε(z)dz < ∞. To ensure the latter, we impose Assumption 4. Since

´
R |ηx|p(x)dx <

∞, condition (35) holds.

To make sure condition (14) in Douc, Fort, Moulines, and Priouret (2009) holds, set D ≡ [−d, d],

0 < d <∞; then the set D has a local Doeblin property. Let

ΨD(y) ≡ 1

2d

ˆ d

−d
p(y | x, η)dx.

We need

ˆ
R2

[ln ΨD(y)]−p(x)p(y | x, η)dxdy <∞. (36)

By the Jensen inequality, for any y ∈ R∗,

ln ΨD(y) >
1

2d

ˆ d

−d
ln p(y | x, η)dx,

so letting C ≡
∣∣ ln supu∈R |upε(u)|

∣∣ <∞ we have

[ln ΨD(y)]− 6
1

2d

ˆ d

−d
| ln p(y | x, η)|dx

6
1

2d

ˆ d

−d

(
|ln |y||+

∣∣ ln sup
u∈R
|upε(u)|

∣∣) dx
= |ln |y||+ C.

The property in (36) then follows by the same reasoning used to establish the property in (35).

Theorem 1 in Douc, Fort, Moulines, and Priouret (2009) then applies and shows that for any initial
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distribution p0 such that for some γ > 0,

ˆ
R

exp(γ|x|)p0(x)dx <∞, (37)

there exists a positive constant c > 0 such that we have

lim sup
t→∞

t−1 ln ‖pt(η, p0)− pt(η, p)‖1 < −c a.s. (38)

B Higher order approximations

In this Appendix, we detail the computation of second and third order approximations to the nonlinear

�lter.

B.1 Second order approximation

Recall from Lemma 3 that the �rst and second order derivatives of p(y | x, ·), which we denote by

p(1)(y | x, ·) and p(2)(y | x, ·), respectively, are given by:

p(1)(y | x, η) = −x exp(−ηx)
[
pε(exp(−ηx)y) + p(1)

ε (exp(−ηx)y)y exp(−ηx)
]

p(2)(y | x, η) = x2 exp(−ηx)
[
pε(exp(−ηx)y) + 3p(1)

ε (exp(−ηx)y)y exp(−ηx) + p(2)
ε (exp(−ηx)y) [y exp(−ηx)]2

]
.

Letting

ψ1(y) ≡ 1 + y
p′ε(y)

pε(y)

ψ̃2(y) ≡ 1 + 3y
p′ε(y)

pε(y)
+ y2 p

′′
ε (y)

pε(y)

we can then write

p(1)(y | x, 0) = −xpε(y)

[
1 + y

p′ε(y)

pε(y)

]
= −xpε(y)ψ1(y)

p(2)(y | x, 0) = x2pε(y)

[
1 + 3y

p′ε(y)

pε(y)
+ y2 p

′′
ε (y)

pε(y)

]
= x2pε(y)ψ̃2(y).

The construction is by induction. In what follows, we drop the reference to the prior unconditional

density p and write pt(η) = pt(η, p) and p
[2]
t (η) = p

[2]
t (η, p).

Recursion t = 1 We have:

p1(η) = φ(p, y1, η).
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Now, consider the following

p
[2]
1 (η) = φ(p, y1, 0) + φη(p, y1, 0)η +

1

2
φηη(p, y1, 0)η2.

As before (see the proof of Theorem 1),

φ(p, y1, 0)[x] = p(x)

φη(p, y1, 0)[x] = −φ1(y1)λxp(x).

Next, for the second-order term:

φηη(p, y1, η)[x] =

´
q(x | x0)pηη(y1 | x0, η)p(x0)dx0´

p(y1 | x0, η)p(x0)dx0

− 2

[´
q(x | x0)pη(y1 | x0, η)p(x0)dx0

] [´
pη(y1 | x0, η)p(x0)dx0

][´
p(y1 | x0, η)p(x0)dx0

]2
−
[´
q(x | x0)p(y1 | x0, η)p(x0)dx0

] [´
pηη(y1 | x0, η)p(x0)dx0

][´
p(y1 | x0, η)p(x0)dx0

]2
+ 2

[´
q(x | x0)p(y1 | x0, η)p(x0)dx0

] [´
pη(y1 | x0, η)p(x0)dx0

]2[´
p(y1 | x0, η)p(x0)dx0

]3
so that

φηη(p, y1, 0)[x] =

[ˆ
q(x | x0)x2

0p(x0)dx0

]
ψ̃2(y1)− 2

[ˆ
q(x | x0)x0p(x0)dx0

] [ˆ
x0p(x0)dx0

]
ψ2

1(y1)

−
[ˆ

q(x | x0)p(x0)dx0

] [ˆ
x2

0p(x0)dx0

]
ψ̃2(y1)− 2

[ˆ
q(x | x0)p(x0)dx0

] [ˆ
x0p(x0)dx0

]2

ψ2
1(y1).

Now,

ˆ
q(x | x0)p(x0)dx0 = p(x)
ˆ
x0p(x0)dx0 = 0

ˆ
x2

0p(x0)dx0 = σ2

ˆ
q(x | x0)x0p(x0)dx0 = λxp(x)

ˆ
q(x | x0)x2

0p(x0)dx0 = (λ2x2 + 1)p(x)
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This is because

ˆ
q(x | x0)x2

0p(x0)dx0 =

ˆ
x0

1√
2π

exp

(
−(x− λx0)2

2

)
1√

2πσ2
exp

(
− x2

0

2σ2

)
dx0

=

ˆ
1√

2π(1 + λ2σ2)

1√
2π σ2

1+λ2σ2

x2
0 exp


(
x0 − λ σ2

1+λ2σ2x
)2

2 σ2

1+λ2σ2

 exp

[
− x2

2(1 + λ2σ2)

]
dx0

=

{[
λ

σ2

1 + λ2σ2
x

]2

+
σ2

1 + λ2σ2

}
1√

2π(1 + λ2σ2)
exp

[
− x2

2(1 + λ2σ2)

]
= (λ2x2 + 1)

1√
2πσ2

exp

(
− x2

2σ2

)
,

where we have used the fact that 1 + λ2σ2 = σ2. Then,

φηη(p, y1, 0)[x] = (λ2x2 + 1)p(x)ψ̃2(y1)− p(x)σ2ψ̃2(y1)

= p(x)ψ̃2(y1)(λ2x2 + 1− σ2)

= p(x)ψ̃2(y1)λ2(x2 − σ2).

Combining all of the above, we get:

p
[2]
1 (η)[x] = p(x)− ηψ1(y1)λxp(x) +

1

2
η2p(x)ψ̃2(y1)λ2(x2 − σ2)

= p(x)

[
1− ηψ1(y1)λx+

1

2
η2ψ̃2(y1)λ2(x2 − σ2)

]
= p(x)

[
1− ηψ1(y1)λx+

1

2
η2(ψ2(y1) + ψ1(y1)2)λ2(x2 − σ2)

]
where

ψ2(y1) ≡ ψ̃2(yt+1)− ψ1(y1)2 = yt+1
p′ε(yt+1)

pε(yt+1)
+ y2

t+1

[
p′′ε (yt+1)

pε(yt+1)
−
(
p′ε(yt+1)

pε(yt+1)

)2
]
.

So letting

A1,0 = 0, A1,1 = λ [A1,0 − ψ1(y1)]

A2,0 = 0, A2,1 = λ2 [A2,0 + ψ2(y1)]

we have:

p
[2]
1 (η)[x] = p(x)

[
1 +A1,1ηx+

1

2
(A2,t +A2

1,1)η2(x2 − σ2)

]
.

Note that
´
|p[2]

1 (η)[x]|dx < ∞ so p
[2]
1 (η) ∈ L1(R), and

´
p

[2]
1 (η)[x]dx = 1. Moreover, it follows directly

from Lemma 3 that

‖p1(η)− p[2]
1 (η)‖1 = o(|η|2) a.s.ˆ ∣∣∣xk(p1(η)[x]− p[2]

1 (η)[x]
)∣∣∣ dx = o(|η|2) a.s. for every k > 1,
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so that we can call p
[2]
1 (η) a second order approximation to p1(η).

Recursion any t. Start with p
[2]
t (η) with p

[2]
t (η)[x] ≡ p(x)

[
1 +A1,tηx+ 1/2(A2,t +A2

1,t)η
2(x2 − σ2)

]
,

where

A1,t = λ [A1,t−1 − ψ1(yt)]

A2,t = λ2 [A2,t−1 + ψ2(yt)] ,

and

‖pt(η)− p[2]
t (η)‖1 = o(|η|2) a.s.ˆ ∣∣∣xk(pt(η)[x]− p[2]

t (η)[x]
)∣∣∣ dx = o(|η|2) a.s. for every k > 1.

The goal is to establish that the same property holds at t+ 1. For this, de�ne ρt = pt(η)− p[2]
t (η) and

p̃t+1(η) ≡ φ(pt(η), yt+1, 0) + φη(pt(η), yt+1, 0)η +
1

2
φηη(pt(η), yt+1, 0)η2

= φ(p
[2]
t (η) + ρt, yt+1, 0) + φη(p

[2]
t (η) + ρt, yt+1, 0)η +

1

2
φηη(p

[2]
t (η) + ρt, yt+1, 0)η2.

As before:

φ(pt(η), yt+1, 0)[x] =

ˆ
q(x | xt)pt(η)[xt]dxt,

φη(pt(η), yt+1, 0)[x] = −ψ1(yt+1)

{ˆ
q(x | xt)xtpt(η)[xt]dxt −

[ˆ
q(x | xt)pt(η)[xt]dxt

] [ˆ
xtpt(η)[xt]dxt

]}
φηη(pt(η), yt+1, 0)[x] =

[ˆ
q(x | xt)x2

t pt(η)[xt]dxt

]
ψ̃2(yt+1)

− 2

[ˆ
q(x | xt)xtpt(η)[xt]dxt

] [ˆ
xtpt(η)[xt]dxt

]
ψ2

1(yt+1)

−
[ˆ

q(x | xt)pt(η)[xt]dxt

] [ˆ
x2
t pt(η)[xt]dxt

]
ψ̃2(yt+1)

− 2

[ˆ
q(x | xt)pt(η)[xt]dxt

] [ˆ
xtpt(η)[xt]dxt

]2

ψ2
1(yt+1).
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For the constant term, we therefore have:

φ(p
[2]
t (η) + ρt, yt+1, 0)[x] =

ˆ
q(x | xt)p(xt)

[
1 +A1,tηxt + 1/2(A2,t +A2

1,t)η
2(x2

t − σ2)
]
dxt +

ˆ
q(x | xt)ρt(xt)dxt

=

ˆ
q(x | xt)p(xt)dxt +

ˆ
q(x | xt)p(xt)A1,tηxtdxt+

+
1

2

ˆ
q(x | xt)p(xt)(A2,t +A2

1,t)η
2(x2

t − σ2)dxt +

ˆ
q(x | xt)ρt(xt)dxt

= p(x) +A1,tη

ˆ
q(x | xt)p(xt)xtdxt +

1

2
(A2,t +A2

1,t)η
2

ˆ
q(x | xt)p(xt)(x2

t − σ2)dxt

+

ˆ
q(x | xt)ρt(xt)dxt

= p(x)

[
1 + λA1,tηx+

1

2
(A2,t +A2

1,t)η
2(λ2x2 + 1− σ2)

]
+

ˆ
q(x | xt)ρt(xt)dxt

= p(x)

[
1 + λA1,tηx+

1

2
λ2(A2,t +A2

1,t)η
2(x2 − σ2)

]
+

ˆ
q(x | xt)ρt(xt)dxt

Write the �rst order term as:

φη(p
[2]
t (η) + ρt, yt+1, 0)[x] = −ψ1(yt+1)

{ˆ
q(x | xt)xt{p[2]

t (η)[xt] + ρt(xt)}dxt

−
[ˆ

q(x | xt){p[2]
t (η)[xt] + ρt(xt)}dxt

] [ˆ
xt{p[2]

t (η)[xt] + ρt(xt)}dxt
]}

.

Now we separately consider the three terms above. First

ˆ
q(x | xt)xt{p[2]

t (η)[xt] + ρt(xt)}dxt

=

ˆ
q(x | xt)xtp[2]

t (η)[xt]dxt +

ˆ
q(x | xt)xtρt(xt)dxt

=

ˆ
q(x | xt)p(xt)xtdxt +A1,tη

ˆ
q(x | xt)p(xt)x2

tdxt+

+
1

2
(A2,t +A2

1,t)η
2

ˆ
q(x | xt)p(xt)(x3

t − σ2xt)dxt +

ˆ
q(x | xt)xtρt(xt)dxt

= λxp(x) +A1,tη[1 + λ2x2]p(x)+

+
1

2
(A2,t +A2

1,t)η
2[λ3x3 + 3λx− σ2λxt]p(x) +

ˆ
q(x | xt)xtρt(xt)dxt.

Next, as from our calculations above

ˆ
q(x | xt){p[2]

t (η)[xt] + ρt(xt)}dxt = p(x) + λA1,tηxp(x) +
1

2
λ2(A2,t +A2

1,t)η
2(x2 − σ2)p(x)

+

ˆ
q(x | xt)ρt(xt)dxt,
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and �nally

ˆ
xt{p[2]

t (η)[xt] + ρt(xt)}dxt = A1,tη

ˆ
p(xt)x

2
tdxt +

1

2
(A2,t +A2

1,t)η
2

ˆ
p(xt)(x

3
t − xtσ2)dxt +

ˆ
xtρt(xt)dxt

= A1,tησ
2 +

ˆ
xtρt(xt)dxt.

In the above, we have used the facts that:

ˆ
q(x | xt)p(xt)xtdxt = λxp(x)

ˆ
p(xt)x

2
tdxt = σ2

ˆ
q(x | xt)p(xt)x2

tdxt =
[
1 + λ2x2

]
p(x),

ˆ
q(x | xt)p(xt)x3

tdxt =
[
3λx+ λ3x3

]
p(x).

Now, combine all of the above to get

φη(p
[2]
t (η) + ρt, yt+1, 0)[x] = −ψ1(yt+1)p(x)

{
λx+ λ2A1,tη(x2 − σ2)

}
+R1,t+1(x)

where

R1,t+1(x) ≡

− ψ1(yt+1)

{
1

2
(A2,t +A2

1,t)η
2[λ3x3 + 3λx− σ2λxt]p(x) +

ˆ
q(x | xt)xtρt(xt)dxt

−
[
λA1,tηxp(x) +

1

2
λ2(A2,t +A2

1,t)η
2(x2 − σ2)p(x) +

ˆ
q(x | xt)ρt(xt)dxt

] [
A1,tησ

2
]

−
[
p(x) + λA1,tηxp(x) +

1

2
λ2(A2,t +A2

1,t)η
2(x2 − σ2)p(x) +

ˆ
q(x | xt)ρt(xt)dxt

] [ˆ
xtρt(xt)dxt

]}
.

Using a reasoning similar to that used in the proof of Theorem 1, the result of Lemma 3 implies that

‖R1,t+1‖1 = O(|η|2) a.s. (39)

Lastly, for the second-order term, write it as:

φηη(p
[2]
t (η) + ρt, yt+1, 0)[x] = λ2ψ̃2(yt+1)p(x)(x2 − σ2) +R2,t+1(x),
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with

R2,t+1(x) ≡ψ̃2(yt+1)

ˆ
q(x | xt)x2

tρt(xt)dxt

−2ψ2
1(yt+1)

[ˆ
q(x | xt)xtp[2]

t (η)[xt]dxt

] [ˆ
xtρt(xt)dxt

]
−2ψ2

1(yt+1)

[ˆ
q(x | xt)xtρt(xt)dxt

] [ˆ
xt(p

[2]
t (η)[xt] + ρt(xt))dxt

]
−ψ̃2(yt+1)

[ˆ
q(x | xt)p[2]

t (η)[xt]dxt

] [ˆ
x2
tρt(xt)dxt

]
−ψ̃2(yt+1)

[ˆ
q(x | xt)ρt(xt)dxt

] [ˆ
x2
t (p

[2]
t (η)[xt] + ρt(xt))dxt

]
−2ψ2

1(yt+1)

[ˆ
q(x | xt)p[2]

t (η)[xt]dxt

] [ˆ
xtρt(xt)dxt

]2

−2ψ2
1(yt+1)

[ˆ
q(x | xt)ρt(xt)dxt

] [ˆ
xt(p

[2]
t (η)[xt] + ρt(xt))dxt

]2

−4ψ2
1(yt+1)

[ˆ
q(x | xt)p[2]

t (η)[xt]dxt

] [ˆ
xtρt(xt)dxt

] [ˆ
xtp

[2]
t (η)[xt]dxt

]
+ψ̃2(yt+1)p(x)

{
A1,tη(λ3x3 + 3λx) +

1

2
(A2,t +A2

1,t)η
2(λ4x4 + 6λ2x2 + 3− σ2(λ2x2 + 1))

}
−2ψ2

1(yt+1)A1,tησ
2p(x)

{
A1,tη(λ2x2 + 1) +

1

2
(A2,t +A2

1,t)η
2(λ3x3 + 3λx− σ2λx)

}
−ψ̃2(yt+1)p(x)

{
1 +A1,tηλxt +

1

2
(A2,t +A2

1,t)η
2(λ2x2 + 1− σ2)

}
1

2
(A2,t +A2

1,t)η
22σ4

−ψ̃2(yt+1)p(x)σ2

{
A1,tηλx+

1

2
(A2,t +A2

1,t)η
2(λ2x2 + 1− σ2)

}
−2ψ2

1(yt+1)
(
A1,tησ

2
)2
p(x)

{
1 +A1,tηλx+

1

2
(A2,t +A2

1,t)η
2(λ2x2 + 1− σ2)

}
,

where we used the following results:

ˆ
q(x | xt)x2

t p
[2]
t (η)[xt]dxt

=

ˆ
q(x | xt)p(xt)

[
x2
t +A1,tηx

3
t +

1

2
(A2,t +A2

1,t)η
2(x4

t − σ2x2
t )

]
dxt

= p(x)

{
λ2x2 + 1 +A1,tη(λ3x3 + 3λx) +

1

2
(A2,t +A2

1,t)η
2(λ4x4 + 6λ2x2 + 3− σ2(λ2x2 + 1))

}
,
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and

ˆ
q(x | xt)xtp[2]

t (η)[xt]dxt =

ˆ
q(x | xt)p(xt)

[
xt +A1,tηx

2
t +

1

2
(A2,t +A2

1,t)η
2(x3

t − σ2xt)

]
dxt

= p(x)

{
λx+A1,tη(λ2x2 + 1) +

1

2
(A2,t +A2

1,t)η
2(λ3x3 + 3λx− σ2λx)

}
ˆ
q(x | xt)p[2]

t (η)[xt]dxt =

ˆ
q(x | xt)p(xt)

[
1 +A1,tηxt +

1

2
(A2,t +A2

1,t)η
2(x2

t − σ2)

]
dxt

= p(x)

{
1 +A1,tηλx+

1

2
(A2,t +A2

1,t)η
2(λ2x2 + 1− σ2)

}
ˆ
x2
t p

[2]
t (η)[xt]dxt =

ˆ
p(xt)

[
x2
t +A1,tηx

3
t +

1

2
(A2,t +A2

1,t)η
2(x4

t − σ2x2
t )

]
dxt

= σ2 +
1

2
(A2,t +A2

1,t)η
22σ4

ˆ
xtp

[2]
t (η)[xt]dxt =

ˆ
p(xt)

[
xt +A1,tηx

2
t +

1

2
(A2,t +A2

1,t)η
2(x3

t − σ2xt)

]
dxt

= A1,tησ
2.

Note that similar to before, the result of Lemma 3 implies that

‖R2,t+1‖1 = O(|η|) a.s. (40)

Putting everything together, and letting R̃1,t+1(x) ≡
´
q(x | xt)ρt(xt)dxt + ηR1,t+1(x) + η2R2,t+1(x),

then gives

p̃t+1(η)[x] =p(x)

[
1 + λA1,tηx+

1

2
λ2(A2,t +A2

1,t)η
2(x2 − σ2)

]
+

ˆ
q(x | xt)ρt(xt)dxt

− ψ1(yt+1)p(x)
{
λxη + λ2A1,tη

2(x2 − σ2)
}

+ ηR1,t+1(x)

+
1

2
λ2ψ̃2(yt+1)p(x)(x2 − σ2)η2 +R2,t+1(x)η2

= p(x)

{
1 + ηxλ (A1,t − ψ1(yt+1)) +

1

2
η2λ2

(
A2,t +A2

1,t − 2ψ1(yt+1)A1,t + ψ̃2(yt+1)
)

(x2 − σ2)

}
+ R̃t+1(x)

= p(x)

{
1 + ηxA1,t+1 +

1

2
η2
(
A2,t+1 +A2

1,t+1

)
(x2 − σ2)

}
+ R̃t+1(x)

= p
[2]
t+1(η)[x] + R̃t+1(x),

where we have let

A1,t+1 = λ (A1,t − ψ1(yt+1))

A2,t+1 = λ2(A2,t + ψ̃2(yt+1)− ψ1(yt+1)2)
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so that

A2,t+1 +A2
1,t+1 = λ2(A2,t + ψ̃2(yt+1)− ψ1(yt+1)2) + (λ(A1,t − ψ1(yt+1)))2

= A2,t +A2
1,t − 2ψ1(yt+1)A1,t + ψ̃2(yt+1).

Triangle inequality combined with (39) and (40) yields ‖R̃t+1‖1 = o(|η|2) a.s. A reasoning similar to

that in the proof of Theorem 1 combined with Lemma 3 also ensures that ‖(·)kR̃t+1(·)‖1 = o(|η|2) a.s.

Therefore the property holds at t+ 1.

B.2 Third Order Approximation

We state the expression of the third order approximation without detailed derivations which are straight-

forward though tedious. The third-order approximation is given by:

p
[3]
t (η)[x] ≡ p(x)

1 +
3∑

m=1

1

m!
ηm

 m∑
j=0

Am,j,tx
j

 ,
where the constants Am,j,t are determined as follows. For the linear term, A1,0,t = 0 and

A1,1,t ≡ A1,t = λ [A1,t−1 − ψ1(yt)] , t > 1, A1,0 = 0

where ψ1(y) = 1 + yp′ε(y)/pε(y). For the second-order term, A2,0,t = −A2,2,t(1 − λ2)−1, A2,1,t = 0,

A2,2,t = A2,t −A2
1,t, where

A2,t = λ2(A2,t−1 + ψ2(y))

and ψ2(y) = y p
′
ε(y)
pε(y) + y2

(
p′′ε (y)
pε(y) −

(
p′ε(y)
pε(y)

)2
)
. For the third-order term, A3,0,t = 0 and A3,2,t = 0 and

A3,3,t = λ3(A3,3,t−1 + ψ3,3(yt) + 3ψ3,2(yt)A1,t−1 + 3ψ3,1(yt)A2,2,t−1),

A3,1,t = 3λ−2A3,3,t + λ

[
A3,1,t−1 − 3(1− λ2)−1ψ3,1(yt)A2,2,t

− 3(1− λ2)−1 (ψ3,2(yt) + 2ψ3,1(yt)A1,t−1) (ψ3,1(yt) +A1,t−1)

]
,

where

ψ3,3(y) =
1

x3p(y|x, η)

∂3p(y|x, η)

∂η3

∣∣∣∣
η=0

= −1− 7
p′ε(y)

pε(y)
y − 6

p
′′
ε (y)

pε(y)
y2 − p

′′′
ε (y)

pε(y)
y3,

ψ3,2(y) =
1

x2p(y|x, η)

∂2p(y|x, η)

∂η2

∣∣∣∣
η=0

= 1 + 3
p′ε(y)

pε(y)
y +

p
′′
ε (y)

pε(y)
y2,

ψ3,1(y) =
1

xp(y|x, η)

∂p(y|x, η)

∂η

∣∣∣∣
η=0

= −1− p′ε(y)

pε(y)
y.
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Table 4: Algorithm for the Stochastic Volatility Model

Normalize observed data yt+1 = e−σ̄(rt+1 − ρrt).
De�ne the normalized latent state xt = (σt − σ̄)/η.

De�ne the unconditional pdf p̄(x) = (2πσ2)−1/2 exp
(
−x2
2σ2

)
, σ2 = (1− λ2)−1.

Linear approximation:

Initialize A1,0 = 0.
Compute the sequence of su�cient statistics A1,t = λ(A1,t−1 − 1− ytp′ε(yt)/pε(yt)).
A linear approximation to density of xt is p̄(x) [1 +A1,tηx].
A linear approximation to E(xt|it) is ηA1,tσ

2.

A quadratic approximation to E(σt|it) is σ̄ + η2A1,tσ
2.

Quadratic approximation:

Initialize A1,0 = 0, A2,0 = 0.
Compute the sequence of su�cient statistics A1,t and

A2,t = λ2
(
A2,t−1 + ytp

′
ε(yt)/pε(yt) + y2

t

[
p′′ε (yt)/pε(yt)− (p′ε(yt)/pε(yt))

2
])
.

A quadratic approximation to density of xt is p(x)
[
1 +A1,tηx+ 1

2

(
A2,t +A2

1,t

)
η2(x2 − σ2)

]
.

A quadratic approximation to E(xt|it) is ηA1,tσ
2.

A cubic approximation to E(σt|it) is σ̄ + η2A1,tσ
2.

A quadratic approximation to E(x2
t |it) is σ2 +

(
A2,t +A2

1,t

)
η2σ4.

A quadratic approximation V(xt|it) is σ2 +A2,tη
2σ4.

Cubic approximation:

Initialize A1,0 = 0, A2,0 = 0, A3,1,0 = 0, and A3,3,0 = 0.
Compute the sequence of su�cient statistics A1,t, A2,t,

A3,3,t = λ3(A3,3,t−1 + ψ3,3(yt) + 3ψ3,2(yt)A1,t−1 + 3ψ3,1(yt)(A2,t−1 −A2
1,t−1)), and

A3,1,t = 3λ−2A3,3,t + λ

[
A3,1,t−1 − 3(1− λ2)−1ψ3,1(yt)(A2,t −A2

1,t)

− 3(1− λ2)−1 (ψ3,2(yt) + 2ψ3,1(yt)A1,t−1) (ψ3,1(yt) +A1,t−1)

]
,

where

ψ3,3(y) = −1− 7
p′ε(y)

pε(y)
y − 6

p
′′
ε (y)

pε(y)
y2 − p

′′′
ε (y)

pε(y)
y3,

ψ3,2(y) = 1 + 3
p′ε(y)

pε(y)
y +

p
′′
ε (y)

pε(y)
y2,

ψ3,1(y) = −1− p′ε(y)

pε(y)
y.

A cubic approximation to density of xt is
p(x)

[
1 +A1,tηx+ 1

2

(
A2,t +A2

1,t

)
η2(x2 − σ2) + 1

6(A3,1,tx+A3,3,tx
3)η3

]
.

A cubic approximation to E(xt|it) is ηA1,tσ
2 + 1

6(A3,1,tσ
2 +A3,3,t3σ

4)η3.

A quartic approximation to E(σt|it) is σ̄ + η2A1,tσ
2 + 1

6(A3,1,tσ
2 +A3,3,t3σ

4)η4.

A cubic approximation to E(x2
t |it) is σ2 +

(
A2,t +A2

1,t

)
η2σ4.

A cubic approximation to V(xt|it) is σ2 +A2,tη
2σ4.
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