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Abstract

This paper analyses under-adoption of sanitation and the effectiveness of loans and price
subsidy policies to increase coverage in the developing world. Under-adoption may be the
result of externalities and borrowing constraints: while sanitation is an expensive investment
for many poor potentially liquidity constrained households, it also generates positive health
externalities. To investigate the impact of the two policies on sanitation coverage I estimate a
dynamic model of household demand on a unique dataset from rural India. The model
embeds both sources of market failure in order to compute equilibrium adoption levels under
the loan and the subsidy policy. Using simulations from the estimated model, I study optimal
policy design in an equilibrium setting with potential multiple equilibria. Counterfactual
analysis reveals that existing sanitation levels are on average 53% below the social optimum,
implying under-adoption. I find price subsidies to be more cost effective at increasing
sanitation coverage. However, the policy impacts are heterogeneous by coverage levels: in
villages with low coverage loans are equally, if not marginally more, effective. A price
subsidy has a high social rate of return where externalities account for a substantial fraction
of the policy impact. While a sanitation loan policy generates smaller social returns it is also
cost efficient under targeted delivery.
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1 Introduction

Close to 2.5 billion people on the planet (≈ 35% of the population) do not have access to basic
sanitation (WHO-UNICEF 2014).1 Lack of sanitation has detrimental effects on individual
health, economic and social well-being (Mara, Lane, Scott & Trouba 2010).2 In recent years there
has been significant policy interest in the developing world to increase sanitation adoption
amongst households.3 Finding strategies to tackle under-adoption has become a policy
imperative. Governments have used many different policies to incentivize adoption. However,
there is substantial disagreement as to which policies are effective at increasing coverage and at
an affordable cost to developing countries. The disagreement arises from contrasting views on
which market failure generates under-adoption of sanitation.

Two often cited market failures are borrowing constraints and externalities. First, in developing
countries with limited or non-existent credit markets, a liquidity constrained household may
find it difficult or impossible to purchase sanitation. Second, sanitation generates positive
externalities (Duflo, Greenstone, Guiteras & Clasen 2015). For example, in a similar manner to
vaccination; an increase of sanitation adoption amongst neighbouring households reduces the
risk of infection and likelihood of being sick for an individual (Geruso & Spears 2015, Hammer
& Spears 2013, Spears 2012, 2013, Augsburg & Rodriguez 2015). Such spillover effects are not
necessarily internalised by an individual resulting in inefficient adoption.

This paper analyses if there is under-adoption and its extent using data from India, where only
37% of the population has access to sanitation. Having established under-adoption, I ask: If the
objective of the policy makers is to maximize coverage subject to government budget constraints,
are sanitation loans or price subsidies more effective at increasing adoption? Moreover, I also
study the welfare implications of the two policies.

To answer these questions, I develop and estimate a dynamic equilibrium model of sanitation
choices of households. The model has two key features. First, it allows for households to be
borrowing constrained in their consumption and sanitation adoption choice. Second, to capture
the externalities households make interdependent adoption choices. I model the household
decisions to adopt sanitation and to save over the life-cycle within a strategic setting of an
incomplete information game. Interdependent adoption captures numerous possible channels
that can generate externalities.4

1Basic sanitation refers access to a toilet/bathroom facility
2The World Bank estimates that increase in sanitation coverage can reduce diarrhoeal disease related child mortality

by more than a third.
3Over the period 2008 − 2015 the Gates Foundation has allocated approx USD. $ 650 million under the water,

sanitation and hygiene (WaSH) program towards increasing sanitation coverage Bill & Melinda Gates Foundation
(2011).

4The framework allows for externalities to arise from different channels. For example, there is a biological contagion
channel which affects health but there may also be information spillovers with neighbours sharing knowledge on the
benefits from adoption. In addition social norms and peer pressure may also play a role.
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The challenge of solving and estimating the model arises because agents do not optimise in
isolation but instead solve an inter-related system of dynamic programming problems. As is
typical of many strategic decision models, multiple equilibria may arise depending on the
strength of the externality. This poses challenges in estimation and counterfactual analysis,
especially when one is unwilling to specify an arbitrary selection rule.

First, this paper builds on the estimation methodology in Hotz, Miller, Sanders & Smith (1994)
and Bajari, Benkard & Levin (2007) by combining a two stage and full solution estimation
methods. I demonstrate that by making a small trade-off under the two-step approach; by
numerically solving a part of the model, it is possible to have an estimation method that can
accommodate a richer set of strategic demand models for a small increase in computational cost.

Second, this paper proposes a method to conduct counterfactual policy analysis that
circumvents the typical issues of multiplicity. Specifically, the burden of solving for all possible
equilibria and an additional challenge with simulation ensues when the existing selection rule is
not policy invariant and is no longer valid under different counterfactuals. This affects the
validity of the policy implications derived which are a function of the underlying selection
mechanism. A common approach, undertaken in applied work, is to specify an equilibrium
selection rule under estimation with the implicit assumption that the selection rule does not
change in counterfactual scenarios.5 This paper takes an alternative route where I instead bound
the set of counterfactual policy outcomes that could be sustained under different selection rules.
I do this by first characterizing the conditions under which the model implies strategic
complementarity in the sanitation adoption decisions. This allows me to establish an order over
the set of equilibria thereby bounding the set using the highest and lowest equilibrium. The
equilibrium bounds are used to characterize the region of the policy impact that could be
sustained in equilibrium under counterfactual scenarios.

There is an active literature on estimating both static and dynamic games that explicitly address
the issue of multiple equilibria. This paper is related to the extensive literature on the estimation
of dynamic models using the Hotz & Miller (1993) two-step Conditional Choice Probability (CCP)
approach. The literature comprises of numerous extensions to the original two-step estimator for
both single-agent and strategic interaction models. More recently, Aguirregabiria & Mira (2007),
Bajari, Benkard & Levin (2007), Pakes, Ostrovsky & Berry (2007) and Pesendorfer & Schmidt-
Dengler (2008) have developed estimation procedures that allow one to recover the primitives that
underlie dynamic choice games. In contrast to the estimation literature, there is a smaller body of
work on the problem of conducting counterfactual policy simulations under multiple equilibria.
The idea to bound the set of equilibria has previously been exploited in the literature both for
the purpose of estimation and simulation. This includes work by Jia (2008), De Paula (2009),
Lee & Pakes (2009), Björkegren (2014) and Reguant (2015).6 In terms of counterfactual simulation,
Björkegren’s (2014) study of mobile handset adoption in Rwanda is closest to this paper. However,

5For example in a recent working paper by Fu & Gregory (2016) study household rebuilding behaviour post
Katrina hurricane where the neighbour’s rebuilding decisions induces amenity spillovers. The paper assumes a specific
equilibrium selection rule under which the model is both estimated and simulated for counterfactual policies.

6Jia (2008) establishes bounds for the possible set of fixed points under specific selection rules in order to ease the
burden of estimating the model.
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differently from Bjorkegren the simulation method in this paper does not employ the assumption
of perfect foresight.

The model is estimated using a two period household panel data from India. In addition to
sanitation adoption, I observe a rich set of household characteristics including asset
accumulation, earnings, household demographics and cost of sanitation. The survey covers time
periods 2009/10 and 2012/13 and includes information on key demographic features at the
village level. Additional information on the cost of sanitation measure was collected at across
villages in 2012.

By comparing the existing sanitation levels in the data with the socially optimal level of adoption
from the estimated model, I quantify the extent of under-adoption. First, I compare the cost
effectiveness of providing sanitation price subsidies differently from loan policies to increase
coverage and compute welfare gains under each policy. Second, I decompose the policy effect
into its direct and indirect components i.e., externality on an individual household’s demand
response. Lastly, I use the structural framework to derive implications about optimal policy
design and cost efficiency.

An advantage of a structural approach is to be able to simulate the impact of counterfactual
policies on adoption decision from changing the direct costs of sanitation, for example through
the provision of price subsidies or loans that incentivize adoption. Compared with a utilitarian
social planner solution, existing coverage levels are on average 53% below the socially optimal
level, implying under-adoption. This wedge is induced by the under valuation by each household
of the total benefits derived from adoption. Under cost effectiveness considerations, I find price
subsidies to be, in general, more effective at increasing sanitation coverage. However, the policy
effects are heterogeneous where loans are found to be equally, if not marginally more, effective
in villages with no sanitation coverage. In contrast, I find that price subsidies compared with
sanitation loans are more effective at increasing sanitation coverage within villages with mid to
low initial sanitation levels. This is because a subsidy policy generates a larger feedback effect in
the presence of externalities which propagates through the entire village resulting in a larger shift
in the equilibrium sanitation level. Instead sanitation loans are found to be more cost effective in
villages with close to zero initial sanitation prevalence.

I find that the additional adoption induced by a price subsidy policy generated positive
externalities equivalent to Rs. 3, 181 (lower bound) and Rs. 6, 253 (upper bound) of welfare gain
for households whose adoption choice was not directly affected by the program. While the
policy generated a larger gain equivalent to Rs. 10, 008 (lower) and Rs. 12, 511 (upper) for the
recipient household directly affected by the policy. The impact of the subsidy policy shifted
bounds on net welfare upwards by Rs. 1, 380 (lower) and Rs. 3, 883 (upper). A significant
proportion of this gain 33% (lower) to 72% (upper) in surplus is accrued indirectly through the
spillover effects.

These findings highlight the fact that, with the presence of externalities, accounting for and
quantifying the effect of equilibrium interactions among households is essential to understand
the impact of policies. This paper argues that subsidies affect household welfare both directly by
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reducing the relative price for sanitation but also indirectly through an externality that affects
the relative cost faced by an individual household. This analysis is consistent with evidence
from field experiments on sanitation demand and contributes to the literature on the topic of
sanitation. In particular, it complements a recent study by Guiteras, Levinsohn & Mobarak
(2015) which analyses the impact of different policy interventions on sanitation take-up
behaviour among households in Bangladesh using a randomized experiment. The experiment
contrasts between policies that provide information on the benefits of having sanitation at home
and policies that directly subsidize the cost of adoption through price subsidies along with a
control group. Their analysis finds evidence of positive spillover effects from adoption on
households other than the recipient beneficiary both in adoption decisions and health outcomes.

The remainder of the paper is organized as follows. Section 2 provides a background and
description of the data. Section 3 presents the model of household sanitation choice and the
identification assumptions. Section 4 describes the estimation strategy and discusses the
parameter estimates and model fit. Section 5 describes how the estimated model is used to
simulate the equilibrium sanitation adoption behaviour under counterfactual policy
interventions. Results from counterfactual policy analysis are presented in Section 6. Section 7
concludes.

2 Context and Data

2.1 Sanitation in India

Despite substantial evidence on the importance of sanitation for health and human capital
development, progress towards increasing access to sanitation in India has been extremely slow.
For example, in rural areas, the fraction of households without a toilet decreased by only 8.8
percentage points between 2001 and 2011, from 78.1% to 69.3% (Ministry of Rural Development
2012). While a number of innovative and successful approaches have increased access to
sanitation on a small scale, the national average of 37% sanitation coverage is well below the
global average of 64%.7 The topic of sanitation provision has also garnered important political
interest within the country. The current Prime Minister Narendra Modi launched the “Swachh
Bharat Abhiyan” (Clean India Mission) initiative which proposed to provide toilets/sanitation to
all 110 million rural households that currently do not have one, at a cost of USD 22.0 billion
(Ministry of Rural Development India, 2014).

Poor sanitation has been linked with causes of intestinal diseases which reduce the absorption of
calories and nutrients, and leads to malnutrition and impaired cognitive development among
children. There is also a growing body of work within the economic literature, that quantifies
the impact of sanitation prevalence on individual health outcomes especially for children. For
example, a recent working paper by Geruso & Spears (2015) investigates the impact of poor

7The national average of 37% is across rural and urban populations. Sanitation coverage in rural India is estimated
at 21.1% while the number for urban population is close to 54% (data.worldbank.org)
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sanitation coverage on infant mortality in India. By instrumenting for local sanitation prevalence
with the religious composition of neighbourhoods to account for endogeneity of sanitation
coverage, they find evidence of large infant mortality externalities associated with the lack of
sanitation amongst neighbours. Specifically, their analysis finds a decline in 2.6 − 2.9 infant
deaths per 1000 with a 10% increase in sanitation adoption levels. Augsburg & Rodriguez (2015)
use the data on sanitation price variation as an instrument for the sanitation prevalence across
village.8 Their instrumental approach suggest a significant increase in child height for age
z− scores by 0.15 standard deviations with a 10% increase in sanitation prevalence.

In contrast, there are few examples that study demand for sanitation and the factors/market
failures that affect household choice. An exception to this is a recent paper by Guiteras,
Levinsohn & Mobarak (2015) based on a randomized policy experiment conducted in
Bangladesh. The experiment measures the impact of different policies: price subsidies,
supply-side and information provision, on household sanitation adoption. The findings suggest
that lack of information, about the benefits of improved sanitation, or lack of access to markets
for sanitation components are not the key deterrents to a household’s investment in sanitation.
Instead, the significant increase in sanitation ownership and usage among subsidy (price
subsidy) recipients suggests that financial constraints might be an important limiting factor in
their context. The increased probability of sanitation ownership among non-recipients also
suggests that purchasing decisions of one’s neighbours affect a household’s own purchasing
decisions - even without a subsidy incentive. Furthermore, the increase in sanitation adoption
rates as the proportion of subsidy voucher recipients suggests the presence of spillover effects
and inter-linked adoption decision. My analysis reveals the extent of under-adoption accrued
due to externalities as well as induced by binding financial constraints.

2.2 Data Overview

The data for the empirical analysis comes from a household panel survey conducted under the
FINISH program (Financial Inclusion Improves Sanitation & Health) in India during the periods
2009 − 10 and 2012 − 2013. The program aims to improve the living standards of poor
communities by implementing projects that improve sanitation, hygiene and waste management
across the country. The overall objective is to increase sanitation access and coverage and
thereby improve the living and economic conditions for poor households that otherwise lack
access to basic sanitation. Under its sanitation and hygiene program, FINISH provides sanitation
facilities at the household level through a combination of micro-credit lent by Microfinance
Institutions (MFIs) or local banks, and/or price subsidies (subsidize the cost of adoption). In
addition to the provision of financial incentives, the interventions also include a self-contribution
component and health insurance incentives. It is important to mention that though the data was
collected under the FINISH program, it does not include the impact of any policy intervention
implemented.

8The analysis in Augsburg & Rodriguez (2015) also makes use of the dataset employed in the empirical analysis in
this paper. They additionally use variation in the cost (price) of sanitation, collected independently in Gautam (2015)
and this paper as an instrument. Their analysis provides constructive evidence on the presence of significant positive
externalities on child health in the data used.
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Descriptive Statistics.

The data used in this project comes from the regional locality of Gwalior located in the state
of Madhya Pradesh, India. With only 28% of population with access to sanitation, Madhya
Pradesh ranks 30 out of a total of 36 states in the country in order of sanitation coverage. The
sample size comprises of 1451 households observed over the two survey periods 2009− 10 and
2012− 2013 from 42 village groups. The FINISH sample comprises of a detailed household survey
which includes a rich set of information on household demographics, household members and
household head, education, earnings, asset accumulation and consumption values as well as
information on sanitation adoption. The dataset also comprises of village level demographics
which includes information on daily wage rate for labour, presence of drainage infrastructure
and availability of public sanitation facilities within the village.

Table (1) provides descriptive statistics for a few variables of interest across the two period panel.
The household head is on average 43 years of age with primary school education.9 A typical
family consists of 5 household members half of whom are female. Home ownership rates are
high with close to 90% of household heads owning their house. Cash-in-hand refers to the total
annual income and liquid assets available to the household for consumption. The stock of assets
which also includes savings in the bank is between 8% and 10% of the total available resources
for consumption. Income earnings and stock of asset values are deflated to 2010 values.

Table 1: Descriptive Statistics

Data:S1 Data:S2
Variable Mean std. dev Mean std. dev
Household
Age of Household Head (yrs) 42.56 (13.22) 43.61 (13.81)
Education level of HH head (yrs) 4.61 (0.34) 4.87 (0.32)
Nr. Of Female HH members 2.54 (1.29) 2.89 (1.40)
Household size 5.20 (1.03) 5.67 (1.10)
Dwelling ownership 0.89 (0.314) 0.90 (0.309)
Cash-in-hand (Rs.) 57,112.32 (16,167) 68,331.69 (18,128)
Savings, Liquid Assets (Rs.) 4,482.13 (5,073) 7,674.34 (4,899)

Village/Group
Drainage Infratructure 0.43 (0.495) 0.47 (0.461)
Community Sanitation presence 0.51 (0.501) 0.54 (0.489)
Cost of building Sanitation (Rs.) 8,628.00 (1150) 8,981.00 (1256)
Sanitation coverage 0.41 (0.304) 0.61 (0.287)

Nr. of groups 42
Nr. of observations 1,451

Notes: This table provides descriptive statistics for key household and group variables across the two sample periods.
Monetary values in the second period are deflated to first period values. The GDP (per capita) Rs. 167,600 (2010
estimate). £1 ≈ Rs. 100 (INR).

9Primary School in India is up to year 5 with a total of 12 years of primary and secondary education.
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Cost of Sanitation.

Data on the cost of sanitation was collected in July/August 2012 across all villages.10 The price
measure is based on the cost of building the most common type of sanitation facility in the local
region i.e., ’Twin Pit Pour Flush’ (TPPF) unit. All households within a village face the same
price. The price measure comprises of two components: the total cost of raw material and the
cost of labour required to build the facility itself. The price measure varies across villages in both
components. The formula applied to construct the price measure is as follows:

Price variation across villages g:

• wageg : Daily (informal) wage rate which varies across villages.

• days: Approximate time to construct a ‘Twin Pit Pour Flush’ (TPPF) variation between 3− 4
days. TPPF is the standard and most popular sanitation design unit implemented by the
government under the Total Sanitation Campaign (T.S.C)

• costg (raw materials): Cost of raw material (cost of five principle materials used in the
construction of a TPPF unit) which include — Bricks, Mortar, Tiles, Ceramic fixtures & Tin
sheets.

priceg = wageg × days + costg (raw materials)× quantity(kilogram/piece/unit) (2.1)

The main source of variation arises from the cost of raw materials which varies across villages
and comprises close to 70% of the total cost of sanitation incurred. A point to note here is that
the raw materials used in sanitation are widely produced and demanded in the region on a large
scale for other domestic and commercial construction. The demand for these products for the
purpose of building sanitation constitutes a very small proportion of the overall demand for the
goods in the region.11

Age profiles. The life-cycle profiles of interest include sanitation adoption and asset accumulation
by age of household head. Figure (1) depicts the dynamics that the model should be able to
replicate. Appendix (A) describes the way in which life-cycle profiles are obtained using data
from different age cohorts. Sanitation adoption varies over the life-cycle of a household head
with 37% prevalence among 20 year household heads to just over 70% prevalence by the age of
75. There is a relatively steeper increase in the proportion of adoption between the age of 20 and
26 while adoption tapers off to be flat past the age of 55. The asset stock profile (per Rs. 1000)
depicts a hump shaped profile with a steady accumulation of assets up to the age of 55, past
which the household de-cumulates to almost it’s initial stock of assets by the age of 75.

10The information used to construct a measure for the cost of sanitation was collected independently of the
household survey. I received helpful advice and assistance from the Gwalior Nagar Nigam Seva municipal authorities
in the collection process.

11Table (9) in the appendix provides details on variation of price and sanitation prevalence by village.
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Figure 1: Life Cycle Profiles

(a) Proportion of Sanitation Adoption (b) Assets over the Life Cycle (1000 Rs.)

3 Model

This section describes the model which provides a framework to evaluate the impact of different
policy interventions on household demand for sanitation. A household is taken to be a single
decision making unit where the household head is identified as the primary decision maker. The
model closely matches the observed adoption behaviour over the life-cycle, and is designed to
capture the key trade-offs faced by a decision making household. Specifically, the structure
incorporates features that influence a household’s net utility from adoption: (i) the cost of
building sanitation, (ii) the impact of binding liquidity constraints, (iii) the strength of the
idiosyncratic taste shocks for having sanitation at home and, (iv) the impact of changes in the
sanitation coverage within the village. The increase in sanitation coverage within a village can
generate spillover effects that are not necessarily internalized by individual households. The
impact of such externalities is captured through an interdependence in household demand for
sanitation, where the gains derived from having sanitation also depend on the adoption decision
of the village as a whole.12

The interdependence is modelled as a strategic interaction among households under incomplete
information.13 An individual household evaluates it’s private utility from adoption against the
social benefits it derives through the spillover effects. The key difference of the structure from a
single agent model is that instead of acting in isolation households solve an inter related system

12Externalities in the model can be generated from different underlying mechanisms for e.g. health externalities,
information spillovers, amenity agglomeration effects as well as peer conformism effects.

13Under incomplete information the information set of a decision making household is only partially observed by
other households including the econometrician.
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of dynamic programming problems given expectations about adoption decision of other
households. Under rational expectations, in equilibrium a household’s actions must be optimal
given their beliefs and their beliefs must be correct on average. In addition, households are also
restricted from borrowing against their future income. Thus, the present decision to buy
sanitation induces an inter temporal trade-off with savings that could instead be used to insure
future consumption against income shocks.

This section describes the primitives of the model, including household’s information set and
choices, state variable transitions and the timing of choices along with a specification of the
household problem. I also describe the Markov Perfect Equilibrium within the model and
possible multiplicity of equilibria. Lastly, I discuss the identification of the primitives and the
assumptions employed to identify the parameters of interest.

3.1 Model Specification

There are a finite number of village groups indexed by g = 1, ..., G and each village is the relevant
reference group for a household. Let N denote the set of households that belong to each village
indexed by i = {1, 2, ..., N}.

Choice Set. A household head makes decisions based on his or her age a over a finite horizon,
where a = 20, ..., 75 and A denotes terminal decision making age. In addition, within a village
different ’aged’ households interact with each other where the dynamics evolves over calendar
time t = 1, ..., ∞.14 At each age a until terminal age A, a household who is alive at time t can
choose a pair (dit, cit), where dit ∈ Dit = {0, 1} denotes choice to adopt sanitation today or wait
until the next period:

dit =

{
0 Non adoption

1 HH adopts sanitation

and cit ∈ Cit denotes the consumption choice today which determines the amount saved for
tomorrow Ait+1. A household’s choice to adopt sanitation is an absorbing state where kit =

kit−1 + dit denotes status of sanitation adoption.15 In each period t, different ‘aged’ households
simultaneously decide whether or not to adopt sanitation. The vector of all household actions in
period t is given by dt = (d1t, d2t, ..., dNt) and ct = (c1t, c2t, ..., cNt).

14The village economy can be viewed as an overlapping generations framework of household heads aged between
20− 75 years old.

15I do not observe destruction of sanitation units over the two samples in the data. Also treating sanitation
adoption as a binary choice is reasonable in the context of rural India where almost all household have at most
one toilet/sanitation facility per household.

10



State variables. Each household i is characterized by a vector of state variables that affect utility:
xit and ε it. A household’s decisions are based on the age of the household head ait, stock of assets
Ait, income yit, state of adoption kit−1, cost of sanitation adoption price and the level of existing
sanitation coverage kt−1 within the village it resides. Decisions are also based on a household
specific idiosyncratic taste for sanitation ε it =

[
εd=1

it , εd=0
it

]
which is a private information shock

possessed by household i and unobservable to all other households −i and the econometrician.
Household i specific state vector is denoted by

(
xit, εd

it
)
=
(

ait, Ait, yit, kit−1, kt−1, price, ξit, εd
it

)
,

where ξit ∈ xit is an allowance for measurement error in income.16 Both taste shocks ε it and
measurement error ξit are assumed to be independently distributed (i.i.d) across households and
time periods.

Information Set, Expectations and Timing. In addition to its own states a household’s decision
to adopt also depends on the adoption decision of other households in the village. Under private
information a household forms expectations about the sanitation adoption behaviour of others
based on the common knowledge information set xt = (xit, x−it).17 A household learns taste
shock ε i prior to making it’s own choices, but other households’ taste shock ε−it remain unknown
to i.

Assumption Common Information: The state vector xt = (x1t, x2t, ..., xNt) denotes the common
knowledge information set at time t observable to all households that belong to the same village.

Assumption Private Information: The choice specific taste parameter εd
it are private information

shocks and are assumed to be distributed i.i.d across households and time.

Though a household receives instantaneous utility from its consumption choice in period t, it
only enjoys utility from its sanitation decision in the following period. This is because it takes
time to build a sanitation facility at home which results in a delay between when an adoption
choice is made and when the facility can be used and enjoyed at home. Similarly, the level of
sanitation coverage kt−1 which is a state observable to all households at the start of period t
captures the impact of underlying externalities generated by the level of adoption up to period
t− 1.

Assumption Time to Build: A household that chooses to adopt sanitation in period t may only realise
gains from choice dit = 1 in the following period.

16In addition to the taste shock ε the econometrician also observes a noisy measure of income.
17Since the household problem is defined over its life-cycle, where choices are made over age a the state vector

denoted by xat = (xit, x−it|ait) is used when describing the household problem, where xat indexes the household i′s
information set at age a.
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Household Income. The earnings function is modelled as an exogenous process for the
household unit.18 The log earnings in the current period id given by:

ln yit = f (ageit, edui) + zit + ξit

zit = zit−1 + uit, ut ∼ N
(
0, σ2

u
) (3.1)

where f (·) is a function of the age and education of the household head.19 The permanent
component follows an A.R.(1) process with variance σ2

u for innovations. While the measurement
error shocks in income ξit are assumed to be identically distributed across time and households
with mean zero and variance σ2

ξ . See Appendix (C) for further details on specifications.

Budget Constraint. The main motive for asset accumulation in the model is to finance the
purchase of a sanitation facility, insure future consumption against income fluctuations and
respond to preference shocks. I assume a standard inter temporal budget constraint augmented
for the cost of sanitation (price) to relate future assets to the current stock of asset Ait, income yit,
and consumption cit.

Ait+1 = R (Ait + yit − cit − price ∗ 1 [dit = 1]) (3.2)

All households in the same village face the same sanitation purchase price i.e., the cost of
building sanitation at home.20 The initial stock of assets for household i is assumed to equal
Ai0 = A0 (edui). The real interest rate r, R = (1 + r) is the rate at which a household saves and
accumulates wealth.21 Households are allowed to save and accumulate assets but are unable to
borrow against their future income.

Ait ≥ 0 (3.3)

The exogenous borrowing constraint restricts households from holding debt at any age a and time
t and thus affects the inter temporal allocation of resources over the lifetime. The constraint may
bind for a liquidity constrained household that would otherwise borrow against future income
to smooth consumption and/or to purchase sanitation. Given preferences, the constraint may
differentially bind over consumption and sanitation adoption choices.

18The model does not include the employment decisions of the household head or other members. Each household
observed in the data derives a collective annual income amongst all household members where the head is the primary
earner.

19In northern India the role of household head is culturally assigned to eldest working male (female, if widowed)
who is also the primary earner and/or highest educated member within the household. It is assumed that household
heads acquire all relevant education by the age 20. Thus edui refers to the education level at ait = 20 with no further
evolution in education attainment.

20The model does not allow for dynamics or uncertainty in the price process.
21The real rate of interest is set to r = 0.02 based on an approximation from interest rate data over the past 50 years

from the Reserve Bank of India (RBI)
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Sanitation Coverage. Within a village the level of sanitation coverage is denoted by the average
level of adoption and evolves according to:

kt = kt−1 +
1
N

N

∑
j=1

djt j = 1, ..., N (3.4)

where state k denotes the existing level of sanitation each period and ∑N
j=1 djt is the sum of the

adoption choices made by households in each period. The sanitation coverage k captures the level
of externality generated by the cumulative actions of all households within the village.

3.2 Strategies and Utility

Strategies. The strategy space σ of each household consists of a tuple
σit (xt, ε it) =

[
δit (xt, ε it) , co

it (xt.ε it)
]

where δ denotes the adoption decision rule and co denotes
the policy function for consumption.22 Let σt = {σit (xt, ε it)}N

i=1 be a set of strategy functions
which are associated with a set of conditional choice probabilities (CCPs) for sanitation adoption
Pσt =

{
pσt

i (dit|xt)
}N

i=1 such that:

pσt
i (dit|xt) =

ˆ
1 {dit = δit (xt, ε it)} g (ε it) dε it (3.5)

which represents the expected adoption behaviour of household i from the point of view of other
households −i, when household i follows strategy profile σit and other households follow σ−it,
and σt = [σit, σ−it] denotes a strategy profile. The choice probability is conditioned on all relevant
observable information summarized by xt at time t.

Expected Utility and Transitions. Each household maximizes its expected utility given
expectations about the level of adoption. Let uσt

i (dit, cit, xt) denote household i′s expected utility
from choosing alternative dit while other households follow σt.

uσt
i (dit, cit, xt) = ∑

d−i

ui

(
dit, cit, d−it, xit

) (
∏
j 6=i

pσt
j (d−i [j] |xt)

)
(3.6)

f σt
i (xit+1|xt, dit, cit) = ∑

d−i

fi

(
xit+1|xit, dit, cit, d−it

) (
∏
j 6=i

pσt
j (d−i [j] |xt)

)
(3.7)

where f σt
i (xt+1|xt, dit, cit) is the transition probability of x conditional on household i choosing dit

given strategy σt.

22The policy function for the optimal consumption co
it (xit; σt) is given by the maximization of the household problem

described in the next section.
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Preferences. A household derives utility from consumption cit, state of adoption kit−1 and the
level of sanitation coverage kt−1 and evaluates the benefits from sanitation against the cost of
purchase. The per period utility for household i below the age a < A at time t is specified as:

u
(

cit, dit, xit, εd
it; θ
)
= cν

it

[
1 + ηkit−1 + φkt−1

]
+ αagei s (agei, kit−1) + γkit−1kt−1 + εd

it (3.8)

The private preference for sanitation εd
it enters as an additively separable shock. The first term

on the right hand side of Equation (3.8) represents individual utility from consumption (cit) and
parameter 1− ν denotes the coefficient of relative risk aversion. A household also enjoys direct
utility from having sanitation at home in the form of convenience and other salient benefits,
captured by αage which may vary by the age of household head.23 The non-separability between
sanitation and consumption choice is captured by parameter η. Interacting the utility from
consumption with adoption status captures potential complementarities that arise from
sanitation adoption that improves latent health status and increases utility from food
consumption. In addition to private convenience a household also derives additional benefits
from the level of sanitation coverage. For example, a household may derive health benefits from
residing in a village with a higher level of sanitation coverage and thus a lower degree of
environmental pollution. Sanitation coverage level kt−1 denotes the fraction of households who
have adopted sanitation by the end of the last period. The level of adoption in a village affects
an individual household’s utility through it’s own adoption status captured by γ as well as
through the impact on private consumption denoted by φ. The utility function u (·) → −∞ for
cit < 0 which restricts adoption for households whose present cash-in-hand does not cover the
cost of purchase i.e., Ait + yit < price ∗ 1 [dit = 1]. The preference specification reflects the
time to build assumption where utility for i in period t depends on

(
cit, kit−1, kt−1

)
instead of

present choice dit.

Since the adoption decision is a function of the sanitation prevalence within a village, aggregate
village level characteristics may also affect the utility from sanitation and thus are an important
feature to incorporate. For example, households in villages with drainage infrastructure and
piped water supply are collectively more likely to adopt, and these villages are also where the
existing sanitation coverage is high compared with villages with no drainage or water supply.
To capture unobservable group level effects, I allow for a village specific ‘fixed effect’ by
allowing the the location parameter µ(mean) of the taste shock ε it to vary across villages. These
location parameters act like ‘fixed effects’ capturing the impact of village specific characteristics
not explicitly modelled or observed by the econometrician.24 Under discrete choice, only the
relative flow utility of sanitation adoption relative to non-adoption are identified and the
parameter µg shifts this difference in values across villages.

23A report from the World Bank noted that female members of the household also enjoy a degree of personal safety
from having a sanitation facility at home. The outside alternatives e.g. open fields or public sanitation facilities are
associated with a higher degree of risk to personal safety especially for women.

24This modelling assumption allows me to relax the independence of ε shocks across households within a village
in a specific way which yields as estimable parameter without loosing the tractability of the structure under the i.i.d
assumption. Details on the variation in the data that identifies µ are discussed in the following section.

14



3.3 Household Problem

Households are forward looking and make decisions so as to maximize the present discounted
value of the expected future utility subject to a set of constraints: (3.1),(3.2),(3.3) and (3.4). At
each age from a = 20 − 75 a decision making household who is alive at time t chooses how
much to consume cit and save for the future. In addition, households that have not adopted
sanitation kit−1 = 0, also choose whether or not to adopt dit after observing their current period
cash-in-hand, given cost of adoption (price) and level of sanitation coverage kt−1.

Using the Bellman principle, the dynamic problem of maximizing the expected lifetime utility
under a given strategy σt can be formulated as:

Vi (xt; σt) =

ˆ
max

dit∈Dit,cit∈Cit

{
vσt

i (dit, cit, xt) + εd
it

}
g (ε it) dε it (3.9)

The function Vi denotes i′s ex-ante value or Emax function which reflects expected utility at the
beginning of the period before private shocks are realized. While vi (·; σt) denotes the choice-
specific value functions:

vi (dit, co
it, xt; σt) = max

cit∈Cit
uσt

i (cit, dit, xit)+ β ∑
d−it

∑
xt+1

Vi (xt+1; σt+1) fi

(
xit+1|xit, dit, cit, d−it

) (
∏
j 6=i

pσt
j (d−i [j] |xt)

)
︸ ︷︷ ︸

∑xt+1
Vi(xt+1;σt+1) f σt

i (xit+1|xt,dit,cit)

where β is the discount factor and the expectation is over realizations of future states, choices
and shocks given the information set available to the household at time t. Also,
f σt
i (xt+1|xt, dit, cit) denotes the expected transition probability of observable states x conditional

on household i choosing (cit, dit) integrated over the expected adoption decisions of other
household j 6= i. Households make decisions until terminal age A with V (xt, ε it|ait = A, σt) = 0.

Adoption Decision Rule. The household decision rule for sanitation adoption is given by:

δit (xt, ε it; σt) =

{
1 i f vi

(
dit = 1, co

it, xt; σt
)
− vi

(
dit = 0, co

it, xt; σt
)
− µg ≥ ε0

it − ε1
it

0 i f vi
(
dit = 1, co

it, xt; σt
)
− vi

(
dit = 0, co

it, xt; σt
)
− µg < ε0

it − ε1
it

(3.10)

Consumption Policy Function. The policy function for the optimal consumption is given by:

co
it (xt; σt) = arg max

cit∈Cit

{
uσt

i (dit, cit, xit) + β ∑
xt+1

Vi (xt+1; σt+1) f σt
i (xit+1|xt, dit, cit)

}
(3.11)

Solution. Given a strategy profile {σt}, a household’s maximization problem can be cast as
a finite horizon dynamic programming problem which can be solved via backward recursion
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from the terminal age a = A. The solution to the household problem would be a function of
the underlying strategy profile. However, to ensure consistency with the strategy played i.e., a
household’s expectation about sanitation prevalence and its future evolution are consistent, also
requires the solution to a fixed point. The choice probabilities pσt

i (dit|xt) solve the coupled fixed
point problem defined by:

Vi (xt; σt) =

ˆ
max

dit∈Dit,cit∈Cit

{
vσt

i (dit, cit, xt) + εd
it

}
g (ε it) dε it

and

Λi (dit|xt; σt) =

ˆ
1
{

dit = arg max
dit∈Dit

{
vσt

i (dit, co
it, xt) + εd

it

}}
g (ε it) dε it

Given a set of adoption probabilities Pσt =
{

pσt
i (dit|xt)

}N
i=1, the value functions Vi (xt; σt) are

solutions to the N Bellman equations and the function Λi (dit|xt; σt) denotes the best response
probability function for each household i for a given strategy σt.

3.4 Equilibrium

Expectations over the adoption decisions of other households, conditional on observed states,
allows an individual household to infer how the adoption coverage level will update in the next
period. Since the time t states and expectations summarize all relevant information about other
households in the village, a household’s behaviour depends only on the current state xt and own
current private shock. An equilibrium under this markovian structure can be defined as follows:

The strategy profile σt = (σ1t, σ2t, ..., σNt) is a Markov perfect equilibrium if and only if, given the
opponents profile σ−it, each household prefers the strategy σit to all alternative Markov strategies
σ
′
it. That is, σt is a MPE for all households i, at all states xt and all alternative Markov strategies

σ
′
it.

Vi (xt; σit, σ−it, θ) ≥ Vi

(
xt; σ

′
it, σ−it, θ

)
for all i, xt, σ

′
it (3.12)

A household’s expected value under an alternative Markov profile σ
′
it given states can be written

recursively as:

Vi

(
xt; σ

′
t , θ
)
= Eε

[
ui

(
σ
′
it (xt, εit) , xit; θ

)
+ εi (di) + β

ˆ
Vi (xt+1; σ, θ) f

(
xt+1|xt, σ

′
it (xt, εit) , σ−it (xt, ε−it)

)
dxt+1|xt

]

Existence of this equilibrium is a direct consequence of the finite horizon and finite action-space
following Maskin & Tirole (2001). Equation (3.12) describe a set of inequalities which form the
moment conditions constructed in the estimation procedure in the following section.
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Multiplicity of Equilibria. In general, there may exist more than one solution to the system of
equations in Equation (3.12). The multiplicity of the equilibria arises due to the interdependence
of household adoption decisions that are consistent with distinct levels of sanitation coverage in
equilibrium. At this stage the model is incomplete without the specification of an equilibrium
selection rule (ESR). This ‘incompleteness’ introduces a challenge with respect to the estimation
of the model where without an ESR the objective function is not well defined. This further adds
to the computational burden of having to repeatedly solve the model for all possible equilibria
under the dual specification above, for each candidate vector of parameters. Even if it would be
possible to solve for the entire set of equilibria there is still an open question about the underlying
equilibrium selection rule played, on which observed behaviour does not provide any additional
information. In order to move forward with the estimation of the model, I impose the following
assumption on the observed data.

Assumption Equilibrium Selection (Single MPE): The data observed is generated by a single
Markov perfect equilibrium profile σ.

Under this assumption there exists a 1 : 1 mapping between the observed behaviour in the data
and the structural objects of the model which is discussed further in the identification section
below. The main assumption here is that for each village, the data is generated by the same
Markov perfect equilibrium profile. In practice, I pool data from multiple villages in which case
Assumption Single MPE, which requires for the equilibrium selection to be consistent across
villages, can prove to be restrictive. The assumption that the data observed is generated from
one of the possible equilibrium affects the estimation of the reduced form objects i.e., conditional
choice probabilities (CCPs). In order to consistently estimate the CCPs, I divide the villages into
subgroups based on village level observables and geographic proximity. The underlying
assumption being that villages close in geographic distance and similar in village specific
demographics may play the same equilibrium selection rule which is consistent within that
subgroup of villages.

3.5 Identification

This section discusses the identification of the primitives of the model from the data.25

Identification analysis seeks a mapping from the set of reduced form objects i.e., policy functions
and choice probabilities, that are observed in the data, to back out the primitive structure of the
model. Based on the insight from Hotz & Miller (1993), Magnac & Thesmar (2002) demonstrate
the degree of under identification of a discrete choice single-agent model under conditional

25Existing work on identification of pure discrete choice models (Magnac & Thesmar 2002, Srisuma 2015, Bajari,
Chernozhukov, Hong & Nekipelov 2009, Bajari, Hong, Krainer & Nekipelov 2010) provides a useful starting point
for analysing the model, but given the continuous choice, additional consideration is needed to find conditions for
identifying the primitives of interest. The identification arguments follow from a combination of Magnac & Thesmar
(2002) and Blevins (2014) which is amended to incorporate the additional strategic interaction element of the model.
The constructive approach highlights the identifying power of each individual assumption and source of variation in
the data.
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independence by showing that, in general, fixing the discount factor β < 1, distributions of the
taste shock G (·) and the utilities u (·) and terminal value in Vt(d = 0|a = A) in one feasible
alternative is just enough for identification for the remaining structure, i.e., transition
probabilities f (·|x, d, c) and the utility function u (·).26 Appendix (B) provides an exposition of
their approach in the context of this model which also includes a continuous choice.

Exclusion Restriction. The strategic interaction component raises Manski’s (1993) well known
reflection problem of identification. Under the reflection problem it is hard to differentiate between
whether group behaviour affects individual outcomes or instead group behaviour is simply an
aggregation of individual actions. In order to identify the primitive utility of interest I impose
exclusion restrictions. The expected choice-specific utility function is defined as:27

uσ
i (di, ci, x)︸ ︷︷ ︸

known

= ∑
d−i

ui

(
di, ci, d−i, xi

) (
∏
j 6=i

pσ
j (d−i [j] |x)

)
︸ ︷︷ ︸

observed

for i = 1, ..., N (3.13)

In this system uσ
i (di, ci, x) and the vector of choice probabilities {pσ} can be treated as known for

all households.28 Identification requires to find a unique set of structural payoffs ui

(
di, ci, d−i, xi

)
that solves this system of equations. A necessary condition for identification is that there are
at least as many equations as free parameters uσ

i (di, ci, x). The exclusion restriction implies that

ui

(
di, ci, d−i, xi

)
= ui

(
di, ci, d−i, x

)
depends only on xi, where x = (xi, x−i). Essentially, it is

possible to find a set of covariates xi that only shift the utility of household i independently of
the payoff functions of the other households.

Assumption Exclusion Restrictions (Excl Rest): The states x−i of other decision making households
are included in the information set of household i on which expectations on adoption decision p−i are
formed but are excluded from i′s payoff function

Without this partition of the state vector in Equation (3.13), for a fixed x, there are N × N
unknowns29 corresponding to the uσ

i (di, ci, x) after imposing the normalization on a reference
alternative.30 However, there are only N equations which implies that without additional
restrictions, the structural parameters are not identified. By partitioning the state vector where
x−i enters the probability function p−i (d−i [j] |xi, x−i) but is excluded from ui

(
di, ci, d−i, xi

)
.

26The structure of the model is defined by s = {ui (·) , f (·) , G, β}. In what follows, I treat both the transition
functions and distribution G (·) as known and consider identification of the utility functions. Blevins (2014) also
considers nonparametric identification of the distribution of unobservables.

27For ease of exposition time subscript is subsumed.
28Appendix (B) shows how uσ

i (di, ci, x) is identified from the observed data.
29In this model where only the average level of adoption enters the utility the degree on under identification is less

but still positive with N×N unknowns, instead of N× 2N−1 unknowns if the identity of the households would matter.
30For all d−i ∈ D−i and all x, ui

(
di = 0, ci, d−i, xi

)
= 0 which also implies uσ

i (di = 0, ci, x) = 0 . I impose this
assumption by normalizing per period flow utility from non-adoption to zero. This normalization must hold for any
strategy d−i that could be used by other households and for each value of the state variable x.
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Holding xi fixed and varying x−i it is possible to increase the number of equations that
ui

(
di, ci, d−i, xi

)
must satisfy. If there are at least N points of support of the conditional

distribution of x−i given xi it is possible to generate more equations than free parameters.

The intuition behind how exclusion restrictions generate identification is as follows. In the
model, the state vector [A−it, y−it] which denotes the cash-in-hand for households (−i) does not
directly affect the utility that household i derives from it’s sanitation choice. Along this space,
the variation of assets and income of other households’ will perturb the adoption probability p−i

but leaves i′s utility unchanged. This variation shifts the equilibrium strategy of household −i,
leaving the components of household i′s payoff from adoption fixed. Based on the reflection
problem, the exclusion restriction allows for exogenous variation in the group behaviour thus
isolating the impact of aggregate behaviour on individual outcomes.31

Identification of preference parameters and village shocks. This section discusses how specific
elements of the state transitions and flow utility are identified from the empirical moments. In the
data, each period t choice and state combination implies a probability distribution over period
t + 1 states and these moments identify parameters that govern state-to-state transitions f(·),
including those for the income earnings function.

Parameter vector θ in the flow utility function32 and the discount factor β are identified through
observed state dependent choice distributions. The CRRA coefficient 1− ν, which measures the
curvature in consumption utility function is identified using the state dependent asset
accumulation distribution. The variation in the mean asset accumulation level by age of the
household head traces out the marginal utility of consumption. In addition, the change in the
asset accumulation (variance) across different age groups helps identify the degree of impatience
denoted by the discount factor β.

Similarly, the variation in the proportion of adoption by age of the household head captures
α (age). While variation in asset accumulation conditional on sanitation adoption status helps
identify η. Across village variation in the sanitation coverage and asset accumulation conditional
on adoption status provides identification of parameters that govern the impact of the externality
γ and φ. The exclusion restriction provides exogenous variation in the sanitation coverage across
villages. Unobserved group effects are identified by observing the aggregate adoption choice
within a village that is consistently different from the choice distribution in another village given
the same set of states. Thus the residual variation from the adoption and asset accumulation
distribution of households conditional on coverage levels across villages identifies village level
fixed effects denoted by the location (mean) parameter of the taste shock µg.

31Given the continuous nature of exclusion restriction state variables x−iwith a rich support, the model is over
identified. This implies that in principle the model can be rejected by the data.

32utility function parametrized by θ =
[
ν, η, φ, α (age) , γ, µg

]
where µg denotes mean of the taste shocks capturing

village level fixed effects.
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4 Estimation

The model is estimated using a two step procedure that closely follows Bajari, Benkard & Levin
(2007)33 which extends the simulation based two-step approach of Hotz, Miller, Sanders & Smith
(1994) to the estimation of dynamic games. In addition to the standard discrete choice, BBL
(2007) also allows for continuous choices. The estimation is divided into two steps. In the first
step, I recover the household’s policy functions for adoption and consumption, along with
estimates for the state transitions. Under rational expectations, households are assumed to have
correct expectations about their environment and the behaviour of other households. As a
consequence, by estimating the probability distributions for decisions and states, under the
Single MPE assumption, I effectively recover a household’s equilibrium expectation for
sanitation adoption in the first stage. In the second stage, I recover the structural parameters that
rationalize the observed equilibrium choices as a set of optimal decisions. Following BBL (2007),
the conditions for optimality are represented as a system of inequalities that require each
household’s observed behaviour to be weakly preferred to feasible alternatives at each state.

In this section, I describe the estimation procedure undertaken which differs from BBL (2007)
in the first stage. The key difference is the way in which the policy function for the continuous
consumption choice is obtained. The approach can be viewed a hybrid of a two-step and full
solution method to accommodate the challenges that arise with limited data size.34 Instead of
estimating the policy function of consumption off the observed data, I instead incorporate the
single-agent (SA) model dynamic programming numeric solution to back out the consumption
(or savings) policy function. This is discussed in further detail below.

4.1 First-stage: Policy Functions & State Transitions

Decision Rule. The decision rule for sanitation adoption in Equation (3.10) is a function of the
choice specific value functions v

(
dit, co

it, xt; σt
)
. Using the Hotz and Miller (1993) inversion it is

possible to recover the choice specific value functions by inverting the observed choice
probabilities at each point in the state space. Under the Type 1 extreme value distribution
assumption on the taste shocks the inversion takes the familiar form for a binary discrete choice:

vi (dit = 1, co
it, xt; σt)− vi (dit = 0, co

it, xt; σt)− µg = ln [pi (dit = 1|xt)]− ln [1− pi (dit = 1|xt)]

33From now on referred to as BBL (2007)
34Under a full solution approach, each household’s dynamic problem is numerically solved at all possible states

subject to the fixed point equilibrium condition to obtain the policy functions. The two-step procedure bypasses the
computational burden associated with solving the model, by directly estimating the policy function off the conditional
variation in the choices observed in the data. Though the two-step eases the computational burden it instead places
a burden, especially with continuous choice, on the amount of observations required to consistently estimate policy
functions from the variation in the data.
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It is sufficient to recover the difference in the choice-specific value functions to recover the decision
rule:

δ̂it (xt, ε it; σt) =

{
1 i f ln

[
p̂i
(
dit = 1|xt; ψ̂

)]
− ln

[
1− p̂i

(
dit = 1|xt; ψ̂

)]
≥ ε0

it − ε1
it

0 i f ln
[
p̂i
(
dit = 1|xt; ψ̂

)]
− ln

[
1− p̂i

(
dit = 1|xt; ψ̂

)]
< ε0

it − ε1
it

where p̂i (dit = 1|xt) is an estimate of the choice probability of adoption conditional on the state
variable xt and ψ̂ denotes a vector of first stage parameters employed in the estimation of the
choice probabilities. In general the estimation of conditional choice probabilities (CCPs) would
require a fairly flexible specification. However, with a state space that includes continuous
variables and restricted sample size, flexibility is difficult to achieve in practice. In addition, the
CCP estimates are divided into groups based on village level observables and geographic
proximity to account for the underlying equilibrium selection rule. Table (7) in the appendix
provides first stage CCP estimates.

Consumption Policy Function. In principle, the consumption (or savings) policy function is
directly estimable from the observed distribution of consumption (or saving) conditional on the
adoption decision.35 However, to obtain consistent estimates for either consumption or savings
from observed conditional variation makes further demands from the existing dataset on the
amount of observations within each state partition cell. Instead, I propose to solve for the
consumption policy function using the numeric solution for a single-agent dynamic problem.

Hybrid. Given that the strategic element is with respect to the sanitation decision and the
consumption decision is affected indirectly through adoption it is possible to decompose the
model into smaller individual maximization problems. This parallels the second feature of
equilibrium models, namely that household’s maximize expected discounted utility given their
expectations about the decisions of other households and the evolution of the relevant states.

A point of note is that the hybrid procedure follows naturally from the structure of the model
which allows me to divide it into smaller parts. Conditional on the probability of adoption the
model can be viewed as a single agent dynamic programming problem which can be estimated
using a variety of standard techniques such as the nested fixed point approach Rust (1997).
Instead of fully solving the model given the fixed point, I only solve an individual household’s
problem conditional on the strategy played in the village. Given expectations on the adoption
decision of other households, an individual household solves its own life-cycle problem of
sanitation adoption and consumption.

The single-agent sanitation adoption and consumption problem is solved at all possible state
realizations. The initial conditions are imputed from the observed data at age a = 20. The solution
also builds the evolution of the deterministic state transition functions. The inter temporal budget
constraint governing asset stock evolution depends on the consumption and adoption decisions
made. Both the budget constraint and the liquidity constraint faced by an individual household

35Provided that, for all adoption choice and states, the policy function co (x, ξ) is strictly increasing in the
measurement error shock in income ξ. Under this monotonicity assumption, the policy function co provides a 1 : 1
mapping from the space of shocks ξ ∈ K to the space of continuous consumption choice C for all adoption choices
and states. For additional details refer to Appendix (B)
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are built into the SA solution which determines the optimal consumption and saving policy at
each point in the state space.

Exogenous State Transitions. The income process described in Equation (3.1) is estimated directly
from the observed data. Income is modelled to be a function of age, education and education-
squared. Table (5) lists the parameter estimates for the income process. Income increases with
human capital (as measured by education) but at a decreasing rate. Age effects vary, with lower
wage predicted for households with older household heads.

Evolution of Sanitation Coverage. In addition, the SA solution is also solved over a grid of
sanitation coverage states k at all points. I discretize the realizations of sanitation prevalence
over a 100 grid points in the numeric solution. The law of motion for sanitation coverage within
a village k is generated/determined in conjunction with the forward simulation procedure in
the next stage. I also assume that an individual household’s adoption choice today (t) has an
infinitesimal change on the level of sanitation prevalence tomorrow (t + 1) given that households
interact in relatively large village groups.

4.2 First-stage: Value Functions

The first stage estimates of the policy and transition functions are used to construct estimates
of the value functions which form the moment conditions employed in the second stage. A
forward simulation procedure is used to estimate the ex-ante value function Vi (xt; σt, θ) for each
household i at state xt. The procedure allows me to obtain an estimate of the value functions for
different strategy profiles σt given a parameter vector θ. A single simulated path is obtained as
follows:36

V̂i (xt; σ, θ) =
1
S

S

∑
s=1

T=A
∑
τ=t

βτui (xτ, στ (xτ, ετs) ; θ) + εd
iτs

1. Starting at state x0 = xt = (xit, x−it)

2. Draw private shocks ε i0s from the distribution Gi (·) for each household i

3. Using the policy function estimate σ̂i (x0, ε i0; ψ1) =
[
δ̂i (x0, ε i0; ψ11) , ĉo

i (xi0; ψ12)
]

compute

the specified choices
(
di0, co

i0
)

for each household i and the resulting per period utility
ui
(
di0, co

i0, xi0; θ
)
+ εdi0

i

4. Using the estimated transition functions f̂
(
·|di0, co

i0, x0, ψ2
)

draw a new state x1 for each one
of the households i and move forward to the next period

• Hybrid: The evolution for k is determined by aggregating the adoption decisions for
all households, k1 = k0 +

1
N ∑i di0

36The forward simulation to construct Vi for each household is performed village by village using the relevant
conditional choice probability estimates.
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5. Forward simulation entails repeating steps 2-4 for each household i, t = T periods forward
i.e., till each household reaches terminal age A

6. Steps 1-5 generates a single path of play for each one of the households

7. The entire process is repeated for S draws of shocks and average i’s discounted sum of
utilities over the S simulated paths.

Averaging over the S simulated paths gives an estimate V̂i for the value function Vi (xt; σt, θ). Such
an estimate can be obtained for any (σ, θ) pair, including the (σ̂, θ) where σ̂ is the policy estimate
from the first-stage estimation. It follows that V̂i (x; σ̂, θ) is an estimate of household i′s sum of
discounted utility from σ̂i given the strategy of other households σ̂−i, where σ̂ = (σ̂i, σ̂−i)

4.3 Second-stage: Structural Parameters

The second stage combines first stage estimates with the necessary conditions for equilibrium
from the model, to recover the structural parameters that rationalize the observed policies as a set
of optimal decisions. The equilibrium inequalities in Equation (3.12) define a set of parameters
that rationalize the underlying strategy profile σ as a Markov perfect equilibrium (MPE) of the
game.37 Under the assumption of Assump : Single MPE and Assump : Excl. Rest the second stage
estimator discussed in BBL (2007) yields standard point estimates of the parameters. Following
the notation of BBL (2007) I define an equilibrium condition as:
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where λ ∈ Λ indexes the equilibrium conditions denoted by a combination
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≥ 0. The model’s parameters

are estimated as the solution to this system of inequalities by employing a minimum distance
estimator that minimizes violations of these optimality conditions. The objective function that is
minimized is given by:

Q (θ, ψ) =

ˆ (
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′
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)
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)

, 0
})2

dH (λ)

where H (·) is the distribution over the set Λ of inequalities.38 Under the assumptions that ensure
the model is point identified and that H (·) has a sufficiently large support, Q (θ, ψ) > 0 for all
θ 6= θ0. Parameter θ is estimated by minimizing the sample analogue of the objective function at
ψ = ψ̂.39

37BBL(2007) denote Θ0 as the set:

Θ0 (σ, f ) :=
{

θ : θ, σ, f satisfy (3.12) for all x, i, σ
′

i

}
The goal of the second stage is to recover Θ0 using the first stage estimates of the policy functions σ and transitions
functions f . Depending on the model and its parametrization, the set Θ0 may or may not be a singleton.

38The true parameter vector θ0 satisfies Q (θ0, ψ0) = 0 = minθ∈Θ Q (θ, ψ0) where Θ contains θ0.
39The Nelder Mead algorithm was employed to minimize the objective function. Monte Carlo simulations were

performed using simulated data to understand the properties of the BBL (2007) estimator.
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where ĝi (·) is the empirical counterpart to g (·)
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By constructing empirical counterparts to all or a subset of the equilibrium inequalities using the
forward simulation procedure described in section (4.2) the idea is to search for values of θ that
minimizes the violations of these inequalities. Standard errors are computed using a bootstrap
procedure. Further details are provided in Appendix (C).

4.4 Parameter Estimates

The model has a total of 74 parameters. I focus here on a subset, in particular on the estimates
describing preferences obtained in the second stage in Table (2).40

Table 2: Structural Estimates: Preference Parameters

Parameter Estim. Std Err. Description
ν 0.3376 (0.026) (1− ν) coeff of rel. risk aversion
η 0.00022 (0.0001) interaction ct & own sanitation
φ 0.00514 (0.002) interaction ct & average sanitation prev.

α20≤a<26 4.8155 (0.092) importance of sanitation at 20≤age<26
α26≤a<75 0.0138 (0.002) importance of sanitation at 26≤age<75

γ 2.7019 (0.024) interaction own sanitation & average sanitation prev.
β 0.9436 (0.014) discount factor

Notes: Model parameters characterizing preferences and discount rate. Bootstrap standard errors computed using
250 bootstrap resamples. Calibrated values: r = 0.02 real interest savings rate based on data from the Reserve Bank of
India (RBI).

Utility in the model is derived from consumption and having sanitation at home. Everything
else equal, households derive higher utility from having sanitation at home with the differential
effects based on the age of the household head. The estimate of ν indicates a decreasing marginal
utility of consumption. While the parameter η indicates a marginally higher return derived
from food/other consumption by having sanitation at home. Households also derive additional
utility from the aggregate coverage of sanitation within the village. This effect is captured by
the positive parameter estimates for γ and φ which capture the non-separable effect of average
sanitation coverage on the additional gains a household derives from it own consumption and
sanitation.

40A complete list of the parameters estimates is provided in Appendix (E), which includes first stage estimates in
Tables (5) -(7) and the estimates for the village level fixed effects µ̂g in Table (8).
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Figure 2: Model Fit: Life Cycle Profiles

(a) Proportion of Sanitation Adoption (b) Assets over the Life Cycle (1000 Rs.)

4.5 Model Fit

The fit of the model is evaluated along two dimensions: life cycle profiles and aggregate sanitation
coverage observed in the data. The model closely matches the observed behaviour for sanitation
adoption choices as well as asset accumulation over the life-cycle. Figure (2) plots the empirical
and model generated profiles for the fraction of sanitation adoption (2.a) and mean assets (2.b)
by age of the household head. The estimation procedure does not directly employ the empirical
age profiles as moments in the estimation of the structural parameters and thus the fit can be
viewed as one ‘non targeted’ moments. Overall the model replicates household behaviour over
the life cycle in terms of sanitation adoption fairly well. There exists discrepancy at older ages,
the model predicts higher adoption levels than observed in the data past the age of 55. Additional
discussion of the model fit with respect to the sanitation coverage across villages observed in the
data is included in Section (5.2).
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Figure 3: Impact of Liquidity Constraints

Impact of Liquidity Constraints. As a robustness check, I also look at how the simulated
sanitation adoption behaviour would change if the underlying model were to be re-estimated
without restricting households from borrowing against their future income. I re-estimate the
model where under the forward simulation procedure differently from before I allow
households to have negative asset holdings (debt) based on optimization of their consumption
and sanitation choice subject to the natural borrowing constraint and terminal age conditions.41

The re-estimated preference parameters are provided in Table (6) in the appendix.

Figure (3) plots the simulated sanitation adoption profile under the re-estimated model along
with the empirical profile. Under relaxation of the liquidity constraints the model simulation
predicts a marginal increase in the proportion of sanitation adoption at each age. Though small,
the gap between the two model generated profiles decreases with age. This is driven by the
model feature where conditional on not being liquidity constrained households find it optimal
to adopt sanitation earlier rather than later in life so as to enjoy the utility from sanitation over a
longer time horizon. The maximum difference between the two simulated profiles is less than
7 % and the profile generated under relaxed borrowing constraints is well within the 95 %
confidence interval bounds estimated under the model with liquidity constraints. Overall, it is
possible to conclude that the household sanitation adoption behaviour under the model where
borrowing is fully restricted is robust under this assumption. Though the model where
borrowing is fully restricted is taken as a good fit of the data, this exercise does not necessarily
conclude that the observed households are indeed liquidity constrained, as the constraint At ≥ 0
may not necessarily bind for all households. Further analysis of this issue is included with the
counterfactual policy simulations in Section (6).

41Each household must leave terminal age A without debt i.e., AA+1 ≥ 0.
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5 Simulation of Sanitation Adoption

In this section, I outline the simulation method to determine sanitation equilibrium levels under
different counterfactual environments. Under single agent models the underlying assumption is
that each household’s outcome varies only with its own policy treatment. To accommodate the
presence of externalities, I need to allow a household’s outcome to also depend on the outcomes
of other households impacted by the policy thereby allowing for multiple equilibria in
counterfactual environments. In order to conduct counterfactual experiments in models with
multiple equilibria, one approach would be to define the Equilibrium Selection Mechanism
(ESM) and to compute the full set of equilibrium under estimated parameter values. However,
even if it would be possible to compute the full set equilibria,42 observed behaviour does not
provide any additional guidance on the underlying equilibrium selection rule played.

Most examples in the literature instead impose an equilibrium selection rule ex-ante under which
the model is both estimated and simulated for counterfactual policies. A key limitation of this
approach is that it does not allow for the possibility that the equilibrium selection mechanism may
itself change under counterfactual environments. Thus the policy simulation given a selection
rule may not be valid under a different counterfactual environment.

My approach here differs, instead of solving and simulating for all possible equilibria I instead
bound the set of possible equilibria by an upper and lower limit. To evaluate the effect of
counterfactual policies on equilibrium sanitation prevalence, I focus on the resulting shifts in the
upper and lower bounds based on changes to the underlying environment.43 The approach of
bounding the equilibrium set is appealing as it allows for changes in the underlying equilibrium
selection rules played under counterfactual environments. However, a trade-off for this
advantage is that it only allows one to bound the region where the impact of the policy may lie.
If the estimated bounds under a policy simulation are too wide this would affect the precision of
the policy implications derived.

5.1 Strategic Complementarity

To ascertain household behaviour under counterfactual policies, I propose the following
approach. First, I characterize the conditions under which the model implies strategic
complementarity in the adoption decisions. Specifically, I verify whether the household objective
function displays the properties of a supermodular game with respect to the adoption decision,
i.e., the household preferences satisfy Increasing Differences over the sanitation adoption
dimension. Then I derive conditions under which such a condition is sufficient to ensure that

42Iskhakov, Rust & Schjerning (2016) propose an algorithm, Recursive Lexiographic Search (RLS) that attempts to solve
for all Markov Perfect Equilibria for a class of Markovian Games that they define as Directional Dynamic Games (DDG).
The directional property of the game is defined over the stochastic evolution of certain state variables other than the
passage of calendar time or age. Under certain conditions the model in this paper also satisfies directionality in the
evolution of the sanitation coverage within a village.

43The idea of bounding the equilibrium set has previously been employed by Jia (2008), De Paula (2009) and
Bjorkegren (2014) in different contexts to solve and simulate the model under multiple equilibria.
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the set of equilibria satisfies the ordinal properties that characterize supermodular games, i.e.
there is a highest and a lowest pure strategy equilibrium with respect to a household’s sanitation
adoption. I then exploit the properties of such a structure to characterize the upper and lower
bound of the equilibrium sanitation adoption level at village level. The interpretation of the
bounds obtained under the iteration procedure depends the properties of the model described in
this paragraph. The approach extends a traditional result of supermodular games by employing
a notion of separability of the objective function over the choice set similar to Topkis (1978).44 A
detailed derivation of the result is provided in Appendix (D). The argument is arranged in three
steps and is greatly simplified by the choice of timing employed in the model i.e., ‘time to build’
sanitation.

The intuition behind the main result is as follows. If household sanitation adoption decisions are
strategic complements, then a larger average level of adoption in the village makes adoption -
ceteris paribus - more attractive for every household. This is the case if the household’s objective
function satisfies Increasing Differences with respect to the adoption decision. I prove that this
condition is satisfied by the model under weak assumptions. On the other hand, a larger average
level of sanitation adoption may change the trade-off of the consumption and saving decisions
of a household and this may, in turn, affect household adoption decisions. I show that, if the
parameter capturing the interaction between private consumption and average level of sanitation
coverage in the village: φ is sufficiently close to zero, then the second channel vanishes. As
a consequence, the existence of a highest and a lowest equilibrium with respect of household
sanitation adoption is ensured. This result dramatically simplifies the counterfactual analysis,
because in order to bound the set of equilibria of the game with respect to the average level
of adoption in equilibrium it is sufficient to simulate bounds for two specific upper and lower
equilibria.

5.2 Simulation Method

To compute the bounds for the set of equilibrium sanitation adoption levels, I use an iterated
best response algorithm to search for the fixed points. As explained above the procedure does
not attempt to recover all possible equilibria, but instead only the upper and lower limits
characterizing the set of possible equilibria. The algorithm can be divided into two steps. I first
construct a candidate adoption path using the forward simulation procedure described in
section (4.2) under estimated parameter values. There are an initial set of households {ki0}N

i=1
who made their sanitation adoption decision before my data begins, I hold their decision fixed.
For baseline simulations, the initial adoption level k0 is set equal to the sanitation level observed
in the first period of the data, such that at the first step of the algorithm households expect the
level of sanitation observed in the data.

In the second step, an iterative procedure is used on each candidate adoption path to obtain a
fixed point. The index τ denotes an iteration. Each candidate adoption path and equilibrium
identified depends on the initial adoption level k0 along with the vector of observed states and

44Ref. Topkis (1978) Theorem (3.3)
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taste shocks ε = {ε i0}N
i=1 drawn. To locate the lower and upper limits

(
k

L
, k

U
)

, assumptions are
imposed on the future adoption path of all households within a village. For the lower limit, I
assume that each household i believes that the level of sanitation in each subsequent period until
i reaches terminal age A remains at the initial level k0 under each iteration. Similarly for the
upper limit, each household i believes that the level of sanitation in each subsequent period until
A is close to ≈ 100% coverage.

For the lower bound k
L
:

1. Under the assumption that the future level of adoption remains at observed k
τ=1
0 till terminal

age A (given iteration τ = 1)

2. Draw set of private taste shocks ε i0 for each household i = 1, ..., N and allow each
household to optimize their decision, holding fixed the adoption path of other households
given assumptions about the future evolution of k

3. Compute utility and choices (dit, cit) for each household i using the estimated policy and
transitions functions

4. Forward simulate each household’s choice problem until each household i reaches A
terminal age

5. With each move one period forward update the sanitation level k by averaging over the
adoption decisions for all households each period: k

τ=1
1 , k

τ=1
2 , k

τ=1
3 etc.

6. Continue forward simulation for each household updating the sanitation level k till k
τ=1
M =

1.0 i.e., all household have adopted and obtain a candidate adoption path denoted by vector
−→
k τ=1 =

(
k

1
0, k

1
1, ..., k

1
M

)
7. Repeat steps 1-6 under the same ε i0 draws to obtain another candidate adoption vector
−→
k τ=2 =

(
k

2
0, k

2
1, ..., k

2
M

)
• Where initial k

τ=2
0 level (starting point) is obtained by computing the adoption decision

rules for all households i under the assumption that
−→
k τ=1 is the relevant adoption path

played.

8. Iterate, using the path from the previous step to form the next adoption path.

9. Repeat until
−→
k τ+1 =

−→
k τ i.e., the adoption path vector in each iteration converges to obtain

the fixed point.

• The first element of this convergent vector
−→
k τ+1 is obtained as the lower bound k

L
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Figure 4: Model Fit: Simulation by Village

Similarly for the upper bound k
U

the convergent vector is obtained by repeating the process
starting at the observed level of k0 but under the assumption that next period onwards the level
of sanitation adoption is ≈ 100%. In this way the sanitation adoption path vector converges with
each subsequent iteration. The first element of this convergent vector is obtained as the upper
bound of the set. Since a candidate adoption path and the fixed point obtained is a function of ε i0

shock drawn the iteration procedure is repeated for multiple draws s of {ε i0s}S
s=1 and the lower

and upper bounds are computed as the midpoints of the resulting distributions.45

Baseline Simulation

Under the estimated model, I run the simulation procedure on the same environment as the data
observed to get a sense of the model ‘fit’ at the aggregate village level. Using data from the first
period the model is simulated one period forward for the predicted upper and lower bounds of
the equilibrium level of sanitation. The upper and lower bound simulations are computed for
each of the 42 village groups observed in the sample data. Figure (4) plots the model simulated
bounds for the observed data points in period two Data : S2 of the sample panel where the
horizontal axis denotes different villages in order of increasing sanitation prevalence.46 Though
the model simulated bounds are wide at certain points in most cases the sanitation prevalence
observed in the data lies within the bounds predicted by the model.

45In practice, the iteration procedure is performed for 250 independent draws for the set of taste shocks ε.
46Table (10) in the appendix provides a complete list of the simulated bounds at baseline for the observed data in

period two.
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Figure 5: Model Fit: Model φ = 0

Properties of the Model. A key condition for the strategic complementarity in sanitation adoption
result in appendix (D), is that the parameter φ which captures the effect of the externality on
private consumption in the utility function is sufficiently close to zero, φ ≈ 0. The parameter
estimates from Table (2) show φ to be a small positive value yet significantly different from zero.

Figure (5) overlays the simulated bounds under φ = 0.47 The simulated bounds under the model
where the value of φ is restricted to zero, are very close to the model where φ is set equal to the
estimated value. The simulated bounds in the figure show a monotonic shift in the bounds, under
the estimated model, with a deviation in the value from φ = 0→ φ = 0.00514. Further robustness
checks are performed in Table (11) Since the bounds simulated under estimated parameter values
θ̂ are close to the bounds simulated under θ̃ : φ = 0 for which the theoretical result ensures
existence of a highest and lowest equilibria , I use the model estimated values under θ̂ to simulate
policy effects. Given that the upper bound predicted under θ̂ lies above the upper bound under
φ = 0, emphasis is placed on the lower bound of the policy effect.

47Table (10) also computes the simulated bounds at baseline under the assumption that parameter φ = 0.
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Figure 6: Household Valuation of Sanitation

Notes: This figure plots an individual household’s valuation of sanitation over it’s life-cycle. £1 ≈ Rs. 100 (INR).

5.3 Household Valuation of Sanitation

The estimated model can be used to place a valuation on sanitation for a given household over
its lifetime under a simulated equilibrium path. This section describes the method used to
convert the value of the having sanitation into a monetary valuation by the household (in 2009
INR). To do this, I compute the expected lifetime utility of being in state xit at each point in the
state space after having adopted sanitation at the first period. Similarly, it is possible to compute
the expected lifetime utility at each point in the state space under the scenario where household
does not adopt sanitation. In order to obtain the compensating variation, I add income under
the non-adoption scenario as a transfer into available cash-in-hand at each possible state and
then recompute the value. This procedure is repeated until the household’s expected lifetime
utility with the additional income transfer is equal to its expected lifetime utility under
sanitation adoption but without the hypothetical income transfer. With externality effects I
compute the present value of utility from sanitation under each simulated equilibrium adoption

path
(−→

k L,
−→
k U
)

. The compensating variation or the willingness-to-pay amounts can be

computed at different points of the life cycle for a household given an adoption path.

Figure (6) plots the household valuation of sanitation in Indian Rs. (INR) as a function of age
of the household head. Figure (6) shows that younger household heads place a higher valuation
of sanitation since the gains from early adoption persist over time. Similarly older household
heads value sanitation less since the time horizon to enjoy the benefits from having sanitation is
shorter. The figure also plots a valuation driven by the underlying spillover effects. The solid
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black line plots the household valuation of sanitation without the endogenous effects driven by
the underlying externality. While the dashed plots the household valuation with the endogenous
effects incorporated at the upper and lower bound adoption paths respectively. On average
household valuation for sanitation ranges between Rs. 2, 75, 250 (lower) and Rs. 4, 30, 500 (upper)
which denotes a non-trivial amount when compared with the average household lifetime income
value of Rs. 23, 76, 000.48 The upper and lower bound for the valuation with spillover effects
lie above the valuation of sanitation made by a household acting in isolation. On average the
difference in valuation is 52% (lower bound) and 71% (upper bound) higher once externality
effects are accounted for.

6 Counterfactual Policy Experiments

In this section, I examine the impact of different policy interventions on equilibrium sanitation
coverage and welfare. In the first exercise, the question of under-adoption of sanitation is
addressed by computing the socially optimal level of sanitation and comparing it with observed
levels in the data. The second application focuses on the cost effectiveness of two specific policy
interventions: sanitation loans and price subsidies. If a policy maker’s objective is to maximize
sanitation coverage? I examine which of the two policies are more cost effective. The simulations
show how policy implications differ once externality effects are taken into account. In order to
quantify the effect of the externality, the impact of a policy is decomposed into the private
incentives (direct) from adoption and it’s impact through the spillover effects (indirect). To
contrast the policy implications based on maximizing coverage, I compute changes in bounds of
welfare based on maximizing total welfare instead of coverage. Lastly, I study the dynamics of
the age effects with potential implications for policy targeting. The impact of a policy is
measured by reporting changes in the bounds of equilibrium adoption levels along with the
household’s willingness-to-pay for the policy under counterfactual scenarios.

6.1 Under-adoption of Sanitation

To determine if empirical sanitation coverage levels imply under-adoption, I compute the
socially optimal level of sanitation adoption by solving the social planner problem for each
village. I consider the problem of a constrained social planner whose objective is to allocate
sanitation along to households so as to maximize utility subject to the total fixed endowment of
resources. To compute the welfare under the social planner’s regime, the following procedure is
implemented: the total endowment is computed by aggregating the total consumption and
sanitation value within a village. The marginal rate of technical substitution between
consumption and sanitation is given by the market cost of sanitation by village (priceg). The
planner induces households to solve the optimal adoption problem by re-allocating the total
endowment between food consumption and sanitation, so as to maximize utility. I assume the

48Lifetime income value approximated using survey data from the Gwalior Nagar Nigam Seva information drive
2010-11.
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Table 3: Estimated Welfare Change: Social Planner’s Solution

Total Welfare Sanitation
(x1000. Rs) Coverage

Baseline S1 9,247.2 37.0%
Social Planner 36,569.6 80.7%
Change +295.5% +43.7%

Notes: This table shows the change in the welfare for a representative village from enacting the social planner’s
solution where the total endowment is calculated with respect to the first sample period. The social planner induces
households to solve the optimal adoption problem by re-allocating the total endowment between food consumption
and sanitation, so as to maximize utility. A utilitarian Social Welfare Function (SWF) is maximized with equal pareto
weights for each household within the village. £1 ≈ Rs. 100 (INR).

planner maximizes a utilitarian Social Welfare Function (SWF) with equal pareto weights
assigned to each household within the village.49 By changing the allocation of sanitation,
moving resources between sanitation and consumption, the algorithm searches for the policy
functions that maximize total household welfare until there is no other higher value attainable.

Results for a representative village are shown in Table (3). The total surplus attained is equal to
Rs. 36 million with 81% sanitation coverage. Compared with the baseline this reflects a 295.5%
increase in household welfare and a 43.7% increase in sanitation coverage. This exercise reveals
that the existing sanitation levels observed in villages are inefficient in the sense that households
under-adopt sanitation and instead allocate a larger share of resources to private food
consumption. This systematic under-adoption is driven by the under valuation of sanitation
made by each household that fails to internalize the total benefit generated from sanitation. The
difference in welfare attained between the baseline and social planner’s regime reflects the cost
of the externality induced by the divergence in the private and social valuation of sanitation.

Table (12) computes the utilitarian planner problem for each of the villages based on adoption
level and endowment values in the first sample period. Based on the sanitation coverage observed
in the data and determined under the social planner solution, the extent to which sanitation is
under-adopted is computed for each of the villages. On average, the privately chosen adoption
levels in the data are 53% below the socially optimal based on a utilitarian Social Welfare Function
(SWF). In the subsequent counterfactual exercises, the equilibrium levels achieved under different
policies are compared with the socially optimal adoption levels under the planner’s problem.

49The socially optimal level of sanitation depends on the choice of pareto weights used in the Social Welfare Function
(SWF).
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Figure 7: Equilibrium Adoption: Cost of Policy & Size of Policy (lower bound)

Notes: The simulations plot the lower bounds for the predicted equilibrium sanitation level one period ahead for a
gird of potential policy structures and the corresponding cost of providing said policy. Policy simulations are
performed on a counterfactual village where the initial distribution of all state variables: age, assets, income and cost
of sanitation Rs. 8, 628 are held constant and the initial sanitation coverage is fixed at 0%. £1 ≈ Rs. 100 (INR).

6.2 Cost Effective Policy: Sanitation Loans and Price Subsidies

The social planner solution finds the observed sanitation levels to be below the socially optimal
and highlights the potential role of policy interventions to increase sanitation coverage so as to
increase total welfare. With a policy maker potentially constrained by the total funds available
for allocation it is important to understand if the implemented policy is cost effective. The aim
of this exercise is to understand whether specific policies are more cost effective than others
at maximizing sanitation coverage. Specifically, I compare the simulated equilibrium coverage
levels attained under sanitation loans and price subsidy policies of different sizes for a fixed cost
of the policy. The objective under each policy is to correct the suboptimal allocation of sanitation
by targeting the underlying market failures faced by individual households. This analysis also
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relates to the current debate among policy makers in the field on the appropriate choice of policy
to tackle the under-adoption.

To evaluate cost effectiveness I benchmark each loan and subsidy policy against the total cost
of the policy to the government to allocate the respective policy. Both loans and price subsidy
policies can be allocated as a fraction (0, 1] of the cost of sanitation (priceg), where 1 denotes a
100% price subsidization or loan allocation. This determines a grid of potential policy structures
for which a series of policy cost schedules and corresponding equilibrium adoption levels can be
generated for each village.

Figure (7) plots the policy cost schedules and sanitation coverage curves for both price subsidies
and loans across a grid of counterfactual monetary structures for a representative village. As a
conservative estimate of the policy impact the figure plots only the lower bound response. The
lower panel displays the relationship between a gird of loans and subsidy policy structures and
the corresponding total cost of policy to the government body. The upper panel determines the
sanitation coverage levels attained over the same grid of policy structures. To calculate the present
cost of a loan I take an estimate of the rate of loan repayment in the local region of ≈ 60% to
simulate loan repayment by the village population in my model.

This allows me to interpolate the relationship between the total cost of the policy and the
sanitation coverage level attained for that cost of intervention in Figure (8). The figure plots the
lower bound response. Figure (8.a) plots the response for a village that is initially at 0% coverage
level and in the next period moves to a coverage level of 9%. I find that in villages with close to
zero coverage sanitation loans are as effective, if not marginally more, at achieving maximum
coverage for a fixed cost of the policy. As the cost of the policy increases the the effectiveness of
the loan declines. The curve for the loan stops past a certain total cost value beyond which
households do not find it optimal to adopt sanitation with the take-up of a loan, at which point
there is no incentive to provide a loan policy.

Figure (8.b) plots the same relationship except that the initial sanitation level is set higher at
22%. The equilibrium cost curves show a very different pattern to panel (8.a) where the subsidy
policy is found to be more cost effective for all policy cost values. There is also a sharp jump in
the response from 0.22 to 0.69 for the price subsidy evaluated at a policy cost value of
Rs. 5000 (×1000 Rs). This is driven by the social multiplier generated by the underlying
externality effect. With a low initial level of sanitation prevalence a relatively small subsidy
amount induces a lot more households to adopt sanitation this effect then multiplies generating
further adoption. In contrast the sanitation loan policy generates a much more modest increase
in the adoption levels from 0.22 to 0.31 for the same cost of policy. Using the graph in Figure (7)
to extrapolate, a Rs. 5000 (×1000 Rs) total cost of policy is associated with providing a price
subsidy of 8% subsidization of the cost, to all households within the village. This exercise
demonstrates heterogeneity in the impact of the policy with the initial sanitation coverage levels.
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Figure 8: Equilibrium Adoption: Cost and Allocation of Policy (lower bound)

(a) Low Initial Coverage (b) Mid-Low Initial Coverage

Notes: The simulations plot the lower bounds for the predicted equilibrium sanitation level attained under sanitation
loans and price subsidies one period ahead. Policy simulations are performed on a counterfactual village where the
initial distribution of all state variables: age, assets, income and cost of sanitation Rs. 8628 are held constant and the
initial sanitation coverage is fixed at 0%. £1 ≈ Rs. 100 (INR).

6.3 Subsidies: Direct and Indirect Effects

The policy exercise in the previous section reveals sanitation price subsidies to be in general more
cost effective in villages with some existing sanitation coverage. To quantify the importance of
externality effects in the demand response for a household, I compare the full equilibrium impact
a price subsidy with the impact generated treating the household response in isolation.

Figure (9) simulates the equilibrium bounds under different price subsidy amounts as a fraction
of the cost for each of the village observed in the data.50 The impact of the subsides is highly
non linear with the initial sanitation coverage and the shape of the response curve changes as
a function of the amount of the subsidy given out. Comparing the equilibrium adoption levels
under lower bounds with the socially optimal adoption level in Table (12), a uniform price subsidy
achieves on average 62% (under 5% subsidy), 77% (under 15% subsidy) and 92% (under 25%
subsidy) of a social planner’s welfare outcome and sanitation allocation.51

With positive externalities, the sanitation coverage levels are inefficient where each household
does not fully internalize the total benefit derived from adoption. To understand the welfare gain
derived for the village economy from a small shift towards the socially optimal level I compute
the net welfare gain (loss) generated for a single household that is on the margin of adopting

50See ref Table (13)
51Since the true impact of the policy lies between the upper and lower bound, I compare with the lower bound of

the policy as a conservative estimate.
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and receives a price subsidy on the full cost of sanitation.52 I find that provision a subsidy
to a single household also produces a marginal increase in the welfare for the entire village
community. The present cost of the subsidy is at Rs. 8, 628 but the policy shifts the bounds on
welfare for the recipient household by Rs. 10, 008 (lower bound) and Rs. 12, 511 (upper bound)
from the combination of direct value of having sanitation as well as the increased utility derived
from the spillover effects generated. This results in a increase in the bounds on net welfare by
Rs. 1, 380 (lower equilibrium) and Rs. 3, 883 (upper equilibrium) of which 33% (lower bound) to
72% (upper bound) are attributed to the indirect effect. In addition to the gain for the recipient
household the subsidy also generated a subsequent gain for other households in the village
which amounted to Rs. 3, 181 (lower) and Rs. 6, 253 (upper) on aggregate or an equivalent of
Rs. 19.1 (lower) and Rs. 37.2 (upper) gain per non recipient household. It is important to note
that without the presence of externalities, a price distorting subsidy policy would not improve
net household welfare relative to an unconditional subsidy policy.

Figure 9: Model simulation: Price Subsidy

Overall, the impact of the price subsidies on sanitation adoption is consistent with the evidence
from Guiteras, Levinsohn & Mobarak (2015) under experimental policy intervention. The
subsidy not only induces a greater demand response from targeted households (relative to a
pure information provision intervention), but also has a non trivial impact on the adoption
decision of non-targeted households within the village. This reinforces the opinion that the
design of subsidy policies, for goods with spillover effects, should not be based on targeting
individuals but instead be based on targeting groups of households.

52The welfare calculations are for a household on the margin of adopting in a representative village.
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Table 4: Estimated Welfare Change: Policy Interventions

Total Welfare Total cost to Govt. Net Gain Sanitation
(1000. Rs) (1000. Rs) (1000. Rs) Coverage

Baseline S1 9,247.2 - - 37%
Social Planner 36,569.6 - - 81%
Sanitation Loan (uniform) 21,844.1 10,726.8 11,117.3 52%
Price Subsidy (uniform) 32,321.6 18,651.2 13,670.4 73%
Price Subsidy+Uncond
loan (poorest 10%)

33,728.4 18,651.2 15,077.2 68%

Notes: This table shows the change in the welfare for a representative village from enacting the social planner’s
solution and under three different policy interventions: Sanitation Loan (uniform), Price subsidy (uniform) and a
combination of price subsidy + Unconditional Loan (poorest 10%). A utilitarian Social Welfare Function (SWF) is
maximized with equal pareto weights for each household within the village. £1 ≈ Rs. 100 (INR).

6.4 Dynamics over age

A price subsidy generates a substitution effect as well as an income effect on the demand
response of a recipient household. Figure (10) decomposes the impact of a subsidy into its
income and substitution effect components. The figure plots the absolute value of the
Marshallian (uncompensated) and Hicksian (compensated) price elasticities at a lower
equilibrium bound for a representative household over its life-cycle. The Hicksian elasticity
measures the pure price effect of the good keeping the utility level fixed. While the vertical
difference between the two curves is the residual income effect generated from the increase in
the effective budget that a household has available to spend.

Both the Marshallian and Hicksian elasticity (in absolute value) decrease over the life-cycle as
marginal utility from adoption decreases with age, this feature is driven by the life-cycle structure
subject to terminal value assumptions. The income effect which also diminishes with age is
relatively larger at younger ages. The excess sensitivity of the demand response earlier in the
life-cycle maybe driven by binding liquidity constraints faced by younger households. This is
particularly relevant at younger ages where a larger fraction of the total demand response is
attributed to the income effect relative to older ages. Unable to borrow against their future
income, younger households who have yet to accumulate sufficient assets respond more on the
income effect margin than the price effect, upon receiving the price subsidy. Figure (6) also shows
that a household’s valuation of sanitation decreases with age. With a loan policy a household is
able to move resources across time and borrow against future realizations of income to bring
forward sanitation adoption. A household’s decision to take a sanitation loan compares the value
generated from the sanitation between today and tomorrow. Since a household’s private valuation
from sanitation declines with age, loans would be a preferred policy for targeting younger cohorts
who place a higher valuation on sanitation adoption.
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Figure 10: Price Elasticity: Substitution & Income Effects

Notes: The figure plots the Marshallian and Hicksian demand elasticity (in absolute value) for a household head over
its life-cycle. The household response is simulated at a lower equilibrium bound.

7 Conclusion

To understand the effectiveness of interventions that aim to maximize sanitation coverage,
requires the capability of predicting and comparing outcomes under alternative counterfactual
policies. This paper examines the impact of two specific policy interventions: loans v. price
subsidies, on sanitation adoption behaviour in a context where household decisions interrelate
due to externality effects. I formulate and estimate a dynamic household demand for sanitation
that incorporates interdependence of sanitation adoption choice. To identify the model’s
parameters, I use a combination of household panel dataset along with exclusion restrictions
that provide identifying variation at the household and village level. The model is used to
compute equilibrium adoption levels and simulate the effect of loans and subsidy policies for
sanitation where the recipient household’s adoption decision imposes externalities on others.

I illustrate how the framework can be informative about the effectiveness and efficiency of
different policies, where otherwise distorting policies instead lead to higher welfare gains when
the household decision is no longer treated in isolation. A sanitation adoption subsidy to a
single household costing Rs. 8, 628 improved net welfare in a low case by Rs. 1, 380 and a high
case by Rs. 3, 883. A large fraction of the impact, between 33% (lower bound) to 72% (upper
bound), accrues to non-recipient households. These spillover effects suggest that adoption
subsidies for sanitation should not be thought of as targeting individual households, but instead
as targeting the whole village or groups of households.
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While a significant proportion of sanitation prevalence is driven by price incentives, a small
number of households do face binding liquidity constraints for whom targeted loans is a cost
effective policy. The ultimate choice of policy is strongly driven by the trade-off between the
total cost considerations and the targeting objectives as well as level of sanitation coverage in the
targeted village. If the objective of the policy is to ‘reach’ the maximum number of households,
in most cases it is cost effective to provide price subsidies to incentivize adoption of sanitation.
In contrast, sanitation loans are found to be cost effective in villages with close to zero initial
coverage.

One of the main predictions of the model is that subsidizing the cost of sanitation is a cost
effective policy with the presence of externalities. An important extension of this paper would
be to combine the structural analysis with field experiment results to disentangle and identify
the exact mechanisms that generates this externality. There are still open questions on the
precise mechanism that drives the interdependence of sanitation adoption. Other than a health
externality other suggested mechanisms include, the presence of information externalities as
well as infrastructure and amenity spillovers generated from collective adoption. A better
understanding of the mechanisms will not only improve our understanding of the nature of the
gains derived from adoption but could also provide insights on improving the efficiency of
future policy interventions.

Although the empirical application focuses on the specific topic of sanitation, the structure
developed in this paper can be used to study other applications where household/individual
decisions interrelate due to spillover effects. The findings in this paper highlight the fact that,
when externalities exist, accounting for equilibrium interactions and quantifying its effect has
important policy implications. The structure can also be extended to study adoption patterns of
other preventive healthcare goods in the developing world for e.g. vaccinations. The size and
nature of the externality depends on the specific characteristics of different healthcare goods.
The degree of ‘social benefit’ associated with vaccination adoption may differ from sanitation
and thus would provide different policy implications. The analysis in this paper finds subsidies
to be a more ‘favoured’ policy the larger is the impact of the externality or the degree of ‘social
benefit’ associated with the healthcare good. These extensions can provide useful information
that can help poor communities as a whole to minimize inefficiencies and absorb the overall
benefits thus tackling poverty and mitigating its detrimental effects.
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APPENDIX

A Data

A.1 Estimation of age profiles

I control for cohort effects to obtain the life-cycle profiles using data from different household
cohorts. The age profiles of interest such as, sanitation adoption and asset accumulation by
age of household head depicts dynamics that the model should be able to replicate. The main
concern, when constructing age profiles that account for cohort effects, is with effect of family
size, year effects and household specific effects. To account for cohort effects, which is just the
average fixed-effect of all households in a single cohort, I follow the approach discussed in French
(2005) to obtain age profiles for both sanitation adoption and asset accumulation over a household
head’s lifetime.

B Identification

The identification approach is based on the insight from Hotz & Miller (1993) and Hotz, Miller,
Sanders & Smith (1994) where Bellman equations can be interpreted as ‘moment conditions’ and
can be used to recover structural parameters (Magnac & Thesmar 2002). Additional assumptions
with regards to the continuous choice follow from Bajari, Benkard & Levin (2007) and Blevins
(2014).

[
vi (di = 1, co

i , x)− vi (di = 0, co
i , x)− µg

]
= ln [pi (di = 1|x)]︸ ︷︷ ︸

obsv

− ln [1− pi (di = 1|x)]︸ ︷︷ ︸
obsv

(B.1)

Equation (B.1) shows that the difference in the choice specific value functions for any state x can
be recovered from knowledge of the observed conditional choice probabilities denoted by:53

for all i & all x, pi (di = 1|x) =
exp

(
vi
(
di = 1, co

i , x; σ
)
− vi

(
di = 0, co

i , x; σ
))

1 + exp
(
vi
(
di = 1, co

i , x; σ
)
− vi

(
di = 0, co

i , x; σ
)) (B.2)

The choice-specific value function can be written as:

vi (di, co
i , x; σ) ≡ max

c∈C

{
ui (di, ci, x, ξ; σ) + βE

[
Vi

(
x
′
; σ
)
|x, di, ci

]}
53For ease of exposition time subscript is subsumed.

47



If di = 0, this relationship identifies vi (di = 0, ci, x; σ) under the normalization assumption
ui (di = 0, ci, x; σ) = 0:

vi (di = 0, ci, x; σ) ≡ 0 + βE

[
ln

(
K

∑
k=0

exp
[
vi

(
di = k, ci, x

′
; σ
)
− vi

(
di = 0, ci, x

′
; σ
)])

|x, di = 0, ci

]
︸ ︷︷ ︸

A⇒identi f iable & estimable

+ βE
[
vi

(
di = 0, ci, x

′
; σ
)
|x, di = 0, ci

]
︸ ︷︷ ︸

B

+βγ̂

Term A on the R.H.S is identifiable and estimable from the data by inverting the choice
probabilities. Under finite horizon, term B can be backed out via backward recursion, given
assumptions on terminal value function, thus recovering the baseline choice-specific value
function vi (di = 0, ci, x; σ). Subsequently, vi

(
di = 1, co

i , x; σ
)

can be identified by inverting the
choice probabilities by taking logs on both sides of the Equation (B.2).

C Estimation

Conditional Choice Probability (CCP). The conditional choice probabilities are estimated from
the observed data. The underlying assumption to obtain consistent equilibrium choice probability
estimates relies on the data being generated from the same Markov profile. This assumption
however may not hold true when data is pooled across multiple villages. The overall sample
of 42 villages are divided into four groups based on village level observables and geographic
proximity to one another.

Partially observed sample. To account for the fact that only part of the entire village household
behaviour is observed. I implement the correction method from Chesher (1991) extended in
Gautam (2015) to account for this source of measurement error in the data and its impact on the
choice probability estimates.

Income Process. The function relating age and education to income earnings is given by:

ln yit = f (ageit, edui) + zit + ξit

f (ageit, edui) = ψ
y
0 + my

a (ageit) + ψ
y
edu1edui(yrs) + ψ

y
edu2 (edui(yrs))2 + ψ

y
3 [ageit × edui(yrs)]

zit = ρzit−1 + uit, ut ∼ N
(
0, σ2

u
)

where my
a (ageit) are piecewise linear functions in age of the household head with nodes at 20, 25

and 50. The education of the primary earner (household head) is measured in years edui(yrs)
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along with an interaction term between age and education. The permanent income also includes
an A.R.(1) component with persistence parameter calibrated at ρ = 1 and the variance of the
permanent shocks σ2

u . Measurement error ξit shocks are distributed i.i.d with mean zero and
variance σ2

ξ .

Equilibrium Condition Inequalities. To estimate ĝi I compute estimates for V̂i

(
x; σ

′

i(k), σ̂−i, θ, ψ
)

for a set of alternatives policies σ
′
i . To implement this, let {λk}k=1,...,nI

be a set of chosen

inequalities from Λ indexed by
(

i, x, σ
′
i

)
which represent i.i.d draws from H (·). BBL (2007)

prescribe a variety of ways to choose inequalities. The method of selecting inequalities will have
implications for efficiency, but for consistency the only requirement is that H (·) has sufficient
support to yield identification.

I draw households i (ε i) and states x at random and then consider alternative strategies σ
′
i that

are slight perturbations of the estimated policy σi
(
x, ε i; ψ̂

)
i.e., σ

′
i (x, ε i) = σi

(
x, ε i; ψ̂

)
+ ε. Given

that the strategy σi is a tuple consisting of
[
δ
′
i (x, ε i) , co′

i (xi)
]

the perturbation is on both the
discrete decision rule as well as the continuous consumption policy co

i for each household. For
each chosen inequality, λk the next step is to use the forward simulation procedure from section
(4.2) to construct sample analogues for each of the Vi

(
x; σ

′

i(k), σ−i, θ, ψ
)

value functions at the

perturbed policy σ
′

i(k) drawn. In practice, two different sizes for the inequality draws was used
nI = 500 and nI = 1000. No discernible difference in magnitude of final estimates was found as
nI increased from 500 to 1000.

Standard Errors. The standard errors are computed using bootstrap re-sampling. The villages to
which households belong are the unit of re-sampling over which repeated samples of 42 villages
are drawn with replacement. Bootstrap is performed over both estimation stages. The first stage
elements of the estimation are repeated over each bootstrap sample followed by the second stage.
A total of 250 bootstrap samples were drawn to construct standard errors.
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D Simulation

D.1 Supermodular Objective Function

The objective function of a household i at time t can be expressed as:

vi (dit, co
it, xt; σt) = uσt

i (cit, dit, xit) + β ∑
xt+1

Vi (xt+1; σt+1) f σt
i (xt+1|xt, dit, cit)

Define the following notation:

ĉ1
it = (1 + r)Ait − Ait+1 + yit − pricet

ĉ0
it = (1 + r)Ait − Ait+1 + yit

xit =
(

ait, Ait, yit, kit−1, kt−1, pricet, ξit

)
ûd
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∂
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[
uσt
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]

ûd
it,cc =

∂2

∂c2
it

[
uσt

i (cit, dit, xit)
]

vd
it = vi (dit, cit, xt; σt)

Denote the objective functions of an individual household with states xt, that adopts at time t (i.e
dit = 1) with v1

it = vi
(
dit = 1, c1

it, xt; σt
)

and of a household that does not adopt (i.e dit = 0) with
v0

it = vi
(
dit = 0, c0

it, xt; σt
)
. The conditional choice-specific value functions are expressed as:
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=
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Therefore, the unconditional value function is given by:

Vi(xt; σt) =
´

maxdit∈Di,t,cit∈Ci,t,{vi (dit, cit, xt; σt) + ε it} g(ε it)dεit

Vi(xt; σt) = pσt
i (dit = 1|xt)·

[
vi(dit = 1, co

it, xt; σt) + ε1
it
]
+ [1− pσt

i (dit = 1|xt, σt)]·
[
vi(dit = 0, co

it, xt; σt) + ε0
it

]
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The expected value of the continuation value at time t− 1 is:

pσt(dit = 1|xt) = Pr
(
vi
(
dit = 1, c1

it, xt; σt
)
+ ε1

it ≥ vi
(
dit = 0, c0

it, xt; σt
)
+ ε0

it

)

=

P
(
vi(dit = 1, c1

it, xt; σt)− vi(dit = 0, c0
it, xt; σt)

)
kit−1 = 0

0 kit−1 = 1

where P is a twice continuously differentiable and weakly increasing function. Integrating over
the space of possible states xt+1 one gets the expected utility:

Et−1[Vi(xt; σt)] = ∑xt

{
vi
(
dit = 0, c0

it, xt; σt
)
[1− pσt(dit = 1|xt)] +

+ vi(dit = 1, c1
it, xt; σt) [pσt(dit = 1|xt)]

}
f σt
i (xt+1|xt, dit, ĉit)

where pσt(dit = 1|xt) is the probability that a household facing states xt decides to adopt. The
functions vi(dit = 1, c1

it, xt; σt), vi(dit = 0, c0
it, xt; σt) - if the solution for Ait+1 is interior - have

derivatives with respect to state Ait equal to:

∂

∂Ait

[
vi

(
dit = 1, ĉ1

it, xt; σt

)]
= ν

[
ĉ1

it

]ν−1
(1 + r)(1 + ηkit−1 + φk̄t−1)

∂

∂Ait

[
vi
(
dit = 0, ĉ0

it, xt; σt
)]

= ν
[
ĉ0

it
]ν−1

(1 + r)(1 + ηkit−1 + φk̄t−1)

because of the Envelope condition. Specifically,

∂
∂Ait

[
vi
(
dit = 0, ĉ0

it, xt; σt
)]

= ν
[
ĉ0

it

]ν−1
(1 + r)(1 + ηkit−1 + φk̄t−1)+

+
dA∗it+1

dAit

[
−ν
[
ĉ0

it

]ν−1
(1 + ηkit−1 + φk̄t−1) + β ∂

∂Ait+1
∑xt+1

Vi (xt+1; σt+1) f σt
i (xt+1|xt, dit, cit)

]

Notice that the second line (in the equation above) is equal to zero if the household is in an
interior solution for Ait+1 at time t because of the FOCs with respect to A∗it+1. This is also true in

a corner solution, because in such a case dA∗it+1
dAit

= 0. Thus it is true for any optimal level of Ait+1.
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∂
∂Ait

∑xt
Vi(xt; σt) f σt−1

i (xt|xt−1, dit−1, ĉit−1) =

∑xt

{
∂

∂Ait

[
vi
(
dit = 0, ĉ0

it, xt; σt
)]

[1− pσt(dit = 1|xt)] +
∂

∂Ait

[
vi
(
dit = 1, ĉ1

it, xt; σt
)]

[pσt(dit = 1|xt)]

+ ∂
∂Ait

[pσt(dit = 1|xt)]
[
vi
(
dit = 1, ĉ1

it, xt; σt
)
− vi

(
dit = 0, ĉ0

it, xt; σt
)]}

f σt−1
i (xt|xt−1, dit−1, ĉit−1)

= ∑xt

{
uc(ĉ0

it, xt)[1− pσt(dit = 1|xt)] + uc(ĉ1
it, xt) [pσt(dit = 1|xt)]

+P′
(
v1

it − v0
it

)
[vi(dit = 1, c1

it, xt; σt)− vi(dit = 0, c0
it, xt; σt)](1 + ηkit−1 + φk̄t−1)ν

[(
c1

it
)ν−1 −

(
c0

it

)ν−1
]}

· f σt−1
i (xt|xt−1, dit−1, ĉit−1)

Now update time to t:

∂
∂Ait+1

∑xt+1
Vi(xt+1; σt+1) f σt

i (xt+1|xt, dit, ĉit) =

∑xt+1

{
û0

c(1 + r)[1− pσt+1(dit+1 = 1|xt+1)] + û1
c(1 + r) [pσt+1(dit+1 = 1|xt+1)]

+P′
(
v1

it+1 − v0
it+1

)
)[vi(dit+1 = 1, c1

it+1, xt+1; σt+1)− vi(dit+1 = 0, c0
it+1, xt+1; σt+1)]

·(1 + ηkit + φk̄t)ν
[(

c1
it+1

)ν−1 −
(
c0

it+1

)ν−1
]}

f σt
i (xt+1|xt, dit, ĉit)

REQUIREMENTS

D.1.1 i-Constant Differences in Ait+1, σt

Consider two strategy set σ′t and σt such that σ′t
dt
≥ σt if and only if d′t(xt, εt) ≥ dt(xt, εt) for all

xt, εt. Notice that σ′t
dt
≥ σt implies:

k̂tˆ

0

f σt
i (xt+1|xt, dit, ĉit)− f σ′t

i (xt+1|xt, dit, ĉit) dk̄t ≥ 0

for all k̂t ∈ [0, 1]. This is equivalent to saying that
Pr(k̄t < k̂t|xt, dit, ĉit; σt) ≥ Pr(k̄t < k̂t|xt, dit, ĉit; σ′t). In other words, the distribution of kt under
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strategy set σ′t first order stochastically dominates the distribution of kt under strategy set σt. In
other words, higher levels of kt become more likely and lower levels of kt become less likely.
Notice that no restrictions are imposed on the distribution of the remaining part of vector xt+1.

I aim to show that at constant dit ∈ {0, 1} and at any possible choice Ait+1, for any λ > 0, there
exists a threshold ψ > 0 such that, for |φ| ≤ ψ, then the following inequality holds:

∣∣∣∣∣∂vi
(
dit, cd

it, xt; σ′t
)

∂Ait+1
−

∂vi
(
dit, cd

it, xt; σt
)

∂Ait+1

∣∣∣∣∣ ≤ λ

for all states xt and all σ′t , σt. Define the vector zt+1 =
{

at+1,, A−it+1, yt+1, kt, kt, pricet+1, ξt+1

}
where Ait+1 /∈ zt+1. Now rewrite vi

(
dit, cd

it, xt; σt
)

as follows:

vi

(
dit, cd

it, xt; σt

)
= ud

it + β

ˆ

zt+1

ˆ

Ait+1

V(xt+1; σt+1) f σt
i (xt+1|xt, dit, ĉit) dAit+1 dzt+1

because Ait+1 is deterministic, i.e., f σt
i (xt+1|xt, dit, ĉit) > 0 if Ait+1 = Âit+1 and zero otherwise,

and it does not affect the transition probability of any state in zt+1, it is possible to show that:

vi

(
dit, cd

it, xt; σt

)
= ud

it + β

ˆ

zt+1

V(x̂t+1; σt+1) f σt
i (x̂t+1|xt, dit, ĉit) dzt+1

where x̂t+1 = {at+1, Ât+1,yt+1, kt, kt, pricet+1, ξt+1} and Ât+1 = {A1t+1, A2t+1, ..., Âit+1, ...An,t+1}.
Now taking the partial derivative with respect to Ait+1 at Ait+1 = Âit+1:

[Ait+1]Âit+1,dit
= ud

it,c + β

ˆ

zt+1

[
∂

∂Ait+1
V(x̂t+1; σt+1)

]
f σt
i (x̂t+1|xt, dit, ĉit) dzt+1

It is useful to show how this formula differs in the case when dit = 0 and dit = 1:

[Ait+1]Ait+1,dit=0 = −ν [(1 + r)Ait − Ait+1 + yit]
ν−1 (1 + ηkit−1 + φk̄t−1)

+β
´

xt+1

{
û0

it+1,c(1 + r)[1− pσt+1(dit+1 = 1|xt+1)] + û1
it+1,c(1 + r) [pσt+1(dit+1 = 1|xt+1)]

+P′(v1
it+1 − v0

it+1)[vi(dit+1 = 1, c1
it+1, xt+1; σt+1)− vi(dit+1 = 0, c0

it+1, xt+1; σt+1)]

·(1 + ηkit + φk̄t)(1 + r)ν
[(

c1
it+1

)ν−1 −
(
c0

it+1

)ν−1
]}

f σt
i (xt+1|xt, 0, ĉit) dxt+1
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and similarly for v1
it (dit = 1):

[Ait+1]Ait+1,dit=1 = −ν [(1 + r)Ait − Ait+1 − pricet + yit]
ν−1 (1 + ηkit−1 + φk̄t−1)+

+β
´

xt+1
û1

it+1,c(1 + r) f σt
i (xt+1|xt, 1, ĉit) dxt+1

Now consider the derivative of vi
(
dit, cd

it, xt; σt
)

with respect to Ait+1:

[Ait+1] = −ûd
it,c + β

ˆ

z+1

∂

∂Ait+1
[Vi(xt+1; σt+1)] f σt

i (xt+1|xt, dit, ĉit) dzt+1

Notice that the ‘time to build’ assumption makes ûit,c independent of other households’
adoption choice at time t. Moreover, the Markov property implies that, pσt+1(dit+1 = 1|xt+1) is
independent of dit, cit, xt given xt+1. Lastly, the envelope condition makes ∂

∂Ait+1
[Vi(xt+1; σt+1)]

independent of the value function in period t + 2 and the subsequent ones. Thus, for a
household ∂

∂Ait+1
[Vi(xt+1; σt+1)] is independent of σt. Then

[Ait+1]
σ′t − [Ait+1]

σt = β

ˆ

zt+1

{
∂Vi(xt+1; σt+1)

∂Ait+1

[
f σ′t
i (xt+1|xt, dit, ĉit)− f σt

i (xt+1|xt, dit, ĉit)
]}

dzt+1

Now define the vector wt+1 = {at+1, A−it+1, yt+1, kt, pricet+1, ξt+1} where k̄t, Ait+1 /∈ wt+1. Notice
that the envelope condition and the Markov Property imply that ∂Vi(xt+1;σt+1)

∂Ait+1
is invariable in all

the elements of vector wt+1. It is possible to rewrite:

[Ait+1]
σ′t − [Ait+1]

σt = β

ˆ

wt+1

ˆ

k̄t

{
∂Vi(xt+1; σt+1)

∂Ait+1

[
f σ′t
i (xt+1|xt, dit, ĉit)− f σt

i (xt+1|xt, dit, ĉit)
]}

dk̄t dwt+1

Using integration by parts we get:

= β
´

wt+1

{[´ 1
0 f σ′t

i (xt+1|xt, dit, ĉit)− f σt
i (xt+1|xt, dit, ĉit) dk̄t

]
∂

∂Ait+1
[Vi(x̄t+1; σt+1)]

−
´ 1

0

[´ k̄t
0 f σ′t

i (xt+1|xt, dit, ĉit)− f σt
i (xt+1|xt, dit, ĉit) ds

]
∂2Vi(xt+1;σt+1)

∂Ait+1∂k̄t−1
dk̄t

}
dwt+1

= β
´

wt+1

∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

[´ k̄t
0 f σt

i (xt+1|xt, dit, ĉit)− f σ′t
i (xt+1|xt, dit, ĉit) ds

]
dwt+1

= β
´

wt+1

∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

rσt,σ′t
i (xt+1|xt, dit, ĉit) dwt+1
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Notice that the above is equal to zero if ∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

is equal to zero as well.

CASE 1: kit−1 = 0.

∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

=
{[

(1 + r)
[
ν
(
c1

it+1

)ν−1
φ

+(ν− 1)ν dA∗it+2
dk̄t

∣∣∣
dit+1=0

(
c0

it+1

)ν−2
(1 + φk̄t)

]]
[1− pσt+1(dit+1 = 1|xt+1)]

+

[
(1 + r)

[
ν
(
c1

it+1

)ν−1
φ + (ν− 1)ν dA∗it+2

dk̄t

∣∣∣
dit+1=1

(
c1

it+1

)ν−2
(1 + φk̄t)

]]
[pσt+1(dit+1 = 1|xt+1)]

+P′(v1
it+1 − v0

it+1)
[
û1

it+1,c − û0
it+1,c

]
(1 + r)·

{
φ
[(

c1
it+1

)ν −
(
c0

it+1

)ν
]
+

(
û1

it+1,c
dA∗it+2

dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

)}

+P′(v1
it+1 − v0

it+1)(1 + r)
{

φ
[
ν
(
c1

it+1

)ν−1 − ν
(
c0

it+1

)ν−1
]

+

(
û1

it+1,cc
dA∗it+2

dk̄t

∣∣∣
dit+1=1

− û0
it+1,cc

dA∗it+2
dk̄t

∣∣∣
dit+1=1

)}

+P′(v1
it+1 − v0

it+1)
{

φ(1 + φk̄t)(1 + r)ν2
[(

c1
it+1

)ν−1 −
(
c0

it+1

)ν−1
] [(

c1
it+1

)ν −
(
c0

it+1

)ν
]

+(1 + φk̄t)(1 + r)ν
[(

c1
it+1

)ν−1 −
(
c0

it+1

)ν−1
] [

û1
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

]}

+P′′(v1
it+1 − v0

it+1) · [v1
it+1 − v0

it+1]
{

φ(1 + φk̄t)(1 + r)ν
[(

c1
it+1

)ν−1 −
(
c0

it+1

)ν−1
] [(

c1
it+1

)ν −
(
c0

it+1

)ν
]

+ (1 + φk̄t)(1 + r)ν
[(

c1
it+1

)ν−1 −
(
c0

it+1

)ν−1
] [

û1
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

]}

CASE 2: kit−1 = 1. The above simplifies because pσt+1(dit+1 = 1|xt+1) = 0 thus:

∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

= (1 + r)
{

ν
[
c0

it+1

]ν−1
φ + (ν− 1)ν dA∗it+2

dk̄t

∣∣∣
dit+1=0

[
c0

it+1

]ν−2
(1 + η + φk̄t)

}

CASE 3: for dit = 1 one gets (for any kit−1):

∂2Vi(xt+1;σt+1)
∂Ait+1∂k̄t−1

= (1 + r)
{

ν
[
c0

it+1

]ν−1
φ +(ν− 1)ν dA∗it+2

dk̄t

∣∣∣
dit+1=1

[
c0

it+1

]ν−2
(1 + η + φk̄t)

}
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Now notice that if φ = 0 then the cross derivative for dit = 0 becomes:

For CASE 1: kit−1 = 0:

[Ait+1]
σ′t − [Ait+1]

σt = β
´

xt+1

s[
(1 + r)(ν− 1)ν dA∗it+2

dk̄t

∣∣∣
dit+1=0

[
c0

it+1

]ν−2
]
[1− pσt+1(dit+1 = 1|xt+1)]

+

[
(1 + r)(ν− 1)ν dA∗it+2

dk̄t

∣∣∣
dit+1=1

[
c0

it+1

]ν−2
]
[pσt+1(dit+1 = 1|xt+1)]

+P′(v1
it+1 − v0

it+1)
[
û1

it+1,c − û0
it+1,c

]
(1 + r)

[
û1

it+1,c
dA∗it+2

dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

]

+P′(v1
it+1 − v0

it+1)(1 + r)
[

û1
it+1,cc

dA∗it+2
dk̄t

∣∣∣
dit+1=1

− û0
it+1,cc

dA∗it+2
dk̄t

∣∣∣
dit+1=1

]

+P′(v1
it+1 − v0

it+1)(1 + r)ν
[(

c1
it+1

)ν−1 −
(
c0

it+1

)ν−1
] [

û1
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

]

+P′′(v1
it+1 − v0

it+1)[v
1
it+1 − v0

it+1](1 + r)ν
[(

c1
it+1

)ν−1 −
(
c0

it+1

)ν−1
]

·
[

û1
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=1

− û0
it+1,c

dA∗it+2
dk̄t

∣∣∣
dit+1=0

]{
rσt,σ′t

i (xt+1|xt, 0, ĉit) dxt+1

For CASE 2: kit−1 = 1, the difference [Ait+1]
σ′t − [Ait+1]

σt becomes:

[Ait+1]
σ′t − [Ait+1]

σt = β

ˆ

xt+1

(1+ r)(ν− 1)ν
dA∗it+2

dk̄t

∣∣∣∣
dit+1=0

[
c0

it+1
]ν−2

(1+ η) rσt,σ′t
i (xt+1|xt, 0, ĉit) dxt+1

and similarly for CASE 3 (dit = 1) the difference [Ait+1]
σ′t − [Ait+1]

σt becomes:

[Ait+1]
σ′t − [Ait+1]

σt = β(1+ r)
ˆ

xt+1

(ν− 1)ν
dA∗it+2

dk̄t

∣∣∣∣
dit+1=1

[
c0

it+1
]ν−2

(1+ η) rσt,σ′t
i (xt+1|xt, 1, ĉit) dxt+1

These differences are both zero if dA∗it+2
dk̄t

∣∣∣
Ait+1,dit+1,kit,Ait

= 0 for all dit+1 ∈ {0, 1}. When is this

the case? If A∗it+2 is not an interior solution, then the derivative is always zero. If it is interior,
consider the FOC w.r.t Ait+2 in period t + 1.
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When is this the case?

[Ait+2]Ait+2,dit+1=0 = −ν [(1 + r)Ait+1 − Ait+2 + yit+1]
ν−1 (1 + ηkit + φk̄t)

+β
´

xt+2

{
û0

it+2,c(1 + r)[1− pσt+2(dit+2 = 1|xt+2)] + û1
it+2,c(1 + r)pσt+2(dit+2 = 1|xt+2)

+P′(v1
it+2 − v0

it+2)[vi(1, c1
it+2, xt+2; σt+2)− vi(0, c0

it+2, xt+2; σt+2)](1 + ηkit+1 + φk̄t+1)

·(1 + r)ν
[(

c1
it+2

)ν−1 −
(
c0

it+2

)ν−1
]}

f σt+1
i (xt+2|xt+1, dit+1, ĉit+1) dxt+2

At an interior solution the FOC must be satisfied with equality. Now totally differentiate w.r.t k̄t.

[Ait+2, k̄t]Ait+2,dit+1=0 = −ν
[
cd

it+1

]ν−1
φ + (1− ν)ν

[
cd

it+1

]ν−2 dA∗it+2
dk̄t

∣∣∣
dit+1

+β
´

xt+2

∂Vi(xt+2;σt+2)
∂Ait+2

∂
∂k̄t

[
f σt+1
i (xt+2|xt+1, dit, ĉit)

]
+ ∂2Vi(xt+2;σt+2)

∂A2
it+2

dA∗it+2
dk̄t

∣∣∣
dit+1

f σt+1
i (xt+2|xt+1, dit, ĉit) dxt+2

´
xt+2

∂Vi(xt+2;σt+2)
∂Ait+2

∂
∂k̄t

[
f σt
i (xt+2|xt+1, dit, ĉit)

]
dxt+2

=
´

wt+2

´
k̄t+1

∂Vi(xt+2;σt+2)
∂Ait+2

∂
∂k̄t

[
f σt+1
i (xt+2|xt+1, dit, ĉit)

]
dk̄t+1 dwt+2

Using this result, it is possible to write:

β
´

xt+2

∂Vi(xt+2;σt+2)
∂Ait+2

∂
∂k̄t

[
f σt+1
i (xt+2|xt+1, dit, ĉit)

]
dxt+2

= β
´

wt+2

∂Vi(x̄t+2;σt+2)
∂Ait+2

´
k̄t+1

∂
∂k̄t

[
f σt+1
i (xt+2|xt+1, dit, ĉit)

]
dk̄t+1

−
´

k̄t+1

∂2Vi(xt+2;σt+2)
∂Ait+2∂k̄t+1

´ k̄t+1
k

∂
∂k̄t

[
f σt+1
i (xt+2|xt+1, dit, ĉit)

]
dk̄t+1dwt+2

Now notice that, at constant Ait+2 we get that
´

k̄t+1

[
f σt+1
i (xt+2|xt+1, dit, ĉit)

]
dk̄t+1 = s(wt+2|dit, ĉit)

that is independent of xt+1. The intuition here is that the Envelope condition and the Markov
property imply that ∂Vi(xt+2;σt+2)

∂Ait+2
is invariable in all the elements of vector wt+2. Thus it is possible

to write:

β
´

wt+2

∂Vi(x̄t+2;σt+2)
∂Ait+2

´
k̄t+1

∂
∂k̄t

[
f σt+1
i (xt+2|xt+1, dit, ĉit)

]
dk̄t+1 dwt+2

= β ∂Vi(x̄t+2;σt+2)
∂Ait+2

∂
∂k̄t

´
wt+2

´
k̄t+1

[
f σt+1
i (xt+2|xt+1, dit, ĉit)

]
dk̄t+1 = 0
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The above becomes:

−β

ˆ

wt+2

∂2Vi(xt+2; σt+2)

∂Ait+2∂k̄t+1

k̄t+1ˆ

k

∂

∂k̄t

[
f σt+1
i (xt+2|xt+1, dit, ĉit)

]
dk̄t+1 dwt+2

Notice that if the optimal solution for A∗it+2 is interior, it is possible to calculate the following:

dA∗it+2

dk̄t

∣∣∣∣
dit+1

=
ν
[
cd

it+1

]ν−1
φ− β

´
xt+2

∂2Vi(xt+2;σt+2)
∂Ait+2∂k̄t+1

´ k̄t+1
k

∂
∂k̄t

[
f σt+1
i (xt+2|xt+1, dit, ĉit)

]
dk̄t+1 dxt+2

(1− ν)ν
[
cd

it+1

]ν−2
+ (1− ν)ν

[
cd

t+1

]ν−2
+ β
´

xt+2

∂2Vi(xt+2;σt+2)
∂A2

it+2
f σt+1
i (xt+2|xt+1, dit, ĉit) dxt+2

which is equal to zero if φ and ∂2Vi(xt+2;σt+2)
∂Ait+2∂k̄t+1

= 0. But under those conditions, one can update

[Ait+1]
σ′t − [Ait+1]

σt and conclude that [Ait+1]
σ′t − [Ait+1]

σt = 0 if [Ait+2]
σ′t+1 − [Ait+2]

σt+1 at any
state vector that can be reached with positive probability from xt with choices Ait+1, dit. This
updating process can go on recursively until period T − 1 (i.e., A− 1) at that point notice that
dA∗iT+1
dk̄T−1

∣∣∣
diT−1

= 0 because in the last period of life T (i.e., A) households consumer all such that

A∗iT+1 = 0. This implies that [AiT+1, k̄T]diT ,kiT−1=0 := 0 (i.e., household’s savings is unaffected by
kT because they do not save in any case). Therefore recursively [AiT+1−s, k̄T−s]diT−s,kiT−1−s=0 := 0

for all s ∈ [0, 1, ...T]. Notice that if the solution for A∗it+2 is not interior, then dA∗it+2
dk̄t

∣∣∣
dit+1

= 0 and

the desired result hold trivially. Lastly, notice that, because [Ait+1]
σ′t − [Ait+1]

σt is continuous
in φ and with finite derivative, then for any λ > 0 there exists ψ such that if φ ≤ ψ then
[Ait+1]

σ′t − [Ait+1]
σt ≤ λ. I define ψ (λ, dit, Ait+1, xt, σt) to be the minimum ψ that ensures that

the inequality is satisfied at specific values of states and controls dit, Ait+1, xt, σt.
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D.1.2 i-Increasing Differences in dit, σt

To show that vt(dit = 1, c1
it, xt; σt)− vt(dit = 0, c0

it, xt; σt) is increasing in σt. Recall that the value
functions are expressed as:

vi
(
dit = 1, c1

it, xt; σt
)
= [(1 + r)Ait − Ait+1 + yit − pricet]

ν (1 + ηkit−1 + φk̄t−1) + αkit−1 + γkit−1k̄t−1

+β
´

xt+1
Vt+1(xt+1; σt+1) f σt

i (xt+1|xt, 1, ĉit) dxt+1

vi
(
dit = 0, c0

it, xt; σt
)
= [(1 + r)Ait − Ait+1 + yit]

ν (1 + ηkit−1 + φk̄t−1) + αkit−1 + γkit−1k̄t−1

+β
´

xt+1
Vt+1(xt+1; σt+1) f σt

i (xt+1|xt, 0, ĉit) dxt+1

Thus{[
vi
(
dit = 1, c1

it, xt; σ′t
)
− vi

(
dit = 0, c0

it, xt; σ′t
)]
−
[
vi
(
dit = 1, c1

it, xt; σt
)
− vi

(
dit = 0, c0

it, xt; σt
)]}

Ait+1

= β
´

xt+1
Vi(xt+1; σt+1) f σ′t

i (xt+1|xt, 1, ĉit)−Vi(xt+1; σt+1) f σ′t
i (xt+1|xt, 0, ĉit)

−Vi(xt+1; σt+1) f σt
i (xt+1|xt, 1, ĉit) + Vi(xt+1; σt+1) f σt

i (xt+1|xt, 0, ĉit) dxt+1

because of the assumption that kt is unaffected by dit on the point of view of household i, then
for a given Ait+1, and the fact that kit is a deterministic state, it is possible to write:

β
´

qt+1

´
k̄t

[
Vi(x′t+1; σt+1)−Vi(xt+1; σt+1)

] [
f σ′t
i (xt+1|xt, dit, ĉit)− f σt

i (xt+1|xt, dit, ĉit)
]

dk̄t dqt+1

= β
´

qt+1

[
Vi(x′t+1; σt+1)−Vi(xt+1; σt+1)

] ´
k̄t

[
f σ′t
i (xt+1|xt, dit, ĉit)− f σt

i (xt+1|xt, dit, ĉit)
]

dk̄t

+
´

qt+1

∂[Vi(x′t+1,σt+1)−Vi(xt+1,σt+1)]
∂k̄t

rσt,σ′t
i (xt+1|xt, dit, ĉit) dqt+1

where rσt,σ′t
i (xt+1|xt, dit, ĉit) ≥ 0 for all xt+1

= β
´

xt+1

∂[Vi(x′t+1,σt+1)−Vi(xt+1,σt+1)]
∂k̄t

rσt,σ′t
i (xt+1|xt, dit, ĉit) dxt+1

= Ert

[
∂[Vi(x′t+1,σt+1)−Vi(xt+1,σt+1)]

∂k̄t

]
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Assuming an interior solution at time t + 1, it is possible to use the Envelope condition to
calculate:

∂[Vi(x′t+1,σt+1)−Vi(xt+1,σt+1)]
∂k̄t

= φ
(
c0

it+1(dit = 1)
)ν

+ γkit(dit = 1)

+γkit(dit = 0)− φ
(
c0

it+1(dit = 0)
)ν

[pσt+1(dit+1 = 1|xt+1)]

−φ
(
c0

it+1(dit = 0)
)ν

[1− pσt+1(dit+1 = 1|xt+1)]− γkit(dit = 0)

−P′(v1
it+1 − v0

it+1)[v
1
it+1 − v0

it+1][φ
(
c0

it+1(dit = 1)
)ν

+ γkit(dit = 1)

−φ
(
c0

it+1(dit = 0)
)ν

[pσt+1(dit+1 = 1|xt+1)]

−φ
(
c0

it+1(dit = 0)
)ν

[1− pσt+1(dit+1 = 1|xt+1)]− γkit(dit = 0)

For φ = 0 this reduces to:

∂
[
Vi(x′t+1, σt+1)−Vi(xt+1, σt+1)

]
∂k̄t

=
[
1− P′(v1

it+1 − v0
it+1)[v

1
it+1 − v0

it+1]
]
[γkit(dit = 1)− γkit(dit = 0)]

Thus one gets that:

• If kit−1 = 1 then Ert

[
∂[Vi(x′t+1,σt+1)−Vi(xt+1,σt+1)]

∂k̄t

]
= 0

• If kit−1 = 0 then Ert

[
∂[Vi(x′t+1,σt+1)−Vi(xt+1,σt+1)]

∂k̄t

]
> 0 for

Ert

[
P′(v1

it+1 − v0
it+1)[v

1
it+1 − v0

it+1]
]
< 1, which is the case as long as P (x) is “flat” enough.

The latter results implies that, for all households i it must be true that:

vi

(
d′it, c1

it(A′it+1), xt; σ′t

)
− vi

(
d′it, c1

it(A′it+1), xt; σt

)
≥ vi

(
d′′it, c1

it(A′it+1), xt; σ′t

)
− vi

(
d′′it, c1

it(A′it+1), xt; σt

)

and the inequality is strict for all households j such that k jt−1 = 0 i.e., the objective function
satisfies i-Increasing Differences in dit, σt (see. Milgrom and Shannon 1994).
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D.1.3 i-Highest and i-Lowest Equilibria

I want to show that for all i such that kit−1 = 0, the following holds:

vi

(
d′it, c1

it(A′it+1), xt; σ′t

)
− vi

(
d′′it, c1

it(A′′it+1), xt; σ′t

)
≥ vi

(
d′it, c1

it(A′it+1), xt; σt

)
− vi

(
d′′it, c1

it(A′′it+1), xt; σt

)
(D.1)

holds for any A′it+1, A′′it+1 and for d′it > d′′it and σ′t ≥ σt, in the sense defined above.

Proof:

Suppose (D.1) is not satisfied i.e., the following instead is true:

vi

(
d′it, c1

it(A′it+1), xt; σ′t

)
− vi

(
d′′it, c1

it(A′′it+1), xt; σ′t

)
< vi

(
d′it, c1

it(A′it+1), xt; σt

)
− vi

(
d′′it, c1

it(A′′it+1), xt; σt

)
(D.2)

The fact that [Ait+1]
σ′t − [Ait+1]

σt ≤ λ for 0 < φ ≤ ψ (λ, dit, Ait+1, xtσt) implies that:

vi
(
d′it, c1

it(A′it+1), xt; σ′t
)
− vi

(
d′it, c1

it(A′′it+1), xt; σ′t
)

= vi
(
d′it, c1

it(A′it+1), xt; σt
)
− vi

(
d′it, c1

it(A′′it+1), xt; σt
)
+ b(d′it, A′it+1, A′′it+1, xt; σ′t , σt, φ)

where b is a continuous function such that b(d′it, A′it+1, A′′it+1, xt; σ′t , σt, φ) ≤ ζ if
φ ≤ ψ (λ, dit, Ait+1, xt, σt). Because of the continuity (and finite derivative) of b, for any ζ > 0
there exists φ̄ (ζ, dit, Ait+1, xt, σt) such that if 0 < φ ≤ φ̄ (ζ, dit, Ait+1, xt, σt) then |b| ≤ ζ. This
implies:

vi
(
d′it, c1

it(A′it+1), xt; σ′t
)
= vi

(
d′it, c1

it(A′′it+1), xt; σ′t
)

+vi
(
d′it, c1

it(A′it+1), xt; σt
)
− vi

(
d′it, c1

it(A′′it+1), xt; σt
)
+ b(d′it, A′it+1, A′′it+1, xt; σ′t , σt, φ)

(D.3)

Similarly, one can get:

vi
(
d′′it, c1

it(A′′it+1), xt; σ′t
)
− vi

(
d′′it, c1

it(A′it+1), xt; σ′t
)

= vi
(
d′′it, c1

it(A′′it+1), xt; σt
)
− vi

(
d′′it, c1

it(A′it+1), xt; σt
)
− b(d′′it, A′it+1, A′′it+1, xt; σ′t , σt, φ)
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which implies:

vi
(
d′′it, c1

it(A′′it+1), xt; σ′t
)
= vi

(
d′′it, c1

it(A′it+1), xt; σ′t
)

+vi
(
d′′it, c1

it(A′′it+1), xt; σt
)
− vi

(
d′′it, c1

it(A′it+1), xt; σt
)
− b(d′′it, A′it+1, A′′it+1, xt; σ′t , σt, φ)

(D.4)

Now substituting (D.3) and (D.4) into (D.2) we get:

vi
(
d′it, c1

it(A′′it+1), xt; σ′t
)
− vi

(
d′it, c1

it(A′′it+1), xt; σt
)
+ b(d′it, A′it+1, A′′it+1, xt; σ′t , σt, φ)

−vi
(
d′′it, c1

it(A′′it+1), xt; σt
)
+ vi

(
d′′it, c1

it(A′it+1), xt; σt
)
+ b(d′′it, A′it+1, A′′it+1, xt; σ′t , σt, φ) < 0

Now notice that [Ait+1]
σ′t − [Ait+1]

σt ≤ λ implies that:

vi
(
d′it, c1

it(A′′it+1), xt; σ′t
)
− vi

(
d′it, c1

it(A′′it+1), xt; σt
)

= vi
(
d′it, c1

it(A′it+1), xt; σ′t
)
− vi

(
d′it, c1

it(A′it+1), xt; σt
)
− b(d′it, A′it+1, A′′it+1, xt; σ′t , σt, φ)

(D.5)

Substituting (D.5) into (D.2) and rearranging to get:

vi
(
d′it, c1

it(A′it+1), xt; σ′t
)
− vi

(
d′it, c1

it(A′it+1), xt; σt
)

< vi
(
d′′it, c1

it(A′it+1), xt; σ′t
)
− vi

(
d′′it, c1

it(A′it+1), xt; σt
)
− b(d′′it, A′it+1, A′′it+1, xt; σ′t , σt, φ)

(D.6)

Recall that in the previous section it was shown that for all i such that kit−1 = 0 the following
holds:

vi

(
d′it, c1

it(A′it+1), xt; σ′t

)
− vi

(
d′it, c1

it(A′it+1), xt; σt

)
> vi

(
d′′it, c1

it(A′it+1), xt; σ′t

)
− vi

(
d′′it, c1

it(A′it+1), xt; σt

)

because vi satisfies i-Increasing Differences in (dit, σ′t). We also know from the previous paragraph
that or 0 < φ ≤ φ̄ (ζ, dit, Ait+1, xt, σt) we get |b

(
d′′it, A′it+1, A′′it+1, xt; σ′t , σt, φ

)
≤ ζ. As this is the

case for all dit, Ait+1, xt, σt then there exists ζ̂ such that |b
(
d′′it, A′it+1, A′′it+1, xt; σ′t , σt, φ

)
| ≤ ζ̂ for

all dit, Ait+1, xt, σt. Then, if φ ≤ φ̄
(
ζ̂
)
, the condition (D.6) cannot be satisfied. This leads to a

contradiction, Q.E.D
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Now, because of this result, we know that for any higher beliefs σ′t ≥ σt, the best response for
any household i implies (weakly) higher dit. Thus with beliefs σ′t all households play dit = 1 with
higher probability than under beliefs σt. As a result, if σ′t and σt are equilibrium beliefs, then it

must be that in equilibrium
´ k̂it

0 f σt
i (xt+1|xt, dit, ĉit)− f σ′t

i (xt+1|xt, dit, ĉit) dk̄t ≥ 0 for all k̂t ∈ [kt, 1].
It also implies that there exists a highest and a lowest pure strategy N.E. with respect to the
distribution of kt.

E Tables

Table 5: First Stage Estimates: Earnings Function Parameters

Parameter Coeff. Std. Err Variable Description
ψ

y
0 3.831 0.081 Constant

ψ
y
20≤a<25 0.431 0.016 HH head Age 20 ≤ a < 25

ψ
y
25≤a<50 0.824 0.009 HH head Age 25 ≤ a < 50

ψ
y
50≤a<75 -0.106 0.004 HH head Age 50 ≤ a < 75

ψ
y
edu1 0.784 0.062 HH head Education (yrs)

ψ
y
edu2 -0.082 0.011 HH head Education Sq. (yrs)

ψ
y
age∗edu3 0.110 0.015 HH Age x Education

σ2
u 0.311 0.012 variance Innovations

σ2
ξ 0.126 0.018 variance Measurement Error

ρ 1.00 - presistence (Calibrated)
Notes: Parameter Estimates for the earnings function. Bootstrapped standard errors in parentheses.

Table 6: Structural Estimates: Preference Parameters

Parameter Mod: No
Borrowing
(At ≥ 0)

Mod: Borrowing
Allowed

Description

ν 0.3376 0.3912 (1− ν) coeff of rel. risk aversion
η 0.00022 0.00018 interaction ct & own sanitation
φ 0.00514 0.00482 interaction ct & avg sanitation prev.

α20≤a<26 4.8155 5.0569 imp. of sanitation 20≤age<26
α26≤a<75 0.0138 0.0129 imp. of sanitation 26≤age<75

γ 2.7019 2.4233 interaction own sanitation & avg sanitation prev.
β 0.9436 0.9587 discount factor

Notes: Model parameters characterizing preferences and discount rate. Column (2) denotes parameter estimates under
model with borrowing restricted. Column (3) denotes parameter estimates under no borrowing restrictions. Calibrated
values: r = 0.02 real interest savings rate based on data from the Reserve Bank of India (RBI).
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Table 8: Structural Estimates: Village “Fixed Effects”

Village Data Coeff. µ̂g Std. Err
S1 S2

(mean) 2.24 (0.03)

vill ID 9 0.00 0.00 1.56 (0.07)
vill ID 15 0.00 0.00 1.24 (0.04)
vill ID 18 0.00 0.09 1.42 (0.01)
vill ID 22 0.00 0.13 0.98 (0.05)
vill ID 12 0.00 0.28 0.33 (0.01)
vill ID 19 0.00 0.31 2.12 (0.02)
vill ID 2 0.00 0.42 1.19 (0.02)
vill ID 35 0.06 0.54 0.96 (0.03)
vill ID 40 0.08 0.19 0.67 (0.01)
vill ID 24 0.12 0.35 1.62 (0.02)
vill ID 3 0.14 0.57 0.88 (0.01)
vill ID 37 0.15 0.53 0.45 (0.01)
vill ID 5 0.19 0.26 1.43 (0.03)
vill ID 21 0.19 0.46 1.45 (0.04)
vill ID 11 0.20 0.60 1.69 (0.01)
vill ID 8 0.21 0.50 2.23 (0.05)
vill ID 7 0.25 0.50 1.97 (0.01)
vill ID 4 0.27 0.63 2.35 (0.01)
vill ID 44 0.31 0.47 3.23 (0.04)
vill ID 25 0.33 1.00 2.31 (0.05)
vill ID 6 0.37 0.63 1.41 (0.01)
vill ID 28 0.38 0.38 2.49 (0.02)
vill ID 17 0.45 0.59 2.69 (0.04)
vill ID 14 0.47 0.78 3.91 (0.04)
vill ID 32 0.47 0.89 1.3 (0.03)
vill ID 31 0.50 0.67 2.48 (0.01)
vill ID 27 0.50 0.75 1.86 (0.01)
vill ID 38 0.50 0.86 3.84 (0.08)
vill ID 26 0.61 0.85 4.21 (0.04)
vill ID 20 0.63 0.75 3.64 (0.08)
vill ID 30 0.63 0.79 2.13 (0.02)
vill ID 43 0.67 0.83 0.97 (0.05)
vill ID 29 0.67 0.93 4.12 (0.03)
vill ID 13 0.71 0.94 4.67 (0.04)
vill ID 23 0.71 0.86 3.96 (0.04)
vill ID 36 0.78 0.89 2.34 (0.02)
vill ID 1 0.82 0.90 1.49 (0.05)
vill ID 42 0.82 0.89 2.67 (0.02)
vill ID 39 0.88 0.88 2.57 (0.03)
vill ID 34 0.88 0.96 4.96 (0.02)
vill ID 33 0.88 0.95 3.51 (0.04)
vill ID 16 0.91 1.00 2.88 (0.01)

Notes: Parameter estimates for location (mean) of taste shocks εd
i . The villages are listed in increasing order of

sanitation coverage. Data:S1 and Data:S2 denote sanitation coverage over the two sample periods. Bootstrapped
standard errors in parentheses.
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Table 9: Village: Price & Coverage variation

Cost of Sanitation Data
Village per unit (Rs.) S1 S2
vill ID 9 9,725 0.00 0.00
vill ID 15 10,243 0.00 0.00
vill ID 18 10,975 0.00 0.09
vill ID 22 10,016 0.00 0.13
vill ID 12 9,823 0.00 0.28
vill ID 19 10,427 0.00 0.31
vill ID 2 11,337 0.00 0.42
vill ID 35 10,280 0.06 0.54
vill ID 40 10,273 0.08 0.19
vill ID 24 9,510 0.12 0.35
vill ID 3 7,800 0.14 0.57
vill ID 37 9,788 0.15 0.53
vill ID 5 9,801 0.19 0.26
vill ID 21 10,475 0.19 0.46
vill ID 11 10,055 0.20 0.60
vill ID 8 7,938 0.21 0.50
vill ID 7 7,738 0.25 0.50
vill ID 4 8,795 0.27 0.63
vill ID 44 9,913 0.31 0.47
vill ID 25 11,175 0.33 1.00
vill ID 6 8,313 0.37 0.63
vill ID 28 8,131 0.38 0.38
vill ID 17 7,915 0.45 0.59
vill ID 14 8,882 0.47 0.78
vill ID 32 7,155 0.47 0.89
vill ID 31 6,900 0.50 0.67
vill ID 27 8,181 0.50 0.75
vill ID 38 6,775 0.50 0.86
vill ID 26 6,030 0.61 0.85
vill ID 20 8,113 0.63 0.75
vill ID 30 6,662 0.63 0.79
vill ID 43 6,113 0.67 0.83
vill ID 29 7,844 0.67 0.93
vill ID 13 9,924 0.71 0.94
vill ID 23 8,875 0.71 0.86
vill ID 36 6,113 0.78 0.89
vill ID 1 5,713 0.82 0.90
vill ID 42 9,012 0.82 0.89
vill ID 39 6,350 0.88 0.88
vill ID 34 7,963 0.88 0.96
vill ID 33 7,168 0.88 0.95
vill ID 16 11,425 0.91 1.00
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Table 10: Village: Simulation Bounds

Data Mod: φ = 0 Mod: φ > 0
Village S1 S2 LB-UB LB-UB
vill ID 9 0.00 0.00 (0.00,0.19) (0.02,0.20)
vill ID 15 0.00 0.00 (0.00,0.25) (0.00,0.25)
vill ID 18 0.00 0.09 (0.02,0.29) (0.03,0.29)
vill ID 22 0.00 0.13 (0.10,0.65) (0.10,0.66)
vill ID 12 0.00 0.28 (0.05,0.29) (0.05,0.31)
vill ID 19 0.00 0.31 (0.00,0.34) (0.02,0.35)
vill ID 2 0.00 0.42 (0.05,0.36) (0.07,0.39)
vill ID 35 0.06 0.54 (0.35,0.68) (0.36,0.71)
vill ID 40 0.08 0.19 (0.12,0.66) (0.15,0.68)
vill ID 24 0.12 0.35 (0.18,0.71) (0.21,0.76)
vill ID 3 0.14 0.57 (0.20,0.76) (0.26,0.77)
vill ID 37 0.15 0.53 (0.32,0.72) (0.34,0.78)
vill ID 5 0.19 0.26 (0.19,0.71) (0.21,0.74)
vill ID 21 0.19 0.46 (0.23,0.63) (0.61,0.82)
vill ID 11 0.20 0.60 (0.26,0.75) (0.29,0.76)
vill ID 8 0.21 0.50 (0.24,0.81) (0.24,0.82)
vill ID 7 0.25 0.50 (0.30,0.82) (0.32,0.81)
vill ID 4 0.27 0.63 (0.28,0.80) (0.31,0.85)
vill ID 44 0.31 0.47 (0.33,0.64) (0.33,0.67)
vill ID 25 0.33 1.00 (0.40, 0.72) (0.41,0.73)
vill ID 6 0.37 0.63 (0.37,0.78) (0.37,0.79)
vill ID 28 0.38 0.38 (0.38,0.72) (0.39,0.75)
vill ID 17 0.45 0.59 (0.56,0.89) (0.58,0.90)
vill ID 14 0.47 0.78 (0.47,0.82) (0.75,0.83)
vill ID 32 0.47 0.89 (0.58,0.92) (0.58,0.93)
vill ID 31 0.50 0.67 (0.62,0.89) (0.64,0.90)
vill ID 27 0.50 0.75 (0.68,0.83) (0.68,0.84)
vill ID 38 0.50 0.86 (0.76,0.94) (0.76,0.94)
vill ID 26 0.61 0.85 (0.72,0.92) (0.76,0.93)
vill ID 20 0.63 0.75 (0.72,0.93) (0.72,0.95)
vill ID 30 0.63 0.79 (0.74,0.90) (0.76,0.94)
vill ID 43 0.67 0.83 (0.78,0.93) (0.79,0.96)
vill ID 29 0.67 0.93 (0.73,0.95) (0.73,0.99)
vill ID 13 0.71 0.94 (0.78,0.97) (0.81,1.00)
vill ID 23 0.71 0.86 (0.81,0.98) (0.81,0.99)
vill ID 36 0.78 0.89 (0.81,0.96) (0.81,0.97)
vill ID 1 0.82 0.90 (0.83,0.97) (0.86,0.98)
vill ID 42 0.82 0.89 (0.83,0.94) (0.83,0.94)
vill ID 39 0.88 0.88 (0.89,0.99) (0.89,1.00)
vill ID 34 0.88 0.96 (0.88,0.98) (0.89,1.00)
vill ID 33 0.88 0.95 (0.88,0.99) (0.88,1.00)
vill ID 16 0.91 1.00 (0.91,0.98) (0.95,0.99)
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Table 11: Simulation Bounds (Perturbation φ)

Data Mod:
φ = 0

Mod: φ̂ =
0.00514

Village S1 S2 P1 P2 P3 P4 P5 P6
vill ID 24 0.120 0.350 LB 0.181 0.185 0.190 0.194 0.197 0.208

UB 0.712 0.727 0.733 0.744 0.751 0.758

vill ID 3 0.140 0.570 LB 0.201 0.206 0.222 0.237 0.258 0.263
UB 0.764 0.765 0.765 0.767 0.769 0.770

vill ID 21 0.190 0.460 LB 0.230 0.272 0.357 0.484 0.590 0.611
UB 0.626 0.691 0.734 0.798 0.820 0.820

vill ID 14 0.470 0.780 LB 0.470 0.549 0.581 0.628 0.675 0.754
UB 0.817 0.818 0.820 0.821 0.823 0.827

vill ID 13 0.710 0.940 LB 0.776 0.781 0.787 0.790 0.799 0.808
UB 0.973 0.976 0.984 0.991 0.999 1.000
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Table 12: Village: Social Planner Problem

Total #HH Total Endowment Cost of Sanitation Data Utilitarian Under-adoption
Village (approx) value (x1000 Rs.) per unit (x1000 Rs.) S1 Social Planner (%)
vill ID 9 190 8,217.88 9.725 0.00 0.72 100%
vill ID 15 162 8,201.25 10.243 0.00 0.73 100%
vill ID 18 301 12,474.04 10.975 0.00 0.78 100%
vill ID 22 240 10,410.00 10.016 0.00 0.75 100%
vill ID 12 121 4,154.29 9.823 0.00 0.74 100%
vill ID 19 210 5,995.29 10.427 0.00 0.73 100%
vill ID 2 470 23,028.12 11.337 0.00 0.77 100%
vill ID 35 762 31,341.06 10.280 0.06 0.62 91%
vill ID 40 360 22,363.56 10.273 0.08 0.74 89%
vill ID 24 873 42,891.36 9.510 0.12 0.66 82%
vill ID 3 786 28,177.31 7.800 0.14 0.58 77%
vill ID 37 306 10,324.13 9.788 0.15 0.70 79%
vill ID 5 270 13,786.47 9.801 0.19 0.76 76%
vill ID 21 282 18,634.28 10.475 0.19 0.81 77%
vill ID 11 100 4,572.00 10.055 0.20 0.72 72%
vill ID 8 308 19,836.43 7.938 0.21 0.82 74%
vill ID 7 226 9,754.84 7.738 0.25 0.78 68%
vill ID 4 633 56,674.39 8.795 0.27 0.92 70%
vill ID 44 313 27,611.92 9.913 0.31 0.89 65%
vill ID 25 109 4,756.76 11.175 0.33 0.78 57%
vill ID 6 200 12,018.20 8.313 0.37 0.77 52%
vill ID 28 164 19,903.53 8.131 0.38 0.94 60%
vill ID 17 324 15,900.95 7.915 0.45 0.84 46%
vill ID 14 220 10,798.04 8.882 0.47 0.75 38%
vill ID 32 187 12,615.58 7.155 0.47 0.76 38%
vill ID 31 127 8,930.64 6.900 0.50 0.74 32%
vill ID 27 120 4,304.76 8.181 0.50 0.74 32%
vill ID 38 328 28,304.10 6.775 0.50 0.91 45%
vill ID 26 413 22,870.29 6.030 0.61 0.88 31%
vill ID 20 169 10,431.53 8.113 0.63 0.87 28%
vill ID 30 366 23,321.89 6.662 0.63 0.86 26%
vill ID 43 140 13,040.02 6.113 0.67 0.91 27%
vill ID 29 453 27,705.03 7.844 0.67 0.88 24%
vill ID 13 340 16,649.12 9.924 0.71 0.96 26%
vill ID 23 168 11,790.41 8.875 0.71 0.91 22%
vill ID 36 280 22,333.92 6.113 0.78 0.94 17%
vill ID 1 347 22,793.04 5.713 0.82 0.91 10%
vill ID 42 273 21,557.72 9.012 0.82 0.85 3%
vill ID 39 163 8,761.58 6.350 0.88 0.78 -12%
vill ID 34 215 11,279.98 7.963 0.88 0.89 2%
vill ID 33 314 20,301.04 7.168 0.88 0.91 3%
vill ID 16 167 12,332.95 11.425 0.91 0.92 1%

Notes: This table show the socially optimal level of sanitation coverage Social Planner calculations are performed using
endowment level from observed villages in period S1. Column (5) and (6) denote the proportion of sanitation adoption
observed in the data and under the social planner solution respectively. On average the extent of under-adoption of
sanitation is close to 53% with respect to a utilitarian SWF, where the planner assigns equal pareto weights to each
household in the village. £1 ≈ Rs. 100 (INR).
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Table 13: Village: Price Subsidy Simulated Bounds

Cost of Data Pol: Price Subsidy (LB-UB)
Village Sanitation (Rs.) S1 No Subsidy Sub: 5% Sub: 15% Sub: 25%
vill ID 9 9,725 0.00 (0.02,0.20) (0.05,0.25) (0.18,0.72) (0.64,0.98)
vill ID 15 10,243 0.00 (0.00,0.25) (0.02,0.26) (0.12,0.42) (0.72,0.88)
vill ID 18 10,975 0.00 (0.03,0.29) (0.05,0.30) (0.15,0.48) (0.65,0.80)
vill ID 22 10,016 0.00 (0.10,0.66) (0.10,0.66) (0.17,0.67) (0.81,0.90)
vill ID 12 9,823 0.00 (0.05,0.31) (0.05,0.31) (0.23,0.62) (0.84,0.91)
vill ID 19 10,427 0.00 (0.02,0.35) (0.03,0.35) (0.08,0.41) (0.68,0.75)
vill ID 2 11,337 0.00 (0.07,0.39) (0.09,0.39) (0.12,0.43) (0.62,0.88)
vill ID 35 10,280 0.06 (0.36,0.71) (0.38,0.71) (0.65,0.84) (0.72,0.91)
vill ID 40 10,273 0.08 (0.15,0.68) (0.17,0.69) (0.19,0.72) (0.59,0.78)
vill ID 24 9,510 0.12 (0.21,0.76) (0.28,0.79) (0.31,0.83) (0.66,0.90)
vill ID 3 7,800 0.14 (0.26,0.77) (0.35,0.79) (0.84,0.96) (0.91,0.99)
vill ID 37 9,788 0.15 (0.34,0.78) (0.36,0.79) (0.71,0.86) (0.76,0.92)
vill ID 5 9,801 0.19 (0.21,0.74) (0.30,0.78) (0.64,0.82) (0.70,0.86)
vill ID 21 10,475 0.19 (0.61,0.82) (0.62,0.84) (0.66,0.89) (0.69,0.90)
vill ID 11 10,055 0.20 (0.29,0.76) (0.29,0.78) (0.32,0.79) (0.62,0.84)
vill ID 8 7,938 0.21 (0.24,0.82) (0.32,0.83) (0.63,0.85) (0.68,0.88)
vill ID 7 7,738 0.25 (0.32,0.81) (0.34,0.82) (0.70,0.88) (0.76,0.93)
vill ID 4 8,795 0.27 (0.31,0.85) (0.37,0.89) (0.68,0.92) (0.75,0.96)
vill ID 44 9,913 0.31 (0.33,0.67) (0.36,0.69) (0.76,0.92) (0.86,0.95)
vill ID 25 11,175 0.33 (0.40, 0.72) (0.43,0.74) (0.48,0.76) (0.62,0.91)
vill ID 6 8,313 0.37 (0.37,0.79) (0.38,0.79) (0.61,0.83) (0.66,0.84)
vill ID 28 8,131 0.38 (0.39,0.75) (0.41,0.76) (0.60,0.79) (0.65,0.82)
vill ID 17 7,915 0.45 (0.58,0.90) (0.72,0.91) (0.75,0.92) (0.78,0.98)
vill ID 14 8,882 0.47 (0.75,0.83) (0.78,0.84) (0.80,0.89) (0.88,0.97)
vill ID 32 7,155 0.47 (0.58,0.93) (0.70,0.94) (0.73,0.95) (0.80,1.00)
vill ID 31 6,900 0.50 (0.64,0.90) (0.67,0.91) (0.72,0.94) (0.81,0.97)
vill ID 27 8,181 0.50 (0.68,0.84) (0.72,0.85) (0.81,0.92) (0.84,0.93)
vill ID 38 6,775 0.50 (0.76,0.94) (0.78,0.94) (0.81,0.94) (0.82,0.95)
vill ID 26 6,030 0.61 (0.76,0.93) (0.78,0.94) (0.82,0.96) (0.88,0.99)
vill ID 20 8,113 0.63 (0.72,0.95) (0.75,0.96) (0.79,0.96) (0.86,0.99)
vill ID 30 6,662 0.63 (0.76,0.94) (0.80,0.96) (0.83,0.96) (0.88,0.97)
vill ID 43 6,113 0.67 (0.79,0.96) (0.79,0.96) (0.84,0.97) (0.88,0.99)
vill ID 29 7,844 0.67 (0.73,0.99) (0.75,0.99) (0.78,0.99) (0.82,1.00)
vill ID 13 9,924 0.71 (0.81,1.00) (0.84,1.00) (0.88,1.00) (0.89,1.00)
vill ID 23 8,875 0.71 (0.81,0.99) (0.84,1.00) (0.85,1.00) (0.88,1.00)
vill ID 36 6,113 0.78 (0.81,0.97) (0.82,0.97) (0.86,0.98) (0.94,0.99)
vill ID 1 5,713 0.82 (0.86,0.98) (0.87,0.98) (0.92,0.99) (0.93,0.99)
vill ID 42 9,012 0.82 (0.83,0.94) (0.86,0.96) (0.88,0.96) (0.92,0.97)
vill ID 39 6,350 0.88 (0.89,1.00) (0.89,1.00) (0.90,1.00) (0.90,1.00)
vill ID 34 7,963 0.88 (0.89,1.00) (0.91,1.00) (0.92,1.00) (0.93,1.00)
vill ID 33 7,168 0.88 (0.88,1.00) (0.88,1.00) (0.90,1.00) (0.90,1.00)
vill ID 16 11,425 0.91 (0.95,0.99) (0.95,1.00) (0.95,1.00) (0.96,1.00)

Notes: Policy simulations are performed on observed villages. £1 ≈ Rs. 100 (INR).
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Table 14: Simulated Bounds under different policies

Initial Sanitation Policy Effect: Equilibrium Sanitation (LB-UB)
Coverage (Fraction) Uncond Loan Sanitation Loan (100% of cost) Price Subsidy (25% of cost)

0 (0.07,0.28) (0.02,0.39) (0.16,0.42)
0.05 (0.11,0.35) (0.05,0.46) (0.21,0.58)
0.15 (0.28,0.49) (0.16,0.58) (0.39,0.66)
0.25 (0.38,0.60) (0.26,0.69) (0.47,0.78)
0.35 (0.60,071) (0.42,0.75) (0.66,0.81)
0.45 (0.71,0.77) (0.69,0.84) (0.75,0.88)
0.55 (0.75,0.81) (0.81,0.90) (0.82,0.91)
0.65 (0.82,0.86) (0.88,0.93) (0.90,0.96)
0.75 (0.85,0.91) (0.94,0.98) (0.96,0.98)
0.85 (0.91,0.96) (0.95,0.98) (0.98,0.98)
0.95 (0.95,0.98) (0.97,0.99) (0.98,1.00)

Notes: Policy simulations are performed on a counterfactual village where the initial distribution of all state variables:
age, assets, income and cost of sanitation Rs. 8628 excluding the initial sanitation coverage are held constant. The
initial sanitation coverage is determined by generating a random allocation of sanitation for different households in
the village holding fixed all other characteristics.

Table 15: Household Valuation of Sanitation

Compensation Amount (x 1000 Rs.)
Age No Ext With Ext (LB-UB)
20 259.8 (578.4,884.6)
25 242.3 (557.1,834.6)
30 185.3 (483.8,732.4)
35 158.8 (389.6,632.5)
40 140.2 (326.5,561.4)
45 128.4 (259.8,438.5)
50 110.8 (224.0,328.5)
55 89.3 (163.4,267.2)
60 72.3 (125.4,189.2)
65 56.2 (96.4,136.1)
70 33.45 (63.2,97.5)
74 12.6 (35.7,63.5)

Notes: Compensation amount denotes the valuation of sanitation made by a household. The amounts are
computed for a representative household at different ages £1 ≈ Rs. 100 (INR).
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F Figures

Figure 11: Model Fit: Impact of Liquidity Constraints

(a) Proportion of Sanitation Adoption (b) Assets over the life cycle (1000 Rs.)

Figure 12: Model: Household Income
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Figure 13: Equilibrium Adoption: Size of Loans & Subsidies

Notes: The simulations plot the upper and lower bound for the predicted equilibrium sanitation level one period
ahead. Policy simulations are performed on a counterfactual village where the initial distribution of all state variables:
age, assets, income and cost of sanitation Rs. 8628 are held constant and the initial sanitation coverage is fixed at 0%.
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Figure 14: Value of price subsidy: lower bound

Notes: The simulations plot the lower bound for the value of subsidy one period ahead. Policy simulations are
performed on a counterfactual village where the initial distribution of all state variables: age, assets, income and cost
of sanitation Rs. 8628 excluding the initial sanitation coverage are held constant. The initial sanitation coverage is
determined by generating a random allocation of sanitation for different households in the village holding fixed all
other characteristics.
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Figure 15: Simulated Policy Bounds

(a) Unconditional Loan (b) Sanitation Loan (100% of cost)

(c) Price subsidy (25% of cost)
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