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Abstract

Inventory controls are the limits that firms place on sales at each of their
prices and are used by airlines and other sellers to manage demand uncertainty.
We argue that inventory controls also help firms to price discrimination over
time, even when they face competition. In our model, firms first choose their
capacity and then set prices in a sequence of advance-purchase markets. While
a monopolist can easily price discriminate across these markets, we show that
oligopoly firms with homogeneous products generally cannot. But inventory
controls, which we model as changing the game from a sequential price game
to a sequential price-and-quantity game, enable price discrimination over time
and increase firm profits.
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1 Introduction

In many settings, including the airline, hotel, and entertainment industries, firms

that sell in advance adjust their prices often as the event draws nearer. One reason

to adjust prices is in response to new information about demand. Holding capacity

fixed, a seller that learns demand is higher than expected will raise prices while

a seller that experiences a sequence of low demand realizations will lower price.

Another reason to adjust prices is because consumers preferences may be correlated

with when they purchase (or arrive). If consumers who purchase closer to the event

are less price sensitive, a seller wants to raise prices as the event approaches even if

there is no new information about demand.

In airline markets, fares of purchased tickets generally rise during the last fifty

days before departure, consistent with intertemporal price discrimination.1 This

price pattern has been documented in several academic papers, including Williams

(2013), Lazarev (2013), and Puller, Sengupta, and Wiggins (2012), as well as in a

recent series of reports produced for Expedia by the Airlines Reporting Corporation

(2015), which suggests that fares are lowest 57 days before departure and increase

dramatically within the last 21 days. Rising fares are also commonly observed in

hotel pricing and event pricing.2

We analyze an oligopoly model in which firms face a sequence of heterogeneous

markets, but have a common capacity. For example, airlines have one capacity for

each flight but are free to adjust the price of seats on that flight as the departure time

for a flight draws closer. We show that absent the use of inventory controls, there
1This pattern is also consistent with models of demand uncertainty and rigid prices such as Dana

(1999), Prescott (1975), and Eden (1990).
2Note that the model can also be interpreted as a model on natural resource sales. Firms first

invest in capacity, for example by drilling a well, and then sell that capacity over time. However, it
is less natural in this case to think that demand becomes more inelastic over time.
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are strong competitive forces, even in a duopoly setting, that prevent intertemporal

price discrimination, at least when capacity costs are sufficiently high.

However, we also show that firms with market power can always exploit this

type of intertemporal price discrimination when they use inventory controls, or more

specifically can make commitments that limit their sales (on and off-the-equilibrium

sales) in period 1. That is, we show that inventory controls facilitate price discrimi-

nation.

Our model is closely related to the multiperiod Cournot literature (including Van

den Berg et al. (2012) and Anton, Biglaiser, and Vettas (2014)) and to the sequential

capacity-then-price oligopoly literature (including Kreps and Scheinkman (1983) and

Davidson and Deneckere (1986)), because we consider an initial capacity decision and

a sequence of competitive markets subject to the common capacity constraint. We

simplify the analysis by focusing on high capacity costs, which allows us to consider

only pure strategy equilibria, and focusing on two sales periods. And because of

our interest in price discrimination, we assume that the monopoly price is higher

in the late market than in the early market. We model competition as either price

competition – firms simultaneous set prices – or price and quantity competition –

firms simultaneously set prices and quantities. The later assumption fits well with

firms’ choices of price and inventory control in our applications.

2 The Model

Consider an oligopoly with n firms selling a homogeneous good to a continuum of

consumers who purchase a different times. The good can be thought of as a ticket,

such as a reservation for a seat on an airplane, a room in hotel, or a seat in a theater

or at a concert. In these examples, ticket sales take place in advance of consumption
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in a sequence of advance-purchase markets, though it makes no difference in the

model if consumption takes place immediately or at some future time, particularly

because we ignore time discounting. However, what is essential is that sales across

the periods have a common capacity constraint. For simplicity, we focus on just two

purchase periods.

In period 0, firms simultaneously choose their capacities, Ki, which allows the

firms to sell Ki units of output for delivery at some future date. The cost of capacity

is c per unit. In the two selling periods, periods 1 and 2, the firms simultaneously

choose prices and consumers make their purchase decisions. Capacity is common to

both selling periods, so each unit of capacity can be used to sell one ticket, either

in period 1 or period 2, but not both. For simplicity we ignore any other costs

associated with selling a ticket or delivering the output, so the cost of producing a

unit of output, or a ticket, is just the cost of building the capacity.

This is a game of complete and perfect information, so capacities, prices and sales

are all observable.3 Firms know each others’ capacities when setting their price in

period 1, and firms know each others’ residual capacities when setting their price in

the period 2.

For simplicity, we treat the two advance-purchase selling periods as separate

markets. That is, consumers do not choose when to make their purchase decision,

but instead are exogenously assigned to either period 1 or period 2. Formally, we

could have instead assumed that consumers who choose to purchase in the second
3Consider for example, the hotel industry. The capacity decision is made far in advance and

hotels sell that capacity for many arrival and departure dates. In our model we simplify this by
considering reservations for just one night and model the advance purchases for only that night.
Similarly, in the airline industry the capacity decision is made 5 or 6 months ahead of the travel date
when airlines schedule their airplanes and crews. And in the performance and related entertainment
industries, the capacity decision is made when firms choose, or build, their performance venue. In
each case sales for the event takes place sequentially over time.
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period don’t know their demand in the period one, and hence must buy in period two,

and consumers who purchase in the early market know their demands and choose

to purchase in period one because they rationally anticipate the firms’ prices will

be higher in period two (see, for example, Dana (1998) and Akan, Ata, and Dana

(2015)).

Products are homogeneous, so consumers purchase at the lowest price available,

as long as their valuation exceeds that price. If firms set different prices, then a firm

can have positive sales if and only if all of the lower priced firms have sold all of

their capacity (i.e., stocked out). If two or more firms charge the same price, then we

assume that the firms divide the sales equally subject to their capacity constraints.

We denote the market demand function in period t by Dt(p). When consumers

have unit demand, then Dt(p) is the total number of consumers with valuations

greater than or equal to p. We assume demand is a continuous function (that is

that the cumulative distribution of consumers’ valuations is continuous). The asso-

ciated inverse demands are denoted by pt(q). We assume that the monopolist’s profit

function, (pt(q)− c)q, is strictly concave in q for t = 1, 2.

When firms charge different prices, the sales of the higher-priced firm depend on

which consumers purchase from the low priced firm and which consumers are left

to pay the higher price. The high-priced firm faces the spillover demand, after low-

priced firm’s output has been sold. Because products are homogeneous, the residual

(or spillover) demand at any price p is a function of the underlying distribution of

consumer demands, or the market demand, and the supply available at all lower

prices. For simplicity, we write the residual demand function as RDt(p; p
−i, K−i) for

t = 1, 2 where the arguments are the price, p, and the distribution of all other prices

and capacities, (p−i, K−i).

The shape of the residual demand functions depends on the order in which con-

5



sumers make their purchase decisions, or more generally on rationing rule, which

describes which consumers are allocated the good when there is a shortage. In this

paper we try not to assume a specific rationing rule. Instead we consider an even

broader class of residual demand functions by assuming that the residual demand

function satisfies simple properties that are consistent with a wide range of plausible

rationing rules.

We assume that the residual demand function in period 1, RD1(p; p
−i, K−i),

defined as the number of units a firm or firms can sell at price p if rivals are selling

K−i units at a price p−i < p, satisfies the following four properties:

1. RD1(p; p
−i, K−i) is decreasing in p;

2. limp↑p−i
1
RD1(p; p

−i, K−i)− limp↓p−i
1
RD1(p; p

−i, K−i) = K−i,

when limp↓p−i
1
RD1(p; p

−i, K−i) > 0;

3. D(p) ≥ RD1(p; p
−i
1 , K

−i) ≥ D(p)−
∑

i|pi1<p
Ki; and

4. RD1(p; p
−i, K−i) is continuous p, p−i, and K−i, except where p = p−i.

We also implicitly assume the residual demand function is symmetric and depends

only on the prices and capacities of rival firms, not on which firms offer those prices

and capacities, and not on which firm’s residual demand we are defining. Also our

four conditions are written as if firm i has exactly one rival, or more precisely, as

if all firm i’s rivals charge the same price, p−i, but we relax this assumption and

generalize our four conditions in the Appendix and use these generalized conditions

in all of our proofs.

The first condition is obvious. The second condition stipulates that the discon-

tinuous jump in the residual demand at any price must be equal to the number of

units offered by rivals at that price. The third condition stipulates that the residual
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demand is bounded above by the underlying demand and bounded below by the un-

derlying demand less all of units sold at lower prices. The former bound would bind

if the lower priced supply went to consumers with willingness to pay always below p

and the latter bound would bind if the lower priced supply went to consumers with

willingness to pay always above p. So the third condition is not at all restrictive. The

fourth condition is natural, but is more restrictive. All four conditions are clearly

satisfied for both the efficient rationing rule and the proportional rationing rule (see

the Appendix).

To simplify our proofs, we assume that the price in the period 2 clears the market.

Assumption 1. In period 2 every firm charges the market clearing price.

The reason for Assumption 1 is to avoid the complexity of analyzing second

period pricing subgames with mixed-strategy equilibria. If the residual capacities

are large, then the equilibrium strategies in this pricing subgame may be a mixed-

strategy equilibrium. However, under many reasonable conditions capacity will never

be so large. Assumption 1 should be interpreted as stipulating that capacities are

sufficiently small in any payoff-relevant second-period pricing subgame.

An obvious alternative to making Assumption 1 is assuming

∑
t=1,2

q̂∞t (c) < q̂m2 (0), (1)

where q̂nt (c) denotes the symmetric, n-firm Cournot output in period t, written as a

function of the capacity costs, c. That is, the total equilibrium competitive output

in both periods is less than the output of a monopolist with zero costs in period

2. Firms won’t choose capacity greater than the competitive capacity, so even if

the firms choose to sell no output in period 1 (which is clearly not optimal), then
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the equilibrium price in the second period will be the market clearing price.4 Firms

cannot increase their individual profits by selling less at a higher price since even if

they colluded their profits would be lower if they did so.

We let ηt(p) denote the elasticity of demand associated with the demand function

Dt(p), so ηt(p) = D′t(p)p/Dt(p). We assume |η1(p)| ≥ |η2(p)| for all p, so demand is

less elastic in period 2, so the monopoly price, pmt , is increasing over time.

Once again, the crucial differentiating feature of our model is that firms set ca-

pacity ex ante and then can sell that common capacity over two periods. That is,

firms choose capacity in period 0, and then choose how much of that capacity to sell

in each sales period by choosing their price. This implies that the allocation of each

firm’s capacity across the periods (or markets) is determined not only by their own

price but also by their rivals’ prices.

3 Benchmark Models

We contrast our model with several benchmarks. First, we discuss oligopoly capacity-

then-price games in which price is set only once, that is Kreps and Scheinkman (1983)

and Davidson and Deneckere (1986). Second, we consider a monopoly model with

two sequential pricing periods. Our model has two pricing periods and more than

one firm, so it is a blend of these two benchmark modelss.

Later in the paper we also consider a capacity-then-quantity oligopoly benchmark

model in which firms choose their capacity at time 0 and then choose how much to

sell in each in each period. In this model, each firm’s price is affected by its rival’s
4Condition (1) would clearly be less realistic if we generalized the model to include a large

number of sales periods, but much weaker sufficient conditions are likely to exist and again the
assumption is allow us to focus on pure strategies and not because we think the intuition isn’t
robust.
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quantity choice each period, but its sales are unaffected. This serves as a benchmark

for our model when we add inventory controls and is discussed in Section 5.

3.1 The Capacity-then-Price Benchmark with One Pricing

Period

Before turning to the two-period analysis, it helps to recall the solution to the one-

period problem, that is, when firms simultaneously choose capacity first and then,

after observing each others’ capacity, simultaneously set price in a single pricing

period. Kreps and Scheinkman (1983) solved this game under the assumption that

rationing is efficient, and showed that firms choose the Cournot capacity then set

price to clear the market in the single sales period, so choosing quantity and the

price yields the Cournot outcome. Davidson and Deneckere (1986) showed that

when rationing is proportional, or random, the equilibrium capacity may not be the

Cournot capacity. For some capacity costs, firms produce more than the Cournot

capacity in the first period. And for other smaller capacity costs the pricing subgame

is a mixed-strategy equilibrium. However firms still do choose the Cournot capacity

when the firms’ cost of capacity is sufficiently high. In this case, regardless of the

rationing rule, firms choose price to sell all of their capacity in the pricing stage.

In particular, the cost of capacity must be so high that in equilibrium firms choose

less capacity then a monopolist would choose if the monopolist had a zero cost of

capacity, or q̂∞(c) < q̂m(0). This means that if the competitive-market capacity is

less than the monopoly capacity for a firm with zero cost of capacity, then oligopoly

firms will always choose the Cournot output. This is true not only for proportional

and efficient rationing, but for any reasonable rationing rule.
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3.2 The Monopoly Benchmark with Two Pricing Periods

The monopolist chooses its capacityK at time 0, and then chooses its price, or equiv-

alently quantity, qt, in periods t = 1, 2 subject to its capacity constraint. Because we

have assumed away the commitment problem, and because there is no difference be-

tween choosing price or quantity each period, we can write the monopolist’s pricing

problem, given K, as

max
q1,q2

p1(q1)q1 + p2(q2)q2

subject to the capacity constraint, q1 + q2 ≤ K.

The optimal prices are defined by the first order conditions,

p′t(qt)qt + pt(qt) = λ,

or the simple monopoly pricing rules,

pmt − λ
pmt

= − 1

ηt
,

where t = 1, 2 and λ ≥ 0 is the shadow cost of the capacity constraint. To character-

ize prices when capacity, K, is chosen optimally at time 0, we can simply set λ = c,

where c is the cost per unit of capacity.

This implies the firm equates its marginal revenue across the T periods and that

pm1 < pm2 since |η1(p)| > |η2(p)| for all p. The monopolist price discriminates across

the two time periods by charging a higher price to consumers with less elastic demand.
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4 The Capacity-then-Price Oligopoly Model

We now turn to solving the full model as described in Section 2. We solve the model

for the subgame perfect pure strategy Nash equilibrium. Assumption 1 simplifies

the three-stage game and makes it a two-stage game – in the second pricing period

all firms set the market clearing price. So working backwards from this, we start by

analyzing the first-period pricing subgame.

4.1 The Pricing Subgame

In the first-period pricing subgame firms have limited capacity and compete in prices.

The equilibria of the pricing subgames (period 1 and period 2) are characterized by

Proposition 1. The proof is in the Appendix.

Proposition 1. Under Assumption 1, given any capacities, Ki, i = 1, . . . , n, the

equilibrium of the pricing subgame is either a uniform price equilibrium satisfying

pi1 = p2 for all firms with positive sales in period 1, or an asymmetric price equilib-

rium in which just one firm sets a low first period price, pi1 < p2, and every other

firm has zero sales in period 1.

When a uniform price equilibrium exists, then no asymmetric price equilibrium

exists.

When an asymmetric price equilibrium exists in which firm i sets a low price in

period 1, then no uniform price equilibrium exists and this asymmetric price equilib-

rium is the only assymmetric price equilibrium in which firm i is the low-priced firm,

however other asymmetric price equilibria may exist in which different firms are the

low-priced firm in period 1.

Proposition 1 establishes that the equilibria of the pricing subgame is either a
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uniform price equilibrium in which all of the transactions prices are uniform across

the two periods, or an asymmetric equilibria in which exactly one firm sets a low

price in period 1 and all firms set a higher price in period 2. No symmetric non-

uniform price equilibrium exists, that is, there is no equilibrium in which every firm

charges a higher price in period 2 than in period 1.

Intuitively, pricing low in period 1 increases first period sales and decreases the

capacity remaining for the second period leading to higher second period prices.

If one firm sets a low price in period 1, the other firms will sell only in period 2.

Individually firms want to increase their rivals first period sales, so there can be no

equilibrium in which two firms set a low price in the first period.

The presence of free riding makes it less likely that the firms can profit by lowering

its price in the first period. The incentive to deviate to a lower price is increasing

in the deviating firm’s capacity and in the elasticity of first period demand, and

is decreasing in the size of first period demand. This is because deviating is only

profitable if the firm has sufficient remaining capacity in period 2 to benefit from

higher second period price, and if lowering the first period price has a sufficiently

large impact on the second period price.

The following assumption guarantees that when capacity is symmetric, no firm

wants to deviate from the symmetric price equilibrium and the asymmetric equi-

librium does not exist (the symmetric equilibrium is the unique equilibrium). The

assumption stipulates that the elasticity of demand in period 2 be sufficiently close

to the elasticity of demand in period 1.

Assumption 2. The elasticity of demand and capacities satisfy

η2(p)

η1(p)
> max

i

Ki∑n
i=1K

i
(2)
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for all p.

Assumption 2 requires that the elasticity of demand does not decrease in magni-

tude too quickly. For example, if capacity is symmetric, Assumption 2 states that

the ratio of elasticities must be greater than 1/n or equivalently with two firms the

demand in period 1 cannot be more than twice as elastic as in period 2. Or alterna-

tively, equation (2) requires that if the demand is twice as elastic in period 1, then

no firm can have a capacity share greater than 50%.

We now show that under Assumption 2, if the capacity choice is symmetric, then

the pricing subgame has only a symmetric price equilibrium and prices are uniform.

The proof is in thse Appendix.

Proposition 2. Under Assumptions 1 and 2, the unique equilibrium of the price

subgame is a uniform price equilibrium.

Intuitively, deviating from a uniform price is profitable for a monopolist if it raises

the second-period profit by more than it lowers the first-period profits. However,

since rivals all free ride and sell in period 2, an oligopoly firm that deviates from

the uniform price, by lowering its first-period price, earns at most 1/nth of the

second-period industry profits, so the oligopoly firm that deviates cannot increase its

profit unless it can increase the second-period industry profits by at least n times the

decrease in its first-period profit. So the first-period demand must be at least n times

more elastic than the second-period demand for such a deviation to be profitable.

Assumption 2 guarantees that such a deviation is not profitable.

4.2 The Capacity Choice

In many respects Proposition 2 is the most interesting result of the paper. It specifies

that for any allocation of initial capacity satisfying Assumptions 1 and 2, oligopoply
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firms cannot price discriminate even though a monopolist clearly would.

We now ask what happens when firms choose their capacity optimally. We replace

Assumption 2 with the following.

Assumption 3. The elasticity of demand satisfies

η2(p)

η1(p)
>

1

n
. (3)

Assumption 3 clearly states that Assumption 2 holds when capacities are sym-

metric.

Proposition 3. Under Assumptions 1 and 3, there exists only one symmetric sub-

game perfect Nash equilibrium of the oligopoly capacity-then-price model and the equi-

librium prices are uniform (i.e., p1 = p2).

5 Inventory Controls

In this section we consider the capacity-then-price model with inventory controls.

We begin this section by considering one additional benchmark. This benchmark is

a model in which firms choose capacity first, and then choose quantity each period

as opposed to price.

5.1 The Capacity-then-Quantity Model with Two Periods

At time 0 each firm i chooses its total capacity, Ki, and then in each period, t = 1, 2,

each firm chooses how much of its capacity to allocate to that period, qti .5 As before
5This is a generalization of Van den Berg et al. (2012) to include the capacity decision, but again

we assume that capacity costs are high. The find price is weakly increasing, but here we find price
is strictly increasing because we assume that the monopoly price is strictly increasing. Without
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we assume the second period prices clear the market, or equivalently that capacity

costs are sufficiently high. While the game ends in period 1 under this assumption,

notice that if it did not then we would need to be explicit about whether the period 1

quantities, or inventory controls, were observable. If they were unobservable and the

game had many periods (not just 2), then we would need to consider the Bayesian

Perfect Equilibria of the game. We discuss this more in the conclusion.

Let q̂nt (c) denote the symmetric, n-firm Cournot output in period t, written as a

function of the capacity costs c. This is the output firms would produce if they were

free to choose capacity each period. So q̂nt (c) depends only on n, c, and the period t

demand, dt(p).

Proposition 4. The unique pure-strategy, symmetric equilibrium quantity in the

capacity-then-quantity game is q̂nt (c) for each firm and in each period t, and the total

capacity chosen by each firm in period zero is Kn =
∑T

t=1 q̂
n
t (c). That is, firms

produce the Cournot output in each period.

Proof. Suppose not. So qjt 6= q̂nt (c) for some period t and some firm j. It follows that

in any pure strategy equilibrium, the marginal revenue in the period t is not equal to

c for every firm. Now consider period 1. Given other firms’ strategies it is clear that

every firm equalizes its marginal revenue in period 1 and period 2. So it follows that

some firm j is not setting marginal revenue equal to c in both period 1 and period 2,

which implies that in period 0 some firm j is not choosing its capacity optimally.

This is not surprising. The presence of a common capacity constraint across the

two markets does not change the firms’ equilibrium quantity decisions in each period.

However this is not the case when firms compete in price. Because of the common

that assumption prices would be uniform as is the case in Van den Berg et al. (2012) when capacity
is sufficiently constrained.

15



constraint, firms in period one internalize the strategic effect of their pricing decisions

on their rivals’ behavior in period two.

5.2 The Capacity-then-Price-and-Quantity Model

The game with inventory controls is equivalent to a game in which firms first choose

capacity and then in each period simultaneously choose price and quantity. The

quantity is an upper bound on sales. Because there is no production cost associated

with choosing quantity each period, we think it is more natural to call the quantity

choice an inventory control. It is after all simple a managerial device used by the

firm to limit its sales in period one.

Prices are uniform without inventory controls because firms can divert their rivals’

sales from the future to the current period, and their own sales from the present to

the future period, by increasing their current price. However, rival firms can block

this by setting a cap on how many units they will sell at a given price. So for example,

a firm can limit the number of units available at p1 to exactly the number of units

it expects to sell in period 1. So if a rival firm deviates to a higher price in period 1,

the firm’s own sales will be unchanged.

However there is a natural asymmetry. If a rival firm deviates to a lower price,

then the firm will sell less even if the firm uses inventory controls since inventory

controls cap sales, but don’t prevent them from decreasing.

In this section we consider game in which firms choose capacity, K, in period 0,

and then choose price and quantity in each period t = 1, . . . , T . The quantity can

be interpreted as a cap, or inventory control on sales at the announced price. To

formally distinguish between the inventory control and the actual sales, we denote

the inventory for firm i in period t by kit.
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Proposition 5. Under the efficient rationing rule, the equilibrium prices and quan-

tities that are obtained in the capacity-then-quantity model (see Proposition 4) are a

subgame perfect Nash equilibrium of the quantity-price model with inventory controls.

Proof. Consider the symmetric SPNE of the capacity-then-quantity game (Proposi-

tion 4). Suppose that in the quantity-price game with inventory controls firms simply

announce the prices and inventory controls equal to their equilibrium capacity allo-

cations in the capacity-then-quantity game.

Now consider a deviation in period 1. If the firm deviates in price, it will always

choose an inventory control equal to the residual demand at that price (or larger).

It never makes sense to sell at a lower price than the price that clears the market

given the desired sales. So we can think of the firm as choosing either a quantity

and setting the marketing clearing price. If the deviator chooses q and the rivals

choose q−i then regardless of the prices they set, under the efficient rationing rule

the market clearing price is p1(q + (n − 1)q−i). This is because the consumers who

purchase their units are the consumers with the highest willingness to pay and this

set is independent of the price they charge.

But this means that the price is the same as the price the firm gets when it

deviates in the quantity it chooses in period 1 in the capacity-then-quantity model

(see Proposition 4). So the profit function from a deviation is the same, so given

any capacity, the subgame prices and quanities are the same, so the subgame perfect

equilibrium of the capacity-then-price model with inventory controls must be the

same as the subgame perfect equilbrium of the capacity-then-quantity model.

The capacity-then-price model with inventory controls has other equilibria. In

particular, the symmetric capacity choice, uniform price equilibrium (Proposition

3) may still be a subgame perfect equilibrium of the inventory control game. This
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is because firms need not announce inventory controls equal to their expect sales.

They could instead announce non-binding inventory controls. For example, if all

firms choose inventory controls that are infinite, i.e., kj1 =∞, then the uniform price

equilibrium is still an equilibrium. No deviation in period 1 can increase a firm’s

profit.

Also, note that Proposition 5 assumes the efficient rationing rule because in this

case the highest-profit equilibrium is the same as the capacity-then-quantity bench-

mark. Under other rationing rules, prices would again determined by equating the

marginal revenue across the two periods, but the marginal revenue of each firm’s

residual demand will depart slightly from the Cournot marginal revenue.

Intuitively, however, other rationing rules will also imply non-uniform prices.

Imagine the firm chooses a price and an inventory control that allows rival firms

to sell k units at price p∗1 so rival firms sales are unchanged. We know that at the

Cournot prices a price decrease has no effect on profits – the lost profits in period

1 are exactly offset by higher profits from the price increase in period 2. However,

any rationing rule besides the efficient rationing rule will lead to a residual demand

elasticity even greater in period 1. So under other rationing rules the same small

price decrease must be more profitable than under efficient rationing, since the same

price decrease will lead to a bigger price increase in period 2.

Proposition 6. Under any reasonable rationing rule, in every symmetric subgame

perfect equilibrium of the capacity-then-price model with inventory controls in which

firms’ choose inventory controls equal to their expected sales, price is higher in period

2 when |η2| < |η1|.
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6 Conclusion

We have shown that under reasonable general conditions, oligopoly firms are unable

to price discriminate over time without using inventory controls. While a monopolist

can exploit the tendency for less elastic consumers to purchase their tickets closely

to the event time, an oligopolist cannot unless it can place limits on its sales.

We consider an advance purchase sequential pricing model and show that capacity

constrained firms will compete in prices until prices are equalized across the pricing

periods. Discriminatory prices are not sustainable because firms will raise their early

prices in order to claim a larger share of sales at high prices later on.

An obvious limitation of the paper is that we consider only two pricing periods.

It would be preferable to consider a large finite number of pricing periods or alter-

natively to consider a continuous time model with stochastic consumer arrivals or a

fluid approximation of this model. However this adds considerable complexity. And

potentially more problematic, it would require an explicit assumption that inventory

controls were observable, or alternatively considerably more analysis to describe the

model if past inventory controls were unobservable.
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Appendix

Properties of the Residual Demand Function

The residual demand function facing a firm is defined by the underlying market

demand, the prices and quantities offered by rivals, and the rationing rule or equiv-

alently the allocation process that governs which consumers receive which prices.

Sometimes the rationing assumption is motivated by the way in which consumers

queue, but not necessarily.

The obvious rationing rules, because they have received the most attention from

the economics literature, are efficient rationing and proportional rationing, but there

are many other potential rules. Instead of choosing a rule and deriving the associ-

ated residual demands, in this paper we impose reason general restrictions on the

shape of the residual demand. These conditions are satisfied by efficient rationing,

proportional rationing, and other plausible rationing rules.

The residual demand function, RD1(p;p
−i,K−i) characterizes the number of

units consumers are willing purchase at price p given the supply offered already

by firms, which is represented by the sets or vectors p−i and K−i, that is, the set of

prices offered and the associated capacity available at each of those prices. For ease

of exposition, we interpret p−i as the set or vector of all the firms’ price except firm

i and K−i as the set or vector of all the firms’ capacities except firm i, but note we

have assumed RD1 does not depend on which firm offers which price, only on the

total capacity offered at each price, and the residual demand function does depend

on which firm chooses p, only on the distribution of other firms’ prices.

The first set of properties that we impose on RD1(p;p
−i,K−i) is that it is non-

negative, decreasing in p, weakly decreasing in each element of K−i and weakly

increasing in each element of p−i. We assume that RD1(p;p
−i,K−i) is no larger
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than D1(p), and also that the residual demand function at p does not depend on the

distribution of prices higher than p. That is, it does not depend on any elements of

K−i or p−i that correspond to prices greater than p. These properties are consistent

with our interpretation of the residual demand, RD1(p;p
−i,K−i), as the number of

remaining consumers whose willingness to pay is greater than p after every unit at a

price less than or equal to p has been sold.

The second property is that the residual demand is discontinuous at the prices

offered by other firms, and the jump in the residual demand must equal total sales

by other firms at that price. That is, let the price offered by some firm j, j 6= i, be

pj. If limp↓pj RD1(p
j;p−i,K−i) is strictly positive, then at pj the residual demand

falls by the capacity available from other firms at pj.

lim
p↑pj

RD1(p;p
−i,K−i)− lim

p↓pj
RD1(p;p

−i,K−i) =
∑

k|pk=pj
Kk. (P2)

If limp↓pj RD1(p
j,p−i,K−i) = 0 , then

lim
p↑pj

RD1(p;p
−i,K−i)− lim

p↓pj
RD1(p;p

−i,K−i) ≤
∑

k|pk=pj
Kk, (4)

and the discontinuity is instead equal to total sales by all firms (other than firm

i) that are charging pj. Note also that RD1(p
j;p−i,K−i) must be in between

limp↑pj RD1(p;p
−i,K−i) and limp↓pj RD1(p;p

−i,K−i) because we have already stip-

ulate in our first set of properties that RD1(p;p
−i,K−i) is decreasing in p.

The third property is that the residual demand at any price p is at least the

original demand less the units sold at lower prices, and is no more than the under-

lying demand. That is, units sold at lower prices might have been allocated only to

consumers with valuations higher than p, or only to consumers with valuations lower
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than p, or something in between. So

D1(p) ≥ RD1(p;p
−i,K−i) ≥ max

0, D1(p)−
∑
i|pi≤p

Ki

 . (P3)

In conjunction with our first property, this implies thatRD1(p;p
−i,K−i) = D1(p),∀p <

minj p
j ∈ p−i.

The fourth property is that the residual demand function is continuous, except

at prices charged by other firms. That is RD1(p;p
−i,K−i), is continuous in p, p−1,

and K−i, except where p is equal to one of the prices in the vector p−i.

These properties are all satisfied by the residual demand functions associated

with efficient rationing. The residual demand function under efficient rationing is

RD1(p;p
−i,K−i) = max

0, D1(p)−
∑
j|pj<p

Kj

 ,

if p is not charged by other firms, and residual demand function under efficient

rationing is equal to firm i’s share of the remaining demand, D1(p) −
∑

j|pj<pK
j,

if more than one firm charges p, where the firms are assumed to have equal shares

subject to their capacity constraints. Clearly this function satisfies the four properties

above. And note that under efficient rationing the second inequality in property 3

binds for all p, as long as p is any price not charged by another firm.

The four properties are also satisfied by the residual demand functions associated

with proportional rationing. The residual demand is

RD1(p;p
−i,K−i) = max

0, D1(p)−
∑
j|pj<p

D1(p)

D1(pj)
Kj

 ,
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if p is not charged by other firms, and residual demand function under proportional

rationing is equal to firm i’s share of the remaining demand, D1(p)−
∑

j|pj<p
D1(p)
D1(pj)

Kj,

if more than one firm charges p, where the firms are assumed to have equal shares

subject to their capacity constraints. In this case, units sold at price pj1 are allocated

to consumers with valuations above p in proportion to their share of the total con-

sumers willing to pay p. In other words, the goods are allocated randomly to every

consumer who wants the good.

Proof of Proposition 1:

Define pL = mini p
i
1, so that pL is the lowest equilibrium price offered in period

1, and let p̂2(q) denote the market clearing price in period 2 as a function of the

remaining capacity, q. Note that the function p2 is continuous and q. Also note that

we suppress the period 1 label on price where it is unambiguous that we are referring

to period 1 prices.

The proof proceeds as a series of eight claims.

1) In any equilibrium of the pricing subgame, pL ≤ p2.

Suppose not, so pL > p2. And suppose that some firm has zero sales in period 1.

Since pL > p2, then the firm with zero sales would be strictly better off setting a first

period price p ∈ (p2, pL). By deviating to p̂, this firm increases its sales in period 1

and decreases its sales in period 2 by the same amount. The firm’s profits are strictly

higher because it sells at a higher price in period 1, and because it’s deviation may

increase the second period price, p2, so any capacity it sells in period 2 will also be

at a weakly higher price. Hence this is a contradiction.

Suppose not, so pL > p2, and now suppose instead that every firm has positive

sales in period 1. It follows that every firm must be charging pL. If the prices were
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not equal, then the firm charging the highest price in period 1 has positive sales only

if all of the firms charging lower prices are selling all of their capacity, and the residual

demand at the next highest price is positive. But in this case, the firm charging the

next highest price can increase its price without reducing its sales, which implies its

profit strictly increases, which is a contradiction.

More formally, suppose that pL > p2, that every firm has positive sales, and

that some firm j is charging a price pj above pL. Let K̂ =
∑

i|p1=pL K
i denote

the total capacity at price pL. Clearly D1(pL) > K̂, because RD1(p
j; pL, K̂) > 0

and RD1(p; pL, K̂) is decreasing in p (Property 1), which implies limε→0RD1(pL +

ε; pL, K̂) > 0. And limε→0RD1(pL + ε; pL, K̂) = D1(pL) − K̂. By properties 2 and

3 of a residual demand function. And together these two conditions imply that

limε→0RD(pL + ε; K̂ −Ki, pL) > Ki for any i such that pi = pL. So there exists a

strictly positive ε such a firm i charging pL can deviate to a higher price, pL + ε, and

still sell all of its capacity, which is a contradiction of profit maximization.

However, if all firms are charging pL in period 1, and pL > p2, then any firm

that has excess capacity in period 1 (that is, any firm for which xi < Ki) could

increase its profit by deviating to a first period price of pL − ε. By deviating, this

firm sells strictly more in period 1, and strictly less in period 2. Letting i denote

the deviating firm and xi denote the deviating firm’s equilibrium period 1 sales, the

deviating firm’s total profit is

(pL − ε) min
{
D1(pL − ε), Ki

}
+ p̂2(·) max

{
Ki −D1(pL − ε), 0

}
and as ε goes to 0, this is strictly greater than its profit at pL, which is

pLx
i + p2

(
Ki − xi

)
,
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because xi < Ki (must hold for some i) and xi < D1(pL), so xi < min {D1(pL), Ki},

pL > p2 (by assumption), and limε→0 p̂2(·) = p2. So this is a contradiction, and the

first claim holds.

2) In any equilibrium of the pricing subgame, when pL is offered by two or more

firms in period 1, then pL = p2.

Suppose not, so pL < p2 and pL is offered by two or more firms. Suppose firm i

is one of those firms. When firm i charges pL its profit is pLxi + p2 (Ki − xi) , where

xi = min
{
RD1

(
pL; pL,

∑
j 6=i|pj=pL K

j
)
, Ki

}
is firm i’s sales at pL.

At a slightly higher price of pL + ε the firm i’s profit is

(pL + ε) min

RD1

pL + ε; pL,
∑

j 6=i|pj=pL

Kj

 , Ki


+ p̂2(·) max

Ki −RD1

pL + ε; pL,
∑

j 6=i|pj=pL

Kj

 , 0

 , (5)

which is clearly greater than the firm i’s profit at pL when xi = Ki, since pL+ ε > pL

and p̂2(·) > pL so all of firm i’s sales are at a higher price and its sales volume doesn’t

change.

If on the other hand RD1(pL; pL,
∑

j 6=i|pj=pL K
j) < Ki, so xi < Ki, then the

deviation is still profitable for firm i because

lim
ε→0

RDi
1

pL + ε; pL,
∑

j 6=i|pj=pL

Kj

 ≤ RDi
1(pL; pL,

∑
j 6=i|pj=pL

Kj) < Ki,

27



since RD is decreasing (property 1), and the limit of (5) as ε goes to 0 is

pL lim
p↓pL

RDi
1(p; pL,

∑
j 6=i|pj=pL

Kj) + p2

Ki − lim
p↓pL

RDi
1(p; pL,

∑
j 6=i|pj=pL

Kj)

 ,

so for sufficiently small ε it again follows that profits are higher because the firm

sells more units at p2 and fewer units at (or near) pL and p2 > pL. So a deviation is

profitable, which is a contradiction, so either pL = p2, or only one firm charges pL.

3) If pL = p2, then the pricing equilibrium is a uniform price equilibrium. That

is, all firms that have positive sales in period 1 set the same price in period 1 and

period 2.

Suppose some firm j sets a price pj > pL = p2 in period 1 and has strictly positive

sales. The residual demand at pj is strictly positive, which implies that the residual

demand in a neighborhood of pL must also be strictly positive. Therefore, if a firm,

say firm i, deviated from pL to any price pL + ε, a price in a neighborhood of pL

(but below any higher-priced firm’s price) it would be able to sell all of its capacity

at that price. This is because by property 2 and property 4 (continuity) imply that

when firm i removes its capacity Ki at pL it increases the residual demand in a

neighborhood of pL by Ki. So any firm charging pL could strictly increase its profits

by increasing their price since its total sales would not be affected.

4) There exists at most one uniform price equilibrium of the pricing subgame (the

total sales and the transaction prices in each period are unique).

Given the capacity, the sales and volume of sales in a uniform price equilibrium

are uniquely defined, because only one price satifies D1(p) +D2(p) =
∑

iK
i.

5) A uniform price equilibrium exists as long no firm wants to deviate to a lower

price.
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Consider the unique uniform price strategies: pL = p2 and no firm has positive

sales at any period 1 price other than pL.

Deviating to a higher price is never profitable. Setting a higher price in the

period 1 price lowers industry profit – given the industry capacity and Assumption

2, industry profit is higher when the period 1 price is lower than the period 2 price,

not higher – and the deviator’s share of first period revenue falls and share of second

period revenue rises, so the change in revenue for the deviator must be smaller than

for other firms, so the deviator’s revenue and profit must fall.

However deviating to a lower price might be profitable. Clearly though, such a

deviation cannot be profitable unless Ki > D1(p) so that the firm has positive sales

in period 2. Otherwise all of the deviating firm’s sales would be at a lower price.

And since D(p) is decreasing, this implies Ki > D1(pL) is a necessary condition for

a deviation to a lower price to be profitable, and Ki < D1(pL) for all i is a sufficient

condition for a uniform price equilibrium to be the unique equilibrium of the pricing

subgame.

6) When a uniform price equilibrium of the pricing subgame does not exist, then

an assymmetric price equilibrium exists in which exactly one firm offers pL < p2 and

all other firms have zero sales in period 1.

Suppose a uniform price equilibrium does not exist. So a deviation is profitable

for some firm, and clearly then it must be profitable for the firm with the largest

capacity. That firm looses the same profit it period one from a price decrease, but

gains more from the price increase in period 2.

Let firm i denote the firm with the largest capacity and pi1 denote the firm’s

profit maximizing deviation and p̂2 the resulting second period price. Then pi1 and

p̂2 clearly represent an assymmetric equilibrium. All firms except firm i sell only

in period 2. Firm i sells in both periods. And no firm wants to undercut firm i in
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period 1 because it would sell more at the low price and less at the high price in

period 2. And if it could increase the price and its profits by charging less than pi1
then so could firm i in which case pi1 is not firm i’s profit maximizing price which is

a contradiction.

7) There are at most n assymmetric price equilibria, and a uniform price equilib-

rium and an asymmetric price equilibrium don’t exist at the same time.

An assymmetric price equilibrium may not be unique, but there is at most one

assymmetric price equilibrium in firm i is the low priced firm in period one since

firm i is the only firm choosing a price with positive sales and firm i is choosing that

price to maximize its profits – this is essentially a single firm problem with all other

firms taking p2 as given. This implies that there are at most n asymmetric price

equilibria.

And if a uniform price equilibrium fails to exist, an asymmetric price equilibrium

exists (see 6 above).

For any candidate asymmetric price equilibrium either all firms other the low-

priced firm prefer to free ride and sell only in period 2, or some firm has more capacity

and is willing to undercut the low priced firm in period 1. But then that implies

there is another asymmetric price equilibrium. So consider a candidate asymmet-

ric price equilibrium in which no firm wants to undercut the low-priced firm. This

asymmetric price equilibrium exists unless the low priced firm wants to deviate to

some other price. But again, if that price deviation exists it defines another asym-

metric price equilibrium unless that price is NOT lower than p2. So an asymmetric

price equilibrium exists unless the low priced firm wants to deviate to a price that is

greater than or equal to p2. However in that case a uniform price equilibrium exists.
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Proof of Proposition 2:

Let Ki denote the firm i’s capacity and p̃ denote the unique uniform price defined

by D1(p̃) +D2(p̃) =
∑n

i=1K
i.

Suppose D1(p̃) ≥ maxiK
i, so first-period sales at p̃ exceeds any firm’s capacity.

Then a uniform price equilibrium at p̃ exists because any firm that cuts price in

period 1 will have zero sales in period 2, so its profit is unambiguously lower, and a

price increase clearly can’t increase profits either.

Now suppose D1(p̃) < maxiK
i. Then by the same argument, for all i such that

Ki < D1(p̃), no deviation is profitable. For all i such that Ki > D1(p̃), a deviating

firm’s profit function, when it deviates to a lower price, p < p̃, is

π(p; p̃,K) = pmin
{
Ki, D1(p)

}
+ p2

(
n∑
i=1

Ki −D1(p)

)(
Ki −min

{
Ki, D1(p)

})
,

(6)

or equivalently, letting q = min {Ki, D1(p)} denote the firm’s sales in period one,

π̂(q; p̃,K) = π(p1(q); p̃,K) = qp1(q) + p2

(
n∑
i=1

Ki − q

)(
Ki − q

)
. (7)

So

dπ̂(q; p̃,K)

dq
= p1(q) + qp′1(q)− p2

(
n∑
i=1

Ki − q

)
− p′2

(
n∑
i=1

Ki − q

)
(Ki − q), (8)
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or

dπ̂(q; p̃,K)

dq
= p1(q)

(
1 +

1

η1(p1(q))

)
− p2

(
n∑
i=1

Ki − q

)(
1 +

1

η2(p2 (
∑n

i=1K
i − q))

)
Ki − q∑n
i=1K

i − q
, (9)

where η1 and η2 are the elasticity of demand. Lowering price is not profitable if
dπ̂(q;p̃,K)

dq
< 0 near q = D1(p̃) and clearly

dπ̂(D1(p̃); p̃,K)

dq
< p1(D1(p̃))

(
1 +

1

η1(p1(D1(p̃))

)
− p2

(
n∑
i=1

Ki −D1(p̃)

)(
1 +

1

η2(p2 (
∑n

i=1K
i −D1(p̃)))

)
Ki∑n
i=1K

i
(10)

because (Ki − q)/ (
∑n

i=1K
i − q) < Ki/

∑n
i=1K

i and also because p1(D1(p̃)) =

p2(
∑n

i=1K
i −D1(p̃)) = p̃. So lowering price is not profitable if

1

η1(p1(D1(p̃)))
− 1

η2 (p2 (
∑n

i=1K
i −D1(p̃)))

Ki∑n
i=1K

i
< 0, (11)

or
η1(p̃)

η2(p̃)
<

∑n
i=1K

i

Ki
, (12)

so lowering price is not profitable for any firm i if Assumption 2 holds.

Proof of Proposition 3:

Under Assumptions 1 and 3, if a subgame perfect equilibrium exists in which every

firm chooses K∗ units of capacity, then by Proposition 2 the prices in the pricing

subgame are equal in periods 1 and 2 and the pricing subgame has a unique equilib-
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rium and it is a uniform pricing equilibrium. Moreover, for all firm capacities in a

neighborhood of K∗, under Assumption 3, Proposition 2 implies the pricing subgame

will have a uniform pricing equilibrium, and so the stage one profit function for firm

i can be written as

Πu(Ki;K−i) =

(
p1+2

(∑
j

Kj

)
− c

)
Ki, (13)

where K−i is the capacity of the other firms and p1+2(K) is the inverse total demand,

or more precisely, p1+2(K) is implicitly defined by

D1(p1+2) +D2(p1+2) = K. (14)

Firm i’s capacity, Ki, maximizes firm i’s profits only if Ki = K∗ is the solution to

∂Πu(Ki;K∗)

∂Ki
= p1+2((n− 1)K∗ +Ki)− c+ p′1+2((n− 1)K∗ +Ki)Ki = 0, (15)

which is concave, has unique solution, Ki(K∗), which is decreasing in K∗, so equa-

tion (15) defines a unique symmetric solution K∗. (Note that formally the second

argument of Πu should actually be a vector with each element equal to K∗.) That

is, if a subgame perfect equilibrium exists in which capacity is symmetric, it must

be that all firms are choosing K∗, the unique solution to (15) satisfying Ki = K∗.

Hence there exists at most one symmetric equilibrium of the capacity setting game,

and it is easy to see that K∗ must be exactly equal the Cournot quantity associated

with n firms, cost c, and demand D1(p) +D2(p).

Next we show that Ki = K∗ is always a best response when the rival firms all

choose K∗. Clearly it is a local best response since K∗ is a solution to (15) That is
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locally, the first and second order conditions hold.

Consider all Ki < K∗. For sufficiently small Ki, a uniform price equilibrium may

not exist and n− 1 assymmetric price equilibria may exist. However, firm i’s profits

are uniquely defined. There are n − 1 such equilibria because anyone of the n − 1

firms with capacity K∗ could set the low price in period 1. Let K̂i be the value of

Ki below which only asymmetric price equilibria exist. Clearly profits decline from

Ki = K∗ to Ki = K̂i because Πu(Ki;K∗) is increasing Ki < K∗. Now consider firm

i’s profits in an asymmetric price equilibria:

Πa(Ki;K−i) =

(
p2

(∑
j

Kj −D1(p)

)
− c

)
Ki, (16)

where p maximizes

D1(p)(p− c) +
(
p2
(
Ki + (n− 1)K∗ −D1(p)

)
− c
)

(K∗ −D1(p)) (17)

Clearly the profits are continuous in Ki and profits decline as Ki falls. So K∗ earn

higher profits than any Ki < K∗.

Now consider and Ki > K∗. Again, the equilibrum of the pricing subgame may

be an asymmetric price equilibrium, but in this case only one asymmetric price

equilibrium exists so firm i’s profit is again uniquely defined. This is because the

firms that didn’t deviate to a higher capacity strictly prefer to set the uniform price

rather than deviating to a lower first period price, so there exist no asymmetric price

equilibria in which these firms charge a low price in period 1. Only the firm that

increased its capacity might be willing to set a lower price, so by Proposition 2 the

asymmetric price equilibrium is unique. To see this, recall that equation (9) in the

proof of Proposition 2 implies that under Assumption 3 no firm will deviate in price if
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it’s capacity is less than 1/nth of the industry capacity, so only the firm that deviates

to a higher capacity can possibly exceed that threshold.

Consider a profitable deviation Ki > K∗ and the associated unique assymmetric

price equilibrium of the subgame. The deviator’s profit is

max
p1

D1(p1)p1 + p2((n− 1)K∗ +Ki −D(p1)).

But given this profit function, it follows that firm i can increase its profit by lowering

Ki unless Ki < K∗.

To see this, first note that the uniform Cournot price must be below the monopoly

price. The monopoly price in each period satisfies (pmt − c)D′i(p
m
t ) + D1(p

m
t ) = 0,

or (pmt − c)/pmt = 1/ηt(p
m
t ), and the uniform Cournot price maximizes each firm’s

profit, or

max
pu

(pu − c)(D1(p
u) +D2(p

u)− (n− 1)K∗)

so

(pu − c)(D′1(pu) +D′2(p
u)) +D1(p

u) +D2(p
u) = (n− 1)K∗

or

(pu − c)D′1(pu) +D1(p
u) + (pu − c)D′2(pu)) +D2(p

u) = (n− 1)K∗,

or

D1(p
u)

(
pu − c
pu

η1(p
u) + 1

)
+D2(p

u)

(
pu − c
pu

η2(p
u) + 1

)
= (n− 1)K∗,

which using Assumption 2 (i.e., η1(p) > nη2(p)) implies that

D1(p
u)

((
pu − c
pu

)
η1(p

u) + 1

)
+D2(p

u)

((
pu − c
pu

)
η1(p

u)
1

n
+ 1

)
> (n− 1)K∗,
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or

(D1(p
u) +D2(p

u))

((
pu − c
pu

)
η1(p

u)

(
n+ 1

n

)
+ 1

)
> (n− 1)K∗.

But this can only be true if

(
pu − c
pu

)
η1(p

u)

(
n+ 1

n

)
+ 1 > 0

or
pu − c
pu

< −
(

n

n+ 1

)
1

η1(pu)

But this implies that
pu − c
pu

<
1

η1(pu)

so it follows that pu < pm1 , the uniform price must be below the monopoly price in

period 1.

It follows that firm i can increase its profit by lowing Ki in the capacity stage

and selling the same quantity in period 2.

First, imagine that after cutting Ki the pricing subgame still has an asymmetric

price equilibrium. Then firm 1 is still the low priced firm and the only seller in

period 1. Firm i’s profits in period 2 are unchanged but its profits in period 1 must

be higher because pi1 < pu < pm1 . Firm i is acting like a monopoly in period 1, so it

wants to lower output and raise price. Firm i wants to lower its sales in period 1 as

much as possible.

Second, imagine that after cutting Ki the pricing subgame only has a uniform

price equilbrium. That is, imagine Ki is a capacity at which the asymmetric price

equilibrium and the uniform price equilibrium both exist and have the same prices,

so that if firm i lowers its capacity in the capacity stage, the pricing subgame has

only a uniform price equilibrium. In that case lowering Ki is profitable because the
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profits are given by Πu in equation (13) which is decreasing is Ki for Ki > K∗.

So K∗ is a best response to K∗ and a symmetric capacity equilibrium exists with

uniform prices.

Proof of Proposition 6:

Consider a symmetric equilibrium in which the first period price, p∗1, the capacity,

K, and the first period inventory control, k, are the same for every firm, and in

which the inventory control, k, binds (is equal to first period sales). In a symmetric

equilibrium each firm’s choice of price and inventary control maximizes its profit in

period 1 given the symmetric capacities, K. We will show that this implies prices

must increase from period 1 to period 2.

First, if rationing is efficient, then a uniform price is not an equilibrium. This

was established in Proposition 5. In particular, we showed that if rivals are setting

uniform prices (given K), then any firm can increase its profit by setting a lower

price in period 1 and choosing an inventory control such that it’s rivals still sell k

units in period 1. That is, under the efficient rationing rule, a firm will do better

choosn the Cournot best response to its rivals’ inventory controls then setting the

same price as its rivals. Formally, let q̃(pi1;p,k) be the maximum quantity firm i can

sell at price pi1 < p such that the rivals will still sell k units. That is, q̃ is defined

by RD(p; (p, . . . , p, pi1, p, . . . , p), (k, . . . , k, q̃(p
i
1;p,k), k, . . . , k)) = k. Proposition 5

shows that

Π(p, k;p,k,K) < Π̃(pi1;p,k) = Π(pi1, q̃(p
i
1;p,k);p,k)

for some pi1 < p, where Π(p, k;p,k,K) is profit as a function of the firm’s price and

inventory control, the rival firms’ price and inventory control, and the capacities;

and where Π̃(pi1;p,k) is the same profit function except that the firm is constrained
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to choose its inventory control equal to q̃(pi1;p,k);p,k), or

Π̃(pi1;p,k) = pi1q̃(p
i
1;p,k) + p2(nK − (n− 1)k − q̃(pi1;p,k))(K − q̃(pi1;p,k))

That is, firms make more money if they to deviate to a lower price in period 1. We

can also right this in terms of the derivative of the profit function, or

dΠ̃(pi1;p,k)

dpi1

∣∣∣∣∣
pi1=p

= q̃(·) + pq̃′(·)− p′2(·)q̃′(·)(K − q̃(·))− pq̃′(·)

= q̃(·)− p′2(·)q̃′(·)(K − q̃(·)) < 0, (18)

where q̃ is evaluated at (p;p,k). But at pi1 = p we have q̃(·) = k, so this becomes

p′2(·) <
k

q̃′(·)(K − k)
.

But it is now easy to see that the same must be true under any rationing rule. For

a small deviation near p, a price decrease increases profits because the only change

is to q̃′(p;p,k). For the efficient rationing rule q̃′(·) = D′1(·). However, for any other

rationing rule q̃′(·) < D′1(·), so if a deviation from the uniform price is profitable

under the efficient rationing rule it must be profitable under any rationing rule.
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