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Abstract

Weitzman’s [12] search model requires that, conditional on stopping, the

agent only takes boxes which have already been inspected. We relax this

assumption and allow the agent to take any uninspected box without in-

specting its contents when stopping. Thus, each uninspected box is now

a potential outside option. This introduces a new trade-off: every time

the agent inspects a box, he loses the value of the option to take it with-

out inspection. Nevertheless, we identify conditions under which boxes are

inspected following the same order as in Weitzman’s rule; however, the stop-

ping rule is different, and we characterize it. Moreover, we provide additional

results that partially characterize the optimal policy when these conditions

fail.
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1 Introduction

Weitzman’s [12] model has been used to study situations that fit the following

framework: an agent possesses N boxes, each of which contains an unknown prize,

he can search for prizes sequentially at a cost, and search is with recall (see Ol-

szewski [8], and the references therein). Weitzman characterizes the optimal search

rule, which is defined by an order in which boxes are inspected, and a stopping

rule: boxes are assigned reservation values, they are inspected in descending order

of their reservation values, and search stops when the maximum sampled prize

is greater than the maximum reservation value amongst uninspected boxes. An

assumption in Weitzman [12] is that the agent cannot take a box without first in-

specting its contents. This assumption is responsible for the simplicity of the rule,

and it restricts the applications of the model. Our paper addresses Weitzman’s

search problem without this assumption. Within this framework, we find sufficient

conditions under which the optimal order coincides with Weitzman’s. However,

the optimal stopping rule is different and we characterize it (see Section 1.1, and

Theorems 1, 2 and 3 in Section 4).

Before discussing our results in detail, consider the following application where

Weitzman’s assumption is counterintuitive (see Section 6 for more applications).

Say the agent is a student who has to make a choice between schools A and B,

to which he has been admitted, or not going to school. He derives 0 utility from

the latter option. The student has the option of attending the visit day at each

institution and finding out how suitable a match the school is. This requires effort

and time, which are costly to the agent. We interpret each school as a box, how

good a match the school is as the prize in the box, attending the visit day as

inspecting a box, and the effort and time invested as the box’s inspection cost.

Weitzman’s assumption implies the agent can only choose from programs whose

visit day he has attended.

We now use the example to show how the optimal policy changes without Weitz-

man’s assumption. Assume that each school’s distribution over prizes is given by

the following table, based on an example by Postl [10]:
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A Prize 1 2 5
Probability 0.25 0.50 0.25

Inspection cost
0.25

B Prize 0 3
Probability 0.50 0.50

Inspection cost
0.25

Table 1: Prize distribution for each school

Under Weitzman’s assumption, the following is the optimal policy: school A is

visited first; if the prize is xA = 5 search stops, while if the prize is xA ∈ {1, 2},
the agent visits school B and chooses the school with the highest realized prize

(see Appendix B.1 for a proof). Intuitively, this is because (i) going to school

dominates not going, (ii) the agent can only go to a school if he attends its visit

day first, and (iii) attending visit days is costly. Hence, the student visits at least

one school, and, by visiting school A first, if xA = 5, he saves school B’s inspection

cost.

However, a student always has the option to accept admission to a school without

attending its visit day, and this may be optimal. In this example, taking into

account this option changes the optimal policy, because the value of visiting school

B first improves now that the student, after finding out xB = 0, can save on the

inspection costs of school A (since xA > 0).1 Indeed, in the optimal policy, school

B is visited first; if the prize is xB = 0 search stops, and school A is selected

without inspection, while if the prize is xB = 3, the agent visits school A and

chooses the school with the highest realized prize. The optimal policy differs from

Weitzman’s rule both in that school B is visited first and in the stopping rule:

when xA = 5, search stops in the first round under Weitzman’s rule, while it may

continue (if xB = 3) when his assumption does not hold.

1.1 Discussion of results

In our model, each box is characterized by two cutoff values, defined formally in

Section 2.2 (equations (1)-(2)), and represented in Figure 1 below. The first, the

reservation value (denoted by xR), is the value of the maximum previously sampled

1The example is stark for expositional purposes. For an example in which the same effect
obtains, and school A is not ex-ante better than school B see Appendix B.2.

3



prize that would make the agent indifferent between inspecting the box and taking

the sampled prize. It reflects the trade-off between exploration and exploitation:

by inspecting the box, the agent may obtain a higher reward (exploration), but

this comes at a cost since inspection is not free (exploitation). It is optimal to

inspect the box if the maximum sampled prize is below the reservation value. The

second cutoff, which we call the box’s backup value (denoted by xB), is the value

of the maximum previously sampled prize that would make the agent indifferent

between inspecting the box and taking it without inspection. It reflects the trade-

off between insurance and exploration: by taking the box without inspection, the

agent receives a certain expected payoff without paying the inspection costs (insur-

ance), but by inspecting the box, he learns its contents (exploration). The agent

takes the box without inspecting it first if the maximum sampled prize is below

the box’s backup value.

Figure 1 illustrates the search/stopping regions as a function of the maximum

sampled prize, z, when there is only one box left to inspect with mean µ:

xB µ xR

Stop search and take µ

Inspect box

Stop search and take z

z

Figure 1: Optimal policy for one box

In general, the order of xB, xR is not determined, though it must be the case

that µ ∈ [min{xB, xR},max{xR, xB}]. Assumption 1 in Section 2.2 implies that

xB < xR. This assumption rules out uninteresting cases (see Appendix A.5 for

details).

Two properties of the optimal policy in the one-box case carry over to the case

with N > 1 boxes left to be inspected. First, when the maximum sampled prize is

higher than the highest backup value amongst uninspected boxes, then the optimal

order and stopping policy coincide with Weitzman’s from that moment on (this

corresponds when N = 1 to xB ≤ z in Figure 1); see Proposition 1. Second, if the

agent finds it optimal to stop, and take a box without inspection, then this box is

the box with the highest backup and reservation value amongst uninspected boxes
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(this holds trivially when there is one box left to be inspected); this is recorded

in Proposition 2. It follows from this property that the agent would like to leave

the boxes with high backup values to be taken without inspection, while Weitz-

man shows that boxes should be inspected in decreasing order of their reservation

values. Since boxes with high backup values may be the boxes with high reserva-

tion values, this introduces a trade-off when deciding which box to inspect next;

Proposition 2 shows that search can only end with taking a box without inspection

when this trade-off is maximal: the best box to inspect next (highest reservation

value) is the best to take without inspection (highest backup value).

However, one property of the one-box case no longer holds when N > 1 boxes

remain. While in the one-box case a box’s cutoff values and the maximum sampled

prize determine the optimal policy, this need not be the case when there are N > 1

boxes left to be inspected. As illustrated in Example B.2, two sets of boxes can

share the same cutoffs, and yet have different optimal policies.2

The reason why more than the cutoff values matter to determine the optimal

policy is that they don’t necessarily determine the full “value” of a box. To see

this, consider the example in Section 1. If only school A is available, it is optimal

to accept school A without inspection. Now add school B, and note that it is

worse than school A both to inspect and to take without inspection (Appendix

B.1 shows school A has a higher reservation and backup value). We would then

expect that the optimal policy remains the same when adding school B. However,

this is not the case, because what dominates taking school A without inspection

is inspecting school B and then choosing, given xB, whatever is best between

inspecting or taking school A without inspection. Thus, the comparison of the

boxes’ cutoffs alone is not enough to determine the optimal policy.

Our main contribution is to identify conditions under which the optimal order

policy coincides with Weitzman’s; the optimal stopping rule, however, is different

and we characterize it as well (Section 4, Theorems 1-3). Identifying conditions

under which Weitzman’s order is optimal is useful because we retain the simplicity

2Formally, this is because the search problem can be cast as a multi-armed restless bandit, i.e.,
a multi-armed bandit where, conditional on pulling one arm, the states of all arms may change.
This class is shown to be P-SPACE hard in [9], and is usually not indexable. Our paper may be
seen as a contribution to the restless bandit literature by providing instances of a restless bandit
problem where the optimal policy can be described as an index rule.
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of the reservation value rule, which is valuable for applications. Moreover, the

conditions we identify have been used in the search literature to enable charac-

terizing optimal policies in environments where, without these assumptions, said

characterization has proved elusive (see the references below). Our results, then,

show that the usefulness of these conditions extends to our environment as well.

Theorem 1 in Section 4 states that if given any two boxes i, j, box i has a

higher reservation value than box j if and only if box i has a lower backup value

than box j, then the optimal order policy coincides with Weitzman’s [12], and

his stopping rule applies to all but the last box. As explained, Weitzman’s order

requires inspecting first boxes with high reservation values, while boxes with high

backup values are the best to take without inspection. Therefore, if the box with

the highest reservation value is the box with the lowest backup value, then, when

inspecting this box, the agent never foregoes the option of taking without inspec-

tion his best backup. Theorem 1 holds if, for example, given any two boxes the

prize distribution of one box is obtained by a mean preserving spread of the prize

distribution of the other, and all boxes share the same inspection cost. On the

one hand, boxes with higher ‘‘variance’’ are better for inspection since the agent

can get better draws; on the other, these are the boxes that are not good backups:

they can also contain worse draws. The mean preserving spread assumption is

used in Vishwanath [11] to obtain the reservation value rule in her parallel search

model, while Chade and Smith [3] apply it in their simultaneous search model.

The conditions for Theorems 2 and 3 imply that, given any two boxes i, j, box i

has a higher reservation value than box j if and only if box i has a higher backup

value than box j. The conditions are: (i) all boxes have the same binary prizes,

same inspection cost, and differ in the probability of obtaining the highest prize

(Theorem 2), or (ii) there are only two boxes which share the same inspection cost,

and prizes normalized by their mean are distributed according to the same sym-

metric distribution (Theorem 3). The conditions in (i) allow us to extend Chade

and Smith’s [3] simultaneous search model with binary prizes to our setting. In-

deed, while their model is well suited to analyze the decision of which colleges to

apply to, our model can be used to determine how to sequentially acquire infor-

mation on the schools to which the agent has been admitted.

Unlike Theorem 1, where the optimal stopping rule coincides with Weitzman’s
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for all but the last box, under the conditions of Theorems 2 and 3 the agent may

choose to stop and take a box without inspection, even before reaching the last

box.

1.2 Related Literature

Postl [10] postulates this search problem explicitly within the context of a principal-

agent model. He focuses on the two-box-equal-inspection-costs version of our

search problem, and discusses an analogue of Theorem 1 in this simplified setting.

Theorem 1 in our paper generalizes this result, showing that it is not necessary to

assume two boxes nor that the boxes have equal costs.

Klabjan, Olszewski and Wolinsky [5] study a search for attributes model in

which, contrary to our setting, the agent’s utility function is given by the sum of

the prizes (attributes). Like in our setting, the agent does not have to inspect all

attributes in order to keep the object: he can accept the object, taking the rest of

the attributes without inspection. Under sequential search, and with two boxes,

the authors characterize the optimal solution when attribute distributions are sym-

metric around 0. The rule coincides with inspecting attributes in decreasing order

of their reservation value (see Theorem 3 for a similar result in our setup).

The double-sided stopping rule in Figure 1 has appeared in previous work in the

mechanism design literature (Chade and Kovrijnykh [2], Krähmer and Strausz [6]),

and in Klabjan, Olszewski and Wolinsky [5]. Moreover, the backup value plays

a crucial role in the optimal mechanism of Ben-Porath, Dekel and Lipman [1].

However, none of these papers provide a solution for the search problem analyzed

here.

The rest of the paper is organized as follows. Section 2 describes the model,

provides a formal definition of the cutoffs and intuition of their role in the search

problem. Section 3 provides a series of properties the optimal sampling policy must

satisfy regardless of the environment. Section 4 focuses on the optimal order and

stopping policies, and contains our main results. The statements of Theorems 1-3

are presented informally to streamline notation; the Appendix contains the formal

statements. Section 5 describes the optimal policy when the agent possesses only
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two boxes. Section 6 concludes. Proofs are relegated to the Appendix.

2 Model

An agent possesses a set N = {1, ..., N} of boxes, each containing a prize, xi,

distributed according to distribution function Fi, with mean µi. Box i has inspec-

tion cost ki. Fi and ki are known, however xi is not. Prizes are independently

distributed, and, for all i ∈ N ,
∫
|xi|dFi(xi) < +∞. The agent has an initial

outside option, x0, normalized to 0. Given a vector z, we denote by z, its highest

coordinate. We assume the agent is risk neutral, and given a vector of realized

prizes z = (z1, ..., zn), his utility function is given by u(z) = z.

2.1 Sampling Policy

The agent inspects boxes sequentially, and search is with recall. Given a set of

uninspected boxes U , and a vector of realized sampled prizes z, the agent decides

whether to stop, or continue search; if he decides to continue search, he decides

which box to inspect next. Let ϕ(U , z) ∈ {0, 1} denote the decision to stop search

(ϕ = 0), or to continue search (ϕ = 1) at decision node (U , z); if ϕ(U , z) = 1, let

σ(U , z) ∈ U denote the box which he inspects next. If ϕ = 0, the agent chooses

between any prize in z, and any uninspected box in U . If ϕ = 1, he inspects box σ,

pays kσ, and observes its prize xσ. Having observed xσ, the agent is now at decision

node (U\{σ}, z ∪ {xσ}), and selects ϕ(U\{σ}, z ∪ {xσ}), and σ(U\{σ}, z ∪ {xσ}).
Given a decision node (U , z), the strategy ϕ, σ, together with the distributions

{Fi}i∈U determine a probability distribution over continuation paths in the natu-

ral way, and the agent’s expected payoff at that decision node, which we denote

V (U , z). We use stars to denote the optimal strategies, and the payoff V when it

results from using the optimal policy in (U , z).
At decision node (U , z), the agent’s optimal strategy solves the following prob-
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lem:

V ∗(U , z) = max{z,max
i∈U

µi,max
i∈U
−ki +

∫
V ∗(U\{i}, z ∪ {xi})dFi(xi)}

2.2 Cutoffs

Suppose the agent has only one box left to inspect, i, with expected value µi.

Recall z is the maximum sampled prize, i.e., his outside option. Suppose z > µi;

hence, conditional on stopping, the agent takes z. The agent inspects box i if and

only if the following holds:

z ≤ −ki +

∫ z

−∞
zdFi(xi) +

∫ +∞

z

xidFi(xi)⇔ ki ≤
∫ +∞

z

(xi − z)dFi(xi)

Define the box’s reservation value to be the number xRi such that:

ki =

∫ +∞

xRi

(xi − xRi )dFi(xi) (1)

i.e., xRi is the value of the outside option that leaves the agent indifferent between

stopping and taking prize xRi , and inspecting box i. The agent inspects the last

box whenever z ≤ xRi . Using equation (1), we can write the payoff from inspecting

box i when z ≤ xRi as follows:

−ki +

∫ z

−∞
zdFi(xi) +

∫ +∞

z

xidFi(xi) =

∫ z

−∞
zdFi(xi) +

∫ xRi

z

xidFi(xi) +

∫ +∞

xRi

xRi dFi(xi)

This shows that the reservation value represents the highest prize the agent expects

to get from inspecting box i, after internalizing inspection costs, since it is as if

the agent’s payoff from inspecting box i is bounded above by xRi .

Consider now the case z ≤ µi. If the agent stops, he takes the box without
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inspection. Therefore, the agent inspects box i if and only if the following holds:3

µi ≤ −ki +

∫ z

−∞
zdFi(xi) +

∫ +∞

z

xidFi(xi)⇔ ki ≤
∫ z

−∞
(z − xi)dFi(xi)

The above expression shows that, conditional on inspecting box i, the agent loses

the option of getting a payoff equal to µi. Indeed, the possible prizes are either

z, or the new sampled prize in the expression on the left hand side. Define the

backup value to be the value xBi such that:

ki =

∫ xBi

−∞
(xBi − xi)dFi(xi) (2)

i.e., xBi is the value of the outside option that leaves the agent indifferent between

inspecting box i and taking it without inspection. The agent inspects box i if

xBi ≤ z; otherwise, he takes it without inspection. Equation (2) can be written as:

µi = −ki +

∫ xBi

−∞
xBi dFi(xi) +

∫ +∞

xBi

xidFi(xi) (3)

Using equation (1), equation (3) can be written as:

µi =

∫ xBi

−∞
xBi dFi(xi) +

∫ xRi

xBi

xidFi(xi) +

∫ +∞

xRi

xRi dFi(xi) (4)

Equation (4) illustrates that xBi is the lowest prize the agent expects to get from

box i when he takes it without inspection, after internalizing that he did not pay

box i’s inspection cost. We refer to xBi as box i’s backup value because, when

agent i takes box i without inspection, it is as if his payoff is bounded below by

xBi .

Throughout, we make the following assumption to ensure that xBi ≤ µi ≤ xRi

always holds:

Assumption 1. (∀i ∈ N ) : ki ≤
∫ µi
−∞(µi − xi)dFi(xi)

If the set of boxes N contains at least one box that violates Assumption 1, then

3We use that µi =
∫ +∞
−∞ xidFi(xi) to go from the LHS to the RHS.
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said boxes are never inspected (see Appendix A.5 for a proof, and for a discussion

of why Assumption 1 rules out such uninteresting cases).

When there is one box left, the optimal policy is determined by comparing the

maximum sampled prize, z, with the cutoffs, xB, xR. This is summarized in Figure

1 in Section 1.1, and is recorded in Proposition 0 below.

Proposition 0. Assume that N = 1, and let z be the agent’s outside option. The

optimal policy is as follows:

1. If z < xB, the agent takes the box without inspection.

2. If xB ≤ z ≤ xR, the agent inspects the box, and keeps the maximum prize

between z and the sampled prize x.

3. If xR < z, the agent does not inspect the box, and keeps his outside option.

Results similar to Proposition 0 have appeared in the one-box-settings of Chade

and Kovrijnykh [2], and Krähmer and Strausz [6], in the two-box setting of Postl

[10], as well as in the attributes model of Klabjan, Olszewski and Wolinsky [5].

The next subsection provides a different interpretation of the cutoffs. It can be

skipped without loss of continuity, but is useful for intuition.

2.3 A different interpretation of xR and xB

We conclude Section 2 by providing a different interpretation for the cutoffs. Con-

sider again the case N = 1. When z > µ, if the agent stops, he chooses to take

z. However, if he inspects the box, he may discover that it contains a prize bet-

ter than z, increasing his ex-post payoff by x − z. Thus, by inspecting the box,

the agent avoids rejecting a box that contains a better prize than the outside

option (type I error). Ex-ante, the value of inspecting the box is then given by:

VI(z) =
∫ +∞
z

(x − z)dF (x). When z ≤ µ, if the agent stops, he chooses to take

the uninspected box. However, if he inspects the box, he may discover that the

box contains something worse than z, which yields an ex-post loss of z − x. By

inspecting the box, the agent avoids taking boxes that are worse than what he has

(type II error). Ex-ante, this is worth VII(z) =
∫ z
−∞(z − x)dF (x) to the agent.
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Thus, given the outside option, z, the value of the new information for the agent

is given by:

V (z) =

{
VII(z) if z ≤ µ

VI(z) if z > µ

Hence, the decision whether to acquire information or not is determined by whether

V (z) ≥ (≤)k, as illustrated by the following figure:

z

V (·)

k

VII(·)

VI(·)

xB xR

Figure 2: The value of information

We have that VII(µ) = VI(µ) since
∫ µ
−∞(µ− x)dF (x) =

∫ +∞
µ

(x− µ)dF (x).

VI(z) represents the value of information in Weitzman’s problem. The higher

the outside option, the lower the value of finding out that the uninspected box

contains a better prize. VII(z) represents the value of information when the agent

is considering taking the box without inspecting it first: it decreases with the

difference between the outside option and µ.

The existence of two cutoffs introduces two different priorities for inspecting

boxes. The first is given by the ordering of the reservation values: when the

agent is considering his choice between stopping and taking the highest sampled

prize, or inspecting one more box, it should be the box with the highest xR. The

second is given by the ordering of the backup values: when deciding which box to

take without inspection, in case he finishes search, the agent prefers boxes with

higher backup values (see Proposition 2). Thus, he prefers inspecting boxes with
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higher backup values last. Therefore, whenever he decides to search, the agent

must decide which box he inspects next, and which he leaves to take without

inspection, knowing that the first, once inspected, can never be taken without

inspection.

3 Preliminary results

Section 3 presents three building blocks in determining the optimal policy. Propo-

sitions 1 and 2 below formalize the claim that the backup value of box i represents

the value of the option of taking box i without inspection. Proposition 3 illus-

trates the reasons for deviating from Weitzman’s ordering. Propositions 1-3 also

help simplify the taxonomy of the problem: when the conditions in Section 4 don’t

hold, and hence, the optimal policy must be computed by backward induction, the

results in this section help narrow down the cases to be considered. This is illus-

trated in Section 5, where we characterize the optimal policy when N = 2. To

state the results, recall that U is the set of uninspected boxes, and that µi = EFi
x,

for each i ∈ U .

If, for all i ∈ U , the maximum sampled prize, z, is greater than µi, then, from

then onwards, the optimal sampling policy is given by applying Weitzman’s rule

to the boxes in U . Proposition 1 shows that, while sufficient, this is not necessary

for Weitzman’s rule to be optimal. Indeed, it states that whenever the maxi-

mum sampled prize exceeds the highest backup value amongst uninspected boxes,

the option of taking a box without inspection has no value to the agent. Hence,

Weitzman’s rule is optimal from that moment on.

Proposition 1. Let (U , z) denote the set of boxes, and the vector of realized prizes,

respectively. If for all i ∈ U , xBi ≤ z, then Weitzman’s optimal sampling policy is

optimal in all continuation histories.

Proposition 2 shows that if the agent finds it optimal to stop, and take a box

without inspection at decision node (U , z), then the chosen box, which is the box

with the highest µi, satisfies three properties: (i) it has the highest backup value,

(ii) it has the highest reservation value, and (iii) its mean is higher than the second

13



highest reservation value. The first property shows that the agent takes the box

with the highest backup value amongst remaining boxes: if there is a box with a

higher mean but lower backup value, then it cannot be optimal to stop. The second

property illustrates that when the agent stops, and takes a box without inspection,

the tension between searching and stopping is “maximal”: the candidate box to

take without inspection is also the best box with which to continue search. The

third property follows from (1): if (iii) does not hold, inspecting the box with

the second highest reservation value, and choosing whatever is best between the

sampled prize, and taking the chosen box without inspection, dominates taking

the chosen box without inspection right away.

Proposition 2. Let (U , z) denote the set of boxes, and the vector of realized prizes.

Assume z < maxi∈U x
B
i . If ϕ∗(U , z) = 0, i.e., if search stops, then:

1. arg maxi∈U x
B
i = arg maxi∈U x

R
i ⊆ arg maxi∈U µi,

2. The sets arg maxi∈U x
B
i and arg maxi∈U x

R
i are singletons,

3. maxi∈U µi > maxj∈U\{argmaxi∈U x
R
i } x

R
j

Our next result, Proposition 3, shows that there are two reasons why, given

a set of boxes U and a maximum sampled prize z, the agent may deviate from

Weitzman’s order when selecting which box to inspect next. Let l be the box

with the maximum reservation value, and let j 6= l be the box which is inspected

now according to the optimal policy. Then, he expects that after inspecting j, for

some xj such that z and xj are below xRl , he might either (i) take box l without

inspection in U\{j}, or (ii) continue search in U\{j}, but deviate yet again from

Weitzman’s order.

To understand (i), consider the school choice example in Section 1. There, the

agent inspects school B (box j) first, which is the one with the lowest reservation

value. If, after inspecting school B, the agent observes xB = 0, then he accepts

school A (box l) without inspection. That is, the agent deviates from Weitzman’s

order since he assigns positive probability to accepting school A without inspection:

had he visited school A first, he would have lost the option to do so.

To understand (ii), consider the following example. Let U = {1, 2, 3}, let Xi =

{0, 10} be the set of prizes, and pi = P (Xi = 10). Assume p1 = 0.8 > p2 =
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0.65 > p3 = 0.6, k1 = 1 > k2 = k3 = 0.85, and z = 0. It can be checked that

xR1 > xR2 > xR3 , x
B
1 > xB2 > xB3 . The optimal policy inspects box 2 first; if x2 = 10

search stops, while if x2 = 0 box 3 is inspected. If x3 = 10 the agent takes x3 = 10,

and if x3 = 0, box 1 is taken without inspection. In this example, l = 1, j = 2, and

when xj = 0, the agent continues search (inspects box 3), but deviates once more

from Weitzman’s order (xR1 > xR3 ), since in the last stage box 1 is taken without

inspection.4

Proposition 3. Let (U , z) denote the set of boxes, and the vector of realized prizes,

respectively. Assume that σ∗(U , z) = j, where xRj < maxi∈U x
R
i ≡ xRl . Then, it

cannot be the case that for all xj such that max{xj, z} ≤ xRl , then ϕ∗(U\{j}, z ∪
{xj}) = 1 and σ∗(U\{j}, z ∪ {xj}) = l.

4 Optimal Policy: Order and Stopping

This section introduces three sufficient conditions under which the optimal order

coincides with Weitzman’s. However, the optimal stopping rule is different, so we

also characterize it.

Our first result, Theorem 1, requires that, given any two boxes i, j, xRj ≤ xRi

if and only if xBi ≤ xBj . Proposition 2 implies that then, since the box with the

highest reservation value is always the box with the lowest backup value, when

there is more than one box to be inspected, stopping and taking a box without

inspection is never optimal. Hence, Weitzman’s stopping rule applies to all but

the last box. Since the box with the highest xR is the box with the lowest xB, the

agent never foregoes taking without inspection a good backup. This implies that

Weitzman’s order is optimal. Theorem 1 states the result formally, and Corollary

1 provides conditions under which the conditions in Theorem 1 are satisfied.5

4The example also shows that Theorem 2 does not extend when boxes have different inspection
costs; in particular, when boxes with higher pi have higher inspection costs. This is also true
of other search models where conditions have to be imposed to derive the optimal search policy
(see Chade and Smith [3], Vishwanath [11] and Klabjan, Olszewski, and Wolinsky [5])

5An analogue of Theorem 1 is discussed in Postl [10] for a two-boxes-equal-inspection-costs
setup. We show that the restriction to two boxes or equal inspection costs is not necessary, and
provide conditions on the primitives of the model under which Theorem 1 holds.
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Theorem 1. Fix a set N = {1, ..., N} of boxes. Assume that boxes can be la-

belled so that [xBi , x
R
i ] forms a monotone sequence in the set inclusion order. The

following is the optimal policy:

Order If a box is to be inspected next, it should be the box with the highest

reservation value.

Stopping

1. If there is more than one box remaining, stop only if the maximum

sampled prize is higher than the highest reservation value amongst unin-

spected boxes, and take the maximum sampled prize.

2. If only one box remains, stop if the maximum sampled prize is less than

xB or is higher than xR. In the first case, take the remaining box without

inspection; otherwise, take the maximum sampled prize.

Corollary 1 shows conditions on the primitives such that the ordering of the

cutoffs is the one in Theorem 1.

Corollary 1. Assume {Fi}i∈N is such that if i < i′, then Fi′ is a mean-preserving

spread of Fi. Moreover, assume ∀i ∈ N ki = k. Then, the optimal policy is given

by Theorem 1.

Corollary 1 has an easy interpretation. On the one hand, boxes with higher

dispersion are better for inspection since the agent can get better draws; on the

other, these boxes are not good backups since they can also contain worse draws.

As discussed in Section 1.1, the same assumptions as in Corollary 1 are used in

Vishwanath’s [11] to obtain the reservation value rule in her parallel search model,

and in the working paper version of Chade and Smith [3] to extend their binary-

prize simultaneous search model to one with a continuum of possible prizes.

Remark 1. It is worth noting that something weaker than mean-preserving spreads

is enough for Theorem 1 to hold when all boxes share the same inspection cost.

Indeed, it suffices that if i < i′, then, for all convex functions with non-negative

range φ : R 7→ R+,
∫
φ(x)dFi(x) ≤

∫
φ(x)dFi′(x).6

6Mean preserving spreads, or the convex-order as it is defined in Ganuza and Penalva [4], and
Li and Shi [7], requires the condition to hold for all convex functions.
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Theorem 1 is not enough to characterize the optimal sampling policy in every

environment: we need to consider the case in which both xRj < xRi and xBj < xBi .

When xBj < xBi , inspecting box i first implies the agent has to forego his best

backup box. There are two cases of interest in which, despite this trade-off being

present, the optimal policy still involves inspecting boxes according to Weitzman’s

order. The first case considers boxes with only two prizes, and equal inspection

costs (Theorem 2). The second case is when the agent possesses 2 boxes, both boxes

share the same inspection cost, and prizes normalized by their mean are distributed

according to a symmetric distribution (Theorem 3). It is interesting to note that

similar conditions have been used before in search models: Chade and Smith [3]

use binary prizes in their simultaneous search model, while Klabjan, Olszewski

and Wolinsky [5] consider two boxes with symmetric distributions. Under these

conditions, given any two boxes i, j it holds that xRj ≤ xRi if and only if xBj ≤ xBi .

The theorems show that the trade-off between inspecting the box with the highest

reservation value and taking it without inspection is resolved either by continuing

search with this box, or stopping search and taking this box without inspection;

the agent never finds it optimal to search boxes in a different order.

Theorem 2. Fix a set N = {1, ..., N} of boxes. Assume that boxes have binary

prizes, i.e. xi ∈ {y, x}, x > max{x0, y}, pi = P (xi = x), and all boxes have the

same inspection cost. Label boxes so that pN < ... < p1, and define recursively

from N to 1:

vN = max{x0, xBN}

vn = max{xBn , pn+1 max{xRn+1, x0}+ (1− pn+1)vn+1}

The following is the optimal policy:

Order If a box is to be inspected next, it should be the box with the highest reser-

vation value.

Stopping Assume boxes {1, ...n− 1} have been inspected. Search stops when: (i)

the maximum sampled prize is above xRn , or (ii) the maximum sampled prize

is y, and xBn = vn. If (i), take the maximum sampled prize; if (ii) take box

n without inspection.
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Before explaining the different elements of the policy in Theorem 2, it is useful

to understand why Weitzman’s order still holds under these conditions. Since all

boxes contain either x or y, the agent wants to maximize the chance of obtaining a

prize of x subject to inspecting the least number of boxes. Moreover, search stops

as soon as the agent obtains x. Conditional on inspecting at least one box, by

inspecting the box with the highest probability of obtaining x first, the agent sat-

isfies these two objectives since search ends with a higher probability by starting

with this box. However, this box is also the one with the highest backup value,

so the agent may consider changing the inspection order to save this box to take

later without inspection. However, changing the inspection order is not optimal:

any other box he inspects has a higher chance of yielding a prize of y than the

box with the highest backup value, which implies a higher probability of either

stopping and taking the highest backup value box without inspection in the next

round, or of continuing search. Therefore, the agent prefers to either stop right

away, taking the box with the highest backup value without inspection, or to con-

tinue search with the high backup value box; what the optimal policy is depends

on the continuation values. In particular, if the agent expects that, by continuing

search, he does not earn more than the current highest backup value, then search

stops.

Theorem 2 states that to determine the optimal stopping rule, we need to cal-

culate new cutoffs, {vn}Nn=1. Note that these cutoffs are a function of the backup

values, reservation values, and the initial outside option, and hence can be calcu-

lated together with these to determine the optimal policy. When the agent has

inspected boxes {1, ...n − 1}, he can either take box n without inspection, or in-

spect it. The first term of vn represents the value of the first policy in the event

that box n contains a prize of y.7 The second term of vn represents the value of

inspecting box n in the event that it contains a prize of y: the agent earns the

right to either inspect box n + 1, or take it without inspection. When the agent

decides whether to stop or not, he compares both terms in vn, and stops whenever

the continuation value after inspecting box n, vn, is not bigger than xBn .

That {vn}Nn=1 can be computed using only the backup values, reservation val-

7Recall that the backup value is the lowest prize the agent expects to get from a box after
internalizing he did not pay its inspections costs.
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ues, and the initial outside option, is a consequence of the simple structure of the

environment; in general, the continuation values could depend on more statistics

of the distributions, and the details of the optimal policy.

Theorem 3. Let N = {1, 2}, and assume for all i ∈ N xi is distributed according

to Fi where Fi has pdf f̂i(x) = f(xi−µi), and f is symmetric around 0. Moreover,

assume that ki = k > 0 for all i ∈ N . Then, if xR2 ≤ xR1 , the following is the

optimal policy:

Order Box 1 is inspected first.

Stopping If xB2 ≥ 0, search stops when x1 is either (i) less than xB2 , or (ii) higher

than xR2 . If (i), take box 2 without inspection; if (ii) take x1. If xB2 < 0, search

stops only if (ii). Search starts if, and only if, max{µ1, x0} is less than the

payoff of inspecting box 1 first. In particular, if µ1 ≤ xR2 , search starts.8

Theorem 3 follows because when boxes have symmetric distributions and equal

inspection costs, the (unconditional) expected value of the prizes of each box above

the reservation value coincides with the negative of the (unconditional) expected

value of the prizes of each box below the backup value. When the agent compares

the benefits and the costs of starting with box 1 (recall we are assuming xR1 > xR2 ,

and hence xB1 > xB2 ), he compares the upper tails of boxes 1 and 2 with their lower

tails: box 1 has a fatter upper tail, and hence is better for search; box 2 has a

fatter lower tail, and hence box 1 is better to take without inspection. Given the

above property, the costs and benefits exactly offset each other when x0 < xB2 , and

hence box 2 is taken without inspection after starting with box 1. When x0 > xB2 ,

the benefit outweighs the cost, since in that case x0 is a better buffer than the

lower tail of box 2, as captured by xB2 , when prizes in both boxes are too low.

Theorems 2 and 3 might suggest that whenever N = {1, 2}, F1 first-order

stochastically dominates F2, and k1 = k2, then box 1 should be inspected first, if

any box is inspected. The next example shows that this is not true:

Example 1. Suppose N = {1, 2}, and X1 = X2 = {0, 2, 10}. Suppose P (X1 =

2) = P (X2 = 2) = 0.2, and P (X1 = 10) = 0.7, P (X2 = 10) = 0.5, so that

8See Section 5 for a detailed discussion of why, in general, it is difficult to give a more precise
statement for when it is optimal to start search.
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F1 >FOSD F2. Assume that k1 = k2 = 1. It can be shown that xB1 = 14
3
>

xB2 = 2.8, and xR1 = 60
7
> xR2 = 8. Notice that after inspecting box i, search

always stops: the agent takes the inspected box when xi = 10, and takes box j

without inspection whenever xi ≤ 2. Since µ1 < xR2 , one can show that inspecting

box 2 first dominates taking box 1 without inspection; moreover, inspecting box

2 first dominates inspecting box 1 first since: 8.62 = 0.7 × 10 + 0.3 × µ2 <

0.5× 10 + 0.5× µ1 = 8.7.

Contrast this with Weitzman’s model where if Fi first-order stochastically dom-

inates F ′i , and ki = ki′ , then box i is inspected first. This is because it is more

probable to obtain a higher prize under Fi than under Fi′ , and the agent has to

inspect boxes in order to obtain prizes in Weitzman’s model. However, Fi also has

a higher backup value than Fi′ : box i has a lower probability of yielding a low prize

when taken without inspection. Therefore, a first-order stochastic dominance shift

makes box i both more attractive to search and to take without inspection. The

example shows that the trade-off is not always resolved in favor of either inspecting

first box i, or taking box i without inspection and not searching at all, as is the

case in Theorems 2 and 3. It also shows why Corollary 1 cannot be relaxed to

second-order stochastic dominance.

5 Two boxes

To further the understanding of the difficulties involved when characterizing the

optimal policy when the conditions of Section 4 do not hold, this section charac-

terizes the optimal policy when there are two boxes. Hence, for the rest of the

section, N = {1, 2}, and the outside option is given by z.

Given that Proposition 0 characterizes the optimal continuation when there is

one box left for inspection, we only need to determine which of the following

three alternatives yields the highest payoff to characterize the optimal policy for

two-boxes: (i) stop, taking max{z, µ1, µ2}, (ii) inspect box 1 first, and apply the

optimal policy in Proposition 0 to box 2, and (iii) inspect box 2 first, and apply

the optimal policy in Proposition 0 to box 1. Let Π1 denote the payoff of (ii), and
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Π2 denote the payoff of (iii).9

Proposition 4 below describes the optimal policy when N = {1, 2}:

Proposition 4. Fix a set of boxes N = {1, 2}, and let z denote the outside

option. Assume without loss of generality that xR2 < xR1 . The following is the

optimal policy:

1. If z > xB1 and z > xB2 , then the optimal policy is given by Weitzman’s rule.

2. If xB1 < xB2 , then it is optimal to inspect box 1 first. The optimal continuation

policy is given by Proposition 0.

3. If xB2 < xB1 , z < xB1 , and µ1 ≤ xR2 , it is optimal to inspect at least one box. If

Π1 > Π2, box 1 is inspected first; otherwise, box 2 is inspected first. In both

cases, the optimal continuation is as in Proposition 0.

4. Otherwise, if xB2 < xB1 , z < xB1 , and xR2 < µ1, it is optimal to inspect box

1 first if Π1 > max{Π2, µ1}, to inspect box 2 first if Π2 > max{Π1, µ1};
otherwise, box 1 is taken without inspection. If search does not stop, the

optimal continuation policy is as in Proposition 0.

Item 1 follows from Proposition 1, and item 2 follows from Theorem 1. When

xR2 < xR1 and xB2 < xB1 , Proposition 2 allows us to simplify the taxonomy by

considering two cases: µ1 ≤ xR2 and xR2 < µ1. In the first case (item 3), the agent

only has to decide which box to inspect next, i.e. the optimal policy is determined

by max{Π1,Π2}. In the second case (item 4), the agent has to choose either to

stop, taking box 1 without inspection, or which box to inspect next.

To gain intuition about what may determine which option the agent chooses

when xR2 < xR1 and xB2 < xB1 , we analyze the differences Π1 − Π2, Π2 − µ1, and

Π1−µ1. The first determines the optimal policy in item 3, and all three determine

the optimal policy in item 4.10

9Πi is the payoff from inspecting box i first, and: (i) if max{xi, z} > xRj stop, and

take max{xi, z}, (ii) if max{xi, z} ∈ [xBj , x
R
j ] inspect box j, and take max{xi, xj , z}, (iii) if

max{xi, z} < xBj stop, and take µj
10The supplementary material contains a more complete analysis of these differences. In par-

ticular, we define three cutoffs (xO, x
S
1 , x

S
2 ) that must be compared with xB1 and xR2 to determine

the optimal policy. These cutoffs are not necessarily easier to compute than the actual payoffs
of the different strategies; they only provide a formal definition of conditions on parameters of
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We start with Π1 −Π2. It is immediate, if somewhat tedious, to show that it is

given by:11

Π1 − Π2 =

∫ +∞

xR2

∫ +∞

xR2

(min{xR1 , x2, x1} − xR2 )dF2dF1 (5)

+

∫ xB1

−∞

∫ xB1

−∞
(max{x1, x2,max{xB2 , z}} − xB1 )dF2dF1

Recall that we are assuming that xR1 > xR2 , and xB1 > xB2 , so that the first term in

(5) is positive, and the second is negative. Equation (5) shows that inspecting first

box 1 has a benefit, which is given by the possibility of obtaining higher prizes,

net of inspection costs, and a cost, which is given by the possibility of obtaining

really low prizes, in which case keeping box 1 to take without inspection would act

as a buffer. A somewhat loose intuition is that the higher the backup value of box

1, or the higher the reservation value of box 2, the higher the cost of inspecting

box 1 first, and hence the optimal policy would start with box 2.12

Equation (5) alone determines the optimal policy when xR2 < xR1 , x
B
2 < xB1 , µ1 ≤

xR2 . When µ1 > xR2 , by Proposition 2, the agent may find it optimal to stop, and

take box 1 without inspection. Hence, we also need to compare Π1 to µ1, and Π2

to µ1.

Consider first the choice of whether to inspect box 2 first, or take box 1 without

inspection. It is immediate that if xR2 > µ1(> xB1 > z), then stopping cannot

be optimal: inspecting box 2 and then taking box 1 without inspection whenever

x2 < µ1 certainly dominates stopping and taking box 1 without inspection. It is

also immediate that if xR2 < xB1 , then stopping dominates inspecting box 2 first:

xR2 is the maximum prize the agent expects to get from box 2 after inspection,

while xB1 is the lowest prize the agent expects to get from box 1 when taking it

without inspection. To sharpen this intuition, note that the difference Π2 − µ1 is

the environment for which the different strategies are optimal.
11Equations (5)-(7) are derived in Appendix S.2 for completeness.
12The intuition is loose because some changes in xB1 (xR2 ) may change also xR1 (xB2 ).
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given by:

Π2 − µ1 = −k2 +

∫ +∞

xB1

∫ +∞

−∞

(
max{x2,min{xR1 ,max{x1, x2}}}
−min{xR1 ,max{x1, xB1 }}

)
dF1dF2 (6)

When x2 < xB1 , box 1 is taken without inspection, after inspecting box 2, and this

determines the integration limits in the outer integral in (6). Recall from equation

(4) that when taking box 1 without inspection, the agent expects to gain no more

than xR1 , and no less than xB1 , and this determines the second term in the integrand.

The first term is the gain from inspecting box 2 first, followed by inspecting box

1: by not taking box 1 without inspection, the agent gets the possibility of getting

the prize inside box 2, though this comes at the cost of paying k2.

Equation (6) resembles the equation that determines the reservation value for

box 2, but where now the outside option is µ1. As the previous intuition suggests,

as long as it is worth inspecting box 2 (i.e., xR2 is high compared to xB1 ), the above

expression should favor inspecting at least one box.

Finally, we need to compare Π1 and µ1. The difference Π1 − µ1 can be written

as:

Π1 − µ1 =

∫ xR2

−∞

∫ +∞

−∞
min{xR2 ,max{x1, x2,max{xB2 , z}}} −max{x1, xB1 }dF2dF1 (7)

The difference between Π1 and µ1 is that by inspecting box 1 first, the agent

retains the option of inspecting box 2 (the first term in the integrand), while

he loses the option to take box 1 without inspection (the second term in the

integrand). The equation resembles the computation of the backup value of box

1, but with an inspection cost of 0. When the agent inspects box 1 first, he gives

up the backup value of box 1; hence, if box 2 is sufficiently good for search, the

possibility of searching with box 2 may compensate for this. This, in turn, favors

inspecting at least one box over stopping, and taking box 1 without inspection.

Equations (5)-(7) and the discussion above show that, even in the case N = 2, it

is not always simple to determine the optimal policy by just looking at the boxes’

cutoff values. This, in turn, highlights the value of the conditions in Section 4,

which allow us to characterize the optimal policy by only looking at these cutoffs,
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and thus retain tractability which is useful for applications.

6 Conclusions

We consider a relaxed version of Weitzman’s search problem; namely, we allow

the agent to take any uninspected box without inspecting its contents first upon

stopping. We identify sufficient conditions under which the optimal policy in-

volves following Weitzman’s inspection order, and characterize the optimal stop-

ping rule in those cases. These conditions have been used elsewhere in the search

literature to simplify other problems, and thereby obtain otherwise unavailable

characterizations of the optimal policy. Moreover, by retaining the simplicity of

the reservation value rule, the conditions help deliver results which are useful for

applications. Section 1 already discussed one application of interest. Two other

applications of particular interest where our results could be applied to are: (i)

the choice amongst technologies with which to produce a good when the agent

can invest in pre-project planning to find out the true production cost, but has

the option to produce without making this investment (Krähmer and Strausz [6]

consider a one-technology version of this problem), and (ii) the allocation of a

good to one of several agents when the principal can find out which agent would

generate the highest payoff from obtaining the good, but can allocate it without

further investigation, as in Ben-Porath, Dekel and Lipman [1].

Finally, we also provide properties of the optimal policy that must hold across

all environments (Propositions 1-3), and illustrated in Section 5 how they can be

used to reduce the taxonomy when the sufficient conditions identified in Section 4

do not hold.
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A.1 Proofs of Propositions 1, 2, and 3

Proposition 1. Let U be a set of boxes, and let z be the vector of realized prizes.

If (∀i ∈ U) : z ≥ xBi , Weitzman’s sampling policy is optimal in all continuation

histories.

Proof. The proof is by induction on U = |U|. Let P (U) denote the following

predicate:

P(U) (∀U) : (|U| = U), (∀z) : (z ≥ maxi∈U x
B
i ), the order and stopping policy

indicated in Proposition 1 is optimal.

Step 1: P (1) = 1 This follows from Proposition 0.

Step 2: P (U) = 1⇒ P (U + 1) = 1

Let U + 1 = |U|, and let z be as in the statement of Proposition 1. Let l ∈
arg maxi∈U x

R
i . First, we show that the stopping rule is optimal. We consider two

cases:

z ≥ xRl By contradiction, suppose that it is optimal to continue search, and box j ∈ U
is inspected. Since |U\{j}| = U , and maxi∈U\{j} x

B
i ≤ xRl < max{xj, z},

then by the inductive hypothesis search stops. Thus, the payoff of continuing

search with box j ∈ U is: −kj+
∫

max{xj, z}dFj(xj) < z. The last inequality

follows from equation (1), and xRj < z for all j ∈ U .

z < xRl If max{z,maxi∈U µi} 6= µl, then, by equation (1), inspecting box l and

stopping dominates stopping and obtaining payoff max{z,maxi∈U µi}, since

max{z,maxi∈U µi} < xRl . If max{z,maxi∈U µi} = µl, since z ≥ xBl , we have

that max{z,maxi∈U\{l} µi} ≥ xBl , and hence, by equation (2), inspecting box

l and stopping dominates stopping and taking box l without inspection.

Finally, when z < xRl , we need to show that inspecting box l first is optimal. Let

j ∈ U\{l} be any other box. Note that xRj < xRl . Consider the following two

policies:

P.J Inspect box j first. There are now U boxes left to be inspected, stop, or

continue search according to the rule described in Proposition 1.
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P.L Inspect box l first. If xRl ≤ xl, stop. Otherwise, inspect box j, and stop, or

continue search according to the rule described in Proposition 1.

Let h = arg maxi∈U\{l} x
R
i . The payoff from policies P.J and P.L can be written

as:

P.J = −kj +

∫ +∞

xRl

xjdFj +

∫ xRl

xRh

(−kl +

∫
max{xl, xj, z}dFl)dFj

+

∫ xRh

−∞
(−kl +

∫ +∞

xRh

xldFl +

∫ xRh

−∞
V ∗(U\{l, j}, z ∪ {xj, xl})dFl)dFj

P.L = −kl +

∫ +∞

xRl

xldFl +

∫ xRl

xRh

(−kj +

∫
max{xl, xj, z}dFj)dFl

+

∫ xRh

−∞
(−kj +

∫ +∞

xRh

xjdFj +

∫ xRh

−∞
V ∗(U\{l, j}, z ∪ {xj, xl})dFj)dFl

The difference in payoffs between both policies is given by:

P.L− P.J = (1− Fj(xRl ))[

∫ +∞

xRl

xldFl − kl]− (1− Fl(xRl ))[

∫ +∞

xRl

xjdFj − kj]

= (1− Fl(xRl ))(1− Fj(xRl ))(xRl − xRj ) +

∫ xRl

xRj

(xj − xRj )dFj ≥ 0

where the second equality follows from equation (1) for boxes l, and j respectively.

Thus, inspecting box l dominates inspecting any other box j ∈ U\{l}. This

completes our proof.

Proposition 2. Let (U , z) denote the set of boxes, and the vector of realized

prizes. Assume z < maxi∈U x
B
i . If ϕ∗(U , z) = 0, i.e., if search stops, then:

1. arg maxi∈U x
B
i = arg maxi∈U x

R
i ⊆ arg maxi∈U µi,

2. The sets arg maxi∈U x
B
i and arg maxi∈U x

R
i are singletons,

3. maxi∈U µi > maxj∈U\{argmaxi∈U x
R
i } x

R
j

Proof. We will use l for boxes with the highest reservation value, k for boxes with
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the highest mean, and j for boxes with the highest backup value. We first show

that arg maxi∈U x
B
i ⊆ arg maxi∈U µi. We do so by contradiction. Assume that

(∃j, k ∈ U)(j 6= k) : µj < µk = max∈U µi;x
B
k < xBj = maxi∈U x

B
i . Note that

z < xBj by assumption. We show that inspecting box k first, and then applying

the policy in Proposition 0 to box j dominates stopping, and getting payoff µk.

Therefore, it can’t be optimal to stop, a contradiction.

If the agent inspects box k, and then applies Proposition 0 to inspect/take

without inspection box j, his payoff is:

Πk = −kk +

∫ +∞

xRj

xkdFk +

∫ xRj

xBj

(−kj +

∫
max{xj, xk}dFj)dFk +

∫ xBj

−∞
µjdFk

The payoff of stopping, and taking a box without inspection is given by µk. By

definition:

µk = −kk +

∫ xBk

−∞
xBk dFk +

∫ +∞

xBk

xkdFk

Therefore, we can write:

Πk − µk =

−
∫ xRj

xBk

xkdFk +

∫ xRj

xBj

(−kj +

∫
max{xj, xk}dFj)dFk +

∫ xBk

−∞
(µj − xBk )dFk

+

∫ xBj

xBk

µjdFk

=

∫ xRj

xBj

(

∫ +∞

xRj

xRj dFj +

∫ xRj

−∞
max{xj, xk}dFj − xk)dFk +

∫ xBj

xBk

(µj − xk)dFk

+

∫ xBk

−∞
(µj − xBk )dFk

and, note the above is strictly positive: (i) the first integrand is non-negative

because max{min{xj, xRj }, xk} ≥ xk when xk < xRj , (ii) the second integrand is

positive because µj > xBj > xk by assumption 1, and (iii) the third integrand is

positive because µj > xBj > xBk . This shows that arg maxi∈U x
B
i ⊆ arg maxi∈U µi.

Now suppose that arg maxi∈U x
R
i * arg maxi∈U x

B
i . Then, there exists (∃j, l ∈
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U)(j 6= l) : xRj < xRl = max∈U x
R
i ;xBl < xBj = maxi∈U x

B
i . Note that z < xBj <

xRj < xRl , and hence µj < xRj < xRl . Consider the following policy: inspect box

l first; if xl > µj, stop and take xl, if xl ≤ µj, stop and take box j without

inspection. Applying equation (1) we know that:

−kl +

∫ +∞

µj

xldFl +

∫ µj

−∞
µjdFl > µj

Therefore, arg maxi∈U x
R
i ⊆ arg maxi∈U x

B
i , and note that we can actually conclude

that both sets are equal.

We now show that arg maxi∈U x
R
i , arg maxi∈U x

B
i are singletons. Suppose not.

Then (∃l, l′ ∈ U) : xRl = xRl′ , x
B
l = xBl′ . Moreover, by the previous step, we have

that µl = µl′ . Consider the following policy: inspect box l first, and then apply

the policy in Proposition 0 for inspecting box l′. This improves upon stopping and

taking box l′, because:

−kl +

∫ +∞

xR
l′

xldFl +

∫ xR
l′

xB
l′

(−kl′ +
∫

max{xl, xl′})dFl′)dFl +

∫ xl′B

−∞
µl′dFl

=

∫ +∞

xRl

(xRl − µl′)dFl +

∫ xR
l′

xB
l′

(

∫ +∞

xR
l′

xRl +

∫ xR
l′

−∞
max{xl, xl′}dFl′ − µl′)dFl > 0

where the first equality comes from using equation (1) for boxes l and l′, and the

inequality comes from Assumption 1, and the fact that µl′ =
∫ +∞
xR
l′
xRl +

∫ xR
l′

xB
l′
xl′dFl′+∫ xB

l′
−∞ x

B
l′ dFl′ (note that the inequality is an equality only when xRl = µl = xBl ).

Therefore, we conclude that arg maxi∈U x
R
i , arg maxi∈U x

B
i are both singletons.

Finally, letting box l denote the box with the highest reservation value, and

hence one of the boxes with the highest mean, suppose that µl < maxi∈U\{l} x
R
i ,

and let box h denote the box with the second highest reservation value. Consider

the following policy: inspect box h first; if xh > µl, stop and take xh, and if

xh ≤ µl, take box l without inspection. Equation (1), and the definition of xRh
imply that:

−kh +

∫ +∞

µl

xhdFh +

∫ µl

−∞
µldFh > µl
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This contradicts the optimality of stopping search. Thus, xRh < µl.

Proposition 3. Let U be a set of boxes, and z be the vector of previously realized

prizes. Assume that σ∗(U , z) = j, where xRj < maxi∈U x
∗
i ≡ xRl . Then, it cannot be

the case that (∀xj) : max{xj, z} ≤ xRl , σ∗(U\{j}, z ∪{xj}) = l, and ϕ∗(U\{j}, z ∪
{xj}) = 1.

Proof. Suppose σ∗(·) = {j} and the optimal continuation policy dictates inspect-

ing box l whenever max{xj, z} ≤ xRl . The following policy improves on this, as

shown by the proof of Proposition 1: inspect box l first. Whenever xRl < xl, stop.

Otherwise, open box j and then proceed by using the prescribed policy when

U = U\{l, j}.

A.2 Proof of Theorem 1 and Corollary 1

Theorem 1. Fix a set U of boxes, and let z be the vector of previously realized

prizes. Assume that boxes are labelled so that [xBi , x
R
i ] forms a monotone sequence

in the set inclusion order, that is i < i′ implies [xBi , x
R
i ] ⊂ [xBi′ , x

R
i′ ]. The following

is the optimal policy:

Order σ∗(U , z) = arg max{i|i ∈ U}

Stopping If |U| > 1, ϕ∗(U , z) = 0 if and only if z > arg maxi∈U x
R
i . If |U| = 1,

ϕ∗(U , z) = 0 if and only if (i) z > arg maxi∈U x
R
i , or (ii) z < arg maxi∈U x

B
i

Proof. We proceed by induction on U = |U|. Let P (U) denote the following

predicate:

P(U): (∀z)(∀U) : |U| = U , and U is enumerated as in Theorem 1, the order and

stopping rules in Theorem 1 are optimal.

Proposition 0 shows that P (1) = 1. We show that Theorem 1 is valid for

U = 2, and, then, prove the inductive step.

Step 1: P (2) = 1

Recall 2 is the box with the highest label in U . We start by showing that the

stopping rule is optimal. We do so by considering two cases:
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z ≥ xR2 Note that if some box i ∈ {1, 2} is inspected, then, by Proposition 0, since

max{z, xi} > xRj , j 6= i, stopping is optimal. Moreover, the payoff from

inspecting i and stopping is less than z since:

−ki +

∫
max{xi, z}dFi(xi) < z

by equation (1). Therefore, when xR2 ≤ z it is optimal to stop search.

z < xR2 If max{z,maxi µi} 6= µ2, then inspecting box 2 alone, and stopping domi-

nates stopping and obtaining payoff max{z,maxi∈U µi} by (1). If max{z,maxi µi} =

µ2, since max{z, µ1} > xB1 ≥ xB2 , by equation (2) we have that inspecting

box 2 and stopping dominates obtaining payoff µ2.

Finally, it remains to show that inspecting box 2 first is optimal whenever z < xR2 .

This follows from equation (5).

Step 2: P (U) = 1⇒ P (U + 1) = 1

Assume P (U) is true. Fix U as in P (U + 1), and recall U + 1 = arg max{i|i ∈ U}.
Note that, by assumption, U + 1 is the box with the highest reservation value. Let

y = max{z,maxi∈U µi} be the outside option. We show first that the stopping rule

is optimal. We do so by considering two cases.

1. Assume xRU+1 < y, and that box U + 1 is inspected.13 Since µU+1 < xRU+1,

and xRU+1 < y we have that xRU+1 < max{z,maxi∈U\{U+1} µi}. Thus,

(∀xU+1) max{z, xU+1,maxi∈U\{U+1} µi} > xRU+1. Since |U\{U + 1}| = U , it

is optimal to stop by the inductive hypothesis. Therefore, the payoff from

inspecting box U + 1 is:

−kU+1 +

∫
max{z, xU+1}dFU+1(xU+1) < z

which follows from (1), since z > xRU+1 (see footnote 13). Therefore, it is

optimal to stop.

2. Assume that y ≤ xRU+1. Since, by assumption 1, xBk < µk, and (∀k ∈ U\{U+

13Note that, since U + 1 is the box with the highest reservation value, and, by Assumption 1,
(∀k ∈ U)µk < x∗k ≤ xRU+1, y > xRU+1 ⇒ z > xRU+1
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1})xBU+1 ≤ xBk , it must be the case that y > xBU+1, and max{z,maxi∈U\{U+1} µi} >
xBU+1. Then, inspecting box U + 1 and stopping dominates the payoff the

agent obtains by stopping. If µU+1 = y, this follows from max{z,maxi∈U\{U+1} µi} >
xBU+1, and equation(2); if µU+1 < y, this follows from 1. above.

Now we show that the order in Theorem 1 is optimal. Assume y ≤ xRU+1 (otherwise,

we just showed search stops). Let j ∈ U be a box such that xRj < xRU+1, and let

U = arg maxi∈U\{U+1} x
R
i . Consider the following two policies:

P.J Inspect box j first. There are now U boxes left to be inspected, stop, or

continue search according to the rule described in Theorem 1.

P.U+1 Inspect box U + 1 first. If xRU+1 ≤ xU+1, stop. Otherwise, inspect box j, and

stop, or continue search according to the rule described in Theorem 1.

Note that when U + 1 = 3, after inspecting boxes {U + 1, j}, the continuation

policy may imply that box U is taken without inspection (this would be the case

if z < xBU ). This, a priori, may indicate that a different proof is needed when

U + 1 = 3, and when U + 1 > 3. This is actually not the case since policies

P.J, and P.U+1 coincide whenever (xU+1, xj) ∈ (−∞, xRU ]2, and, therefore, the

difference in payoffs between the two policies does not depend on whether box U

is taken without inspection or not. However, for completeness sake, we distinguish

between the two cases. In particular, we present the proof for when U + 1 = 3,

and z < xBU , and U + 1 > 3. (When U + 1 = 3, and xBU ≤ z, box U is not taken

without inspection and, hence, the continuation policy looks like the case in which

U + 1 > 3).

Suppose U + 1 = 3, and z < xBU . The payoffs from policies P.J and P.U+1 can

be written as:

P.J = −kj +

∫ +∞

xRU+1

xjdFj +

∫ xRU+1

xRU

(
−kU+1 +

∫
max{xU+1, xj}dFU+1

)
dFj

+

∫ xRU

xBU

(−kU+1 +

∫ +∞

xRU

xU+1dFU+1 +

∫ xRU

−∞
(−kU +

∫ +∞

−∞
max{xU , xU+1, xj}dFU)dFU+1)dFj

+

∫ xBU

−∞

 −kU+1 +
∫ +∞
xRU

xU+1dFU+1

+
∫ xRU
xBU

(−kU +
∫ +∞
−∞ max{xU , xU+1, xj}dFU)dFU+1 +

∫ xBU
−∞ µUdFU+1

 dFj
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P.U+1 = −kU+1 +

∫ +∞

xRU+1

xU+1dFU+1 +

∫ xRU+1

xRU

(
−kj +

∫
max{xU+1, xj}dFj

)
dFU+1

+

∫ xRU

xBU

(−kj +

∫ +∞

xRU

xjdFj +

∫ xRU

−∞
(−kU +

∫ +∞

−∞
max{xU , xU+1, xj}dFU)dFj)dFU+1

+

∫ xBU

−∞

 −kj +
∫ +∞
xRU

xjdFj

+
∫ xRU
xBU

(−kU +
∫ +∞
−∞ max{xU , xU+1, xj}dFU)dFj +

∫ xBU
−∞ µUdFj

 dFU+1

The difference P.U+1-P.J, after canceling terms, is:

P.U+1-P.J = (1− Fj(xRU+1))

[∫ +∞

xRU+1

xU+1dFU+1 − kU+1

]
(A.1)

− (1− FU+1(x
R
U+1))

[∫ +∞

xRU+1

xjdFj − kj

]

Using the definition of the reservation value for boxes U + 1 and j, equation (A.1)

can be written as:

P.U+1-P.J = (1− Fj(xRU+1))(1− FU+1(x
R
U+1))(x

R
U+1 − xRj ) +

∫ xRU+1

xRj

(xj − xRj )dFj

That P(U+1)=1 follows from xRU+1 > xRj .

Consider now the case in which U + 1 > 3 (or, xBU ≤ z). Let Φ(xU+1, xj) =

E[V ∗(U\{U + 1, j}, z ∪ {xU+1} ∪ {xj})] to be the expected (continuation) payoff

the agent obtains by applying the rule in Theorem 1 when the set of boxes is

U\{U +1, j}, and the vector of realized prizes is z∪{xU+1}∪{xj}. Since |U\{U +

1, j}| < U + 1, and the boxes in U\{U + 1, j} can be enumerated as in Theorem 1,

the policy in Theorem 1 is optimal when applied to that set. Consider again the

payoffs obtained from following policies P.J and P.U+1:

P.J = −kj +

∫ +∞

xRU+1

xjdFj +

∫ xRU+1

xRU

(
−kU+1 +

∫
max{xU+1, xj}dFU+1

)
dFj

+

∫ xRU

−∞
(−kU+1 +

∫ +∞

xRU

xU+1dFU+1 +

∫ xRU

−∞
Φ(xU+1, xj)dFU+1)dFj
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P.U+1 = −kU+1 +

∫ +∞

xRU+1

xU+1dFU+1 +

∫ xRU+1

xRU

(
−kj +

∫
max{xU+1, xj}dFj

)
dFU+1

+

∫ xRU

−∞
(−kj +

∫ +∞

xRU

xjdFj +

∫ xRU

−∞
Φ(xU+1, xj)dFj)dFU+1

Taking the difference P.U+1-P.J yields the same expression as in (A.1), which

shows that inspecting box U + 1 first is optimal. This completes the proof.

Corollary 1. Assume {Fi}i∈N is such that if i < i′, then Fi′ is a mean-preserving

spread of Fi. Moreover, assume ∀i ∈ N ki = k. Then, the optimal policy is given

by Theorem 1.

Proof. It suffices to show that if i < i′, then [xBi , x
R
i ] ⊆ [xBi′ , x

R
i′ ]. To see this,

rewrite equation (1) for box i as:

k =

∫ +∞

xRi

(x− xRi )dFi(x) =

∫ +∞

−∞
max{x− xRi , 0}dFi(x)

and, note that, Fi′ is a mean-preserving spread of Fi, then we have that:

k =

∫ +∞

−∞
max{x− xRi , 0}dFi(x) ≤

∫ +∞

−∞
max{x− xRi , 0}dFi′(x)

Since
∫ +∞
xRi

(x−xRi )dF (x) is decreasing in xRi , we conclude that xRi ≤ xRi′ . Likewise,

we may rewrite equation (2) as:

k =

∫ xBi

−∞
(xBi − x)dFi(x) =

∫ +∞

−∞
max{xBi − x, 0}dFi(x)

Using the mean-preserving spread assumption again, we obtain that i < i′ implies

that:

k =

∫ +∞

−∞
max{xBi − x, 0}dFi(x) ≤

∫ +∞

−∞
max{xBi − x, 0}dFi′(x)

Since
∫ xBi
−∞(xBi − x)dF (x) is increasing in xBi , we conclude that xBi′ ≤ xBi .

Therefore, we conclude that [xBi , x
R
i ] ⊆ [xBi′ , x

R
i′ ].
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A.3 Proof of Theorem 2

The proof is divided in two parts. First, we show the following modified version

of Theorem 2:

Theorem A.1. Fix a set U of boxes, and let z ∈ {x0}×{x, y}n, n ≥ 0 be the vector

of previously realized prizes. Assume all boxes have xi ∈ {y, x}, y < x, 0 < x,

P (xi = x) = pi, and ki ≡ k. Assume that boxes are labeled so that p|U| < ... < p1.

The following is the optimal policy:

Order σ∗(U , z) ∈ arg min{i|i ∈ U}

Stopping ϕ∗(U , z) = 0 if and only if z > xRσ∗(U ,z), or z = max{x0, y} < xBσ∗(U ,z)
and V ∗(U\{σ∗(U , z)}, z ∪ {y}) < xBσ∗(U ,z)

Second, we show that V ∗(U\{σ∗(U , z)}, z ∪ y) coincides with the cutoffs {vn}
defined in Theorem 2. We start with the proof of Theorem A.1.

Proof. By induction on U = |U|. Let P (U) denote the following predicate:

P(U) (∀z)(∀U) : (|U| = U), and U satisfies the assumptions in Theorem A.1, the

order and stopping rules in Theorem A.1 are optimal.

Step 1: P (1) = 1 The proof follows from Proposition 0.

Step 2: P (U) = 1⇒ P (U + 1) = 1

Let U be such that |U| = U + 1, and let 1 be the box with the highest pi. We

first show that when z ≥ xR1 it is optimal to stop. Note that z > µ1 = maxi∈U µi,

hence, if the agent stops he selects z as payoff. Moreover, if the agent inspects

any box k ∈ U , |U\{k}| = U , and then, by the inductive hypothesis, it is optimal

to stop search. Moreover, by equation (1), it is not optimal to inspect a box in U
and stop.

Hence, assume that z < xR1 . We first show that, if a box is to be opened first, it

has to be box 1. Let j be any other box j 6= l. Let V ∗(U\{1, j}, z ∪ {x1} ∪ {xj})
denote the value function in the continuation problem after inspecting boxes 1, j.14

14That is, the payoff the agent obtains by following the policy stated in Theorem 2, which is
optimal by the inductive step since |U\{1, j}| < U + 1
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In a slight abuse of notation, define V ∗(U ,max{x0, y}) ≡ V ∗(U , z) whenever z < x.

If V ∗(U\{1, j},max{x0, y}) ≥ xB1 consider the following two policies:

P.1 Open box 1 first. If x1 = x, stop. Otherwise, open box j and continue with

the policy in the inductive hypothesis.

P.J Open box j first, and continue as indicated in the inductive hypothesis.

The payoff from applying P.1 is:

p1x+ (1− p1)[pjx+ (1− pj)V ∗(U\{1, j},max{x0, y})− k]− k

and the payoff from applying P.J is:

pjx+ (1− pj)[p1x+ (1− p1)V ∗(U\{1, j},max{x0, y})− k]− k

The comparison of the payoffs yields the result, by noticing that it reduces to the

case in which there are only two boxes 1, j. When V ∗(U\{1, j},max{x0, y}) < xB1 ,

compare the following two policies:

P.1 Open box l first. If x1 = x, stop. Otherwise, take box j without inspection.

P.J Open box j first, and continue as indicated in the inductive hypothesis.

The payoff from policy [P.1] is p1x+(1−p1)(pjx+(1−pj)y)−k, and that of policy

[P.J] is pjx+ (1− pj)(p1x+ (1− p1)y)− k. The difference is null. Then, opening

box 1 first dominates (weakly) opening any other box j 6= 1. Now, to verify the

rest of the stopping rule, note that if z = max{x0, y} and z < xB1 ,

p1x+ (1− p1)V ∗(U\{1},max{y, 0})− k ≥ p1x+ (1− p1)y

⇔ V ∗(U\{1},max{y, 0}) ≥ y +
k

1− p1
= xB1

Now, we prove the following:

Claim A.1 (Stopping rule for Theorem 2). Let U be a set of boxes as in the

assumptions of Theorem 2, and let x0 be the initial outside option. Then, for
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n ≤ |U| − 1:

V ∗(U\{1, ..., n},max{x0, y}) = pn+1 max{xRn , x0}+ (1− pn+1)vn+1

v|U| = max{x0, xBU }

Proof. We prove it for n = |U|− 1, and then extend it inductively for n < |U|− 1.

Consider then n = |U| − 1. Want to show that V ∗(U\{1...|U| − 1},max{x0, y}) =

p|U|max{x0, xR|U |}+ (1− p|U|) max{x0, xB|U|}. We have the following cases:

1. If x0 > xR|U|, then box |U| is not inspected by Theorem A.1. Hence, V ∗(U\{1...|U|−
1},max{x0, y}) = x0.

2. xR|U| ≥ x0 ≥ xB|U|. Then, box |U| is inspected, and if the prize is y, the

agent takes the outside option. Thus V ∗(U\{1...|U| − 1},max{x0, y}) =

−k+p|U|x+(1−p|U|)x0 = p|U|(x− k
p|U|

)+(1−p|U|)x0 = p|U|x
R
|U|+(1−p|U|)x0.

3. If xB|U| > x0, box |U| is taken without inspection, and V ∗(U\{1...|U| −
1},max{x0, y}) = p|U|x + (1 − p|U|)y = −k + p|U|x + (1 − p|U|)y + k =

p|U|(x− k
p|U|

) + (1− p|U|)(y + k
1−p|U|

) = p|U|x
R
|U| + (1− p|U|)xB|U|.

The three cases complete the proof that V ∗(U\{1...|U|−1},max{x0, y}) = p|U|max{x0, xR|U|}+
(1− p|U|) max{x0, xB|U|}.

Suppose the claim is true for all n′ > n, and we show that V ∗(U\{1...n},max{x0, y}) =

pn+1 max{x0, xRn+1}+ (1− pn+1)vn+1. Consider the following cases:

1. x0 > xRn+1. Then, box n+1 is not inspected, and V ∗(U\{1...n},max{x0, y}) =

x0 (note that no more boxes are inspected, and indeed vn′ = x0 for all n′ > n).

2. xRn+1 > x0 > xBn+1. Then, vn+1 ≥ x0, and hence box n+1 is not taken without

inspection. Thus, V ∗(U\{1...n},max{x0, y}) = −k+pn+1x+(1−pn+1)vn+1 =

pn+1x
R
n+1 + (1− pn)vn+1.

3. xBn+1 > x0, and vn+1 > xBn+1. Then, box n+ 1 is inspected, and the continu-

ation, after a prize of y, is vn+1. The same as above obtains.

4. xBn+1 ≥ max{x0, vn+1}. Then, the agent stops and takes box n + 1 with-

out inspection. Thus, V ∗(U\{1...n},max{x0, y}) = pn+1x + (1 − pn+1)y =

pn+1x
R
n+1 + (1− pn+1)x

B
n+1 = pn+1x

R
n+1 + (1− pn+1)vn+1.
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The four steps complete the proof.

A.4 Proof of Theorem 3

We first establish a preliminary result on the cutoff values when the conditions in

Theorem 3 hold:

Lemma A.1 (Cutoffs are linear in means). Let x be a random variable such that

x ∼ F (· − µ), E[x] = µ. Let k be the cost of inspecting the box with prizes

distributed according to F . Then, (∃b, b) : xB = µ− b, xR = b.

Proof. We do the proof for xR, the other one follows immediately. Recall that:

k =

∫ +∞

xR
(x− xR)dF (x− µ)

We guess and verify that xR = µ+ b, for some b > 0.

k =

∫ +∞

µ+b

(x− µ− b)dF (x− µ)

Let u = x− µ and perform a change of variables in the above expression:

k =

∫ +∞

b

(u− b)dF (u) (A.2)

It remains to show that there is a solution to the above equation. Note that

assumption 1 implies that if b = 0, then k <
∫ +∞
0

udF (u). On the other hand,

as b → ∞,
∫ +∞
b

(u − b)dF (u) → 0 < k. Hence, since g(b) =
∫ +∞
b

(x − b)dF is

continuous and decreasing in b, there exists b > 0, such that the equality holds.

This completes the proof.

Corollary A.1. Consider the same assumptions as before. If F is symmetric

around 0 then b = b = b > 0

Proof. The fact that b > 0 comes from the condition that xB < µ < xR for the

problem to be well-defined.
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Recall the definition of xB:

k =

∫ xB

−∞
(xB − x)dF (x− µ)

Replacing our assumptions we get that the equation can be rewritten as:

k =

∫ −b
−∞

(−b− u)dF (u)

where we changed variables by defining u = x− µ. Also, we have that:

k =

∫ +∞

xR
(x− xR)dF (x− µ) =

∫ +∞

b

(u− b)dF (u)

Now, symmetry of F implies that:

∫ +∞

b

udF (u) = −
∫ −b
−∞

udF (u)

Hence, (1−F (b))E[u|u ≥ b] = −F (−b)E[u|u ≤ −b] and −(1−F (b))b = −F (−b)b.
Hence, b = b.

Now we are ready to prove Theorem 3. We start with the case in which 0 ≤
xBj ≤ xBi , xRj ≤ xRi . Equation (5) in Section 5 established that the difference

between opening box i first and opening box j first is given by:

Πi − Πj =

∫ xBi

−∞

∫ xBi

−∞
(max{xi, xj, xBj } − xBi )dFidFj

+

∫ +∞

xRj

∫ +∞

xRj

(min{xi, xj, xRi } − xRj )dFidFj
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= (1− Fi(xRi ))(1− Fj(xRi ))(xRi − xRj ) +

∫ xRi

xRj

∫ +∞

xi

(xi − xRj )dFjdFi

+

∫ xRi

xRj

∫ xi

xRj

(xj − xRj )dFjdFi + (1− Fi(xRi ))

∫ xRi

xRj

(xj − xRj )dFj

+ Fi(x
B
j )Fj(x

B
j )(xBj − xBi ) + Fi(x

B
j )

∫ xBi

xBj

(xj − xBi )dFj

+

∫ xBi

xBj

∫ xBi

xi

(xj − xBi )dFjdFi +

∫ xBi

xBj

∫ xi

−∞
(xi − xBi )dFjdFi

Replacing our assumptions,u = xi − µi, û = xj − µj and writing a = µi − µj ≥ 0,

we have that:

G(a) =

∫ b

b−a

∫ +∞

u+a

(u+ a− b)dF (û)dF (u) +

∫ b

b−a

∫ u+a

b

(û− b)dF (û)dF (u)

+ F (−b)
∫ b+a

b

(û− b)dF (û) + F (−b− a)

∫ −b+a
−b

(û+ b− a)dF (û)

+

∫ −b
−b−a

∫ −b+a
u+a

(û+ b− a)dF (û)dF (u) +

∫ −b
−b−a

∫ u+a

−∞
(u+ b)dF (û)dF (u)

Note that G(0) = 0. We will show that G′(0) = 0, G′′(a) = 0(∀a). All of these

together imply that G(a) ≡ 0.

G′(a) = −[

∫ b

b−a
F (−b− a)dF (u) +

∫ −b
−b−a

(F (−b+ a)− F (u+ a))dF (u)

−
∫ b

b−a
F (−u− a)dF (u)]

Note that G′(0) = 0. Moreover,

G′′(a) = F (−b− a)f(b− a)−
∫ b

b−a
f(−b− a)dF (u) + (F (−b− a)− F (−b))f(−b− a)

+

∫ −b
−b−a

(f(−b+ a)− f(u+ a))dF (u)− F (−b)f(b− a) +

∫ b

b−a
f(−u− a)dF (u) = 0

where we used that f(x) = f(−x), F (−x) = 1 − F (x) several times to cancel
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terms. This shows that G(a) ≡ 0. When xBj ≤ 0 ≤ xBi , we have that:

Πij − Πji =

∫ xBi

−∞

∫ xBi

−∞
(max{xi, xj, 0} − xBi )dFidFj

+

∫ +∞

xRj

∫ +∞

xRj

(min{xi, xj, xRi } − xRj )dFidFj

Since the previous proof never used the fact that xBj ≥ 0, and xBj < 0 in this case,

this shows that the previous difference is positive. Finally, when xBj ≤ xBi ≤ 0,

the problem is exactly as Weitzman’s, hence we know that the difference is strictly

positive. This completes the proof.

A.5 Boxes for which xR < xB are never inspected in the

optimal policy

This last subsection shows that, if we allow for boxes i ∈ N such that xRi < xBi ,

then box i is never inspected in the optimal policy. Therefore, for any such box

i ∈ N , it is either taken without inspection upon stopping search, or it is never

used in the optimal policy. Moreover, note that only one such box can be taken

without inspection conditional on stopping search. Then, by redefining x0 to be

whatever is best between the agent’s initial outside option and the best of the

boxes for which xRi < xBi , our analysis carries through by focusing on the boxes

for which xBi < xRi .

Given a set of boxes U , define:

UB<R = {i ∈ U : xBi ≤ xRi }

UR<B = {i ∈ U : xRi < xBi }

Given a decision node (U , z), we use (U ′, z′),U ′ ⊂ U , z′ = (z, zU\U ′) to denote

a generic continuation history in which boxes in U\U ′ have been inspected, and

prizes zU\U ′ have been sampled.

Proposition A.1. Let U be the set of boxes, and let z be a vector of realized prizes.
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Assume that UR<B 6= ∅. Then, ∀i ∈ UR<B, @(U ′, z′) : i ∈ U ′ ⊂ U , z′ = (z, z̃U\U ′)

such that ϕ∗(U ′, z′) = 0, σ∗(U ′, z′) = i.

Proof. The proof is by double induction in the cardinality of U and UR<B. Since

UR<B ⊂ U , we know that |UR<B| ≤ |U|. Induction will be done in U = |U|, and

n, where |UR<B| = max{U, n}. Let P (U, n) denote the following predicate:

P(U,n): (∀z)(∀U) : |U| = U , UR<B 6= ∅, |UR<B| = max{n, U}, the optimal policy

satisfies the property in Proposition A.1.

We proceed by showing that P (1, 1) = 1, and that if P (U ′, n′) = 1 holds for

U ′ ≤ U , and n′ ≤ n, not both with equality, then P (U, n) = 1 holds.

P(1,1)=1: Let U = {i} and let z denote the vector of already realized prizes.

Since U = n = 1, we have that UR<B = {i}. We show that:

−ki +

∫
max{xi, z}dFi ≤ max{µi, z}

Suppose that z ≥ µi. Then, since i ∈ UR<B, xRi < µi ≤ z. Then,

−ki +

∫
max{xi, z}dFi − z = −ki +

∫
z

(xi − z)dFi(xi) < 0

since z > xRi (recall the derivation of equation (1)). Now, suppose that

µi > z. Then, xBi > µi > z, and it follows from (2) that:

−ki +

∫
max{xi, z}dFi − µi = −ki +

∫ z

−∞
(z − xi)dFi(xi) < 0

P(U,n)=1: Assume now that (∀U ′ ≤ U)(∀n′ ≤ n), not both with equality,

P (U ′, n′) = 1. We show that P (U, n) = 1. Let U be the set of boxes, |U| = U ,

and let z denote the vector of already sampled prizes. Let UR<B ⊂ U ,

|UR<B| = max{U, n}. We use i to denote a box in UR<B, and j to denote a

box in U\UR<B, whenever the latter is not empty.

We make two remarks. First, notice that if a box j ∈ U\UR<B is in-

spected, then we move to continuation history (U ′, z ∪ {xj}), where U ′ =

42



U\{j},U ′R<B = UR<B, and |U ′| = U − 1, and U ′R<B = n (note that

if there was j ∈ U\UR<B, then it can’t be the case that |UR<B| = U).

Since, by the inductive step, we know that P (U − 1, n) = 1, then boxes

in UR<B are not inspected in any continuation history. Second, if a box

i ∈ UR<B were to be inspected, then we move to continuation history

(U ′, z ∪ {xi}), where U ′ = U\{i}, U ′R<B = UR<B\{i}, and |U ′| = U − 1,

|U ′R<B| = max{U − 1, n − 1}. Since, by the inductive step, we know that

P (U − 1, n− 1) = 1, then boxes in U ′R<B are not inspected in any continua-

tion history. The first remark implies that to prove P (U, n) = 1 it remains to

show that no box in UR<B is inspected in history (U , z). The second remark

will be used when computing the payoff of inspecting a box in i ∈ UR<B.

Given the above, we want to show that:

max

{
z, max

i∈UR<B
µi, max

j∈UB<R
µj, max

j∈UB<R
{−kj +

∫
V ∗(U\{j}, z ∪ {xj})dFj}

}
≥ max

i∈UR<B
{−ki +

∫
V ∗(U\{i}, z ∪ {xi})dFi} (A.3)

where the LHS of the above expression denotes the payoff the agent can

get by either stopping, and getting max{z,maxi∈UR<B µi,maxj∈UB<R µj}, or

continuing search by inspecting a box in UB<R; the RHS denotes the payoff

of inspecting a box in UR<B. The stars in V denote that the agent follows

the optimal policy in the continuation histories, and the two remarks above

apply, by the inductive step to those histories.
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Note that we can write, for any box i ∈ UR<B:

−ki +

∫
V ∗(U\{i}, z ∪ {xi})dFi

= −ki +

∫
max

{
xi, z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}
dFi

= −ki +

∫
max

{
xi,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}}
dFi

=

∫ +∞

xRi

xRi + max

{
0,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}
− xi

}
dFi

+

∫ xRi

−∞
max

{
xi,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}}
dFi

where the first equality is by definition of the set of actions available to the

agent, and we use the second remark above; the second equality is just a

rearrangement of terms, and the third equality follows from using (1) for

box i.

Notice that the second term in the first integrand:

max

{
0,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}
− xi

}

is decreasing in xi: the slope of −xi is −1, and the slope of the term in the

max{·} as a function of xi is at most one (it would be 1 only if xi is better

than any of the terms in the max{·} for all xi ∈ [xRi ,+∞]). Therefore, we

have that:∫ +∞

xRi

xRi + max

{
0,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}
− xi

}
dFi

≤
∫ +∞

xRi

max

{
xRi ,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xRi , xj})dFj}

}}
dFi
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Also, we have that:

∫ xRi

−∞
max

{
xi,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}}
dFi

≤
∫ xRi

−∞
max

{
xRi ,max

{
z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xRi , xj})dFj}

}}
dFi

since the integrand is increasing in xi. Putting all of this together, we con-

clude that for all i ∈ UR<B, the following holds:

−ki +

∫
V ∗(U\{i}, z ∪ {xi})dFi

= −ki +

∫
max

{
xi, z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xi, xj})dFj}

}
dFi

≤ max

{
xRi , z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xRi , xj})dFj}

}

But, then we conclude that, for all i ∈ UR<B:

max

{
z, max

i∈UR<B
µi, max

j∈UB<R
µj, max

j∈UB<R
{−kj +

∫
V ∗(U\{j}, z ∪ {xj})dFj}

}
≥ max

{
xRi , z,maxi′∈UR<B\{i} µi′ ,maxj∈UB<R µj,

maxj∈UB<R{−kj +
∫
V ∗(U\{i, j}, z ∪ {xRi , xj})dFj}

}
≥ −ki +

∫
V ∗(U\{i}, z ∪ {xi})dFi

where the first inequality follows from xRi < µi for i ∈ UR<B, and the fact

that taking box i without inspection and getting µi is always an option in

the optimal policy in the first line, while not in the second.

Since the above holds for each i ∈ UR<B, we conclude that (A.3) holds, and,

thus, P (U, n) = 1
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B Examples

B.1 Optimal policy in the example of Section 1

We now prove that the policies described for the example in Section 1 (see Table

1) are indeed optimal.

Claim B.1. Suppose Weitzman’s assumption holds. Then, the following is the

optimal policy: school A is visited first; if the prize is xA = 5 search stops, while

if the prize is xA ∈ {1, 2}, the agent visits school B and chooses the school with

the highest realized prize.

Proof. The parameters of the model imply that xRA = 4, and xRB = 5
2

(this can be

shown by applying equation (1)). The result follows immediately from applying

Weitzman’s [12] rule.

Claim B.2. Suppose Weitzman’s assumption does not hold. Then, the following

is the optimal policy: school B is visited first; if the prize is xB = 0, search stops

and school A is accepted without inspection; if xB = 3, the agent visits school A,

and chooses the school with the highest realized prize.

Proof. We show this in five steps. First, conditional on visiting school B first, if

xB = 0, it is optimal to accept school A without visiting it: since xA > 0, school

A dominates school B with probability 1. Second, by Proposition 0, conditional

on xB = 3, visiting school A and selecting the best school is optimal since xBA =

1 < 3 < xRA = 4. Third, if the agent visits school A first, the optimal continuation

policy is the same as when the student cannot accept a school without attending

the visit day: this follows from Proposition 0, and the fact that, for all xA, xBB =
1
2
< xA. Fourth, it is optimal to visit at least one school: visiting school A first, and

following the optimal continuation, dominates accepting school A without visiting

it. Finally, comparing the payoffs from visiting school A first, and from visiting

school B first, we conclude that visiting school B first is optimal.
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B.2 Example footnote 1 in Section 1

Section 1 contains a two-box example that illustrates that Weitzman’s policy may

no longer be optimal when the agent can take a box without inspection conditional

on stopping. The example is, in part, driven (and, made simple) by the fact that

the worst realization in box A is better than the worst realization in box B. Thus,

after bad news from boxB, it does not pay to inspect boxA. The following example

illustrates that this is not in fact necessary to obtain such a result. In particular,

the example features two boxes A and B such that box B’s prize distribution has

a higher mean, both boxes coincide in their worst realization, box B has a lower

reservation and backup value, and the optimal policy consists in inspecting box B

first.

Example B.1. Table B.1 describes the prize distribution, and inspection costs of

boxes A and B It can be verified that xRA = 4 > xRB = 3.9, xBA = 1 > xBB = 1
2
,

A Prize 0 1 5
Probability 0.10 0.80 0.10

Inspection cost
0.10

B Prize 0 0.5 4.3
Probability 0.2 0.55 0.25

Inspection cost
0.10

Z Prize 0
Probability 1

Inspection cost
0

Table 2: Prize distribution for each box

and µ2 = 1.35 > µ1 = 1.3. Thus, in Weitzman’s model, the agent inspects box A

first; if xA = 5, search stops, and, if xA < 5, the agent inspects box B and keeps

the highest realized prize.

If we relax Weitzman’s assumption, by Proposition 0, after inspecting box A, the

agent inspects box B only when xA = 1; if xA = 5, search stops and the agent keeps

the prize in box A, and when xA = 0 he takes box B without inspection. If, instead,

he starts with box B, he never inspects box A: if xB = 4.3, he stops search, and

takes the prize, while if xB ∈ {0, 0.5}, he takes box A without inspection. That is,

he takes box A without inspection when xB ≤ 1
2

even if box A may contain a prize

worse than 1
2
. However, box A assigns a very high probability to xA = 1, which

in turns makes box A’s backup value higher than box B’s. Thus, the combined

effect of saving on inspection costs when box B has a low enough prize and the
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“certainty” of a not so low prize from box A induce the agent to inspect box B

first. In fact, the following is the optimal policy:

Claim B.3. The agent inspects box B first. If xB = 4.3, search stops, and he

takes xB = 4.3. If xB < 4.3, the agent takes box A without inspection.

Remark 2. One can modify the above example so that xB = 0 with probability
25
48

, xB = 1.2 with probability 11
48

, and xB = 4.3 with probability 0.25, and still

obtain the result that despite box B having a higher mean value than box A, the

reversal in the search order occurs all the same.15 The only difference is that now

box A is only taken without inspection when xB = 0, and in that case the worst

prize in box A is the same as the agent’s current outside option.

B.3 Cutoffs don’t determine the optimal policy if N ≥ 2

The following example demonstrates the claim made in Section 1:

Example B.2. Suppose N = 2. Box 1 is as in Example 1: X1 = {0, 2, 10},
P (X1 = 2) = 0.2, P (X1 = 10) = 0.7, and k1 = 1. Box 2 is such that X2 = {0, 9},
P (X2 = 9) = 0.7368, and k2 = 14

9
. It is immediate to show that cutoffs are exactly

the same as the ones of the boxes in Example 1. However, the optimal policy now

inspects box 1 first; search stops if X1 = 10, and the agent gets X1 = 10, while

box 2 is taken without inspection when X1 ≤ 2.

15One can verify that the change in the distribution of box B left the mean, reservation and
backup values of box B unaltered.
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