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Abstract. Disagreements over long-term projects can often be traced to

assumptions about the discount rate. The debate in economics over climate

change is a case in point. We propose a theory of intertemporal choice that

is robust to specific assumptions on the discount rate. Our discussion is

centered around three models: The PARETO model requires that one util-

ity stream be chosen over another if and only if its discounted value is

higher for all discount factors in a set of possible factors. The UTILITAR-

IAN model focuses on an average discount factor. The MAXMIN model

evaluates a flow by the lowest available discounted value. We propose these

models as robust decision criteria for intertemporal choice, investigate their

properties, and break them down axiomatically.
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1. Introduction

When making long-term decisions, economists calculate the present value

of the stream of future consequences of a plan, or a project. Such calculations

involve compound interest, and are naturally highly sensitive to the assumed

discount rate. But it is very difficult to say precisely which discount rate should

be used: The discount rate depends on ethical and empirical considerations,

on which economists and other experts disagree. As a result, important long-

term decisions hinge on specific assumptions about a parameter that is very

hard to pin down, and that many people disagree over. In response to this

problem, we develop a theory of decisions over long-term streams that is robust

to specific assumptions about the discount rate.

A case in point is the debate on climate change. The well-known Stern

review of climate change (Stern (2007); commissioned by the British gov-

ernment) calculates the effects of progressive climate change, recommending

drastic policy measures. Economists such as Robert Barro, Partha Dasgupta,

William Nordhaus, and Martin Weitzman take issue with Sterns’ calculations.

The debate centers, in fact, around Stern’s assumed discount rates. Hal Varian

aptly summarizes the debate (Varian, 2006):

“So, should the social discount rate be 0.1 percent, as Sir Nicholas

Stern, who led the study, would have it, or 3 percent as Mr.

Nordhaus prefers? There is no definitive answer to this ques-

tion because it is inherently an ethical judgment that requires

comparing the well-being of different people: those alive today

and those alive in 50 or 100 years.”

Varian points to a fundamental problem with how economists evaluate long-

term projects. Present-value calculations are very sensitive to the assumed

discount rate, but people naturally disagree over the specific discount rate to

be used. Weitzman (2001) makes a similar point. Weitzman reports the results

of a survey of over 2,000 economists, in which he asks them for the discount

rate that they would use to evaluate long-term projects, such as proposals to

abate climate change. The mean of the answers is 3.96 % with a standard

deviation of 2.94 %, reflecting a substantial disagreement over the discount

rate. Weitzman considers the possibility that the most prominent economists
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do agree over discounting. So he runs the survey on a subsample of 50 very

distinguished economists (including many who had won, or have since won,

a Nobel prize). The results are very similar, with a mean of 4.09 % and

a standard deviation of 3.07 %. It is therefore clear that there is substantial

disagreement among economists about the proper discount rate for discounting

long-term streams. In fact, Weitzman concludes that:

“The most critical single problem with discounting future bene-

fits and costs is that no consensus now exists, or for that matter

has ever existed, about what actual rate of interest to use.1”

The problem of multiple discount rates goes beyond climate change. It shows

up in any kind of long term project evaluation. For example, the US Office

of Management and Budget recommends a wide range, between 1% and 7%,

for the discount rate when evaluating “intergenerational benefits and costs.”

Of course many present-value calculations are going to depend a lot on which

number between 1 and 7 is chosen for the discount rate.

The point of our paper is to propose some solutions to the problem high-

lighted by Varian, Weitzman, and others. We propose a decision theory that

uses discounting, and present-value calculations, yet is robust to specific as-

sumptions about the discount rate. We explore the consequences of remaining

agnostic about the specific discount rate to use (including the possibility of

remaining fully agnostic, and allowing for every possible discount rate).

We operationalize robustness in three different ways. Think of choosing

among sequences of real numbers: these could be consumption streams, utils,

or monetary quantities computed from the costs and benefits of an economic

project. In the sequel we often refer to utility streams for concreteness. First

we take robustness to mean that the only valid comparisons are those that

hold for any discount factor in some set of possible factors. These are the

comparisons of a Pareto criterion because they capture what a group of agents

with different discount factors would agree on. Then we consider average dis-

counting, where we assign probability weights to the different discount factors.

Average discounting corresponds to a utilitarian criterion, where the average

1There is no shortage of economists making the point that analysis of climate change is
almost hopeless given disagreements over the discount rate; see also Pindyck (2013).
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sums up the utilities of a population of agents with different discount factors.

Third, we propose to evaluate each stream according to its worst-case present

value calculation. The worst-case criterion corresponds to a max-min rule

that uses the utility of the agent with the lowest present-value evaluation of

the stream. The following table summarizes the models and points to the rel-

evant results in the paper. The rest of the introduction discusses each of these

robustness proposals.

Pareto Utilitarian Max-min

x � y iff ∀δ ∈ D x � y iff U(x) ≥ U(y) x � y iff U(x) ≥ U(y)∑∞
t=0 δ

txt ≥
∑∞
t=0 δ

tyt U(x) =
∑∞
t=0(

∫ 1

0
δtdµ(δ))xt U(x) = min{(1− δ)

∑∞
t=0 δ

txt : δ ∈ D}
Theorems 1 and 5 Theorem 4 Theorem 6

First we describe the dominance criterion, a special case of the Pareto cri-

terion. The dominance criterion is fully agnostic about the discount rate, it

ranks one stream over another when its present value is higher regardless of

the assumed discount rate. We say that a stream x discounting dominates

a stream y if
∑∞

t=0 δ
txt ≥

∑∞
t=0 δ

tyt for all δ ∈ [0, 1].2 If there is a society

of agents, deciding how to rank intergenerational streams, and each possible

discount factor in [0, 1] is held by some agent, then discounting dominance

would coincide with Pareto dominance. The dominance criterion has been

previously studied by Foster and Mitra (2003). We provide (Theorem 1) a

“dual” characterization to theirs, focusing on economic primitives. Below we

explain in some detail how our results differ from theirs.

The dominance relation is useful for at least three reasons. a) A social

planner evaluating multiple streams can use dominance to filter out dominated

streams. Everyone who uses discounting would agree that dominated streams

should not be pursued. b) If we think of different time periods as “generations,”

then discounting dominance refines the Pareto relation.3 Dominance would

then be used in guiding the choice of a social welfare function. In fact we

illustrate how to do that by means of our utilitarian and maxmin rules. Each

of these rules is a refinement of the dominance criterion. c) Finally, as we

2As we explain in Section 2.2, the results can be generalized to the case δ ∈ [a, b] ⊆ [0, 1].
3The Pareto relation according to the individuals deciding how to rank the streams, but not
the different generations themselves.
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shall see, discounting dominance distills the basic properties of discounting

common to all discount factors, and broadens our theoretical understanding

of the concept of discounting.

We expand on the ideas behind discounting dominance by endogenizing the

set of discount factors. Concretely, we characterize the orderings � for which

there exists D ⊆ (0, 1) such that x � y iff for all δ ∈ D
∞∑
t=0

δtxt ≥
∞∑
t=0

δtyt.

Note that D is not given, but � is. We seek to understand (Theorem 5) the

orderings � that capture robust comparisons according to some set of discount

factors. Such orderings can be interpreted as the Pareto relation of a society

of exponentially discounting agents.4

Our second operationalization of robustness is motivated by the ideas of

Weitzman (2001) and Jackson and Yariv (2015). We consider a ranking of

streams based on an average of discount factors. Concretely, we characterize

the weak orders � for which there exists a probability measure µ on [0, 1]

such that x � y iff
∑∞

t=0(
∫ 1

0
δtdµ(δ))xt ≥

∑∞
t=0(
∫ 1

0
δtdµ(δ))yt. If µ is the

distribution of discount factors in a population, then average discounting is

the utilitarian criterion. The average avoids marriage to a specific discount

factor; and we show (Theorem 4) that it is the unique ranking that respects

discounting dominance and an independence-type assumption (as well as a

continuity and nontriviality axiom).

To formalize robustness through an average discount factor is Weitzman’s

idea, not ours. Weitzman (2001) proposed that an average discount factor in

every period best reflects economists’ disagreements over which discount rate

to use (Weitzman proposes an average taken from a specific distribution, the

Gamma distribution). Jackson and Yariv think of averaging as a utilitarian

aggregation of a population of agents with different discount factors. They

show that utilitarianism results from a Pareto property and a utility which

is additively separable across time. Their work leaves open the possibility

4In an exercise inspired by Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Sinis-
calchi (2011), we also establish (Theorem 7) that if a relation is monotonic with respect to
such an ordering, there is a maximal such ordering ensuring monotonicity.
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that there are other behavioral predictions implied by the model. We expand

on Weitzman’s idea by fully characterizing average discounting, and by going

beyond the assumption of a specific distribution. We expand on Jackson-Yariv

by characterizing all behaviors consistent with their utilitarian model, for an

arbitrary set of individuals. Moreover, our characterization of the utilitarian

model relies on similar ideas to that of the dominance criterion, the Pareto

criterion for D = [0, 1].

Finally, our last result imagines that streams are evaluated according to a

“worst-case” analysis. A policy maker that listens to advise from economists

who, like Stern and Nordhaus, disagree on the discount rate, may want to

conservatively use the worst-case scenario provided by each economist for each

possible policy. A set of discount factors is given, each normalized so that a

constant stream is treated identically by each factor in the set. Any stream is

judged by the minimum discounted present value across all discount factors

in the set. Concretely, we characterize (Theorem 6) the weak orders � with

the property that x � y iff U(x) ≥ U(y), with

U(x) = inf{(1− δ)
∞∑
t=0

δtxt : δ ∈ D}.

Our robustness ideas are inspired by the literature on decisions under uncer-

tainty. The literature on uncertainty obtains sets of priors over a state space:

What is new in our paper is to show that the set of priors is described by

certain geometric distributions, when the state space is the time line. Our

Pareto criterion follows the ideas in Bewley (2002). The worst-case, or max-

min representation is analogous to Huber (1981) or Gilboa and Schmeidler

(1989). Bewley’s model is the Pareto relation of a society of agents with dif-

ferent priors. The maxmin relation evaluates each stream according to the

worst present value considered possible, analogous to how Huber and Gilboa-

Schmeidler evaluate uncertain acts according to its worst expected value. Our

results for these models proceed by treating time as a state space, obtaining a

Bewley or Gilboa-Schmeidler representation, and then showing that the set of

possible priors results from geometric distributions (strictly speaking that the

set of possible priors is the closed convex hull of priors with the memoryless
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property that characterizes the geometric distribution; we explain more in in

Section 3.1).

The substantive properties, or axioms, behind the Pareto and max-min mod-

els (Theorems 5 and 6) relate to utility smoothing. The first is a quasiconcav-

ity property, stating, roughly, that smoother streams are better. As smoother

streams reflect more “fair” streams in an intergenerational context; this prop-

erty seems entirely natural. The second property is novel, and modifies the

stationarity property of Koopmans (1960). Koopmans imagined that if two

streams are ranked, that ranking would not change were a common utility

appended to the initial period of each stream. The property is usually under-

stood as a stationarity property: the agent anticipates his preference tomorrow

to coincide with his preference today.

We argue that the standard stationarity conclusion may not necessarily

hold in a context in which there may be an innate preference for smoothing.

For example, appending the common utility to each stream may reverse the

already stated preference if one of the new streams becomes more smooth. We

rectify this issue in the following way. We do not know what “more smooth”

means, but we can at least say that a constant utility stream is smoother

than anything else. Thus, if a stream x is at least as good as a smooth

stream θ, this cannot be due to a preference for smoothing. In such a case, we

would ask stationarity to hold; but we want to ensure that appending a new

initial consumption cannot lead to new smoothing opportunities. We do so by

requiring that the appended consumption is θ itself. Only in this case is the

ranking preserved. We refer to this property as stationarity.

The characterizations of Pareto and maxmin obviously differ in other as-

pects. For example, the Pareto representation requires an incomplete prefer-

ence in general, and will give rise to status quo bias (as discussed, for example,

by Bewley (2002)). It is also separable. The maxmin representation involves a

complete preference, but may violate separability. These aspects are discussed

in Section 3.2.

Related literature. Our first two results (Theorems 1 and 4) use a version of

Hausdorff’s moment problem. We are not the first to note the relation between

that problem and discounting in economics: Foster and Mitra (2003) made
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the connection earlier. Foster and Mitra (2003) provide a characterization of

discounting dominance, the ordering we denote by �d below. They focus on

“finite” streams, and their characterization is of the following nature. There is

a collection of vectors, π1, π2, . . . , πn such that x �d 0 iff πi ·x ≥ 0 for all i. The

contribution is in showing that instead of verifying that (1, δ, δ2, . . .) · x ≥ 0

for all δ ∈ [0, 1], one can search over a much smaller set; indeed, the set one

needs to search over becomes finite when streams are finite. Our result is

distinguished from theirs in that we do not reference extraneous vectors such

as πi. Our result is the “dual” (in a linear programming sense) version of

theirs. We should also say that we use these ideas in our characterization of

the utilitarian rule (Theorem 4); there is no analogous exercise in Foster and

Mitra.

The Hausdorff moment problem has been used elsewhere in economics. Hara

(2008) uses the continuous version of the Hausdorff moment problem; i.e.

Bernstein’s Theorem. See also Minardi and Savochkin (2016). Bertsimas,

Popescu, and Sethuraman (2000) use the Hausdorff moment problem in the

context of pricing an asset whose moments are known.

An important motivation for our paper is the literature on multiple discount

rates and the evaluation of long-term projects, see Weitzman (2001) and Jack-

son and Yariv (2015). In particular, the result on expected discount rates

presented in Theorem 4 is motivated by these two papers. Jackson and Yariv

consider utilitarian aggregation of discounted utilities, and Weitzman argues

for the use of an expected discount rate (that he obtains through a survey of

economists) like we obtain in Theorem 4.

Our results on the Pareto and the maxmin models are related to the lit-

erature on multiple priors by interpreting the set of time periods as a state

space. The Pareto and maxmin models are related to Bewley (2002), and

Gilboa and Schmeidler (1989). We explain how we depart from these papers

in Section 3.1. The same approach of identifying time with states is taken

by Marinacci (1998) and Gilboa (1989). Marinacci suggests interpreting con-

vexity, or “uncertainty aversion,” as a preference for intertemporal smoothing,

as we have done here. Bastianello and Chateauneuf (2016) is a more recent

example; they work out the implications of delay aversion for multiple priors
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(and other models) representation of intertemporal preferences. The paper by

Wakai (2008) also considers a max-min representation over the discount factor,

but in his model the discount factor may be different in each time period. In

that sense, his model is closer to Gilboa-Schmeidler’s multiple-prior version of

max-min. Wakai’s focus is on obtaining a dynamically consistent version of

the model with multiple and time-varying discount rates.

A crucial difference between all these papers and ours (specifically with The-

orems 5 and 6 in our paper) is that we show how the stationarity axiom imposes

structure on the set of multiple priors. In particular, stationarity makes cer-

tain priors update in a specific way, ensuring the memory-less property of the

geometric distribution. This result is how we can go from multiple priors to

multiple discount time-invariant discount rates. See Section 3.1 for a more

detailed discussion.

The papers by Karni and Zilcha (2000), Higashi, Hyogo, and Takeoka (2009),

Higashi, Hyogo, Tanaka, and Takeoka (2016), Pennesi (2015), and Lu and Saito

(2016) all consider multiple but randomly chosen discount factors. This is of

course quite different from our focus on robust conclusions with respect to a

fixed set of discount factors.

Nishimura (2016) develops a general theory of intransitive preferences, and

introduces the idea of a transitive core. He has an application to time pref-

erences, the primitive being dated consumption, and building on the work on

relative discounting of Ok and Masatlioglu (2007). Nishimura’s Theorem 3

states that the transitive core of a relative discounting preference has a repre-

sentation with multiple discount functions. His analysis is very different from

ours, but has in common the proposal of multiple discount factors for the

purpose of making normative welfare comparisons.

2. Results

2.1. Definitions and notation. Our paper is a study of intertemporal choice.

The objects of choice are sequences, or streams, x = {xt}∞t=0 of real numbers,

where the natural numbers N = {0, 1, . . .} represent the time line. Let X

be the universe of sequences under consideration. For some results we as-

sume that X = `1, the space of absolutely summable sequences. For other
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results we assume that X = `∞, the space of all bounded sequences. The

space `1 is endowed with the norm ‖x‖1 =
∑

t∈N |xt|, while `∞ has norm

‖x‖∞ = sup{|xt| : t ∈ N}.
The streams in X are interpreted as sequences of utility values. Given

a stream x = {xt}∞t=0 ∈ X, xt is how much utility is received in period t.

One could work with a more primitive model, in which the objects of choice

correspond to some physical outcomes over time. We focus our study on the

problem of choosing among intertemporal streams of utils and abstract from

how utilities are determined.

When x ∈ `∞, and m ∈ `1 is a positive sequence, then we use the notation

x ·m =
∑
t∈N

mtxt.

Countably additive probability measures on N are identified with sequences

m ∈ `1. Then x · m denotes the expectation of x ∈ X with respect to the

positive measure m.

The sequence (1, 1, . . .), which is identically 1, is denoted by 1. When θ ∈ R

is a scalar we often abuse notation and use θ to denote the constant sequence

θ1. If x is a sequence, we denote by (θ, x) the concatenation of θ and x: the

sequence (θ, x) takes the value θ for t = 0, and then xt−1 for each t ≥ 1.

Similarly, the sequence

(θ, . . . , θ︸ ︷︷ ︸
T times

, x)

takes the value θ for t = 0, . . . , T − 1 and xt−T for t ≥ T .

The notation for inequalities of sequences is: x ≥ y if xt ≥ yt for all t ∈ N,

x > y if x ≥ y and x 6= y, and x� y if xt > yt for all t ∈ N.

2.2. All discount factors: The Pareto relation with exogenous D.

First we seek to understand the comparisons of streams that all discount fac-

tors must agree on: the Pareto relation when the set of discount factors is

D = [0, 1].

Define the discounting dominance binary relation �d on `1 as follows. Let

x �d y if, for all δ ∈ [0, 1],
∑

t δ
txt ≥

∑
t δ

tyt. Observe that �d is well-defined

as
∑

t δ
txt ∈ R for all δ ∈ [0, 1] and x ∈ `1.



ON MULTIPLE DISCOUNT RATES 11

We can gain some insight as to the structure of �d from the four seemingly

trivial observations:

(1) (1, 0, 0, . . .) �d 0

(2) If x �d 0, then x �d (0, x) �d 0

(3) If x �d y, then (x− y) �d 0.

Statement 1 is simply a very weak implication of the claim that all expo-

nential discounters like more consumption to less. Statement 2 is the essence

of discounting: if a stream is “good,” in the sense that it is at least as good

as 0, then shifting its start date back a period cannot improve on the stream,

but also cannot render the stream a “bad.” Finally, statement 3 reflects that

discounting is linear in consumption streams.

Let us work out some recursive implications of these statements. State-

ments 1 and 2 imply that (1, 0, 0, . . .) �d (0, 1, 0, 0, . . .). Then statement 3

implies that (1,−1, 0, . . .) �d 0. This is a first-order implication of impa-

tience; let us work out a second-order implication: using 2, (1,−1, 0, . . .) �d

(0, 1,−1, 0, 0, . . .), from which 3 implies (1,−2, 1, 0, 0, . . .) �d 0. Observe that

(1,−2, 1, 0, 0, . . .) �d 0 reflects “convexity” of the discount function, or the

idea that mean preserving spreads (in time) are desirable. One can go further

and work out a third-order expression, and a fourth-order expression, and so

forth. All such statements are implications of an idea we refer to as recursive

impatience.

So far we have not yet used that x �d 0 implies (0, x) �d 0, but it is easy

to see what happens when we do: the fact that (1,−2, 1, 0, . . .) �d 0 implies

that (0, 1,−2, 1, 0, . . .) �d 0.

By pursuing all the implications of recursive impatience, we shall (essen-

tially) exhaust all the situations in which x �d y. To this end, define a class

of vectors, which we call alternating binomial coefficients: For s, t ∈ N, let

η(s, t) ∈ l∞ be defined as η(s, t)i = (−1)(i−s)
(
t
i−s

)
for all i ∈ {s, . . . , s + t}

and η(s, t)i = 0 otherwise. We shift the transformation η(0, t) by s units of

time to obtain η(s, t): for example, η(5, 1) is a shift of consumption on date

t = 6 to t = 5. For a few examples, observe that η(0, 0) = (1, 0, . . .), η(2, 0) =

(0, 0, 1, 0, . . .), η(1, 1) = (0, 1,−1, 0, . . .), and η(2, 3) = (0, 0, 1,−3, 3,−1, 0, . . .).
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The inductive argument we sketch above guarantees that for all s, t ∈ N,

η(s, t) �d 0.

Observe that each η(s, t) can be identified with shifting an unambiguously

good stream backward one unit in time. For example, η(0, 2) = (1,−2, 1, 0, . . .) �d

0 reflects the fact η(0, 1) �d (0, η(0, 1)). Equivalently, (1,−1, 0, . . .) �d (0, 1,−1, 0, . . .).

More generally, for all t > 0, η(s, t) �d 0 reflects that η(s, t− 1) �d (0, η(s, t−
1)).

The main result of this section is that the statements derived inductively,

using recursive impatience, from statements (1)-(3), essentially exhaust all of

the ways in which we may have x �d y, When x �d y, then (x − y) can be

expressed as a (limit of) nonnegative linear combination of streams of the form

η(s, t). Hence, y must arise from x by a sequence of shifts of unambiguously

good streams backwards in time.

Define an elementary transformation of order s (for s ∈ {0, . . .}) to be a

vector of the form λη(s, t) for some t and λ > 0.

Theorem 1. y �d x if and only if for each ε > 0, there is a finite collection

of elementary transformations {λiη(si, ti)} for which

‖(y − x)−
∑
i

λiη(si, ti)‖1 ≤ ε.

Remark 2. If each of y and x are eventually constant (and hence eventually

0), then (y − x) can be expressed as a finite weighted sum of elementary

transformations. In other words, the approximation in the preceding is not

needed.

The ordering �d and Theorem 1 presume that one allows for all δ ∈ [0, 1],

but it is possible to extend the theorem.5 Namely, suppose that it is agreed

that the discount factor must lie in a compact interval [a, b] ⊆ [0, 1]. This

would be the case, for example, if there were a lower bound on discounting

future generations. Denote the derived relation by �da,b (so that �d0,1=�d).
In the three statements discussed above, properties 1 and 3 would remain

unchanged. However, property 2 would be replaced. Consider what happens

5We thank Itai Sher for suggesting this question. Observe that Foster and Mitra (2003)
perform a similar exercise.
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when x dominates 0 for all δ ∈ [a, b]. Instead of (0, x) �d 0, we can actually

say more: we can say that (0, x) �da,b ax. Further, instead of x �d (0, x), we

can say more: we can say that bx �da,b (0, x). So, we would replace 2 with the

statement that x �da,b 0 implies

bx �da,b (0, x) �da,b ax.

Otherwise, the induction argument remains the same.

The following example illustrates Theorem 1.

Example 3. Consider the stream x = (1, 4, 2,−7, 6,−2, 0, 0, . . .). We claim

that x �d 0. To see this, observe that shifting back the consumption bun-

dle (1, 0, 0, . . .) back two units in time results in x − (1, 0, 0,−1, 0, . . .) =

(0, 4, 2,−6, 6,−2, 0, . . .) = x2. Impatience implies that x �d x2. Shifting the

sequence (0, 0, 2,−4, 2, 0, . . .) back one unit in time results in x2−(0, 0, 2,−6, 6,−2, . . .) =

(0, 4, 0, 0, . . .) = x3. So x2 �d x3. Finally, subtracting 4 units of consumption

from period 1 results in x3 − (0, 4, 0, 0, . . .) = 0. Thus x �d x2 �d x3 �d 0.

In term of the transformations in Theorem 1,

(x− 0) = 4η(1, 0) + η(0, 1) + η(2, 1) + η(3, 1) + 2η(2, 3).

2.3. Axioms. The remainder of our analysis, and the main contribution of

our paper, is a characterization of the utilitarian (mean discounting), Pareto

and maxmin criteria discussed in the introduction. The Pareto criterion will

involve an endogenously determined set of discount factors.

We proceed to introduce a collection of axioms relevant to the analysis.

Recall that a binary relation is a weak order if it is complete and transitive,

and an ordering if it is reflexive and transitive.

2.3.1. Standard axioms. We state some basic axioms that are either commonly

used in the literature, or variations on commonly-used axioms. Then we say

a few words about what they mean in our context, and why they might be

considered reasonable impositions.

The letters x, y and z refer to streams in X; θ is a constant stream. Unbound

variables are universally quantified.

• Monotonicity : x ≥ y implies x � y, and x� y implies x � y.

• Non-degeneracy : There exist x, y ∈ X for which x � y.
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• d-monotonicity : x �d y implies x � y.

• Convexity : For all λ ∈ [0, 1], if x � z and y � z, then λx+(1−λ)y � z.

• Translation invariance: x � y implies x+ z � y + z.

• c-Translation Invariance: x � y implies x+ θ � y + θ.

• Homotheticity : For all x, y ∈ X and all α ≥ 0, if x � y, then αx � αy.

• Continuity : {y ∈ X : y � x} and {y ∈ X : x � y} are closed.

Note that x �d y presumes that x, y ∈ `1. The relation �d is our ba-

sic dominance relation, so d-monotonicity is as reasonable as monotonicity.

Moreover, if we have in mind a population of exponentially discounting agents,

d-monotonicity just rules out certain Pareto dominated choices.

The convexity axiom imposes a preference for “smoothing” utility across

time. In an intergenerational context, such a preference would naturally result

from equity considerations. Note that, in the standard intertemporal choice

model with discounted utility, smoothing is a consequence of the concavity of

the utility function. There is no such concavity in our model. The streams

under consideration are already measured in “utils” per period of time, and

the standard intertemporal choice model is linear in utils. Our convexity

axiom says that smoothing may be intrinsically desirable. This interpretation

appears already in Marinacci (1998).

Translation invariance is usually understood as the requirement that there

are no utility comparisons made across periods. It allows for the possibility

that the “scale” of utility across periods matters. c-Translation Invariance

weakens translation invariance to allow for meaningful intertemporal compar-

ison of utility. Note that Translation Invariance imposes separability across

time (in the sense that if xt = yt and x′t = y′t for all t ∈ E ⊆ N, while xt = x′t
and yt = y′t for all t ∈ Ec = N \ E, then x � y implies x′ � y′). In contrast,

c-Translation Invariance does not impose such separability.

We do not have much to say about Continuity, Non-degeneracy or Homo-

theticity. These axioms are very well known, and have no special meaning in

our context.

2.3.2. Novel axioms. Our first novel axioms are versions of the Koopmans

(1960) stationarity property. Koopmans requires that a stream x is at least

as good as y if and only if this preference holds when an identical payoff is
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appended to the first period of each stream. Our axioms weaken Koopmans’,

in that they apply only when y is a constant stream (i.e. smooth) and when

the payoff appended is equal to the constant in y.

Stationarity: For all t ∈ N and all λ ∈ [0, 1],

x � θ iff λx+ (1− λ)(θ, . . . , θ︸ ︷︷ ︸
t times

, x) � θ.

Generally speaking, stationarity requires certain choices to be time-invariant.

It requires that the comparison between two streams remains the same whether

it is made today or in the future. We impose a form of stationarity that re-

quires time-invariance of comparisons with constant, or smooth, streams. The

reason is that postponing the decision has a natural interpretation in the case

of smooth streams.

Suppose that a policy maker has to choose between two streams, x and a

constant stream θ. Think of θ as a baseline, or status quo. The baseline θ is

constant, and delivers θ in every period, so (θ, x) is the same as staying with

the θ policy for one period and then switching to x. A postponed version of this

decision problem would be to choose between (θ, x) and θ. The idea behind

stationarity is that the two decision problems are equivalent: one should choose

x over θ if and only if one would choose (θ, x) over θ.

A stronger version of stationarity (such as Koopmans’) would demand that

any decision is preserved if postponed. If our policy maker chooses x over

y, then she would be required to choose (θ, x) over (θ, y) for any θ; that is,

independently of history. But it is easy to imagine reasons for the decision to

be reversed, and (θ, y) chosen over (θ, x).6 Since (θ, y) is different from y we

can imagine situations where θ in period 0 may “enhance” the value of y, for

example if θ is a large positive value, and the stream y starts out poorly. The

difference with our axiom, in which y is required to be the constant stream θ,

is that (θ, y) is different from y. So in our case, we can justify the axiom by

saying that if a policy maker is willing to switch from θ to x today, then she

must be willing to switch tomorrow.

6See also Hayashi (2016).
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Finally, our stationarity axiom says more. Not only must the comparison of

x and θ be the same as that between (θ, x) and θ, but this must also be true of

the comparison of any lottery λx+ (1− λ)(θ, x) and θ. In particular, the only

basis for choosing between λx+ (1−λ)(θ, x) and θ must be the comparison of

x with θ, because the only basis for comparing (θ, x) and θ is the comparison

between x and θ. The meaning is that there is no additional smoothing (or

“hedging”) motive in the comparisons of x with θ, now or in the future.7

The following axiom, compensation, is a technical non-triviality axiom. Its

purpose is to ensure that the future is never irrelevant. It is similar in spirit

to Koopmans’ sensitivity axiom (Postulate 2 of Koopmans (1960)).

Compensation: For all t there are scalars θ̄t, θt, and θt, with θ̄t > θt > θt,

such that

(θt, . . . , θt︸ ︷︷ ︸
t times

, θ̄t, . . .) � θt.

Compensation says that for any t there must exists three numbers: θ̄t >

θt > θt, such that the worse outcome θt for t periods is compensated by a

better outcome θ̄t for all periods t+ 1, . . ., relative to the smooth stream that

gives the intermediate value θt in every period. The axiom ensures that no

future period is irrelevant for the purpose of comparing utility streams.

Our last axiom is a weak expression of discounting. Roughly, it states

that whenever a stream x is at least as good as a smooth stream θ, then the

preference is always willing to wait “long enough” so that changes in x do

not matter. Axioms along these lines were introduced by Villegas (1964) and

Arrow (1974).

Continuity at infinity: For all x ∈ X, all θ, if θ � (x0, . . . , xT , 0, . . .) for

all T , then θ � x.

2.4. Average discount factor/Utilitarian model. Jackson and Yariv (2015)

have shown that a society of individuals aggregating exponentially discounted

preferences in a time-separable and Paretian fashion must socially discount

7We should say that this direction of the axiom (λx + (1 − λ)(θ, x) � θ =⇒ x � θ) is only
really needed to give a common stationarity axiom for the Pareto and maxmin models. For
the maxmin model, where there is a meaningful notion of indifference, we do not need it.
See the discussion of Indifference Stationarity in Section 3.2.
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according to a weighted sum of period individual discount factors. Here, we

characterize the full implications of this model using Theorem 1. Clearly, such

a society must have a discount factor which respects d-monotonicity and trans-

lation invariance. It turns out that these are essentially the only requirements

imposed on the model.

Theorem 4. A weak order � on `1 satisfies nondegeneracy, continuity, d-

monotonicity, and translation invariance iff there is a Borel probability mea-

sure µ on [0, 1] such that x � y iff
∑∞

t=0(
∫ 1

0
δtdµ(δ))xt ≥

∑∞
t=0(

∫ 1

0
δtdµ(δ))yt.

The proof of Theorem 4 relies on similar ideas to Theorem 1 (see section 6).

In particular it uses the Hausdorff moment problem, which allows us to du-

ally describe �d. Translation invariance then provides the linearity of the

functional form in the theorem.

2.5. Pareto criterion. We now turn to the Pareto criterion. The exercise

is similar to Section 2.2, but now the set of discount factors is endogenous;

and not given as part of the exercise. We wish to understand the common

properties of all orderings that are the Pareto relation for some society of

individuals who are exponential discounters.

Put differently, we want to understand the assumptions behind the use of

the Pareto criterion in general, abstracting away from the particular use of the

criterion in the presence of a particular society or group of agents.

Theorem 5. An ordering � satisfies continuity, monotonicity, convexity,

translation invariance, stationarity, compensation and continuity at infinity

iff there is a nonempty closed8 set D ⊆ (0, 1) such that x � y iff for all δ ∈ D
∞∑
t=0

δtxt ≥
∞∑
t=0

δtyt.

Furthermore, D is unique.

2.6. Max min.

8Closed means with respect to the standard Euclidean topology, and not with respect to
the relative topology on (0, 1). So any closed set must exclude 0 and 1.
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Theorem 6. The preference relation � satisfies continuity, monotonicity,

convexity, homotheticity, c-translation invariance stationarity, compensation

and continuity at infinity iff there is a nonempty closed set D ⊆ (0, 1) such

that x � y iff U(x) ≥ U(y), with

U(x) = min{(1− δ)
∞∑
t=0

δtxt : δ ∈ D}.

Furthermore, D is unique.

As we explain in Section 3.2 below, stationarity could be replaced by “in-

difference stationarity” in Theorem 6.

2.7. Maximal subrelations. We now focus on the following question. The-

orem 5 axiomatizes a class of incomplete relations. However, many preference

relations need not satisfy the axioms stated there. Motivated by (Cerreia-

Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi, 2011), who work

in a framework of uncertainty, we study whether, for a given relation, there

exists a maximal subrelation of the type axiomatized in Theorem 5.

We show that whenever there exists a subrelation satisfying the axioms of

Theorem 5, there is a maximal such subrelation.

Theorem 7. Let � be a continuous and convex weak order satisfying that

there exists D∗ ⊂ (0, 1) closed such that ∀δ ∈ D∗,
∑∞

t=0 δ
txt ≥

∑∞
t=0 δ

tyt =⇒
(x− y) + z � z. Then there is a maximal ordering �∗ with the properties that:

(1) �∗⊆�;

(2) there is D ⊆ (0, 1), closed, such that x �∗ y iff for all δ ∈ D
∞∑
t=0

δtxt ≥
∞∑
t=0

δtyt.

3. Discussion

3.1. On the proof of Theorems 5 and 6. Theorems 5 and 6 are obtained

by first treating N as a state space, and establishing a multiple prior repre-

sentation, as in the literature of decisions under uncertainty. We then use the

stationarity axiom to update some of the priors, and use updating to show

that they must be geometric distributions.
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The proof of Theorem 5 relies on first obtaining a multiple prior represen-

tation as in Bewley (2002): there is a set of probability distributions M over

N such that x � y iff the expected value of x is larger than the expected

value of y for all probability distributions in M . Similarly, the proof of The-

orem 6 relies on a max-min multiple prior representation, as in Huber (1981,

Proposition 2.1 of Chapter 10.2) and Gilboa and Schmeidler (1989). We use

the continuity at infinity axiom, and ideas from Villegas (1964), Arrow (1974),

and Chateauneuf, Maccheroni, Marinacci, and Tallon (2005), to show that the

measures in M are countably additive.

The main contribution in our paper is to use stationarity to show that

M is the convex hull of geometric probability distributions. This is carried

out in Lemma 11, which contains the core of the proofs of both Theorems 5

and 6. The idea is to choose a subset of the extreme points of M (the exposed

points of M ; these are the extreme points that are the unique minimizers in

M of some supporting linear functional), and show that when these priors

are updated then they have the memoryless property that characterizes the

geometric distribution.

Think of each m ∈ M as representing the beliefs over when the world

will end, and choose a particular extreme point m of M . We show that the

stationarity axiom implies that for any time period t ≥ 0, if m′ is the belief

m ∈ M conditional (Bayesian updated) on the event {t, t + 1, . . .} (that is,

conditional on the event that the world does not end before time t), then

m′ = m. This means that m is the geometric distribution.

3.2. On Koopmans’ axiomatization. Koopmans (1960) is the first axiom-

atization of discounted utility. He relies on two crucial ideas: one is sepa-

rability and the other is stationarity. Separability means two things. First

that (θ, x) � (θ′, x) iff (θ, y) � (θ′, y) for all y. Second, that (θ, x) � (θ, y) iff

(θ′, x) � (θ′, y) for all θ′. It is easy to see that translation invariance implies

separability, but c-translation invariance does not. So the Pareto model in

Theorem 5 satisfies separability, but the following simple example illustrates

that the max-min model in Theorem 6 may violate separability: Let the pref-

erence relation � have a max-min representation with D = {1/5, 4/5}. Then

(0, 1, 0, . . .) � (0, 0, 2, 0, . . .) while (5, 0, 2, . . .) � (5, 1, 0, . . .); a violation of
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separability. In light of some experimental evidence against separability (see

Loewenstein (1987) and Wakai (2008)), it may be interesting to note that the

max-min model does not impose it.

The second of Koopman’s main axioms is stationarity. It says that x � y iff

(θ, x) � (θ, y). It is probably obvious how his axiom differs from ours, but let

us stress two aspects. In our stationarity axiom, stationarity is only imposed

for comparisons with a smooth stream. As we explained in 2.3.2, our idea

is that the smooth stream is a status quo, and that the comparison in the

stationarity axiom can be phrased as postponing the decision to move away

from the status quo.

The other way in which we depart from Koopmans is that our stationarity

axiom requires that λx+(1−λ)(θ, x) � θ implies x � θ (recall the discussion on

page 16). The idea is again that the comparison between λx+(1−λ)(θ, x) and

θ is based on the comparison between x and θ, but we should stress that this

direction of the axiom is only really needed in Theorem 5. For the max-min

model of Theorem 6 we can use the following version of stationarity instead:

Indifference stationarity: For all t ∈ N and all λ ∈ [0, 1],

x ∼ θ =⇒ λx+ (1− λ)(θ, . . . , θ︸ ︷︷ ︸
t times

, x) ∼ θ.

The point of using Stationarity instead of Indifference stationarity in Theo-

rem 6 is to provide a common notion of stationarity behind both theorems. It

is easy to show that the other Indifference stationarity is implied by the other

axioms.

Proposition 8. Stationarity, continuity, and monotonicity imply indifference

stationarity.

Proof. Suppose that x ∼ θ. Then by stationarity, we can conclude that for

any t ∈ N and any λ ∈ [0, 1], λx+ (1− λ)(θ, . . . , θ︸ ︷︷ ︸
t times

, x) � θ. Suppose by means

of contradiction that λx+ (1− λ)(θ, . . . , θ︸ ︷︷ ︸
t times

, x) � θ. Then, by continuity, there

is ε > 0 for which λ(x − ε1) + (1 − λ)(θ, . . . , θ︸ ︷︷ ︸
t times

, x − ε1) � θ. Conclude that

x− ε1 � θ, by stationarity. By monotonicity, x � θ, a contradiction. �
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We cannot use indifference stationarity for the Pareto representation of The-

orem 5 because � may be an incomplete ordering, which makes indifference

unsuitable for our analysis. In the max-min model of Theorem 6, in contrast,

we can base much of the analysis on the indifference relation ∼, and then

Indifference stationarity can be used to replace stationarity in the theorem.

Finally, it is worth mentioning that all our models satisfy impatience, mean-

ing that it is always desirable to obtain a positive outcome early; for example

(1, 0, . . .) � (0, 1, 0, . . .). It is obvious that (1, 0, . . .) �d (0, 1, 0, . . .), and there-

fore that the expected discounting model of Theorem 4 satisfies impatience. It

is also true that the Pareto and max-min models satisfy impatience, but it is

not the direct implication of any one of our axioms. Rather, impatience comes

about because we obtain a multiple prior representation (see the discussion

in 3.1), and stationarity and continuity at infinity imply discount factors that

are in (0, 1).

3.3. Non-convexity of D and Pareto optimality. The set of discount

factors D in Theorems 5 and 6 does not need to be an interval in (0, 1). The

set of priors M is convex, but the set of discount factors does not need to be

convex. Despite this lack of convexity, D has some of the same properties as

the set of priors in models of multiple priors.

We will not spell out the details, but one can imagine an exchange economy

in which `∞ is the commodity space, and with n agents, each of them with a set

of discount factors Di. Let Mi be the convex hull of the resulting exponential

priors over N. By results in Billot, Chateauneuf, Gilboa, and Tallon (2000) or

Rigotti and Shannon (2005) the existence of smooth Pareto optimal outcomes

relies on the existence of a point m ∈
⋂n
i=1Mi.

9 It is then easy to show that

there is δ ∈
⋂n
i=1Di such that m corresponds to the exponential distribution

over N defined by δ.

4. Conclusion

This paper tackles the problem of multiplicity of discount rates when eval-

uating long-term projects. One might imagine solutions to the problem that

9These results rely on a multi-set generalization of the separating hyperplane theorem,
usually attributed to Dubovitskii-Milyutin. See e.g. Holmes (1975), exercise 2.47.
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do away with the whole concept of exponential discounting, but the idea of

present value calculations, and the accompanying notion of stationarity, is so

ingrained that it seems difficult to do without discounting. Indeed present-

value calculations are taught to highschool students (at least in the United

States), and are pervasive in the practice of private and public project eval-

uation. A theory that does not use exponential discounting might be viable,

but it would surely be a hard sell to the economics profession.

We propose instead to develop a theory of discounting that is is robust to

discount factors by considering a set-valued concept. Our first result provides

a language for discussing unambiguous ranking in the presence of discounting

when the discount factor is either unknown, or there is disagreement about

the discount factor. The model is a version of the Pareto model, with an

exogenous discount factor. Our second result provides the implications for a

discounter who places a probabilistic assessment on exponential discounting.

The model involves a utilitarian social choice function. Finally, our final two

results describe an endogenously derived set-valued concept. The two models

obtained are a Pareto model with an endogenous set of discount factor, and

the maxmin model where each stream is evaluated according to a worst-case

present-value calculation.

5. Proof of Theorem 1

To establish the theorem, we need a preliminary definition.

Given γ ∈ l∞, define the difference function ∆γ : N2 → R inductively as

follows:

(1) ∆γ(0, t) = γ(t)

(2) ∆γ(m, t) = (−1)m[∆(m− 1, t+ 1)−∆(m− 1, t)].

Say that γ is totally monotone if for all m, t ∈ N, ∆γ(m, t) ≥ 0. Total

monotonicity is basically the concept of infinite-order stochastic dominance,

applied to a discrete environment. The class of totally monotone functions is

a subset of l∞ which we denote by T .

Total monotonicity means for all t:

• γ(t) ≥ 0

• −γ(t+ 1) + γ(t) ≥ 0
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• γ(t+ 2)− 2γ(t+ 1) + γ(t) ≥ 0

• −γ(t+ 3) + 3γ(t+ 2)− 3γ(t+ 1) + γ(t) ≥ 0

• γ(t+ 4)− 4γ(t+ 3) + 6γ(t+ 2)− 4γ(t+ 1)− γ(t) ≥ 0

The inequalities are the same as η(m, t) · γ ≥ 0 for all m, t ∈ N.

The following result is due to (Hausdorff, 1921), and is referred to as the

Hausdorff Moment Problem.10

Proposition 9. Let γ(1) = 1. Then γ is totally monotone if and only if there

is a Borel measure ( i.e. nonnegative measure on the Borel sets) µ on [0, 1] for

which γ(t) =
∫ 1

0
δtµ(δ).

Proof. (of Theorem 1) First, we establish that x �d y if and only if for all γ ∈
T , γ ·x ≥ γ ·y.11 For δ ∈ [0, 1], γ(t) = δt is totally monotone by Proposition 9.

So, if γ ·x ≥ γ · y for all γ ∈ T , then x �d y. Conversely, suppose that x �d y.

Let γ ∈ T . Then let µ be the Borel over [0, 1] associated with γ. Since x �d y,

we know that
∑

t δ
txt ≥

∑
t δ

tyt for all δ ∈ [0, 1]; integrating with respect to

µ obtains
∫ 1

0

∑
t δ

txtdµ(δ) ≥
∫ 1

0

∑
t δ

tytdµ(δ). Now, |δtxt| ≤ |xt| for all t, so∫ 1

0

∑
t |xt|dµ(t) ≤ µ([0, 1])

∑
t |xt|. So by Fubini’s Theorem (see Theorem 11.26

of Aliprantis and Border (1999),
∫ 1

0

∑
t δ

txtdµ(t) =
∑

t

∫ 1

0
δtxtdµ(δ) = γ · x.

Similarly,
∫ 1

0

∑
t δ

tytdµ(δ) = γ · y, so that γ · x ≥ γ · y.

Therefore, if x �d y is false, there is a totally monotone γ for which γ · (x−
y) < 0. By renormalizing, we can choose γ so that γ · (y − x) ≥ 1. Now, it is

simple to verify that γ is totally monotone if and only if γ · η(m, t) ≥ 0 for all

m, t ∈ N.12 So x �d y being false is equivalent to the consistency of the set of

linear inequalities:

• γ · (y − x) ≥ 1

• γ · η(m, t) ≥ 0 for all m, t ∈ N.

for some γ ∈ l∞.

Consider the set of vectors (y − x, 1) ∈ `1 ×R and (η(m, t), 0) ∈ `1 ×R for

all (m, t); we can call this set V . By the Corollary of p. 97 on Holmes (1975),

10Observe that this result is closely related to the characterization of belief functions as
those capacities which are totally monotone, e.g. Shafer (1976).
11We use the notation γ · x =

∑
t γ(t)xt.

12The proof uses Pascal’s identity:
(
m−1

i−(t+1)

)
+
(
m−1
i−t
)

=
(
m
i−t
)

to show (by induction on m)

that γ · η(m,w) = ∆γ(m, t). See, e.g. Aigner (2007), p. 5.
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we may conclude that our inequality system is inconsistent if and only if (0, 1)

is in the closed convex cone spanned by V .

Therefore, we can conclude that for any ε > 0, there is (z, a) ∈ `1×R, where

(z, a) is in the convex cone spanned by V and for which ‖z‖1 + |1 − a| < ε;

which implies that each of ‖z‖1 < ε and |1 − a| < ε. In particular, by taking

a sufficiently close to 1, we can also guarantee that ‖ 1
a
z‖1 < ε.13 The vector(

1
a
z, 1
)

is in the convex cone spanned by V .

To simplify notation, write w = 1
a
z. Now, (w, 1) is a finite combination of

vectors of the form (λiη(mi, ti), 0) and (b(y − x), b). Clearly, it must be that

b = 1, so we have w = (y − x) +
∑N

i=1 λiη(mi, ti), which is what we wanted to

show. �

The extension mentioned after the statement of Theorem 1 follows from a

generalization of Proposition 9. Specifically, it is known that for γ : N → R,

there is a Borel probability measure µ on [a, b] for which γ(t) =
∫ 1

0
δtµ(δ) if

and only if for every polynomial P : R → R, given by P (x) =
∑n

i=0 aix
i for

which for all x ∈ [a, b], we have P (x) ≥ 0, it follows that
∑n

i=0 aiγ(i) ≥ 0

(see, e.g. Theorem 1.1 of Shohat and Tamarkin (1943)). Further, it is known

that if P is a nonnegative polynomial on [a, b], then it can be written as

P (x) =
∑

(s,t)∈S λ(s,t)(x − a)s(b − x)t for some set of indices S ⊆ N2 and

λ(s,t) ≥ 0. A variant of this fact is due to Bernstein (1915), for the case

[−1, 1]; see again Shohat and Tamarkin (1943), p. 8 who consider the case

[0, 1]. The result then follows from renormalizing. Finally this leads to the

result, as it implies that we only need to check nonnegativity of the polynomials

(x− a)s(b− x)t for each s, t.

6. Proof of Theorem 4

That the axioms are necessary is obvious. Conversely, suppose that the

axioms are satisfied. Since `1 is separable (Theorem 15.21 of Aliprantis and

Border (1999)), and since � is a continuous weak ordering, by Debreu’s rep-

resentation theorem (Debreu (1954)), there is a continuous utility function

U : `1 → R which represents �.

13For example, let ν > 0 so that ν2 +ν < ε, and take (z, a) so that | 1a | < 1+ν and ‖z‖1 < ν.

Then ‖ 1az‖1 ≤ |
1
a |‖z‖1 < ν2 + ν < ε.
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First note that x � y implies that nx � ny for any n ≥ 1. The proof is by

induction: suppose that (n−1)x � (n−1)y, then using translation invariance

twice we obtain that nx = x+ (n− 1)x � x+ (n− 1)y � y + (n− 1)y = ny.

In particular, this means that nx ∼ ny whenever x ∼ y.

Second, we argue that there is a scalar θ such that (θ, 0, . . .) � 0. By non-

degeneracy there is x, y ∈ `1 with x � y. By translation invariance, we may

without loss suppose that y = 0, so we obtain that x � 0. We may also sup-

pose without loss that x ≥ 0, since monotonicity (implied by d-monotonicity)

implies (x ∨ 0) � x.14 Now using d-monotonicity, note that (θ, 0, . . .) � x for

any scalar θ ≥ ‖x‖1.
These two facts, that nx ∼ ny whenever x ∼ y and that (θ, 0, . . .) �

0, imply that if γ > γ′ then (γ, 0, . . .) � (γ′, 0, . . .). The reason is that

(γ, 0, . . .) � (γ′, 0, . . .) by monotonicity (again implied by d-monotonicity) and

that (γ, 0, . . .) ∼ (γ′, 0, . . .) would mean that (nγ, 0, . . .) ∼ (nγ′, 0, . . .) for any

n ≥ 1. But if we choose n with n(γ − γ′) > θ then (nγ, 0, . . .) ∼ (nγ′, 0, . . .)

would mean that (θ, 0, . . .) � 0 ∼ (n(γ − γ′, . . .) and contradict monotonicity.

Given that we have shown that γ > γ′ implies U(γ, 0, . . .) > U(γ′, 0, . . . ) we

may without loss of generality assume that U(γ, 0, . . .) = γ for γ ∈ R.15

We claim that U is a linear functional. By definition of U , we know

that for all x, y ∈ `1, U(U(x), 0, 0, . . .) = U(x), so x ∼ (U(x), 0, 0, . . .);

and y ∼ (U(y), 0, 0, . . .). Hence, we know that x + y ∼ (U(x), 0, 0, . . .) +

y ∼ (U(x), 0, 0, . . .) + (U(y), 0, 0, . . .), by a double application of translation

invariance. Conclude that U(x + y) = U((U(x) + U(y), 0, 0, . . .)). Since

U((U(x)+U(y), 0, 0, . . .)) = U(x)+U(y), we have that U(x+y) = U(x)+U(y).

That U(αx) = αU(x) for any α ∈ R follows from the preceding and the conti-

nuity of U . Hence, U is a continuous, monotone linear functional representing

�. Moreover, U(1, 0, 0, . . .) = 1.

The dual space of `1 coincides with l∞ (Theorem 12.28 of Aliprantis and

Border (1999)), so that there is some bounded function γ : N→ R for which

14The notation (x ∨ 0) refers to the element-by-element maximum.
15That this normalization is valid relies on the fact that U({θ, 0, 0, . . . : θ ∈ R}) = U(`1).
This latter property holds since, by continuity, for any y ∈ `1 and any θ > 0, there is
n > 0 large so that (θ, 0, 0, . . .) � αn−1y. This can be seen to imply that (nθ, 0, 0, . . .) � y.
Similarly, there is θ′ for which y � (θ′, 0, 0, . . .). Hence by continuity there is θ∗ for which
(θ∗, 0, 0, . . .) ∼ y, establishing the claim.
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for all x ∈ `1, U(x) =
∑

t γ(t)xt. Observe now that by d-monotonicity and

Theorem 1, for each s, t ∈ N, we have U(η(s, t)) ≥ 0. In other words,

0 ≤ U(η(s, t)) = γ · η(s, t) = ∆γ(s, t)

for all s, t ∈ N. Thus, γ is totally monotone. The result then follows from

Proposition 9 and the fact that U(1, 0, 0, . . .) = 1.

7. Proof of Theorems 5 and 6

The following lemma is useful.

Lemma 10. The function m : [0, 1)→ `1 given by m(δ) = (1− δ)(1, δ, δ2, . . .)
is norm-continuous.

Proof. First, we show that the map d : [0, 1)→ `1 given by d(δ) = (1, δ, δ2, . . .)

is continuous. The result will then follow as m(δ) = (1− δ)d(δ).16

So, let δn → δ∗. Then ‖d(δn) − d(δ∗)‖1 =
∑

t |δtn − (δ∗)t|. Observe that

for each t, |δtn − (δ∗)t| → 0. By letting δ̂ = supn(δn) < 1, we have that

for each t, |δtn − (δ∗)t| ≤ max{|(δ∗)t|, |δ̂t − (δ∗)t|}, since the expression |δt −
(δ∗)t| increases monotonically when δ moves away from δ∗. And observe that∑

t max{|(δ∗)t|, |δ̂t − (δ∗)t|} < +∞. Conclude by the Lebesgue Dominated

Convergence Theorem (Theorem 11.20 of Aliprantis and Border (1999)) that

‖d(δn)− d(δ∗)‖1 → 0. �

Lemma 11, following, characterizes cones in `∞ which are the set of streams

which have nonnegative discounted payoff for every discount factor in some

(endogenously determined) closed set of discount factors. The lemma is the

main building block in both the maxmin representation, and the Bewley style

representation. In each environment, the cone of vectors deemed at least as

good as 0 must be a cone of this type. From there, it is a matter of translating

the properties of the cone into the properties of the preference �.

The lemma uses similar ideas to those of Villegas (1964), Arrow (1974), and

Chateauneuf, Maccheroni, Marinacci, and Tallon (2005) to obtain countably

16The latter is easily deemed continuous. By a simple application of the triangle inequality,
if δn → δ∗, we have ‖(1−δn)d(δn)−(1−δ)d(δ)‖1 ≤ |(δ−δn)|‖d(δn)‖1+(1−δ)‖d(δn)−d(δ)‖1.
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additive measures. Villegas and Arrow show the existence of countably addi-

tive priors in Savage’s subjective expected utility model. Chateauneuf et. al

show that the set of priors in the α-maximin model is countably additive.

The main novelty in the lemma lies in using the boundary property 4 to

show that the measures supporting the cone take the exponential form. This

is achieved essentially by updating the supporting measures and by showing

the “memoryless” property of the exponential distribution.

Lemma 11. Let P ⊆ `∞. Suppose P satisfies the following properties.

(1) P is a `∞-closed, convex cone.

(2) There is p 6∈ P .

(3) `+∞ ⊆ P .

(4) p ∈ bd(P ) implies (0, 0, . . . , 0, p) ∈ P and p+ (0, 0, . . . , 0, p) ∈ bd(P ).

(5) For all θ ∈ [0, 1), there is T so that

(1− θ, . . . , 1− θ︸ ︷︷ ︸
T times

,−θ,−θ, . . .) ∈ P.

(6) For all T , (0, . . . , 0︸ ︷︷ ︸
T times

, 1, . . .) ∈ int(P ).

Then there is a nonempty closed D ⊆ (0, 1) so that P =
⋂
δ∈D{x :

∑
t(1 −

δ)δtxt ≥ 0}. Conversely, if there is such a set D, all of the properties are

satisfied.

Proof. Establishing that if there is such a D, then the properties are satisfied is

mostly simple: Let M = {m(δ) : δ ∈ D}, so that P =
⋂
δ∈D{x : m(δ) · x ≥ 0}.

Each set {x : m(δ) · x ≥ 0} is closed, and contains `+∞, so (1) and (3) are

satisfied. Property (2) is immediate as P contains no negative sequences.

For the other properties, note that Lemma 10 and the compactness of D

imply that M is norm-compact. Observe that x ∈ P iff infδ∈D(1−δ)
∑

t δ
txt ≥

0, and that moreover this infimum is achieved (by norm-compactness of M).

Then, to see that (4) is satisfied, observe that if x ∈ bd(P ), then there is δ ∈ D
for which m(δ) · x = 0, and in particular then, m(δ) · (0, . . . , 0︸ ︷︷ ︸

T times

, x) = 0, and

hence m(δ) · (x+ (0, . . . , 0︸ ︷︷ ︸
T times

, x)) = 0. This means that x+ (0, . . . , 0, x) ∈ bd(P ).



28 CHAMBERS AND ECHENIQUE

Properties (5) and (6) obtain as 0 < inf D ≤ supD < 1. First, m(δ) · (1 −
θ, . . . , 1− θ,−θ, . . .) = (1− δT )− θ. So θ < 1 means that there is T such that

(1 − δT ) − θ ≥ 0 for all δ ∈ D. Second, for any T , let ε > 0 be such that

inf{δT : δ ∈ D} > ε. Then if m(δ) · (−ε, . . . ,−ε, 1 − ε, . . .) = δT − ε ≥ 0 for

all δ ∈ D. This means that if ‖x− (0, . . . , 0, 1, . . .)‖ < ε then x ∈ P .

We now turn to proving that properties (1)-(6) imply the existence of D as

in the statement of the lemma.

Step 1: Constructing a set M of finitely additive probabilities on

N as the polar cone of P .

Let ba(N) denote the bounded, additive set functions on N, and observe

that (`∞, (ba)(N)) is a dual pair. Consider the cone M∗ ⊆ ba(N) given by

M∗ =
⋂
p∈P{x : x · p ≥ 0}. By Aliprantis and Border (1999) Theorems 5.86

and 5.91, P =
⋂
x∈M∗{p : x · p ≥ 0}.17 Since `+∞ ⊆ P (property (3)), we can

conclude that M∗ ⊆ ba(N)+. Moreover, there is nonzero m ∈ M∗ (by the

existence of p 6∈ P , property 2.) For any such nonzero m, observe that since

m ≥ 0, it follows that m(1) > 0.18 Let M = {m ∈ M∗ : m(1) = 1} and

conclude that P =
⋂
m∈M{p : x · p ≥ 0}.

Step 2: Verifying that all elements of M are countably additive,

and that m({T, . . .}) > 0 for all m ∈M .

We show now that each m ∈M is countably additive. Since for all θ ∈ [0, 1),

there is T so that (1− θ, . . . , 1− θ︸ ︷︷ ︸
T times

,−θ,−θ, . . .) ∈ P (property (5)), it follows

that for allm ∈M , m({0, . . . , T−1}) ≥ θ. Conclude that limt→∞m({0, . . . , t}) =

m(N), so that countable additivity is satisfied.19 So we write m(z) = m · z.

Since (0, . . . , 0︸ ︷︷ ︸
T times

, 1, . . .) ∈ int(P ) (property (6)), we can conclude thatm({T, . . .}) >

0 for all m ∈M .

17One needs to verify that P is weakly closed with respect to the pairing (`∞,ba(N)), but
it is by Theorem 5.86 since (ba)(N) are the `∞ continuous linear functionals by Aliprantis
and Border (1999), Theorem 12.28.
18Otherwise, we would have m(x) = 0 for all x ∈ [0,1], which would imply m = 0.
19For example, see Aliprantis and Border (1999), Lemma 9.9. Suppose Ek ⊂ N is a sequence
of sets for which

⋂
k Ek = ∅ and Ek+1 ⊆ Ek. Then for each k, there is t(k) ∈ N such that

Ek ⊆ {t(k), t(k)+1, . . .} and for which t(k)→∞. Without loss, take t to be nondecreasing.
The result then follows as m(Ek) ≤ m({t(k), t(k) + 1, . . . , })→ 0.
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Step 3: Establishing that M is weakly compact Countably additive

and nonnegative set functions can be identified with elements of `1, so we can

view M as a subset of `1. We show that M is weakly compact, under the

pairing (`1, `∞).

We first show that M is tight as a collection of measures: for all ε > 0 there

is a compact (finite) set E ⊆ N such that m(E) > 1− ε for all m ∈M . So let

ε > 0 and θ′ ∈ (1− ε, 1). Then we know that there is T such that

(1− θ′, . . . , 1− θ′︸ ︷︷ ︸
T times

,−θ′, . . .) ∈ P.

The set E = {0, . . . , T − 1} works in the definition of tightness because for

every m ∈M , we have m({0, . . . , T − 1}) ≥ θ′ > 1− ε.
The weak compactness of M then follows from a few simple identifications.

Denote the set of countably additive probability measures on N by P(N), and

the set of nonnegative summable sequences which sum to 1 by 1(N). Observe

that the weak* topology on P (N) induced by the pairing (`∞, P (N)) coincides

with the weak topology on 1(N) induced by the pairing (1(N), `∞), when in

the second instance we identify each m ∈ P (N) with an element of 1(N). By

Lemma 14.21 of Aliprantis and Border (1999), since M is tight, its closure

is compact in the first topology (and hence the second). But M is already

closed, as the intersection of a collection of closed sets.20 Therefore, we know

that every net in M has a subnet which converges in the weak topology on

1(N). Viewing now M as a subset of `1, we know that every net in M has a

convergent subnet in the weak topology induced by the pairing (`1, `∞), which

is what we wanted to show.

Step 4: Characterizing exposed points of M . A point of M is exposed

if there is a linear functional f with f(m) < f(m′) for all m′ ∈M \ {m}. We

now show that any exposed point of M has the form (1 − δ)(1, δ, δ2, . . .) for

some δ ∈ [0, 1]. So, suppose that m ∈ M is an exposed point. Then there

exists x ∈ `∞ such that x · m < x · m′ for all m′ ∈ M\{m}. Clearly it is

without loss to suppose that x · m = 0.21 Since x · m = 0, it follows that x

20Namely, the sets {m : p ·m ≥ 0} for p ∈ P and {m : 1 · p = 1}.
21If x ·m > 0, observe that x− (x ·m)1 satisfies 0 = (x− x ·m1) ·m < (x− x ·m1) ·m′.
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is on the boundary of P . Therefore, for any T , x+ (0, . . . , 0︸ ︷︷ ︸
T times

, x) is also on the

boundary of P (property 4). Since x+ (0, . . . , 0︸ ︷︷ ︸
T times

, x) is on the boundary, it has

a supporting hyperplane mx ∈ M∗ passing through the origin, for which for

all y ∈ P ,

0 = mx · (x+ (0, . . . , 0︸ ︷︷ ︸
T times

, x)) ≤ mx · y.22

We can choose mx to be non-constant; so we can take mx ∈ M . So there

is mx ∈ M such that 0 = mx · ((0, . . . , 0︸ ︷︷ ︸
T times

, x) + x). But observe that, since

x ∈ P and (0, . . . , 0︸ ︷︷ ︸
T times

, x) ∈ P , mx · x ≥ 0 and mx · (0, . . . , 0, x) ≥ 0. Then

0 = mx · (0, . . . , 0︸ ︷︷ ︸
T times

, x) +mx · x means that mx · x = 0 and mx · (0, . . . , 0, x) = 0.

But mx · x = 0 implies that mx = m, as x was chosen to expose m. In turn,

mx = m implies that m · (0, . . . , 0︸ ︷︷ ︸
T times

, x) = 0 as well.

Let

mT =
(m(T − 1),m(T ),m(T + 1), . . .)

m({T − 1, . . .})
∈ `1.

(recall that we established that m({T − 1, . . .}) > 0.) We shall first show that

mT ∈ M . Let p ∈ P . It is enough to show that (0, . . . , 0︸ ︷︷ ︸
T times

, p) ∈ P , as mT · p =

m ·(0, . . . , 0, p) ≥ 0 and p ∈ P is arbitrary. So let 0 ≤ c = inf{p ·m′ : m′ ∈M},
and note that 0 = inf{·(p − c1) : m′ ∈ M}, the infimum being achieved at

some m′ ∈ M by compactness of M . Then p − c1 ∈ bd(P ). Property (4)

implies that (0, . . . , 0, p− c1) ∈ P . Property (3) implies that (0, . . . , 0, p) ∈ P .

Now, mT · x = 0 and x exposes m, so mT ∈ M implies that m = mT . This

equation (mT = m for all T ) characterizes the geometric distribution: Let

h(s) = m({s, s+ 1, . . .}). Then we have

h(s+ t)

h(t)
=
m({t+ s, t+ s+ 1, . . .})

m({t, t+ 1, . . .})
= m({s, s+ 1, . . .}) = h(s).

22That it has a supporting hyperplane follows from Aliprantis and Border (1999), Lemma
5.78. That the supporting hyperplane passes through zero follows as P is a cone. That mx

is in the polar cone to P follows by definition.
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Then we obtain h(t) = h((t− 1) + 1) = h(t− 1)h(1). Continuing by induction

h(t) = h(1)t. If we let δ = h(1) = m∗({1, 2, . . .}), we have m∗({t, . . .}) = δt

for all t ≥ 1, and m∗({0}) = 1 −m∗({1, . . .}) = 1 − δ. Finally, observe δ > 0

as m({T, . . .}) > 0 for all T .

So, conclude that each exposed point of M takes the form (1−δ)(1, δ, δ2, . . .)
for some δ > 0 (and clearly δ < 1).

Step 5: Finalizing the characterization

Since we have established that M is weakly compact, a theorem of Linden-

strauss and Troyanski ensures that it is the weakly closed convex hull of its

strongly exposed points (see Corollary 5.18 of Benyamini and Lindenstrauss

(1998)); and, in particular then, of its exposed points. This then allows us

to conclude that P has the desired form; let D denote the set of associated

discount factors. By Lemma 10, we may take D to be closed. Moreover, 0 6∈ δ,
since for any m ∈M and any T , m({T, . . . , }) > 0. �

7.1. Proof of Theorem 6. Let us denote {x : x � 0} by U(0). The theorem

follows from an application of Lemma 11.

Lemma 12. The set U(0) satisfies all of the properties listed in Lemma 11.

Proof. Verification of most of these properties is simple. That U(0) is a closed

convex cone follow from continuity, convexity, and homotheticity of �. That

`+∞ ⊆ U(0) follows from monotonicity and continuity of �. That there is

p 6∈ U(0) follows from monotonicity, as 0 � −1.

Let us now show property 4 of Lemma 11, that x ∈ bd(U(0)) implies

(0, . . . , 0, x) ∈ U(0) and x + (0, . . . , 0, x) ∈ bd(U(0)). By Proposition 8, we

may assume that � satisfies indifference stationarity. Observe that, by con-

tinuity and monotonicity, x ∈ bd(U(0)) if and only if x ∼ 0: If x ∼ 0, then

for any ε, x + ε1 � x and x � x − ε1, so x ∈ bd(U(0)). On the other hand,

if x ∈ bd(U(0)), then any open ball about x intersects both {y : y � 0}
and {y : 0 � y}, so it follows by continuity that x ∼ 0. So, to establish

that property 4 holds, let x ∈ bd(U(0)). Then x ∼ 0, so indifference sta-

tionarity implies that (0, 0, . . . , 0, x) ∼ 0, and (1/2)x + (1/2)(0, . . . , 0, x) ∼ 0.

Then (0, . . . , 0, x) ∈ U(0), and, using homotheticity, x + (0, . . . , 0, x) ∼ 0, so

x+ (0, . . . , 0, x) ∈ bd(U(0)).
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Now turn to property 5. We show that for all θ ∈ [0, 1), there is T so that

(1− θ, . . . , 1− θ︸ ︷︷ ︸
T times

,−θ,−θ, . . .) ∈ U(0).

Suppose false, so that (by using c-additivity), there is some θ ∈ [0, 1) such

that for all T , θ � (1, . . . , 1︸ ︷︷ ︸
T times

, 0, . . .). Then monotone continuity implies θ � 1,

contradicting monotonicity.

Finally, property 6 follows from compensation. For all T ,

(θt − θt, . . . , θt − θt︸ ︷︷ ︸
t times

, θ̄t − θt, . . .) � 0

(using c-translation invariance). So monotonicity of � and θt < θt implies that

(0, . . . , 0, θ̄t−θt, . . .) � 0. Homotheticity of� then implies that (0, . . . , 0︸ ︷︷ ︸
T times

, 1, . . .) �

0. Property 6 then follows from the continuity of �. �

We proceed to proving the theorem.

Let D be the set of discount factors provided by Lemma 11 for U(0). We

claim that the function U defined by U(x) = minδ∈D(1− δ)
∑

t δ
txt represents

�. To this end, we first establish that U(x) = 0 if and only if x ∼ 0. To see

this, suppose U(x) = 0. Then, by definition of U , x ∈ U(0); thus x � 0. To

establish that x ∼ 0 we rule out that x � 0. So suppose that x � 0. Then we

would have by continuity of � that there is ε > 0 small so that x � ε1. But

then x − ε1 ∈ U(0) (by c-translation invariance), so that U(x − ε1) ≥ 0, and

then clearly U(x) ≥ ε > 0, a contradiction. So U(x) = 0 implies x ∼ 0.

Conversely, suppose that x ∼ 0. It follows that x ∈ U(0), from which we

obtain U(x) ≥ 0. If in fact U(x) > 0, then let ε > 0 be such that U(x) ≥ ε,

and hence U(x − ε1) ≥ 0. Thus x − ε1 ∈ U(0), so that x � x − ε1 � 0, or

x � 0, a contradiction.

So now let x ∈ `∞ be arbitrary. We claim that x ∼ U(x)1. But this follows

directly from c-translation invariance, as U(x − U(x)1) = 0 if and only if

x− U(x)1 ∼ 0 if and only if x ∼ U(x)1.

Finally the result follows a classical textbook argument; if x � y, x ∼ U(x)1,

and y ∼ U(y)1, it must be that U(x) ≥ U(y), otherwise we would have
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U(y)1 � U(x)1, and hence U(y)1 � U(x)1 by monotonicity. Conversely if

U(x) ≥ U(y), we have by monotonicity that U(x)1 � U(y)1, so that x � y.

The necessity of the axioms is straightforward and omitted. We only provide

the calculations showing that the representation satisfies stationarity. Let

x ∼ θ, so θ = U(x) = minδ∈D(1− δ)
∑

t δ
txt, where the minimum is achieved

for some δ ∈ D.

Let z = λx+ (1− λ)(θ, . . . , θ, x). Then for any δ

(1− δ)
∑
t

δtzt = λ(1− δT )θ + [λ+ (1− λ)δT ](1− δ)
∑
t

δtxt.

But θ = λ(1 − δT )θ + [λ + (1 − λ))δT ]θ, so for δ ∈ D, (1 − δ)
∑

t δ
tzt ≥ θ if

and only if (1− δ)
∑

t δ
txt ≥ θ. A similar statement holds for equalities. This

implies that U(z) = θ.

7.2. Proof of Theorem 5. We establish the sufficiency of the axioms first.

Let P = {x ∈ `∞ : x � 0}. Translation invariance implies that x � y iff

x − y � 0. So x � y iff x − y ∈ P . If we can show that P satisfies the

conditions of Lemma 11 then we are done, because if D ⊆ (0, 1) is as delivered

by the lemma, then x � y iff x− y ∈ P iff ∀δ ∈ D
∑∞

t=0(1− δ)δt(xt− yt) ≥ 0.

Lemma 13. The set P satisfies all of the properties listed in Lemma 11.

Proof. First, we show that P is closed under positive scalar multiplication. If

x ∈ P , then for any λ ∈ [0, 1], we have λx ∈ P by convexity. On the other

hand, if x ∈ P , then for any n ∈ N, we have nx ∈ P by translation invariance,

transitivity, and a simple induction argument. Conclude that if x ∈ P and

λ > 0, then λx ∈ P .

Hence P is a cone. P is closed since � is continuous. That P is convex

follows from the convexity of �.

Monotonicity of � implies that the set of positive vectors is contained in P

(property 3) and that −1 /∈ P , so property 2 is satisfied.

Let x ∈ bd(P ) and T > 0. Strong stationarity of� implies that (0, . . . , 0︸ ︷︷ ︸
T times

, x) ∈

P . So x + (0, . . . , 0︸ ︷︷ ︸
T times

, x) ∈ P because P is a convex cone. To show that

x + (0, . . . , 0︸ ︷︷ ︸
T times

, x) ∈ bd(P ), let ε > 0 and x′ be such that ‖x − x′‖∞ < ε/2
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and x′ /∈ P . Note that

‖x+ (0, . . . , 0, x)− x′ + (0, . . . , 0, x′)‖∞ < ε.

We claim that x′ + (0, . . . , 0, x′) /∈ P . So suppose that x′ + (0, . . . , 0, x′) ∈
P . Then (1/2)x′ + (1/2)(0, . . . , 0, x′) ∈ P as P is a cone. Thus (1/2)x′ +

(1/2)(0, . . . , 0, x′) � 0, which by stationarity implies that x′ � 0, contradicting

that x′ /∈ P .

The proof that P satisfies properties 5 and 6 are the same as the corrre-

sponding proofs in Lemma 12 (in Lemma 12 we use c-translation invariance,

which is weaker than what we assume for Theorem 5). �

Now we turn to the necessity of the axioms. It is clear that continuity

at infinity is necessary, as θ ≥ (1 − δ)
∑T

t=0 xt for all δ ∈ D implies that

θ ≥ (1− δ)
∑∞

t=0 xt for all δ ∈ D. Compensation is also a simple consequence

of D being bounded away from 1.

Lemma 14. Stationarity is necessary.

Proof. Let t > 0 and λ ∈ [0, 1]. Let z = λx + (1 − λ)(θ, . . . , θ︸ ︷︷ ︸
t times

, x) − θ1. Then

for any δ ∈ (0, 1)

∞∑
τ=0

δτzτ = λ
∞∑
τ=0

δτ (xτ − θ) + (1− λ)
∞∑
τ=t

δτ (xτ−t − θ)

= [λ+ (1− λ)δt]
∞∑
τ=0

δτ (xτ − θ)

Note that [λ + (1 − λ)δt] > 0. So (1 − δ)
∑∞

τ=0 δ
τzτ for all δ ∈ D iff (1 −

δ)
∑∞

τ=0 δ
τ (xτ − θ) ≥ 0 for all δ ∈ D. �

7.3. Uniqueness. The uniqueness argument is common to Theorem 5 and

Theorem 6, so we put its proof here:

Proof. By Lemma 10, m(D) and m(D′) are closed, as the continuous image of

compact sets. Let M and M ′ be the closed convex hulls of m(D) and m(D′),

respectively. If δ ∈ D′ \ D then m(δ) /∈ M (because no m(δ) can be written

as a convex combination of some finite m(δ1), . . . ,m(δn)).
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Topologize ∆(N) with the weak*-topology on σ(Cb(N),∆(N)); that is, the

weakest topology for which the map µ 7→ x·µ is continuous for every x ∈ Cb(N)

(observe also that any such x ∈ l∞). By Lemma 14.21 of Aliprantis and Border

(1999), each of M and M ′ is compact.

Since m(δ) 6∈ M , there is a continuous linear functional x separating m(δ)

from M (Theorem 5.58 of Aliprantis and Border (1999)). By Lemma 14.4

and Theorem 5.83 of Aliprantis and Border (1999), there is x ∈ l∞ for which

x ·m(δ) < infm′∈M x ·m′. Let y ∈ R be given by y =
x·m(δ)+infm′∈M x·m′

2
and

observe that (x−y) ·m(δ) < 0 < infm′∈M(x−y) ·m′. Conclude that 0 � (x−y)

and (x− y) �′ 0. �

8. Proof of Theorem 7

Let P be the set of all cones P in `∞ that satisfy the properties listed in

Lemma 11, and for which, if z ∈ P , then x + z � x for all x. The set P is

nonempty because it contains {z ∈ `∞ : ∀δ ∈ D∗,
∑
δtzt ≥ 0}.

Let K be the closure of the convex hull of
⋃
P . We show that if (x−y) ∈ K,

then x � y. First, if x− y =
∑

i λizi, for λ ≥ 0, where
∑

i λi = 1 and for each

i, zi ∈
⋃
P , then x � y follows from convexity of �. Otherwise, for any ε > 0,

there are λεi , z
ε
i where ‖(x − y) −

∑
i λ

ε
iz
ε
i‖∞ < ε, and zi ∈ P . In this case,

since y +
∑

i λ
ε
iz
ε
i � y for each ε, the result follows by continuity of �.

Now note that if K = `∞ then we are done because the theorem is true

trivially when �= `∞ × `∞. So suppose that `∞ \ K 6= ∅. We show that

K ∈ P , which proves the theorem. By Lemma 15 below, K satisfies the

properties listed in Lemma 11. So Lemma 11 implies that K ∈ P , and we are

therefore done.

In the following, co refers to the closed, convex hull.

Lemma 15. Let P be a nonempty collection of cones satisfying the properties

listed in Lemma 11. Then there is a nonempty closed D ⊆ (0, 1) so that

co
(⋃
P
)

=
⋂
δ∈D

{x :
∑
t

(1− δ)δtxt ≥ 0}.

Proof. Let m̃ denote the function defined in Lemma 10.
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Let P be a collection of closed convex cones with the property that for each

P ∈ P there is DP ⊆ (0, 1), closed, such that

P =
⋂
δ∈Dp

{z : m̃(δ) · z ≥ 0}.

Denote by MP the `1-closed convex hull of {m(δ) : δ ∈ DP}. Note that

by basic properties of polars and duals (see Aliprantis and Border (1999),

Theorem 5.91), z ∈ co (
⋃
P) iff m · z ≥ 0 for all m ∈

⋂
P∈PMP .

Let m be an extreme point of
⋂
P∈PMP . For each P ∈ P , m ∈ MP .

We claim that there exists a probability measure µP on DP such that for all t,

mt = EµPm(δ)t. To see this, let mn be a sequence, where each mn ∈ co{m(δ) :

δ ∈ DP}, such that mn →1 m. For each n, mn =
∑
λnim(δni ) for some λni , δ

n
i .

The set of probability measures on DP is weak*-compact (Theorem 6.25 of

Aliprantis and Border (1999)), so there is a probability measure µP on DP so

that (taking a subsequence if necessary), λn →w∗ µP . This implies that for

each t,

mn
t → EµPmt(δ) = EµP (1− δt)δt.

Thus mt = EµP (1− δt)δt.
The cone P was arbitrary, so the uniqueness of the moment curve implies

that µP is independent of P ; and can be identified with a probability on
⋂
DP ,

say µ = µP . Thus m is an expectation of {m(δ) : δ ∈
⋂
DP}. We assumed

that m is an extreme point of M , so µ must be degenerate and there must

exist δ ∈
⋂
DP with m = m(δ). �
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