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Abstract

Revenue per unit of inputs differs greatly across plants within countries

such as the U.S. and India. Such gaps may reflect misallocation, which low-

ers aggregate productivity. But differences in measured average products

need not reflect differences in true marginal products. We propose a way

to estimate the gaps in true marginal products in the presence of measure-

ment error in revenue and inputs. Applying our correction to manufactur-

ing plants in the U.S. eliminates an otherwise mysterious sharp downward

trend in allocative efficiency from 1978–2007. For Indian manufacturing

plants from 1985–2011, meanwhile, we estimate that true marginal prod-

ucts were only one-half as dispersed as measured average products.

∗We are grateful to seminar participants at Princeton, Rochester, Stanford and the Federal
Reserve Banks of Cleveland, Minneapolis, Philadelphia, and New York for comments. Opinions
and conclusions herein are those of the authors and do not necessarily represent the views
of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential
information is disclosed.
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1. Introduction

Revenue per unit of inputs differs substantially across establishments within

narrow industries in the U.S. and other countries. See the survey by Syverson

(2011). One interpretation of such gaps is that they reflect differences in the

value of marginal products for capital, labor, and intermediate inputs. Such

differences may imply misallocation, with negative consequences for aggre-

gate productivity. This point has been driven home by Restuccia and Rogerson

(2008) and Hsieh and Klenow (2009). See Hopenhayn (2014) for a survey of the

growing literature surrounding this topic.

But differences in measured average products need not imply differences in

true marginal products. For one, ratios of marginal products across establish-

ments only map to ratios of average products under Cobb-Douglas production.

Second, and perhaps more important, measured differences in revenue per

inputs could simply reflect poor measurement of revenue or costs. For example,

the capital stock is typically a book value measure that need not closely reflect

the market value of physical capital. Misstatement of inventories will contam-

inate and distort measures of gross output and intermediates, since these are

inferred in part based on the change in finished, work in process, and materials

inventories. See White et al. (2016) for how the U.S. Census Bureau tries to

correct for measurement errors in its survey data on manufacturing plants.1

We propose and implement a method to quantify the extent to which mea-

sured average products reflect true marginal products in the presence of mea-

surement error and overhead costs. Our method is able to detect measurement

error in revenue and inputs which is additive (as with overhead costs) but whose

variance can scale up with the plant’s true revenue and inputs. Our method can-

not identify proportional measurement error, and therefore may yield a lower

bound on the magnitude of measurement error.

1Bartelsman et al. (2013) and Asker et al. (2014) discuss why revenue productivity need
not reflect misallocation even aside from measurement error, due to overhead costs and
adjustment costs, respectively.
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The intuition for our method is as follows. Imagine a world with constant

(proportional) differences in true marginal products and constant additive mea-

surement error in revenue and inputs. The only shocks are to idiosyncratic

plant productivity, which move true revenue and inputs around across plants in

the same proportion. Now, the ratio of marginal to average products is simply

the elasticity of revenue with respect to inputs. Thus if marginal products reflect

average products, then the elasticity of revenue with respect to inputs should

look similar for plants with high and low average products. If, in contrast, a

high average product plant has no higher marginal product, then its elasticity

of revenue with respect to inputs should be lower. When a plant’s revenue is

overstated and/or its inputs are understated, measured revenue will be less

responsive to changes in measured inputs. Figure 1 illustrates this by plotting

the ratio of marginal to average products against revenue products under the

two polar cases.

Another way to see this is to note that the ratio of first differences (the change

in revenue divided by the change in inputs) is an independent measure of the

marginal product. Constant measurement error (or a constant overhead cost)

simply drops out with first-differencing. Thus, if true marginal products are

constant over time for a given plant, one could simply calculate the dispersion

of true marginal products from the dispersion of first-differences. Slightly less

restrictive, if true marginal products followed a random walk, one could regress

first differences on levels and the coefficient would reveal the share of disper-

sion in levels due to true marginal product differences.

Yet another framing is to suppose that measurement error is additive but

i.i.d. over time, so that levels and first differences of revenue relative to inputs

provide independent signals of the true dispersion in marginal products. In

this event, by taking the covariance between first differences and levels (average

products), one could estimate the variance of the true marginal products. The

ratio of the covariance to the variance of the levels would be an estimate of the

share of true dispersion in levels.
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As these examples illustrate, panel data can be used to improve estimates of

true marginal product dispersion in the presence of measurement error (and

overhead costs). Our method nests the stark examples given above, allowing

for changes in true marginal products and for serially correlated (but possibly

mean-reverting) measurement error over time for a given plant. The key restric-

tion we do require is that the additive measurement error be orthogonal to the

true marginal product. As we will show, our specification involves regressing

revenue growth on input growth, average products, and their interaction. The

coefficient on the interaction term will tell us how much measurement error is

contributing to the dispersion in measured average products.

We apply our methodology to U.S. manufacturing plants from 1978–2007

and formal Indian manufacturing plants from 1985–2011. The U.S. data is from

the Annual Survey of Manufacturers (ASM) plus ASM plants in Census years,

both from the Longitudinal Research Database (LRD). The Indian data is from

the Annual Survey of Industries (ASI). The LRD contains about 50,000 ASM plants

per year, and the ASI about 43,000 plants per year.

We first report estimates of allocative efficiency without correcting for mea-

surement error. The U.S. exhibits a severe decline, by the end of the sample

seemingly producing only 1
3

as much as it could by equalizing marginal prod-

ucts across plants – down from about 2
3

allocative efficiency at the beginning of

the sample. If true, this plunge reduced annual TFP growth rate by 2.5 percent

per year over from 1978–2007. By comparison, we estimate that Indian manu-

facturing operated at about 1
2

efficiency, with a fair bit of volatility from year to

year but no clear trend despite major policy reforms.

Once we correct for measurement error, U.S. allocative efficiency is much

higher (above 4
5

) with no clear trend and little volatility. Thus measurement

error appears to be a growing problem in Census ASM plant data. In the Indian

ASI, measurement error accounts for about 1
2

of the dispersion in average prod-

ucts across plants. Correcting for it likewise leaves Indian allocative efficiency

without a clear trend or much volatility. Comparing the two countries, alloca-
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tive efficiency appears to consistently lift U.S. manufacturing productivity by 30

to 40 relative to that in India.

The rest of the paper proceeds as follows. Section 2 presents a simple model

and numerical example wherein both measurement error and distortions are

fixed over time. Section 3 presents the full model, which allows both measure-

ment error and distortions to change over time. Section 4 describes the U.S. and

Indian datasets, and raw allocative efficiency patterns in the absence of our cor-

rection for measurement error. Section 5 lays out our method for quantifying

measurement error, and applies it to the panel data on manufacturing plants

in the U.S. and India. Section 6 shows how correcting for measurement error

affects the picture of allocative efficiency in the U.S. and India.

Figure 1: Measured Marginal Products vs TFPR

2. A Numerical Example from an Illustrative Model

In order to convey intuition for our methodology, we first present a simple model

and numerical example. We assume the economy has a fixed number of work-

ers L and a single, competitive final goods sector producing aggregate output

Y . Aggregate output is, in turn, produced by CES aggregation of the output Yi of
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N intermediate goods producers with elasticity of substitution ε:

Y =

(
N∑
i=1

Y
1− 1

ε
i

) 1

1− 1
ε

The price index of the final good is given by P =

(∑
i

P 1−ε
i

) 1
1−ε

and is nor-

malized to 1. Intermediate firms produce output using a linear production

technology in labor under heterogeneous productivities: Yi = AiLi. These

firms are monopolistically competitive and face a downward sloping demand

curve: Yi ∝ P−ε
i . They maximize profits taking as given Y , P , the wage w, and

an idiosyncratic revenue distortion τi:

Πi =
1

τi
PiYi − wLi

The researcher observes only measured revenue P̂iYi ≡ PiYi + gi and mea-

sured labor L̂i ≡ Li+fi. Given the assumed CES demand structure, firms charge

a common markup over their marginal cost (gross of the distortion):

Pi =

(
ε

ε− 1

)
×
(
τi ·

w

Ai

)
True revenue is therefore proportional to the product of true labor times and

the idiosyncratic distortion:

PiYi ∝ τi · Li (1)

Thus variation across firms in true average revenue products
(
PiYi
Li

)
is solely

due to the distortion. Variation in measured average revenue products (TFPR),

however, reflects both the distortion and measurement errors:

TFPRi ≡
P̂iYi

L̂i
∝
[
τi ×

1 + gi/(PiYi)

1 + fi/Li

]
.
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While our methodology will allow both the true distortions and measurement

errors to vary over time, to convey intuition we make the a number of simplify-

ing assumptions in this section:

1. The true distortions τi are fixed over time

2. The additive measurement error terms gi and fi are fixed over time

3. The idiosyncratic productivities Ait are time-varying

The assumption that additive measurement error is fixed over time means

that first differences of measured revenue and labor are exactly equal to first

differences in true revenue and labor: NP̂iYi = NPiYi and NL̂i = NLi.2 The

assumption that distortions are fixed over time then implies that the ratio of

first differences of revenue and labor reflects only the distortion and not the

measurement errors:3

NP̂iYi

NL̂i
∝ τi

With this background, consider the numerical example of two firms in Ta-

ble 1. As shown, the ratio of their measured average revenue products
(

2.4
0.8

)
overstates the ratio of their true marginal revenue products

(
2
1

)
. Regressing

the natural log of the ratio of first differences on ln(TFPR) reveals how much

of the measured TFPR dispersion reflects true dispersion in marginal revenue

products (distortions). The regression yields a coefficient of 1 if there is no

measurement error in TFPR and a coefficient of 0 if all TFPR dispersion is due to

measurement error. We illustrate this in Figure 1. For the numerical example in

Table 1, we obtain a coefficient of
(

ln(2)−ln(1)
ln(2.4)−ln(0.8)

)
≈ 2

3
. This implies that roughly

2
3

of the dispersion in measured average products reflects dispersion in true

marginal products.

In Section 5 below we will generalize to allow for shocks to both measure-

ment error and distortions. The intuition of the simple example will remain,
2We use N to denote first differences in levels and ∆ first differences in natural logs.
3This follows naturally from equation 1.
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Table 1: Illustrative Numerical Example

PY L PY
L

P̂ Y L̂ P̂ Y

L̂
NPY NL NPY

NL

Firm 1 100 50 2 120 50 2.4 50 25 2

Firm 2 50 50 1 40 50 0.8 25 25 1

however; the covariance of two noisy measures of the distortion (ratios of levels

of revenues and inputs and ratios of first differences of revenues and inputs)

will provide us with an estimate of the variance of the distortion.

In the next section we present the full model and a decomposition of aggre-

gate and sectoral TFP into allocative efficiency vs. other terms.

3. Model

3.1. Economic Environment

We consider an economy with S sectors, L workers and an exogenous capital

stock K. There are an exogenous number of firms Ns operating in each sector.

A representative firm produces a single final good Q in a perfectly competitive

final output market. This final good is produced using gross output Qst from

each sector s with a Cobb-Douglas production technology:

Q =
S∏
s=1

Qθs
s where

S∑
s=1

θs = 1

We normalize P , the price of the final good, to 1. The final good can either be

consumed or used as an intermediate input:

Q = C +X.
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All firms use the same intermediate input, with the amounts denotedXsi so that

X ≡
S∑
s=1

Xs =
S∑
s=1

Ns∑
i=1

Xsi. Sectoral output Qs is a CES aggregate of the output

produced by the Ns firms in sector s:

Qs =

(
Ns∑
i=1

Q
1− 1

ε
si

) 1

1− 1
ε

.

We denote Ps the price index of output from sector s. Firms have idiosyncratic

productivity draws Asi, and produce output Qsi using a Cobb-Douglas technol-

ogy in capital, labor and intermediate inputs:

Qsi = Asi(K
αs
si L

1−αs
si )γsX1−γs

si where 0 < αs, γs < 1.

The output elasticitiesαs and γs are sector-specific, but time-invariant and com-

mon across firms within a sector. Firms are monopolistically competitive and

face a downward sloping demand curve given by Qsi = Qs

(
Psi
Ps

)−ε
.4 Firms also

face idiosyncratic labor distortions τLsi, capital distortions τKsi and intermediate

input distortions τXsi . They maximize profits Πsi taking input prices as given.

Πsi = Rsi − (1 + τLsi)wLsi − (1 + τKsi )rKsi − (1 + τXsi )PXsi

where Rsi ≡ PsiQsi is firm revenue.

3.2. Aggregate TFP

We define aggregate TFP as aggregate real consumption (or equivalently value-

added) divided by an appropriately weighted Cobb-Douglas bundle of aggre-

gate capital and labor:

TFP ≡ C

L1−α̃K α̃
where α̃ ≡

∑S
s=1 αsγsθs∑S
s=1 γsθs

4We assume that the firms treat Ps and Qs as exogenous.
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We show in the Model Appendix that

TFP = T ×
S∏
s=1

TFP

θs∑S
s=1 γsθs

s .

T captures the effect of the sectoral distortions τLs , τKs and τXs , which are the

revenue-weighted harmonic means of the idiosyncratic firm-level distortions.5

Sectoral TFP is then:

TFPs ≡
Qs

(Kαs
s L

1−αs
s )γsX1−γs

s

Within-sector misallocation lowers TFPs. The sectoral distortions will in-

duce a cross-sector misallocation of resources, which will show up in T . While

cross-sector misallocation is of interest, it is not the focus of this paper. We

therefore leave it to future research to determine how important this could be

in determining cross-country aggregate TFP gaps.

3.3. Sectoral TFP Decomposition

Sector-level TFP is a function of firm-level productivities and distortions:

TFPs =

[
Ns∑
i=1

Aε−1
si

(
τsi
τs

)1−ε
] 1
ε−1

where τsi ≡
[(

1 + τLsi
)1−αs (

1 + τKsi
)αs]γs (

1 + τXsi
)1−γs

and τs ≡
[(

1 + τLs
)1−αs (

1 + τKs
)αs]γs (

1 + τXs
)1−γs

We can go one step further, and decompose sectoral TFP into the product

of four terms: allocative efficiency (AEs), a productivity dispersion term (PDs),

average productivity (Ās) and a variety term (N
1
ε−1
s ).

5(1 + τLs ) ≡

[
Ns∑
i=1

Rsi
Rs

1

1 + τLsi

]−1

and similarly for (1 + τKs ) and (1 + τXs ). The Model Appendix

expresses sectoral distortions as a function only of firm distortions and productivities.
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TFPs =

[
1

Ns

Ns∑
i

(
Asi

Ãs

)ε−1(
τsi
τs

)1−ε
] 1
ε−1

︸ ︷︷ ︸
AEs=Allocative Efficiency

×

[
1

Ns

Ns∑
i

(
Asi
Ās

)ε−1
] 1
ε−1

︸ ︷︷ ︸
PDs=Productivity Dispersion

×N
1
ε−1
s︸ ︷︷ ︸

Variety

× Ās︸︷︷︸
Average Productivity

Ã is the power mean of idiosyncratic productivities,

[
1

Ns

Ns∑
i=1

(Asi)
ε−1

] 1
ε−1

, and Ā

is the geometric mean of idiosyncratic productivities
Ns∏
i=1

A
1
Ns
si . AEs is maximized

and equal to 1 when there is no variation in the distortions across firms (τsi = τs

∀i). The productivity dispersion term (PDs) is the ratio of the power mean to

the geometric mean. Because ε > 1, greater dispersion in firm-level productiv-

ities induces a reallocation of labor towards the most productive firms, thereby

increasing sectoral TFP. N
1
ε−1
s captures the productivity gains from expanding

the set of varieties available to sectoral goods producers. Finally, it is clear why

increases in average productivity (Ās) should increase sectoral TFP.

The goal of this paper is to present a methodology for inferring allocative

efficiency (AEs) from plant-level data while allowing for measurement error. In

the next section we briefly describe the U.S. and Indian datasets we use, present

the model-based approach to inferring allocative efficiency in the absence of

measurement error, and show raw allocative efficiency patterns in the data.

4. Inferring Allocative Efficiency

4.1. The Datasets

Our sample from the Indian Annual Survey of Industries (ASI) runs from 1985 to

2011.6 The ASI is a nationally representative survey of the formal manufactur-

ing sector in India. The coverage is all plants with more than 10 workers using

6The surveys cover accounting years (e.g. 1985-1986), but we will refer to each survey by the
earlier of the two years covered.
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power, and all plants with more than 20 workers not using power. Plants fall into

two categories: Census and Sample. Census plants are surveyed every year, and

consist of plants with workers above a given threshold as well as all plants in 12

of the industrially ‘backwards’ states.7 Sample plants are sampled at random

every year within each state× 3-digit industry group, and sampling weights are

provided. We construct a set of 50 manufacturing sectors that are consistently

defined throughout our time period.8 We also construct an aggregate capital

deflator using data on gross capital formation from the Reserve Bank of India,

and we construct sectoral gross output deflators using wholesale price indices

from the Indian Office of the Economic Advisor. Further details on the con-

struction of sectors and deflators are provided in the Data Appendix.

The datasets we use for the U.S. are the Annual Survey of Manufactures

(ASM) and the Census of Manufactures (CMF), which are surveys carried out by

the U.S. Census Bureau. We put together a long panel from 1978 to 2007. The

ASM is conducted annually except for years ending in 2 or 7. In years ending in 2

or 7 the CMF is conducted. The coverage of both the CMF and ASM are all plants

with at least one paid employee. The difference between the surveys is that the

CMF is a census which covers all establishments with certainty while the ASM

is a survey which covers large establishments with certainty but includes only a

sample of smaller plants.9 The ASM sample of plants is redrawn in years begin-

ning with 3 or 8. In order to avoid any large changes in sample size over time,

we use only the ‘ASM’ sample plants in CMF years.10 We use the harmonized

sectoral classification from Fort and Klimek (2016) at the NAICS 3-digit level;

we thereby have balanced sectoral panel of 86 sectors.11. We construct sectoral

7The threshold number of workers to be a Census plant varies across years. See the Data
Appendix for more details regarding sampling changes in the ASI over time.

8The official sectoral classification (NIC) changed in 1987, 1998, 2004 and 2008. We use
official NIC concordances to construct our harmonized classification.

9As with the Indian ASI, sampling weights are provided in the ASM in order to produce
moments representative of the entire population of establishments with at least one employee.

10For convenience we will therefore refer to our U.S. dataset as the ASM.
11The Fort-Klimek (FK) sectors deal with the large reclassification of manufacturing plants

into the service sector during the SIC to NAICS transition. It is available at the 6-digit NACIS
level, but we use the 3-digit level to have a similar number of sectors in the U.S. and India.
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output and material deflators from the NBER-CES database and sectoral capital

stock deflators from the BEA. Further details on the sectoral classification and

deflators are in the Data Appendix.

Our main variables of interest are plant sales, employment, labor costs, the

capital stock, stocks of inventories, and intermediate input expenditures. Rev-

enue is constructed to include the value of product sales and changes in fin-

ished and semi-finished good inventories. Employment includes both paid and

unpaid labor. Labor costs include wages, salaries, bonuses and any supplemen-

tal labor costs. The capital stock includes inventories, and is constructed as the

average of the beginning and end of year stocks. In India, the book value of the

capital stock is reported directly so we use this. In the U.S. our capital stock

is measured as the market value in 1997 dollars. Intermediate inputs include

materials, fuels, and other expenditures.12

In addition to dropping plants that have missing values for key variables, we

trim the 1% tails of the average revenue products of capital, labor, and interme-

diates as well as productivity (TFPQ, to be defined shortly). Our final sample

sizes are 1,428,000 plant-year observations for the U.S. and 844,875 plant-year

observations for India. The data cleaning steps are summarized in more detail

in Table 11 of the Data Appendix.

4.2. Evidence of Measurement Error in the Indian ASI

Table 2 provides evidence of the frequency of some observable forms of mea-

surement error in the Indian ASI. First, for 12% of observations the reported

plant age is not consistent with what was reported in the previous year. Next, we

compare the reported values of the beginning-of-year (BOY) stocks and end-of-

year (EOY) stocks of capital, goods inventories and materials inventories from

the previous year.13 Differences between the BOY value in the current year

and EOY value in the previous year are likely to reflect errors in reporting. We

12See the Data Appendix for details on what is included in each variable for the U.S. and India.
13Beginning-of-year stocks are the values on April 1st, and end-of-year stocks on March 31st.
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Table 2: Measurement error in the ASI

Frequency Magnitude

Age 12.4% 4 years

EOY & BOY capital stocks 25.7% 15.4%

EOY & BOY goods inventories 22.0% 24.8%

EOY & BOY materials inventories 22.3% 20.2%

Note: There is measurement error in age if age in year t is not equal to 1 + age in year
t − 1. The magnitude of this measurement error is the median absolute deviation.
There is measurement error in stocks and inventories if the deviation of the BOY
(beginning-of-year) value in year t from the EOY (end-of-year) value in year t − 1 is
greater than 1%. The magnitude of this measurement error is the standard deviation
of the absolute value of the percentage measurement error.

find that these reporting errors are both frequent and large in magnitude. For

example, for 25.7% of observations the reported BOY value of the capital stock

is not within 1% of the previous year’s EOY value. The standard deviation of

the absolute value of the percentage measurement error is 15.4%. Mismea-

surement of capital and inventories is highly relevant for allocative efficiency

calculations. Capital is itself a measured input, while changes in the stocks of

inventories affect measures of output produced and intermediate inputs used.

4.3. Inferring Allocative Efficiency

Continuing to use ̂ ’s to differentiate measured values from true values, we

define TFPR and TFPQ as:

TFPRsi ≡
R̂sit

(K̂αs
sitL̂

1−αs
sit )γsX̂1−γs

si

TFPQsit ≡

(
R̂sit

) ε
ε−1

(K̂αs
sitL̂

1−αs
sit )γsX̂1−γs

sit
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In the absence of measurement error TFPR would be proportional to the distor-

tions and TFPQ would be proportional to productivity:

Rsit

(Kαs
sitL

1−αs
sit )γsX1−γs

sit

∝ τsit

(Rsit)
ε
ε−1

(Kαs
sitL

1−αs
sit )γsX1−γs

sit

∝ Asit

Inferred sectoral allocative efficiency is given by:

ÂEst =

[
Nst∑
i=1

(
TFPQsit

TFPQst

)ε−1(
TFPRsit

TFPRst

)1−ε
] 1
ε−1

where TFPQst =

[
Nst∑
i=1

TFPQε−1
sit

] 1
ε−1

and TFPRst =

(
ε

ε− 1

)[
MRPLst
(1− αs)γs

](1−αs)γs [MRPKst

αsγs

]αsγs [MRPXst

1− γs

]1−γs

MRPLst,MRPKst andMRPXst are the revenue-weighted harmonic mean val-

ues of the marginal products of labor, capital and intermediates, respectively:

MRPKst =

[∑
i

R̂si

R̂st

1

MRPKsit

]−1

MRPKsit =

(
ε− 1

ε

)
αsγs

R̂sit

K̂sit

Aggregating across sectors we obtain inferred aggregate allocative efficiency,

which is equal to true allocative efficiency when there is no measurement error:

ÂEt =
S∏
s=1

ÂE

θst∑S
s=1 γsθst

st

In order to obtain estimates of allocative efficiency over time for the U.S.

and India we need to pin down a number of parameters in the model. Based on
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evidence from Redding and Weinstein (2016), we pick a value of ε = 4 for the

elasticity of substitution across plants. Allocative inefficiencies are amplified

under higher values of this elasticity. We infer αs and γs based on country-

specific average sectoral cost shares (assuming a rental rate of 20% for India and

15% for the U.S.). We allow the aggregate output shares θst to vary across years,

and base them on country-specific sectoral shares of manufacturing output.

4.4. Time-Series Results

Figure 2: Allocative Efficiency in India and the U.S.

India U.S.

Source: The Annual Survey of Industries (ASI) for India and the Annual Survey of Manufactures (ASM)
for the U.S. The figure shows the % allocative efficiency for both countries. Average allocative efficiency
is 49% in India and 54% in the U.S. over the respective sample periods.

Figure 2 plots inferred allocative efficiency for the U.S. and India over their

respective samples. Average allocative efficiency over the sample is 49% in In-

dia, and 54% in the U.S.14 While allocative efficiency is not trending in India,

there is a remarkable decrease in allocative efficiency in the U.S. between 1978

14Average gains from full reallocation are therefore 102% for India and 95.6% for the U.S. In
contrast, Hsieh and Klenow (2009) found 40-60% higher potential gains from reallocation in
India than the U.S. Our estimates diverge for a number of reasons: gross output (us) vs. value
added (them); 1978–2007 ASM plants vs. 1987, 1992 and 1997 Census plants; and trimming of
1% tails in the U.S. vs. 2% (they inconsistently trimmed 2% for the U.S. and only 1% for India).
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Figure 3: Allocative Efficiency: U.S. Relative to India

Source: Indian Annual Survey of Industries (ASI) and U.S. Annual Survey of Manufactures
(ASM). The figure plots the ratio of U.S. allocative efficiency to Indian allocative efficiency
for the years 1985 to 2007 (years in which the datasets overlap).

and 2007. Allocative efficiency is actually lower in the U.S. than in India by the

mid-2000s. Figure 3 plots the ratio of U.S. to Indian allocative efficiency for the

overlapping years of the samples.

In the next section we present out methodology for correcting inferred al-

locative efficiency for measurement error.

5. Measurement Error

Calculations of misallocation, including those just presented, interpret plant

differences in measured average revenue products (TFPR) as differences in true

marginal products. In many of these studies the underlying plant data are lon-

gitudinal. Given such data, it is natural to ask if plants reporting higher average

revenue products actually display larger revenue responses to input changes,

as expected if their inputs truly exhibit higher marginal revenue. Of course, any

observed input/revenue change need not identify true marginal revenue, as this

can be counfounded by the source of the changes. For instance, some input

and revenue changes may be measured with error. We will show, however, that
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by projecting the elasticity of revenue with respect to inputs on TFPR, we can

answer the question: To what extent do plants with higher measured average

products exhibit higher true marginal products? The logic is similar to using

the covariance of two noisy measures of a variable, here noisy measures of a

plant’s marginal revenue product, to recover a truer measure of the variable.

Consider the following description of measured inputs Î and measured rev-

enue R̂ for plant i (year subscripts implicit):

Îi ≡ φi · Ii + fi

R̂i ≡ χi ·Ri + gi

where Ii and Ri denote true inputs and revenues, fi and gi reflect additive mea-

surement errors, while φi and χi are multiplicative errors.15 We treat the impact

of measurement error in inputs as common across different inputs (capital,

labor, intermediates). We return to this issue at the end of this section.

For the setting from Section 2, with profit maximization a plant’s TFPR is

TFPRi ≡
R̂i

Îi
∝ τi

(
R̂i

Ri

Ii

Îi

)
.

Absent measurement error, TFPRi provides a measure of plant i’s distortion,

τi. But, to the extent revenue is overstated, or inputs understated, TFPRi will

overstate τi. In that circumstance, the plant’s marginal revenue product is less

than implied by its TFPRi.

The growth rate of TFPR will reflect the growth rate of measurement error

as well as the growth rate of τi:

∆TFPRi = ∆τi + ∆

(
R̂i

Ri

)
− ∆

(
Îi
Ii

)
.

∆ denotes the growth rate of a plant variable relative to the mean in its sector.

15Note that the additive terms fi and gi could alternatively reflect deviations from Cobb-
Douglas production. For instance, positive values for fi, or negative for gi, would imply
marginal revenue exceeds average revenue per input.
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If there are only additive measurement errors, then TFPR growth is

∆TFPRi =
∆τi

R̂i/Ri

−

(
R̂i −Ri

R̂i

− Îi − Ii
Îi

)
∆Ii +

Ngi

R̂i

− Nfi

Îi
.

As above, N denotes absolute change. We see that the response of TFPRi to

inputs speaks to the relative size of additive measurement error in revenue ver-

sus that in inputs. TFPRi decreases with inputs if revenue is overmeasured

relative to inputs ( R̂i−Ri
R̂i

> Îi−Ii
Îi

), and increases with inputs i the reverse is true.

Because it is this relative measurement error, R̂i−Ri
R̂i

versus Îi−Ii
Îi

, that causes

TFPRi to mismeasure τi, the response of TFPRi to inputs can identify the role

of such errors in observed TFPRi.

By contrast, if there are only multiplicative measurement errors, then the

percentage change in TFPR equals:

∆TFPRi = ∆τi + ∆χi − ∆φi.

Here TFPRi growth provides no information on measurement error in the level

of TFPRi, except to the extent ∆τi, ∆χi, and ∆φi project onto those errors.

With proportional measurement errors, any increase in true inputs or revenue

at plant i will scale up the measurement errors. Here errors that plague TFPRi

as a measure of plant i’s marginal revenue are perfectly related to those that

contaminate the ratio of its change in revenue to change in inputs.

Going forward, we focus on purely additive measurement error. For this

reason, our estimates should be viewed as a conservative assessment of the

role of measurement error in generating differences in TFPRi. However, we

find that even this conservative assessment dramatically reduces the size and

(especially) volatility of inferred misallocation. We assume that measurement

errors are mean zero.16 We further assume that measurement errors are uncor-

16Otherwise, changes in τi and Ai, by affecting the size of inputs and revenue, would affect
the expected measurement error. We allow the variance of innovations to measurement error
to scale withAi and τi. For this reason, we do not predict that measurement errors become less
important with trend growth or systematically differ between firms that differ in long-run size.
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related with τi and Ai, though τi and Ai may be correlated with each other.

We next show how interacting a plant’s TFPRwith its elasticity of measured

revenue with respect to inputs can address how much dispersion in TFPR re-

flects actual dispersion in distortions. We present results for both U.S. and

Indian manufacturing. We then extend the methodology to consider mismea-

surement in relative inputs across plants.

5.1. Identifying Measurement Error in TFPR

For exposition we first assume measurement error only in revenue, not in in-

puts. We bring back input errors shortly, as these are readily accommodated.

Changes in plant i’s measured and true inputs reflect changes: in Ai and τi

∆Îi = ∆Ii = (ε− 1) ∆Ai − ε∆τi.

Meanwhile, measured revenue growth is

∆R̂i = ∆Îi + ∆TFPRi =
Ri

R̂i

(ε− 1)(∆Ai −∆τi) +
Ngi

R̂i

.

Our focal point is the elasticity of measured revenue with respect to mea-

sured inputs. We denote this statistic by β̂:

β̂ ≡
s∆R̂,∆Î

s2
∆Î

β̂ equals one plus the elasticity of TFPR with respect to measured inputs. If

revenue is overstated, then an increase in inputs will tend to decrease TFPR,

thus reducing β̂. For instance, suppose ∆τi = 0, with input changes driven only

by ∆Ai. Given changes in measurement error are orthogonal to ∆Ai, this yields

β ≡ E[β̂] equal to R/R̂. Thus β̂ directly reveals the extent to which revenue

is overmeasured or undermeasured. Next we relate β̂ to the plant’s TFPR by

constructing E
{
β̂ | ln (TFPR)

}
= E

{
R/R̂ | ln (TFPR)

}
. Keep in mind that
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R/R̂ is one component in TFPR, as ln (TFPR) = ln(τ)− ln(R/R̂). Thus this

addresses the question: How important is measurement error in TFPR ?

This logic can be extended to allow for ∆τi 6= 0. We then have

E
{
β̂ | ln (TFPR)

}
= E

{(
1 + Ω̂τ

) R
R̂
| ln (TFPR)

}
,

where Ω̂τ ≡ s∆τ,∆I/s
2
∆I . Now two factors dictate the elasticity of R̂i with respect

to Îi. As before, the elasticity is decreased to the extent revenue is overmea-

sured. The other factor, Ω̂τ , reflects the importance of ∆τi to changes in inputs.

This factor is needed because the elasticity of revenue with respect to input

changes equals one if driven by ∆Ai, but only ε−1
ε

if caused by ∆τi.

The relation above can be examined non-parametrically to isolate how the

term (1 + Ω̂τ )R/R̂ projects on TFPR. We pursue this below. But we proceed

further parametrically to isolate separately how factors R/R̂ and (1 + Ω̂τ ) relate

to plant TFPR. To do so, we make the further assumption that ln (TFPR)’s two

components, ln(τ) and ln(R̂/R), are normally distributed.

Substituting
(

1− R̂−R
R̂

)
for R

R̂
, then approximating R̂−R

R̂
by ln

(
R̂
R

)
, we get17

E
{
β̂ | ln (TFPR)

}
= E

{(
1 + Ω̂τ

)
| ln (TFPR)

}
· E

{(
1− ln

(
R̂

R

))
| ln (TFPR)

}

+Cov

{
Ω̂τ , ln

(
R̂

R

)
| ln (TFPR)

}

where the Cov term refers to the variables’ conditional covariance.

Given ln(τ) and ln(R̂/R) are normally distributed, the conditional expecta-

17This is a first-order approximation. The second-order discrepancy between ln
(
R̂
R

)
and

R̂−R
R̂

is positive, equaling 1
2

(
R̂−R
R̂

)2
. The question is how this approximation error projects

on ln (TFPR). Since we assume no skewness in the distribution of ln
(
R̂
R

)
, the second-order

approximation error is orthogonal to the measurement-error component in ln (TFPR).
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tion of ln(R̂/R) is linear in ln (TFPR) and the conditional covariance is zero:

E
{
β̂ | ln (TFPR)

}
= E

{(
1 + Ω̂τ

)
| ln (TFPR)

}
·

1−
σ2

ln R̂
R

σ2
lnTFPR

ln (TFPR)

 .
≡ E

{(
1 + Ω̂τ

)
| ln (TFPR)

}
· [1− (1− λ) ln (TFPR)] ,

where

λ =
σ2

ln τ

σ2
lnTFPR

.

Identifying λ answers the question: If two plants differ in TFPR, what fraction

of that difference reflects a true difference in τ?

We first take ln (Ai) and ln (τi) to be random walks, with ∆τi and ∆Ai each

i.i.d. random variables (we generalize this shortly). In this case

E
{
β̂ | ln (TFPR)

}
= (1 + Ωτ ) [1− (1− λ) ln (TFPR)] .

The term (1 + Ωτ ) affects the elasticity, but does not depend on ln(TFPR).

So, to the extent βi projects on ln (TFPR), we can interpret this as yielding

how measurement error relates to ln (TFPR). This equation, which we call our

baseline specification, shows that λ can be identified by regressing measured

plant revenue growth on its input growth, but also interacting that input growth

with the plant’s TFPR. Rearranging, σ2
ln τ = λ · σ2

lnTFPR. So, conditional on

observed dispersion in TFPR, we obtain an estimate of σ2
ln τ from λ.

While our baseline treats ln (Ai) and ln (τi) as random walks, we want to allow

that these might be stationary. It is then necessary to condition (1 + Ω̂τ ) on

ln (TFPR). To illustrate why, suppose ln τi takes either an extremely positive or

extremely negative value. Then the expected magnitude of ∆τi will be larger, as

there is a tendency for ln τi to regress back to its mean. Anticipated ∆τi is large

and negative if ln τi is extremely high, and large and positive if ln τi is extremely

low. For this reason, Ω̂τ is greater at extreme values for ln τi. Because ln (TFPRi)

includes ln τi, Ω̂τ is also greater for extreme values of ln(TFPRi). As an example,
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suppose that ln (τi) follows an AR(1) with parameter ρ. Then E {∆τi} = −(1 −
ρ) ln (τi), and V ar {∆τi} = (1− ρ)2 (ln (τi))

2.

With this example in mind, we generalize our baseline specification to allow

that E
{(

1 + Ω̂τ

)
| ln (TFPR)

}
is captured by a projection on (ln (TFPR))2.

That yields

E
{
β̂ | ln (TFPR)

}
=
[
Ψ + Λ (ln (TFPR))2] · [1− (1− λ) ln (TFPR)] .

We anticipate Λ ≤ 0. λ continues to equal σ2
ln τ

σ2
lnTFPR

.

Before turning to our empirical specifications, we first relax the assumption,

made for exposition, that measurement error is only in revenue. Allowing mea-

surement error in inputs, the general specification becomes

E
{
β̂ | ln (TFPR)

}
= E

{(
1 + Ωτ − Ω̂f

) RÎ
R̂I
| ln (TFPR)

}
,

where

Ω̂f ≡
s2
Nf/I

s2
∆I+Nf/I

.

is the projection of measurement error Nf/I on ∆I + Nf/I.

Our baseline specification becomes

E
{
β̂ | ln (TFPR)

}
= (1 + Ωτ − Ωf ) · [1− (1− λ) ln (TFPR)] .

λ remains equal to σ2
ln τ

σ2
lnTFPR

; but now σ2
lnTFPR reflects both measurement errors, σ2

ln R̂I

RÎ

.

Here we have assumed that Nf/I, as well as ∆A and ∆τ , are i.i.d.18 As before, predicted

plant ln(τ) is equal to λ times its ln(TFPR).

18This equation reflects approximating R̂I−RÎ
R̂I

by ln
(
R̂I

RÎ

)
. We write for convenience here as

though changes in measurement error for revenue and inputs are orthogonal. But these can
covary. This would alter the coefficient of −1 in front of ΩNf ′ , with that alteration dictated by
whether innovations in the measurement errors are positively or negatively correlated. But this
would not affect interpretation of our estimate for λ.
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Our specification for stationary ln (τi) continues to have the form

E
{
β̂ | ln (TFPR)

}
=
[
Ψ + Λ (ln (TFPR))2

]
· [1− (1− λ) ln (TFPR)] .

But now Λ (ln (TFPR))2 captures E
{
−Ω̂τ + Ω̂f | ln (TFPR)

}
. Regression to the mean

acts to increase −Ω̂τ and Ω̂f at extreme values, respectively, for ln (τi) and fi
Îi

. These

rationalize a negative value for parameter Λ.

5.2. Estimates for the U.S. and India

Our baseline estimating equation takes the form

∆R̂i = Φ · ln (TFPRi) + Ψ ·∆Îi −Ψ(1− λ) · ln (TFPRi) ·∆Îi +Ds + ξi. (2)

∆’s reflect annual growth rates, and time subscripts remain implicit. ln(TFPRi) is the

Tornqvist average for the current and previous years that span the changes in

inputs and revenue. Ds (Dst fully enumerated) denotes a full set of sector-year fixed

effects. As discussed above, λ =
σ2
ln τ

σ2
lnTFPR

and Ψ = 1 + Ωτ −Ωf . We allow parameter

Φ so that the interaction variable ln (TFPRit) · ∆Îit has a clear interpretation. But we

have no anticipated sign for Φ, given that ln(TFPRit) is measured by its Tornqvist

average. Estimation is by GMM, with observations weighted by their gross output

shares. Extreme values for the data series ∆R̂it and ∆Îit are winsorized at the 1%

tails.

Results are given in Table 3 for both Indian and U.S. manufacturing. Looking first

at India, we see that Ψ̂ = 0.97. So, evaluated at mean ln (TFPR), growth in measured

inputs translates nearly one-to-one to measured revenue. But the key parameter is

λ. Its estimate is well below one, at 0.55. This reflects strong predictive power of

ln (TFPR) for β. The implied value for β for a plant with ln (TFPR) of 0.5 above its

sector mean is only 0.74, compared to 1.19 for a plant with ln (TFPR) of 0.5 below

average. The implication is that only a little over half of observed differences in TFPR

reflect actual differences in τ ’s.

Results for the U.S. are even more dramatic. λ is only 0.23, suggesting that more than

three quarters of plant dispersion in TFPR in the U.S. reflects mismeasurement rather
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Table 3: Baseline Estimates for U.S. and India

India 1985–2011 U.S. 1978–2007

Φ̂ 0.052 0.053

(0.005) (0.002)

Ψ̂ 0.967 0.794

(0.005) (0.004)

λ̂ 0.547 0.229

(0.035) (0.026)

Observations 277,239 1,141,000

Note: Estimates are from specification 2 using the Indian ASI and U.S.
ASM. An observation is a plant-year. The dependent variable is revenue
growth. Φ̂ is the coefficient on TFPR, Ψ̂ on composite input growth, and
1 − λ̂ on the product of the two. Revenue growth and composite input
growth are winsorized at the 1% level. Observations are weighted by the
plant’s Tornqvist share of aggregate output. Standard errors are clustered
at the plant-level.
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Table 4: Indian Baseline Estimates in Windows

1985–1993 1994–2001 2002–2011

λ̂ 0.562 0.510 0.576

(0.050) (0.080) (0.027)

Observations 87,777 73,657 115,895

Note: Estimates of λ̂ are from specification 2 for three separate
periods covered by the Indian ASI. An observation is a plant-year.
The dependent variable is revenue growth. Revenue growth and
composite input growth are winsorized at the 1% level. Observations
are weighted by the plant’s Tornqvist share of aggregate output.
Standard errors are clustered at the plant-level.

than true differences in τ . Not surprisingly, we find below that this sharply reduces

productivity losses from misallocation.

Given the volatility over time for the raw measures of misallocation, especially for

the United States, we ask whether our approach yields differing results when applied

to subperiods. We break the 1985 to 2011 Indian data into three periods, with results

given in Table 4. We have roughly four times as many plant-year observations from U.S.

data for 1978 to 2007, so we break the U.S. results into six periods in Table 5. The Indian

results are fairly similar across subperiods, but do exhibit a higher ratio of measurement

error (lower λ̂) for 1994 to 2001, which has he greatest dispersion in TFPR. For the

U.S., λ̂ distinctly declines in the latter part of the sample when measured dispersion

and misallocation climbs upward (Figure 2).

In Figure 4 we provide a plot of ln(NR̂i/NÎi) versus ln(TFPRi) for the Indian data.

(A plot for U.S. data will be added.) The data are broken into percentiles by TFPR, with

the average value for NR̂i/NÎi calculated by weighting each observation by its absolute

value for NÎi. Under no measurement error we should see (on the ln scale) a slope

of one, but zero if differences in TFPR are entirely illusory. The realized slope is in

between, as we should expect given the estimate of λ̂ = 0.55 for India. The relationship

is quite linear over much of the data. But it clearly lies below the fitted line for extreme

values of TFPRi, both negative and positive extremes with the exception of the very
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Table 5: U.S. Baseline Estimates in Windows

1978–1982 1983–1987 1988–1992 1993–1997 1998–2002 2003–2007

λ̂ 0.358 0.336 0.326 0.326 0.192 0.095

(0.027) (0.034) (0.031) (0.037) (0.032) (0.070)

Observations 143,000 146,000 160,000 164,000 158,000 157,000

Note: Estimates of λ̂ are from specification 2 for six separate periods covered by the U.S. ASM. An observation is a plant-
year. The dependent variable is revenue growth. Revenue growth and composite input growth are winsorized at the 1%
level. Observations are weighted by the plant’s Tornqvist share of aggregate output. Standard errors are clustered at the
plant-level.

highest percentile. Our derivations of βi anticipated this relationship. Because extreme

values of ln (TFPR) suggest extreme values for ln (τ) and/or ln(Î/I), it will also imply

greater volatility for these variables, assuming they are stationary. This implies lower

values for (1 + Ωτ − Ωf ) and for β.

We therefore turn to our generalized specification, which takes the form

∆R̂i = Φ · ln (TFPRi) + Ψ ·∆Îi −Ψ(1− λ) · ln (TFPRi) ·∆Îi

+ Γ · (ln (TFPRi))
2 + Λ(1− λ) · (ln (TFPRi))

2 ·∆Îi

+ Υ · (ln (TFPRi))
3 + Λ(1− λ) · (ln (TFPRi))

3 ·∆Îi +Ds + ξi. (3)

Results are given in Table 6 for India and Table 7 for the U.S. For India, allowing for mean

reversion reduces λ̂ very modestly. When estimated separately on the three subperiods,

λ̂ is reduced in all periods, but by slightly more, from 0.51 to 0.47, in the middle period

with the most dispersion in TFPR.

Turning to Table 7 for the U.S., we see that generalizing the specification makes a

considerably bigger difference, but only for the later sample years. For 1998–2002, λ̂

goes from 0.19, under the standard specification, to 0.13. For 2003–2007, λ̂ is reduced

from 0.10 all the way down to 0.02, implying a negligible mapping of TFPR to distor-

tions in these later years.
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Table 6: Indian Estimates Allowing for Mean Reversion

All Years 1985-1993 1994-2001 2002-2011

Baseline λ̂ 0.547 0.562 0.510 0.576

(0.035) (0.050) (0.080) (0.027)

λ̂ with mean reversion 0.520 0.547 0.465 0.562

(0.041) (0.060) (0.090) (0.029)

Observations 277,239 87,777 73,657 115,895

Estimates of λ̂ are from specifications 2 and 3 for three separate periods covered by the Indian
ASI. An observation is a plant-year. The dependent variable is revenue growth. Revenue growth
and composite input growth are winsorized at the 1% level. Observations are weighted by the
plant’s Tornqvist share of aggregate output. Standard errors are clustered at the plant-level.

Table 7: U.S. Estimates Allowing for Mean Reversion

All Years 1978– 1983– 1988– 1993– 1998- 2003-

1982 1987 1992 1997 2002 2007

Baseline λ̂ .229 0.358 0.336 0.326 0.326 0.192 0.095

(.026) (0.027) (0.034) (0.031) (0.037) (0.032) (0.070)

λ̂ with mean reversion 0.205 0.371 0.312 0.318 0.318 0.129 0.020

(0.018) (0.029) (0.037) (0.033) (0.038) (0.041) (0.054)

Observations 1,141,000 143,000 146,000 160,000 164,000 158,000 157,000

Note: Estimates of λ̂ are from specifications 2 and 3 for three separate periods covered by the Indian ASI. An observation is
a plant-year. The dependent variable is revenue growth. Revenue growth and composite input growth are winsorized at the
1% level. Observations are weighted by the plant’s Tornqvist share of aggregate output. Standard errors are clustered at the
plant-level.
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Figure 4: Measured Marginal Products vs TFPR: India

Source: The Indian Annual Survey of Industries (ASI), using the years 1985 to
2011. The blue line in the figure is the line of best fit from a regression of NR̂i/NÎi
on ln(R̂i/Îi). The blue dots plot a non-parametric version of this regression,
where each dot corresponds to one of 100 centiles of ln(R̂i/Îi). An observation
in the regression is a plant-year. Sector-year fixed effects are removed from both
the right-hand side and left-hand side variables. Observations are weighted by
the absolute value of composite input growth (winsorized at the 1% level).

5.3. Measurement Error in Input Ratios

So far we have considered measurement errors in labor, capital, and intermediates of

the same proportion. But part of the calculated misallocation in Figure 2 comes from

dispersion in relative inputs, not dispersion in TFPR. Under the assumption that

input elasticities are common across plants, input shares should not differ unless the

mix is distorted across plants. So dispersion in input mix is treated as misallocation.19

But, if spending on inputs is subject to mismeasure, it is natural that those errors could

affect input ratios.

We pursue an approach, similar in spirit to that above for TFPR, to gauge if disper-

sion in input ratios reflects mismeasurement. The logic is that, if total inputs expand,

then this acts to reduce the mismeasure of the ratio of inputs. The key assumption

here is that measurement errors in are additive to true inputs. To the extent errors are

19Much of the literature on misallocation has focused on distortions to the capital-labor ratio.
Examples include Midrigan and Xu (2014), Asker et al. (2014), Gopinath et al. (2016), Garicano
et al. (2016), and Kehrig and Vincent (2017).
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instead proportional, then they will go undetected by our procedure. For this reason,

our approach can be viewed as conservative in its estimate of the role of measurement

error in explaining dispersion in the ratio of inputs across plants.20

The growth rate in the measured ratio of capital to labor inputs is given by

∆
K̂i

L̂i
=

(
Ki
K̂i
· Li
L̂i

)
∆Zi −

[(
K̂i−Ki
Ki

)
−
(
L̂i−Li
Li

)]
∆V̂i

1− α
(
K̂i−Ki
Ki

)
− (1− α)

(
L̂i−Li
Li

) ,

with

∆Zi = ∆τLi −∆τKi +
NfKi
K̂i

− NfLi
L̂i

.

∆V̂i denotes growth in value added, as measured by α∆K̂i + (1− α) ∆L̂i. ∆τK and

∆τL denote respective changes in capital and labor distortions; and NfK and NfL are

absolute changes in the inputs’ measurement errors.

The goal is to isolate the role of
(
K̂i−Ki
Ki

)
−
(
L̂i−Li
Li

)
in differences in ln

(
K̂i
L̂i

)
. We

proceed by regressing ∆K̂i − ∆L̂i on ∆V̂i, as well as ∆V̂i interacted with ln
(
K̂i
L̂i

)
. If

we assume that ∆Zi is orthogonal to
(
K̂i−Ki
Ki

)
−
(
L̂i−Li
Li

)
, then this provides a test for

the role of measurement error in ln
(
K̂i
L̂i

)
.21 The expected coefficient from regressing

∆K̂i −∆L̂i on ∆V̂i, call it ν is then

E

{
ν | ln

(
K̂

L̂

)}
= Π− E


(
K̂−K
K

)
−
(
L̂−L
L

)
1− α

(
K̂−K
K

)
− (1− α)

(
L̂−L
L

) | ln

(
K̂

L̂

)
≈ Π− (1− λKL) ln

(
K̂

L̂

)
.

The sign of the intercept Π is dictated by the covariance of ∆V̂i and ∆Zi. λKL denotes

the fraction of dispersion ln
(
K̂

L̂

)
due to dispersion in ln

(
K
L

)
, not from measurement

20Our procedure also fails to detect the extent that input elasticities differ across plants in a
sector, violating the assumption of common elasticities. This is a further reason to view our
procedure as conservative, that is, conservative in that the the amount of misallocation still
attributed to differences in input ratios would be overly generous.

21This assumes that changes in relative measurement errors are orthogonal to the level of
relative measurement errors. For instance, if

NfKi

K̂i
and

NfLi

L̂i
are i.i.d., then this would hold true.
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error.22 If there is no measurement error in the ratio of inputs, then λKL = 1. If the

true ratio Ki
Li

and measurement error in the ratio are independent, then we have that

σ2
ln K

L

= λK
L
σ2

ln K̂

L̂

.

We proceed in the same manner to estimate measurement error in the ratio of value

added to intermediates, V̂i
X̂i

. We refer to the corresponding λ parameter as λ V
X

. We

relegate those derivations to an appendix (to be added).

The equation for estimating λK
L

takes the form

∆
K̂i

L̂i
= Φ · ln

(
K̂i

L̂i

)
+ Π ·∆V̂i − (1− λKL) · ln

(
K̂i

L̂i

)
+Ds + ξi (4)

The equation for estimating λ V
X

takes the same form, but value-added and inter-

mediates take the place of capital and labor, while growth in measured gross output

replaces ∆V̂i.23

Results are presented for Indian data in Table 8 and for U.S. in Table 9 . The esti-

mates of λ, for TFPR differences, are repeated for comparison. Estimates for λK
L

and

λ V
X

are much closer to one. Estimated for India for 1985 to 2011, these are 0.93 and 0.91

respectively; and across subperiods both parameters remain near, or above, 0.9. For

the United States λK
L

, estimated for the full sample, is 0.80; and it is 0.78 or above for

all six subperiods. λ V
X

is even higher: 0.84 for the full sample and 0.81, or higher, for all

subperiods. Because our estimates for λK
L

and λ V
X

are much closer to one than those

for λ, adjusting for errors in input ratios plays a fairly minor role in our calculations of

misallocation that follow.

22The approximately equal reflects that

(
K̂−K

K

)
−
(

L̂−L
L

)
1−α

(
K̂−K

K

)
−(1−α)

(
L̂−L

L

) and ln
(
K̂

L̂

)
are equal to a

linear approximation near
(
K̂−K
K

)
= 0,

(
L̂−L
L

)
= 0. The linear projection on ln

(
K̂

L̂

)
reflects an

assumption that true ln
(
K̂

L̂

)
and its measurement error are normally distributed.

23Parameters are estimated by GMM, with observations weighted by gross output shares.

Extreme values for series ∆ K̂i

L̂i
and ∆V̂i are winsorized at the 1 percent tails in estimating λK

L
; as

are ∆ V̂i

X̂i
and the growth rate in gross output in estimating λ V

X
.
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Table 8: Indian Estimates with Relative Measurement Error

All Years 1985-1993 1994-2001 2002-2011

λ̂ with mean reversion 0.520 0.547 0.465 0.562

(0.041) (0.060) (0.090) (0.029)

λ̂KL 0.927 0.910 0.888 0.976

(0.022) (0.035) (0.039) (0.033)

λ̂V X 0.912 0.895 0.902 0.928

(0.011) (0.014) (0.019) (0.020)

Observations 277,239 87,777 73,657 115,895

Estimates of λ̂ are from specification 3; those of λ̂KL and λ̂VX from specification 4. An
observation is a plant-year. The dependent variable is revenue growth. Revenue growth and
composite input growth in the ASI are winsorized at the 1% level. Observations are weighted by
the plant’s Tornqvist share of aggregate output. Standard errors are clustered at the plant-level.



MISALLOCATION OR MISMEASUREMENT? 33

Table 9: U.S. Estimates with Relative Measurement Error

All Years 1978– 1983– 1988– 1993– 1998- 2003-

1982 1987 1992 1997 2002 2007

λ̂ with mean reversion 0.205 0.371 0.312 0.318 0.318 0.129 0.020

(0.018) (0.029) (0.037) (0.033) (0.038) (0.041) (0.054)

λ̂KL 0.797 0.822 0.777 0.815 0.780 0.777 0.831

(0.009) (0.020) (0.016) (0.017) (0.026) (0.030) (0.026)

λ̂V X 0.838 0.884 0.883 0.840 0.821 0.839 0.811

(0.006) (0.010) (0.011) (0.011) (0.018) (0.014) (0.021)

Observations 1,141,000 143,000 146,000 160,000 164,000 158,000 157,000

Estimates of λ̂ are from specification 3; those of λ̂KL and λ̂VX from specification 4. An observation is a plant-year. The
dependent variable is revenue growth. Revenue growth and composite input growth in the ASM are winsorized at the 1%
level. Observations are weighted by the plant’s Tornqvist share of aggregate output. Standard errors are clustered at the
plant-level.
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6. Revisiting Misallocation

We now compare the ”raw” measures of allocative efficiency for Indian and U.S. man-

ufacturing to our estimates purging the impact of measurement error. We first present

results maintaining that measurement errors are common across inputs–we refer to

this as the common correction. We then additionally correct for errors affecting disper-

sion in input ratios.

To get at dispersion in τi, our first step is to take plants’ ln(TFPR)’s, then scale

differences by λ̂. But this does not capture the entirety of distortions across plants

because, in the presence of measurement error, there is a component of dispersion

in τi’s that is orthogonal to ln(TFPR). For this reason, we build an alternative measure

of firm distortion, T̃FPRi, by adding to the scaled variable λ̂ · ln(TFPRi) an indepen-

dently drawn random variable, εi. εi is drawn from a normal distribution so that it yields

σ2

ln(T̃ FPR)
= λ̂ · σ2

ln(TFPR).

T̃FPRi ∝ exp
(
λ̂ · ln(TFPRi) + εi

)

where εi ∼ N
(

0, (λ̂− λ̂2)σ2
ln(TFPR)

)
.

Our estimates for λ̂ are those given in Table 6 (India) and Table 7 (U.S.) that allow for

mean reversion in measurement error and in τ ’s.

We make comparable corrections to treat the presence of relative measurement

error across intermediates, capital and labor.

We display the impact of these corrections on implied allocative efficiency in Fig-

ures 5 and 6, respectively, for India and the United States. Looking at Figure 5, the left

panel imposes a common λ̂, while the right allows for separate λ̂’s across the three time

periods. Given the similarity of the results, we focus on those on the right. The cor-

rection greatly increases Indian allocative efficiency. This is particularly so for the late

1990’s when misallocation, based on raw TFPR, is especially high. Table 10 reports the

magnitudes employing separate estimates of λ by time period. The common correction

increases allocative efficiency from 49 to 61 percent, thereby reducing the potential

gains from reallocation from 102 to 65 percent. Correcting for error in input ratios has
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Figure 5: Allocative Efficiency in India

Common λ̂ λ̂ in Windows

Source: Indian ASI. The figures show uncorrected and corrected allocative efficiency (AE) for the years
1985 to 2011. The left panel shows corrected AE when a common estimate of λ̂ is used over the whole
time frame. The right panel shows corrected AE when λ̂ is allowed to vary across three windows. Average
uncorrected AE is 49% while average corrected AE (using the full correction and λ̂ in windows) is 62%.

a much smaller effect, taking the potential gains down further to 61 percent. Relative

to the standard treatment of no measurement error, potential gains from reallocation

are reduced by 40 percent.

Still focusing on India, we see from Figure 5 and Table 10 that correcting greatly

reduces the implied volatility of misallocation over time. The standard deviation of

potential gains is reduced by nearly three quarters, from 13.7 to only 4.0 percent.

Turning to the United States, Figure 6, we see an even far greater impact from cor-

recting for measurement error. Again the left panel imposes a common λ̂, while the

right allows for separate λ̂’s by 5-year period. Regardless, the correction eliminates the

bulk of potential gains from reallocation. Despite a common λ̂ in the left panel, most of

the apparent downward trend in allocative efficiency is eliminated; in the right panel,

with separate λ̂’s, that trend is eliminated entirely.

Table 10 reports magnitudes. The common correction reduces potential gains from

96 percent all the way down to 28 percent. Correcting as well for error in input ratios
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takes those potential gains down still further to 24 percent. Thus, relative to allowing

for no measurement error, potential gains are reduced by three quarters.

Just as striking is the impact on the volatility of U.S. gains from reallocation. The

correction not only removes any upward trend in the gains, it also moderates its higher

frequency vagaries. As a result, the volatility of that time series is reduced nearly com-

pletely, with its standard deviation going from 54 percent to only 3 percent.

Lastly, Figure 7 displays the implied differential in allocative efficiency between

the United States and India. Without correcting, the U.S. averages about a 20 percent

advantage in allocative efficiency from 1985 to the late 1990’s, though the actual advan-

tage is fairly volatile. Then, over the last 10 years, U.S. efficiency collapses absolutely

and relative to India. By the last several years of data U.S. efficiency is only 60 percent

of that for India.

Our corrected series, however, looks entirely different. The U.S. advantage is higher,

averaging about 35 percent, compared to only about 5 percent uncorrected. Further-

more, that advantage remains stably at 30 to 40 percent throughout the sample period.

Table 10: Uncorrected vs. Corrected Gains from Reallocation

India U.S.

1985–2011 1978–2007

Mean S.D. Mean S.D.

Uncorrected Gains 102.0% 13.7% 95.6% 53.5%

Corrected Gains (Common) 65.2% 4.5% 28.1% 2.9%

Corrected Gains (Common & Relative) 60.8% 4.0% 24.4% 3.0%

Shrinkage 40% 71% 74% 94%

Source: Indian ASI (1985 to 2011) and U.S. ASM (1978 to 2007).
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Figure 6: Allocative Efficiency in the U.S.

Common λ̂ λ̂ in Windows

Source: U.S. ASM. The figures show uncorrected and corrected allocative efficiency (AE) for the years
1978 to 2007. The left panel shows corrected AE when a common estimate of λ̂ is used over the whole
time frame. The right panel shows corrected AE when λ̂ is allowed to vary across three windows. Average
uncorrected AE is 54% while average corrected AE (using the full correction and λ̂ in windows) is 80%.
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Figure 7: Allocative Efficiency: U.S. Relative to India

Source: Indian Annual Survey of Industries (ASI) and U.S. Annual Survey of
Manufactures (ASM). The figure plots the uncorrected and corrected ratio of
U.S. allocative efficiency to Indian allocative efficiency for the years 1985 to
2007 (years in which the datasets overlap). The corrected allocative efficiency
estimates are those using the full correction with λ̂ in windows.

7. Conclusion

We propose a way to estimate the true dispersion of marginal products across plants

in the presence of additive measurement error in revenue and inputs. Our method ex-

ploits the idea that there is additional information on true marginal products afforded

by panel data. Essentially, we project revenue growth on input growth, revenue pro-

ductivity, and input growth interacted with revenue productivity. The interaction term

should be zero if the level of revenue productivity reflects true differences in marginal

products. In contrast, the interaction term should be inversely negative if revenue

productivity is a spurious indicator of true marginal products. Our key identifying

assumption here is that the measurement error is orthogonal to the true marginal prod-

uct.

We implemented our method on data from the Indian Annual Survey of Industries

from 1985–2011 and the US. Annual Survey of Manufacturing from 1978–2007. In India,

we estimate that true Marginal products are 1
2 as dispersed as the average products. The
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potential gains from reallocation are reduced by 2
5 , and the time time-series volatility

of such gains is shaved by 2
3 . In the U.S., our correction eliminates a severe downward

trend in allocative efficiency. Instead of cutting U.S. manufacturing productivity in half

(relative to what it otherwise would have done), allocative efficiency looks stable in the

U.S. Higher allocative efficiency in the U.S. appears to consistently contribute to 30-

40% higher productivity than in India for the years our samples overlap.

We hope our method provides a useful diagnostic and correction for measurement

errors that can be applied whenever researchers have access to panel data on plants

and firms. Our findings leave many open questions for future research. For one, mea-

surement error seemed to worsen considerably over time in the U.S. ASM. What might

be the source? And, even after our correction there seems to be ample misallocation in

the U.S. and India. Is this real or due to some combination of model misspecification

and proportional measurement error? If it is real, can it be traced to specific govern-

ment policies or market failures (e.g. markup dispersion or capital and labor market

frictions)?



8. Model Appendix

8.1. Solving the Firm’s Problem

Solving the representative firm’s problem and normalizing the price index of the final

good P = 1, we obtain the demand for sectoral output:

Qs =
1

Ps
θsQ

We can also obtain the demand curve facing firm i in sector s

Psi = θsQQ
1−ε
ε

s Q
− 1
ε

si

With this we can solve the heterogeneous firms’ problem. We obtain the standard

result that prices are a constant markup over marginal cost:

Psi =

(
ε

ε− 1

)
1

γγss

[(
r

αs

)αs ( w

1− αs

)1−αs
]γs [

1

1− γs

]1−γs 1

τsiAsi

8.2. Aggregating to Sector-Level

Aggregating to the sector level, we can express sectoral gross output as a function of

sectoral inputs and sectoral productivity As:

Qs = As(K
αs
s L1−αs

s )γsX1−γs
s

where

As =

[
Nst∑
i=1

Aε−1
si

(
τs
τsi

)1−ε
] 1
ε−1

The average sectoral distortions on labor is defined as follows:

40
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1 + τLs ≡

[
Ns∑
i=1

Rsi
Rs

1

1 + τLsi

]−1

=

[
Ns∑
i=1

[
Asi
τsi

]ε−1
]

[
Ns∑
i=1

[
Asi
τsi

]ε−1
1

1+τLsi

]

and similarly for τKs and τXs .

8.3. Aggregate Consumption

Aggregate value added in this model (C = Q−X) can be expressed as follows:

C =

(
ε

ε− 1

)∑S
s (1−γs)θs∑S
s γsθs ×

S∏
s

θ

θs∑S
s γsθs

s ×
S∏
s

[(
ααss (1− αs)1−αs)γs γγss (1− γs)1−γs] θs∑S

s γsθs ×

S∏
s

[
τ

τs

] θs∑S
s γsθs ×

[
1−

(
ε− 1

ε

)
1

(1 + τX)

S∑
s

θs(1− γs)
(

1 + τX

1 + τXs

)]
×
(

1

1 + τX

)∑S
s (1−γs)θs∑S
s γsθs ×

 L∑S
s

[
θsγs(1− αs)

(
1+τL

1+τLs

)]

∑S
s (1−αs)γsθs∑S

s γsθs

×

 K∑S
s

[
θsγsαs

(
1+τK

1+τKs

)]

∑S
s αsγsθs∑S
s γsθs

×

S∏
s

A

θs∑S
s γsθs

s

where

τ ≡
[
(1 + τL)1−αs(1 + τK)αs

]γs
(1 + τX)1−γs

τL ≡ 1∑S
i
Rs
Q

1
1+τLs

and similarly for τK and τX .

It is worth noting that the exponents on the sectoral productivity term

 S∏
s=1

A

θs
S∑
s=1

γsθs

s


sum to> 1. This is due to the amplification effect of intermediate inputs. A 1% increase
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in the productivity of each sector leads to a greater than 1% increase in aggregate con-

sumption.

9. Data Appendix

The Indian plant-level dataset used is the Indian Annual Survey of Industries (ASI) for

the years 1985 to 2011. This can be purchased through India’s Ministry of Statistics and

Programme Implementation (MOSPI).24. The reference period of the survey is the ac-

counting year, which in India begins on the 1st of April and ends on the 31st of March the

following year. We reference the surveys by the earlier of the two years covered.25 The

datasets used for the years 1985-1994 are ‘summary’ datasets as opposed to ‘detailed’

datasets. These are years in which in which the dataset contains only a subset of the

variables available in the full survey schedule, however they contain all the variables we

use in this paper. The ASI is a representative sample of plants with at least 10 workers,

(20 workers for plants that don’t use power). Sampling weights are provided with the

data, and the sampling methodology in each year is described in more detail below.

The US plant-level dataset used is the Annual Survey of Manufacturers (ASM) for

the years 1972 to 2012. The ASM is conducted annually. The ASM is a representative

sample of US manufacturing plants with one or more paid employee.

The main variables we construct from both datasets in each year are: gross output,

capital, labor, labor costs, intermediate inputs, and industry classification. We describe

each of these variables in more detail below.

9.1. Main Variables

Labor: We construct labor as the average number of personnel in the plant over the

year. Personnel include wage or salary workers, supervisory/managerial staff, admin-

istrative/custodial employees and all unpaid workers (including family members). In

the 1998 and 1999 surveys, the number of unpaid workers was not asked. We adjust

for this as follows: we set the number of unpaid workers for a plant in 1998(1999) as

the number of unpaid workers in the same plant in 1997(2000). If the plant was not

24See the following link: http://mospi.nic.in/mospi new/upload/asi/ASI main.htm
25We refer to the ASI covering the accounting year 1996-1997 as the 1996 ASI.

http://mospi.nic.in/mospi_new/upload/asi/ASI_main.htm
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surveyed in the preceding(following) year, we set the number of unpaid workers equal

to the average number of unpaid workers in that industry in the preceding(following)

year.26

Labor Cost: We construct labor costs as total payments to labor over the course of

the year. These payments include wages and salaries, bonuses, contributions to old-

age pension funds (and other funds), and all welfare expenses.27

Capital: This is constructed as the average of the opening and closing book value of

fixed assets (net of depreciation). These include all types of assets deployed for produc-

tion and transportation, as well as living or recreational facilities (hospitals, schools,

etc.) for factory personnel. It excludes intangible assets.

Intermediates: We construct intermediates as the sum of the value of materials con-

sumed, fuels consumed and other intermediate expenses. Other intermediate expenses

include repair and maintenance costs (plant/machinery, building, etc...), costs of con-

tract and commission work, operating expenses (freight and transportation charges,

taxes paid), non-operating expenses (communication, accounting, advertising), and

insurance charges.

Gross Output: We construct gross output as the gross value of products sold plus

all other sources of revenue. The gross value of products sold includes distribution

expenses, as well as taxes and subsidies. Other sources of revenue include the value

of electricity sold, the value of own construction, the value of resales, the value of

additions to the stock of finished goods and semi-finished goods, as well as receipts

from industrial or non-industrial services rendered (e.g. contract or commission work).

26Rounded to the nearest whole number.
27Included in these costs are social security charges such as employees’ state insurance,

compensation for work injuries, occupational diseases, maternity benefits, retrenchment and
lay-off benefits. Also included are group benefits like direct expenditure on maternity, creches,
canteen facilities, educational, cultural and recreational facilities, grants to trade unions, and
co-operative stores meant for employees.
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9.2. Deflators & Sectoral Classifications:

Deflators: We construct a yearly capital deflator from a table of gross capital for-

mation in current and constant prices, available from the Reserve Bank of India (RBI)

here: https://www.rbi.org.in/scripts/PublicationsView.aspx?id=15134. The underlying

data for our gross output deflators are three monthly wholesale price index series from

the Indian Office of the Economic Adviser. The WPI series can be downloaded here:

http://eaindustry.nic.in/home.asp.28 We construct our gross output deflators using

concordances from the WPI product-level to the NIC-1987 sector-level, and from the

NIC-1987 sector-level to our harmonized sector-level.29

Sectoral Classification We use official NIC concordances from MOSPI to create a

single industrial classification that is consistent between 1985 and 2011. We match 4-

digit NIC-1970 sectors to 3-digit NIC-1987 sectors, 4-digit NIC-2008 sectors to NIC-2004

sectors, and 4-digit NIC-2004 sectors to 4-digit NIC-1998 sectors. We then consolidate

a number of 3-digit NIC-1998 sectors and match 3-digit NIC-1987 sectors to the con-

solidated 3-digit NIC-1998 sectors. This creates our harmonized sector classification of

52 manufacturing sectors.30

9.3. Cleaning Steps

The following table summarizes the different cleaning steps involved in constructing

our final datasets for both India and the U.S.

9.4. Construction of Panel

Plants fall into two categories: Census and Sample. Census plants consist of plants over

a minimum size threshold, as well as all plants in 12 of the industrially ‘backwards’

states. Census plants are surveyed every year. Sample plants are sampled at random ev-

ery year within each state × 3-digit industry group. Using permanent plant identifiers

provided in the dataset, we can therefore construct a panel following Census plants, as

28The three series respectively cover the years 1981-2000, 2000-2010 and 2005-2012.
29We obtain the former of these concordances from the ACWHO (2015) replication files.
30Note that there are 276 3-digit NIC-1987 manufacturing sectors and 97 (unconsolidated)

3-digit NIC-1998 manufacturing sectors.

https://www.rbi.org.in/scripts/PublicationsView.aspx?id=15134
http://eaindustry.nic.in/home.asp
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Table 11: Data Cleaning Steps for U.S. and India

Indian ASI U.S. ASM

Step Cleaning Remaining Obs Remaining Obs

1 Starting sample of plant-years 1,159,641 1,767,000

2 Missing no key variables 924,547 1,589,000

3 Common Sector Concordance 899,793 1523,000

4 Trimming extreme TFPR & TFPQ 844,875 1,428,000

well as Sample plants that happen to be surveyed in adjacent years. There are a number

of breaks in the coding of the permanent plant identifiers between the years 1986-

1987, 1988-1989, and 2007-2008. Our panel therefore consists of 4 sub-periods across

which we can’t link plants: 1985-1986, 1987-1988, 1989-2007, and 2008-2011. There

have been concerns reported by the ASI data processing agency regarding the reliability

of the permanent plant identifiers prior to 1998. In order to verify the quality of the

permanent plant identifiers, we examine whether reported age is consistent across

survey years for our panel plants.31 In Figure 8 we show the share of panel plants

that report their age as exactly one year less than they reported it in the following year.

This share varies between 8% and 18%, but there is no evidence of more inconsistent

reporting prior to 1998.32

31The variable we use is ’year of initial incorporation’, which was not used in constructing the
permanent plant identifiers. Our results are therefore not a statistical artifact.

32The dashed lines are missing years due to breaks in the coding of permanent plant
identifiers.
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Figure 8: Percentage of Plants with Inconsistently Reported Age
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9.5. Changes in ASI Sampling Methodology

Period Census Sector Sample Sector

1985-1986 12 less industrially developed states, 50 or

more workers with power, 100 or more work-

ers without power, industries with fewer

than 50 plants in all of India, electricity sec-

tor

Stratified within state × 3-digit industry

(NIC-70), 50% samples of remaining non-

Census plants in alternate years

1987-1996 12 less industrially developed states, 100 or

more workers (with or without power), all

joint returns, all plants within state× 4-digit

industry if < 4 plants, all plants within state

× 3-digit industry if < 20 plants, electricity

sector

Stratified within state × 3-digit industry

(NIC-87), minimum sample of 20 plants

within strata, otherwise 1/3 of plants sam-

pled

1997 12 less industrially developed states, plants

with> 200 workers, ‘significant units’ with<

200 workers but contributed highly to value

of output between 1993-1995, public sector

undertakings, electricity sector

Stratified within state × 3-digit industry

(NIC-87), minimum of 4 plants sampled per

stratum

1998 Complete enumeration states, plants with

> 200 workers, all joint returns, electricity

sector omitted

Stratified within state × 4-digit industry

(NIC-98), minimum of 8 plants per stratum

1999-2003 Complete enumeration states, plants with≥
100 or more workers, all joint returns

Stratified within state × 4-digit industry

(NIC-98), minimum of 8 plants per stratum,

exceptions:

2004-2006 6 less industrially developed states, 100 or

more workers, all joint returns, all plants

within state× 4-digit industry with< 4 units

Stratified within state× 4-digit industry, 20%

sampling, minimum of 4 plants

2007 5 less industrially developed states, 100 or

more workers, all joint returns, all plants

within state× 4-digit industry with< 6 units

Stratified within state × 4-digit industry,

minimum 6 plants, 12% sampling fraction:

exceptions

2008-2011 6 less industrially developed states, 100 or

more employees, all joint returns, all plants

within state× 4-digit industry with< 4 units

Stratified within district × 4-digit industry,

minimum 4 plants, 20% sampling fraction
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