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many helpful and inspiring conversations. We are indebted to Yeon-Koo Che, Hugo Hopenhayn, Bart
Lipman, Dilip Mookherjee, Stephen Morris, Andy Newman, Debraj Ray as well as seminar participants at
Arizona State University, Caltech, the Canadian Economic Theory Conference 2015, Collegio Carlo Alberto,
Columbia, the 13th Columbia/Duke/MIT/Northwestern IO Theory Conference, the Einaudi Institute, Iowa
State, McGill, Minnesota, Rice, SITE, UT Austin, Warwick, and Wash. U. for feedback. Chassang gratefully
acknowledges funding from the Alfred P. Sloan Foundation, as well as from the National Science Foundation
under grant SES-1156154.

†Ortner: jortner@bu.edu, Chassang: chassang@princeton.edu.

1



1 Introduction

Agents potentially engaging in criminal behavior can limit the effectiveness of the judiciary

by corrupting monitors in charge of investigating them. This paper explores the idea that

corruption can be reduced by introducing endogenous asymmetric information frictions be-

tween colluding parties. Building on seminal work by Laffont and Martimort (1997), we

show that the cost of deterring crime can be reduced by randomizing the incentives given

to the monitor, and letting the magnitude of those incentives serve as the monitor’s private

information vis à vis the agent. The efficiency gains are large in plausible settings, but in

general, the optimality of random incentives depends on pre-existing patterns of asymmetric

information, making policy design difficult. We address this problem by providing a data-

driven framework for prior-free policy evaluation: although aggregate reports by monitors

cannot be näıvely used to measure actual criminal activity, we show how to evaluate policy

changes using only unverified report data.

We study a game between three players — a principal, an agent, and a monitor — in

which the agent chooses whether or not to engage in criminal behavior c ∈ {0, 1}. The

behavior of the agent is not observed by the principal, but is observed by a monitor who

submits report m ∈ {0, 1}. We think of this report as evidence leading to prosecution:

report m = 1 triggers an exogenous judiciary process which imposes a cost k on criminal

agents; report m = 0 (which involves suppression of evidence whenever c = 1) triggers no

such process. Although the principal cannot observe the agent’s behavior, she can detect

misreporting m 6= c with probability q. The principal’s only policy control is the efficiency

wage w provided to the monitor.

We allow for collusion between the agent and the monitor at the reporting stage (i.e.

corruption). In particular, the monitor can destroy evidence (report message m = 0) incrim-

inating a criminal agent in exchange for a bribe. We think of the destruction of evidence

as happening in front of the agent, so that there is no moral-hazard between the agent and

the monitor, and collusion boils down to a bilateral trading problem. Exploiting the classic
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insight that asymmetric information may prevent efficient trade and limits collusion (Myer-

son and Satterthwaite, 1983, Laffont and Martimort, 1997), we study the extent to which

the principal can reduce the cost of incentive provision by creating endogenous asymmetric

information between the agent and the monitor.

Our model fits a broad class of environments in which an uninformed principal is con-

cerned about collusion between her monitor and the agents the monitor is supposed to

investigate. This includes many of the settings that have been brought up in the empirical

literature on corruption, for instance collusion between polluting firms and environmental

inspectors (Duflo et al., 2013), tax-evaders and customs officers (Fisman and Wei, 2004),

public works contractors and local officials (Olken, 2007), organized crime and police offi-

cers (Punch, 2009), and so on. In these settings the principal cannot efficiently monitor

agents directly, but may realistically be able to detect tempered evidence by scrutinizing

accounts, performing random rechecks in person, or obtaining tips from informed parties.

Alternatively, the principal may be able to detect misreporting if crime has delayed but ob-

servable consequences, such as environmental pollution, public infrastructure failures, media

scandals, and so on.

Our analysis emphasizes three sets of results. The first is that although deterministic in-

centive schemes are cheap in the absence of collusion, they can become excessively expensive

once collusion is allowed. Efficient contracting between the agent and the monitor forces the

principal to raise the monitor’s wage to the point where the agent and the monitor’s joint

surplus from misreporting becomes negative. By using random incentives, the principal can

reduce the rents of criminal agents, which lowers the cost of incentive provision. We make

this point using a simple example without pre-existing asymmetric information. In this case,

the cost-savings from using random rather than deterministic incentives are large, in excess

of 50% under plausible parameter specifications.

Our second set of results extends the analysis to environments with pre-existing asym-

metric information. In addition to the incentives provided by the principal, the monitor

experiences an exogenous privately observed idiosyncratic cost η ≥ 0 for accepting a bribe.
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We show that the optimality of random incentives depends on the convexity or concavity of

the c.d.f. Fη of idiosyncratic costs η.

Finally, motivated by the fact that optimal policy depends crucially on fine details of

the environment, we study the possibility of performing prior-free policy evaluations using

reporting data from a population of agent-monitor pairs. We first show that aggregate reports

of crime across different incentive schemes do not allow for reliable policy evaluation. Indeed,

reports of crime depend on both underlying crime rates, and the monitors’ decision to report

crime or not. As a result, it is possible that a new incentive scheme decreases aggregate

reports of crime, while in fact increasing underlying crime rates. Surprisingly, we are able to

show that it is possible to perform prior-free local policy evaluations using conditional report

data from a single policy (i.e. average reports of crime conditional on realized incentives).

Somewhat counter-intuitively, a local policy change improves on a reference incentive scheme

if it is associated with higher rates of reported crime.

This paper is most closely related to Chassang and Padró i Miquel (2013) who also

consider a game between a principal, an agent, and a monitor in which the agent and the

monitor may collude. Both papers explore the idea that collusion may be addressed by

exploiting informational frictions that make side-contracting difficult. This paper focuses

on asymmetric information between the monitor and the agent, while Chassang and Padró

i Miquel (2013) focus on moral hazard. They study a model in which reports are non-

contractible, so that the monitor is subject to moral hazard and the agent must incentivize

her preferred report by committing to a retaliation strategy. Chassang and Padró i Miquel

(2013) show that it is important for the principal to limit the information content of her own

response to the monitor’s reports. In a spirit similar to our local policy evaluation results,

Chassang and Padró i Miquel (2013) also offer a framework for prior-free inference from

unverifiable reports.

On the applied side, this paper relates to and hopes to usefully complement the growing

empirical literature on corruption. We address two aspects of the problem which have been
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emphasized in the literature, for instance in the recent survey by Olken and Pande (2012).1

The first is that the effectiveness of incentive schemes may be very different over the short-

run and the long-run: over time, agents will find ways to corrupt the investigators in charge

of monitoring them. We explicitly take into account the possibility of collusion between

agents and monitors and propose ways to reduce the costs it imposes on organizations. A

second difficulty brought up by Olken and Pande (2012) is that reports of criminal behavior

do not provide a reliable measure of underlying crime. Our structural model allows us to

back-out measures of underlying crime using observed reports. This connects our work to

a small set of papers on structural experiment design (see for instance Karlan and Zinman

(2009), Ashraf et al. (2010), Chassang et al. (2012), Chassang and Padró i Miquel (2013),

Berry et al. (2012)) that takes guidance from structural models to design experiments whose

outcome measures can be used to infer unobservable parameters of interest.

On the theory side, our work fits in the literature on collusion in mechanism design

initiated by Tirole (1986). It is especially related to Laffont and Martimort (1997, 2000) and

Che and Kim (2006, 2009), who emphasize the role of asymmetric information in limiting

the extent of collusion.2 Our contribution is two-fold. First, we show that the principal can

potentially benefit from introducing endogenous asymmetric information through random

incentives.3 Second, as a step towards implementation, we show how to evaluate potential

policy changes using only unverified reports. Also related is Baliga and Sjöström (1998),

who suggest a distinct mechanism through which random wages (to the agent) may help

reduce collusion. They consider a setting in which the agent has no resources of her own, so

that any promised payment to the monitor must come from the wage she obtains from the

principal. When that is the case, randomizing the agent’s wages undermines her ability to

1For recent work on the measurement of corruption, see Bertrand et al. (2007), and Olken (2007). See
also the surveys by Banerjee et al. (2013) and Zitzewitz (2012).

2For more on the large literature on collusion in mechanism design, see Felli and Villa-Boas (2000),
Faure-Grimaud et al. (2003), Mookherjee and Tsumagari (2004), Burguet and Che (2004), Pavlov (2008),
Celik (2009) or Che et al. (2013).

3This relates our paper to a recent literature that studies optimal design of information structures; see,
for instance, Bergemann and Pesendorfer (2007), Kamenica and Gentzkow (2011), Bergemann et al. (2015),
Condorelli and Szentes (2016).
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commit to transfers.4

Other work has underlined the usefulness of random incentives for reasons unrelated

to collusion. In Becker and Stigler (1974) random checks are an optimal response to non-

convex monitoring costs. More recently, in work on police crackdowns, Eeckhout et al. (2010)

show that in the presence of budget constraints, it may be optimal to provide high powered

incentives to a fraction of a population of agents rather than weak incentives to the entire

population.5 In addition, Myerson (1986) and more recently Rahman (2012) emphasize the

role of random messaging and random incentives in mechanisms, in particular in settings

where the principal needs to disentangle the behavior of different parties.6

The paper is organized as follows. Section 2 introduces our framework in the context

of a simple example with no pre-existing private information, and delineates the economic

forces that make random incentives useful. Section 3 extends the analysis to environments

with pre-existing asymmetric information, and shows that additional asymmetric information

need not always be optimal. Section 4 proposes an approach to policy-evaluation relying on

naturally occurring report data. Appendix A presents several extensions describing how our

results extend in settings allowing for: more sophisticated contracting between the principal

and monitor, multiple monitors, efficient incomplete-information bargaining between the

monitor and agent, extortion from non-criminal agents, and repeated interaction. Appendix

B provides an explicit characterization of maxmin and Bayesian-optimal incentive profiles.

Proofs are collected in Appendix C unless mentioned otherwise.

4Basu (2011) and Basu et al. (2014) highlight the role of asymmetric punishments in reducing collusion
and bribery.

5See Lazear (2006) for related results.
6Other papers have emphasized the role of random incentives. Rahman and Obara (2010) demonstrate

that random messages can improve incentive provision in partnerships by allowing to identify innocent
individuals. Jehiel (2012) shows that a principal may benefit from maintaining her agent uninformed about
payoff relevant features of the environment, as this may induce higher effort at states at which she values
effort most. In a multi-tasking setting, Ederer et al. (2013) show that random contracts may be effective
in incentivizing the agent to take a balanced effort profile. In a monopoly pricing context, Calzolari and
Pavan (2006a,b) show that a monopolist may benefit from selling to different types of buyers with different
probabilities to increase the buyers’ ability to extract revenue on a secondary market.
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2 A Simple Example

2.1 Framework

Players, actions, and payoffs. We consider a game with three players: a principal, e.g.

an environmental protection agency (EPA); an agent, e.g. an industrial plant; and a monitor,

e.g. an investigator employed by the EPA. The agent decides whether to engage in criminal

behavior c ∈ {0, 1}, where crime c = 1 gives the agent a benefit πA > 0, and comes at a cost

πP < 0 to the principal. For instance, the industrial plant may choose to dump hazardous

materials rather than incur the cost of processing them. The agent’s action is not directly

observable to the principal, but is observed by a monitor who chooses to make a report

m ∈ {0, 1} to the principal. We think of this report as evidence leading to prosecution:

report m = 1 triggers a judiciary process that imposes an expected cost k > πA on criminal

agents and an expected cost k0 ∈ [0, k] on non-criminal agents.7 This judiciary process is

exogenous and outside the control of the principal.8

While reports can be falsified (the monitor can always send either reports), we assume

that the principal detects false reports m 6= c with probability q ∈ (0, 1), which makes reports

partially verifiable. Detection may occur through several channels: accounting discrepancies,

random rechecks, tips from informed parties. Criminal behavior may also have delayed but

observable consequences, such as environmental pollution.

For most of the paper, we assume that the monitor is paid according to a fixed wage

contract with wage w, and gets fired in the event that the principal finds evidence of misre-

porting. The monitor is protected by limited liability and cannot be punished beyond the loss

of wages. We show in Appendix A how our results extend when the principal uses arbitrary

7Note that in the US, environmental pollution is indeed subject to criminal prosecu-
tion. The EPA maintains a database of criminal cases resulting from its investigations at
http://www2.epa.gov/enforcement/summary-criminal-prosecutions.

The cost k0 that the judiciary imposes on non-criminal agents does not play a role in our analysis, except
when we consider arbitrary contracts and the possibility of extortion from non-criminal agents in Appendix
A.

8Our results generalize to settings in which the principal can also contract with the agent.
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contracts to compensate the monitor. The principal benefits from using more sophisticated

contracts, since she can offer the monitor a large payment following report m = 1. However,

our assumption that the monitor’s messages are only partially verifiable limits the gains from

using such compensation schemes: as the payment following report m = 1 grows large, the

monitor has an incentive to report crime regardless of the agent’s action.

As part of a possible side-contract the agent can make transfers τ ≥ 0 to the monitor,

i.e. pay her a bribe. Corruption occurs when the monitor accepts to destroy evidence for

a criminal agent (i.e. sends message m = 0 although c = 1). Note that crime rather than

corruption is the behavior that the principal really cares about. Corruption undermines the

effectiveness of institutions in charge of punishing crime.

Altogether, expected payoffs uP , uA, and uM respectively accruing to the principal, the

agent, and the monitor take the form:

uP = πP × c −γw × w − γq × q

uA = πA × c −[k × c+ k0 × (1− c)]×m −τ

uM = w −q × w × 1m6=c +τ,

where γw denotes the efficiency cost of raising promised wages and γq captures the principal’s

cost of attention. When the principal is operating under budget or attention constraints,

these costs can be interpreted as shadow prices. We assume for now that parameters πA, k,

k0 and q are common knowledge. We relax this assumption in Section 4.

Note that the monitor’s incentives for truthful reporting are captured by the expected

loss from misreporting qw. For ease of exposition we treat the distribution of wages w as

the principal’s policy variable. However, note that wages w and scrutiny q enter payoffs in

symmetric ways, so that our analysis applies without change if scrutiny q is the relevant

policy instrument. As we discuss in Section 5, if giving similar monitors different wages

raises fairness concerns, scrutiny q may be the more appropriate choice variable.
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Timing and Commitment. Our analysis contrasts the effectiveness of incentive schemes

under collusion and no-collusion. The timing of actions is as follows:

1. the principal commits to a distribution of wages w with c.d.f. Fw, and draws a random

wage w for the monitor, which is observed by the monitor but not by the agent;

2. the agent chooses whether or not to engage in crime c ∈ {0, 1};9

3. under collusion, the agent makes the monitor a take-it-or-leave-it bribe offer τ in ex-

change for sending message m = 0, which the monitor accepts or rejects — we assume

perfect commitment so that whenever the monitor accepts the bribe, she does send

message m = 0; under no-collusion nothing occurs;

4. under no-collusion or, under collusion if there was no agreement in the previous stage,

the monitor sends the message m maximizing her final payoff.

We assume for now that the agent has all the bargaining power at the collusion stage, if it

occurs. We show that our results extend under more general bargaining (Section 3, Appendix

A), including in environments where the monitor may try to reveal her incentives to the agent.

While the monitor would indeed benefit from revealing her incentives, Appendix A shows

that it is difficult to do so in a credible way. Regardless of her type, the monitor would like

to convince the agent that she has the incentives for truth-telling which lead to the highest

bribe.

Our model admits a natural population interpretation in which distribution Fw captures

wage heterogeneity in the population of monitors. We assume that the principal can commit

to such a distribution, which is plausible when the principal operates under a fixed budget.

Section 5 suggests credible ways to create asymmetric information without randomization,

for instance by using time-varying or non-linear incentives.10

9We assume that the agent and monitor bargain after the agent decides to engage in criminal behavior.
This is consistent with the idea that the monitor’s ability to commit to reports is achieved by destroying
incriminating evidence, or filling her report in front of the agent. In any case, we show in Appendix A that
our main qualitative results do not change if bargaining occurs before the agent’s decision: it is still optimal
for the principal to use random incentives.

10We also emphasize that heterogeneity in incentives, rather than heterogeneity in wages is at the core of
our argument. This could be achieved through heterogeneity in q, i.e. in the scrutiny monitors are under.
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We think of non-collusive and collusive environments as respectively capturing short-run

and long-run patterns of behavior. In the short run, the agent may take the monitors’

behavior as given, and not explore the possibility of bribery. In the long run however, as the

agent explores the different options available to her, she may learn that monitors respond

favorably to bribes.

Motivation. Our framework is intended to capture the challenges facing public agencies

that rely on monitors to assess the behavior of regulated agents. Besides environmental

protection, prominent examples include labor safety regulation, tax collection, and tackling

organized crime. In these cases, crime may respectively correspond to maintaining poor

safety standards, fraudulent accounting, or extortion and smuggling. The monitor may

commit not to report the agent by destroying, or simply by not collecting the evidence

needed to initiate a judiciary process. Even if the monitor makes no report of crime, signals

of misbehavior may be obtained by the principal after some delay: pollution or poor safety

standards may lead to visible consequences (e.g. accidents, local contamination); civil society

stakeholders may produce evidence of their own; aggrieved associates of the agent may

volunteer incriminating information; and so on . . .

2.2 The value of endogenous asymmetric information

We now characterize optimal policy in this simple setting. The following observation is

useful.

Lemma 1. Under collusion, the monitor will accept a bribe τ from a criminal agent if and

only if τ > qw.11 In equilibrium, the agent never offers a bribe τ > πA.

Under no-collusion, or if the monitor rejects the agent’s offer, the monitor’s optimal

continuation strategy is to send truthful reports m = c.

11By convention, we assume that the monitor rejects the agent’s offer whenever she is indifferent between
accepting and rejecting a bribe.
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It follows from Lemma 1 that the expected payoff of a criminal agent under collusion is

πA − k + maxτ (k − τ)prob(qw < τ).

Deterministic wages. We begin by computing the cost of keeping the agent non-criminal

when the principal can use only deterministic wages.

Lemma 2 (collusion and the cost of incentives). Assume that the principal uses only deter-

ministic wages. Under no-collusion the principal can induce the agent to be non-criminal at

0 cost.

Under collusion, the minimum cost of wages needed to induce the agent to be non-criminal

is equal to πA
q

.

Proof. By Lemma 1, given any wage w, under no-collusion the monitor’s optimal strategy

is to send a truthful report. The agent’s payoff from action c = 1 is then πA− k < 0 and her

payoff from action c = 0 is 0. Thus, under no-collusion the principal can induce the agent

to be non-criminal at zero cost.

Consider next a setting with collusion. By Lemma 1, the monitor accepts a bribe τ from

a criminal agent if and only if τ > qw. The agent’s payoff from taking c = 1 is therefore

πA −min{k, qw}, while her payoff from action c = 0 is 0. It follows that the principal can

induce the agent to take action c = 0 by setting a deterministic wage w = πA
q

. �

While deterministic incentive schemes work well under no-collusion, their effectiveness is

significantly limited whenever collusion is a possibility. Note that this remains true if several

monitors are used and their messages are cross-checked in the spirit of Maskin (1999). We

show in Appendix A that absent asymmetric information, the cost of bribing two monitors

is equal to the cost of bribing a single monitor with twice the incentives.

We now show that by randomizing wage w the principal reduces the efficiency of side-

contracting between the agent and the monitor, and hence reduces the cost of incentive

provision.
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Proposition 1 (optimal incentives under collusion). Under collusion it is optimal for the

principal to use random wages. The cost-minimizing wage distribution F ∗w that induces the

agent to be non-criminal is described by

∀w ∈ [0, πA/q], F ∗w(w) =
k − πA
k − qw

. (1)

The corresponding cost of wages W ∗(πA) ≡ EF ∗w [w] is

W ∗(πA) =
πA
q

[
1− k − πA

πA
log

(
1 +

πA
k − πA

)]
<
πA
q
× πA

k
. (2)

The proof of Proposition 1 is instructive.

Proof. A wage distribution Fw induces the agent to be non-criminal if and only if, for every

bribe offer τ ∈ [0, πA], πA − k + (k − τ)prob(τ > qw) ≤ 0, or equivalently, if and only if, for

every τ ∈ [0, πA], Fw

(
τ
q

)
≤ k−πA

k−τ . Using the change in variable w = τ
q
, we obtain that wage

distribution Fw induces the agent to be non-criminal if and only if,

∀w ∈ [0, πA/q], Fw(w) ≤ k − πA
k − qw

. (3)

By first-order stochastic dominance, it follows that in order to minimize expected wages,

the optimal distribution must satisfy (3) with equality. This implies that the optimal wage

distribution is described by (1). Expected cost expression (2) follows from integration and

straightforward computations. �

Further intuition for why random wages can improve on deterministic wages can be

obtained by considering small perturbations around determinisic wage πA
q

. Wage πA
q

deters

crime since a criminal agent finds it optimal to offer bribe τ = πA, which absorbs all the

potential profits from crime. Consider now setting a wage equal to πA
q

with probability 1− ε

and equal to zero otherwise. Since the cost k of prosecution is strictly higher than πA, for

ε > 0 small enough, a criminal agent will still offer a bribe τ = πA. This lets the principal
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deter crime at a lower expected cost of incentives.

In this simple environment, the savings that can be obtained using random incentives are

large: the cost of incentives goes from πA
q

for deterministic mechanisms, to less than πA
q
πA
k

for the optimal random incentive scheme. For instance, if the penalty for crime is greater

than twice its benefits, i.e. k ≥ 2πA, the principal would be able to save more than 50% on

the cost of wages by using random incentives.12

Are random incentives robustly optimal? Because the efficiency gains from using ran-

dom incentives appear large in this simple example, we want to take seriously the possibility

of field implementation. For this, we need to better assess the robustness of our results.

We are able to show in Appendix A that relaxing the assumptions of efficiency wages and

take-it-or-leave-it-bargaining does not overturn the optimality of random incentives (see also

the discussion provided in Section 5). Pre-existing asymmetric information poses a more

fundamental challenge to our findings.

The fact that complete information should overstate the value of random incentives is

intuitive: under complete information, random incentives are the only private information

allowing the monitor to extract rents. Section 3 shows that in fact, random incentives need

not be helpful when the monitor incurs a privately observed cost for accepting bribes. The

optimality of random incentives depends on the distribution of such costs, which makes

policy recommendation difficult. Section 4 addresses this issue by showing it is possible to

perform local policy evaluations using naturally occuring report data.

12Note that gains remain large even if we consider simpler schemes: for the optimal binary wage distribu-
tion, the share of costs saved using random incentives will be exactly equal to 1−πA/k. Indeed, the optimal
binary wage distribution puts probability 1− πA/k on w = 0 and probability πA/k on w = πA/q.
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3 Pre-existing Asymmetric Information

3.1 Framework

We extend the model of Section 2 in three ways:

• the monitor now has a privately observed cost η ≥ 0 for accepting a bribe, distributed

according to c.d.f. Fη with density fη;

• the agent’s benefit πA from crime is now private information to the agent, distributed

according to c.d.f. FπA with density fπA ;

• at the collusion stage, bargaining takes the form of probabilistic take-it-or-leave-it

offers; the agent is the proposer with probability λ while the monitor proposes with

probability 1− λ.

Distributions Fη and FπA are naturally interpreted as sample distributions of types in a large

population of monitors and agents. We maintain this population interpretation of the model

throughout the rest of the paper.

Altogether, payoffs now take the form

uP = πP × c −γw × w − γq × q

uA = πA × c −[k × c+ k0 × (1− c)]×m −τ

uM = w − [q × w + η]× 1m 6=c +τ.

The only difference from payoffs given in Section 2 is that the monitor now experiences an

expected loss qw+ η rather than just qw when accepting a bribe and sending a false report,

where η is a positive private cost of accepting bribes. There is asymmetric information over

πA, and η, but we maintain the assumption that parameters k, k0, λ and q are common-

knowledge between the agent and the monitor.

The following extension of Lemma 1 holds.
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Lemma 3. If no agreement is reached at the collusion stage, a monitor’s optimal continua-

tion strategy is to send truthful reports m = c.13

If the monitor acts as a proposer at the collusion stage, she demands a bribe τ ≥ k when

the agent is criminal, and a bribe τ = 0 when the agent is non-criminal.

The agent accepts any offer τ ≤ k when she is criminal.

An immediate implication is that non-criminal agents get a payoff equal to 0.14

Policy design under budget constraints. Given a distribution of wages Fw, a criminal

agent of type πA gets an expected payoff

UA(πA) = πA − k + λ max
τ∈[0,πA]

(k − τ)prob(qw + η < τ).

An agent will engage in crime if and only if UA(πA) > 0. Note that UA(πA) is increasing in

πA, so that given a wage profile, agents follow a threshold strategy. Given a distribution of

wages Fw, let us denote by πA(Fw) the value of πA for which an agent is indifferent between

actions c = 0 and c = 1.

The principal’s optimization problem over wage distribution Fw can be decomposed as

follows: first, given a budget w0, find the distribution of wages Fw that maximizes threshold

πA(Fw) under budget constraint EFw [w] = w0 — this is the crime-minimizing wage schedule,

given budget w0. The overall optimum can then be obtained by optimizing over budget w0.

We are principally interested in this fixed-budget version of the principal’s problem, which

reflects the budget constraints that real-life institutions frequently operate under.

Our population interpretation of the model means that the principal can satisfy budget

constraint EFw [w] = w0 exactly while using a non-degenerate distribution of wages. In

13Lemma 3 relies on the assumption that the monitor cannot commit to sending false reports about a
non-criminal agent. We allow for such commitment power in Appendix A and show that it does not affect
our main results.

14To see why the monitor demands bribe τ ≥ k when the agent is criminal, note that a monitor with
type η and wage w obtains a payoff of τ + (1 − q)w − η by making an offer τ ≤ k that the agent accepts,
and obtains a payoff of w by making an offer τ > k that the agent rejects. Therefore, it is optimal for the
monitor to demand τ = k if k > qw + η, and to demand τ > k if k ≤ qw + η.

15



addition, fixed budgets support the principal’s ability to commit to mixed strategies. Indeed,

taking agent behavior as given, the principal is indifferent over distributions F̃w satisfying

EF̃w [w] = w0.

3.2 When is additional asymmetric information desirable?

Definition 1. We say that a wage profile with c.d.f. Fw is random if and only if the support

of Fw contains at least two elements.

Proposition 2 (ambiguous optimal policy). (i) Whenever Fη is strictly concave

over the range [0, k], the crime-minimizing wage profile under any budget w0 > 0

is random.

(ii) Whenever Fη is strictly convex over the range [0, k], the crime-minimizing

wage profile under any budget w0 > 0 is deterministic.

To get some intuition for this result, consider the agent’s payoff from taking action c = 1:

UA(πA) = πA − k + λ max
τ∈[0,πA]

(k − τ)prob(qw + η < τ)

= πA − k + λ max
τ∈[0,πA]

(k − τ)EFw [Fη(τ − qw)].

If Fη is strictly convex over the support of τ − qw, a criminal agent is effectively risk-loving

and she obtains a higher payoff from a random wage schedule than from a deterministic one

with the same expectation. Inversely, if Fη is strictly concave over the support of τ − qw,

a criminal agent is effectively risk-averse and her payoff from a random wage schedule is

smaller than her payoff from a deterministic one with the same expectation.

If Fη is neither concave nor convex over [0, k] we can still provide sufficient conditions for

random wage profiles to be optimal. Fix a deterministic wage w0 and denote by τ0 the highest

solution to a criminal agent’s optimal bribe problem when the monitor is compensated with
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a deterministic wage w0,

max
τ

(k − τ)prob(qw0 + η < τ).

Proposition 3 (sufficient condition for random incentives). Whenever τ0 ≤ k
2
, the crime-

minimizing policy given budget w0 is random.

If starting from a deterministic wage, the agent’s optimal bribe is less than half the cost

of prosecution, it is optimal to use random wages. The proof exploits the fact that c.d.f. Fη

cannot be convex over arbitrarily large ranges of values.15 The assumption that τ0 ≤ k
2

lets

us exploit non-convexities of Fη around w0 to construct random wage schedules that improve

on fixed wages.

Because adding further asymmetric information does not necessarily improve incentive

provision, correct policy design must depend on the restrictions, subjective or objective,

that the principal can impose on the environment. We refer the reader to Appendix B for

a characterization of Bayesian-optimal policies in well-behaved cases. However, specifying

beliefs is often difficult for principals, which makes actual implementation difficult. To

address the issue, we show in the next section that it is possible to perform prior-free policy

evaluations using naturally occurring report data. Our result on policy evaluation allows a

principal to search for optimal policies even if she has little knowledge about the environment.

4 Prior-free Policy Evaluation

We now show that it is possible to evaluate potential local policy changes using only the

reporting data occurring under existing policies. Our results do not require the principal to

know any of the parameters of the environment (in particular, the cost k imposed by the

judiciary on criminal agents, the likelihood q of detection, and bargaining power λ need not

15Note that τ0 ≤ k
2 implies that Fη is not convex over [0, k]. Indeed, optimal bribe τ0 must satisfy the

first-order condition fη(τ0 − qw0)(k − τ0) = Fη(τ0 − qw0). If Fη was convex over [0, k], then Fη(τ0 − qw0) ≤
fη(τ0 − qw0)(τ0 − qw0) < fη(τ0 − qw0)(k − τ0), where the last inequality follows since τ0 ≤ k

2 and w0 > 0.
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be known to the observer). We also emphasize that no experimental variation is needed for

local policy evaluation: it is sufficient to obtain reporting data at a single full-support wage

policy. In particular, equilibrium reporting data at alternative policies is not required. This

implies that evaluating policy changes need not require long costly experiments.

Note that implementing random incentive schemes is not implausible (see Section 5 for

further discussion). For instance, Khan et al. (2014) vary the piece-rates given to different

tax-collectors, resulting in a distribution of incentives. Our results show that reporting data

from a single such implementation lets us evaluate whether random incentives would reduce

the cost of containing crime.

Näıve inference fails. We begin by showing that a näıve use of reporting data from

natural policy experiments fails to identify the true effect of policy changes. Given budget

w0, consider two policies F 0
w, F 1

w such that suppF 0
w = {w0} (i.e. F 0

w is a reference fixed-wage

policy), and EF 1
w
[w] = w0. Imagine that policies F ε

w for ε ∈ {0, 1} are implemented over

an infinite population of exchangeable monitor and agent pairs. Denote by mε ∈ {0, 1}

equilibrium report from monitors, and by cε ∈ {0, 1} the crime decision of agents. For any

statistic Z, we denote by ÊZ the population average of Z. Given a policy F ε
w, denote by

Rε = Ê[mε] the proportion of monitors reporting crime, and by Cε = Ê[cε] the proportion of

criminal agents.

Lemma 4 (unreliable aggregate reports). Consider any budget w0, and any random incentive

scheme F 1
w such that EF 1

w
[w] = w0.

Regardless of the ranking of reports, i.e. whether R0 < R1 or R0 > R1, there exist

specifications of k, FπA and Fη such that C0 > C1, and specifications of k, FπA and Fη such

that C0 < C1.

In words, the ordering of aggregate reports places no restrictions on the effect of random

incentives on crime. Indeed, reports of crime depend on both underlying rates of crime, and

the monitors’ decisions to report it. A change in incentive patterns from F 0
w to F 1

w changes
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both the agents’ decision to engage in crime and their bribing behavior. As a result, changes

in aggregate reports from R0 to R1 do not always match changes in underlying crime.

Local policy evaluation. We now show that an appropriate use of report data from

policies with non-trivial support can be used to evaluate local policy changes.

Take as given a distribution of wages with cdf F 0
w and density f 0

w. Denote by P0 the set

of alternative policies f 1
w satisfying

supp f 1
w ⊂ supp f 0

w and Ef0w [w] = Ef1w [w].

When f 0
w has full support, the set of policies f 1

w ∈ P0 is simply the set of policies with the

same wage bill as f 0
w.

For any alternative policy f 1
w, construct the mixture f εw = (1− ε)f 0

w + εf 1
w and let Ê[cε|f εw]

be the proportion of criminal agents under policy f εw. Denote by ∇f1w
C the gradient of

equilibrium crime in policy direction f 1
w:

∇f1w
C =

∂Ê[cε|f εw]

∂ε
∣∣ε=0

.

We are interested in evaluating the gradient of crime ∇f1w
C for all directions f 1

w ∈ P0.

For any wage w ∈ supp f 0
w, let Ê[m|w, f 0

w] be the mean report of crime from monitors with

wage w under policy f 0
w. Recall that the support of f 0

w contains the support of all f 1
w ∈ P0.

Therefore, for any f 1
w ∈ P0 we can construct synthetic mean reports of crime, under wage

distribution f 1
w, keeping the agents’ bribing behavior constant (i.e. optimal bribing given

distribution of wages f 0
w), as follows:

R0(f 1
w) ≡ Ef0w

[
Ê[m|w, f 0

w]× f 1
w(w)

f 0
w(w)

]
. (4)

Note that for all f 1
w ∈ P0, synthetic mean reports R0(f 1

w) are computed using only reporting

data generated at policy f 0
w. Indeed, R0(f 1

w) is obtained by simply re-weighting the original
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reports Ê[m|w, f 0
w]. The following result holds.

Proposition 4 (prior-free policy evaluation). There exists a fixed coefficient ρ > 0 such that

for all f 1
w ∈ P0,

∇f1w
C = ρ

[
R0 −R0(f 1

w)
]
.

This implies that a small movement from f 0
w to f 1

w will decrease crime (∇f1w
C < 0) if and

only if at policy f 0
w, the re-weighted reports of crime using distribution f 1

w are larger than

the original reports of crime.16 In other words, it is optimal to move towards the policy f 1
w

such that, everything else equal, would maximize the amount of reported crime. The proof

is instructive.

Proof. Take as given an arbitrary policy f 1
w ∈ P0. Under wage schedule f εw, the agent’s

payoff U ε
A(πA) from action c = 1 is

U ε
A(πA) = πA − k + λmax

τ
(k − τ)

[
(1− ε)probf0w(qw + η < τ) + εprobf1w(qw + η < τ)

]
.

Let τ0 be the highest solution to this maximization problem for ε = 0. Let π0
A denote the

threshold at which agents are indifferent between engaging in crime or not under policy f 0
w.

By the Envelope Theorem, ∀πA,

∂U ε
A(πA)

∂ε
∣∣∣ε=0

= λ(k − τ0)
[
probf1w(qw + η < τ0)− probf0w(qw + η < τ0)

]
= λ(k − τ0)

1

1− FπA(π0
A)

[
R0 −R0(f 1

w)
]
, (5)

The second equality above follows from three observations. First, mean reports of crime R0

are equal to the product of baseline crime rates times the probability that equilibrium bribes

16These results relate the paper to a growing applied theory literature which studies mechanism design
from the perspective of a principal with limited probabilistic sophistication. Responses to this challenges
include solving for maxmin optimal designs (Hurwicz and Shapiro, 1978, Hartline and Roughgarden, 2008,
Chassang, 2013, Frankel, 2014, Madarász and Prat, 2014, Prat, 2014, Carroll, 2013), as well as exploiting
available data to discipline beliefs and guide policy design (Segal, 2003, Chassang and Padró i Miquel, 2013,
Brooks, 2014).

20



are refused:

R0 = [1− FπA(π0
A)]× [1− probf0w(qw + η < τ0)].

Second, for any w̃ ∈ supp f 0
w, mean reports Ê[m|w̃, f 0

w] are equal to the product of baseline

crime rates times the probability that a monitor with wage w̃ refuses the equilibrium bribe:

∀w̃ ∈ supp f 0
w, Ê[m|w̃, f 0

w] = [1− FπA(π0
A)]× [1− prob(qw̃ + η < τ0)]

⇒ R0(f 1
w) = [1− FπA(π0

A)]× [1− probf1w(qw + η < τ0)].

Finally, for all ε ∈ [0, 1] let πεA be the cutoff such that, under policy f εw, an agent is criminal

if and only if πA > πεA. Note that

U ε
A(πεA) = πεA − k + λmax

τ
(k − τ)probfεw(qw + η < τ) = 0

⇒ ∂πεA
∂ε

= − ∂

∂ε
λmax

τ
(k − τ)probfεw(qw + η < τ) = −∂U

ε
A(πA)

∂ε
.

Since Ê[cε|f εw] = 1− FπA(πεA), it follows that ∇f1w
C = fπA(π0

A)× ∂UεA(πA)

∂ε
∣∣ε=0

.

Combining these three observations, equation (5) implies that

∇f1w
C =

fπA(π0
A)

1− FπA(π0
A)
λ(k − τ0)

[
R0 −R0(f 1

w)
]

which proves Proposition 4. �

Whenever distribution f 0
w has full-support over [w,w], this result lets us identify the

optimal direction f 1
w in which to move policy among all distributions with the same support.

The proof also clarifies that even if f 0
w does not have full support, one can form report

measures R0(f 1
w) using data from an inexpensive experiment randomizing the wages of a

small subset of monitors. One need not wait for equilibrium bribes and crime to adjust in

order to interpret the data obtained from such an experiment. Indeed, the reason we can
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evaluate local policy changes is precisely because the equilibrium response of criminal agents

has a second order effect on their payoffs. Partial equilibrium responses provide the same

data.

The fact that identification does not rely on costly experiments suggests the following

process of continuous policy improvement. Starting from a policy f 0
w, one can engage in

gradient-descent by iteratively picking directions for policy improvement (f̂kw)k∈N recursively

defined by

f̂ 0
w ∈ arg min

fw∈P0

R0 −R0(fw)

∀k ≥ 1, f̂kw ∈ arg min
fw∈Pk

Rk −Rk(fw),

where, for each k ≥ 1, Rk is the proportion of monitors reporting crime under policy fkw =

(1− ε)fk−1
w + εf̂k−1

w , and Rk(fw) are synthetic reports calculated as in (4) (with distribution

fkw in place of f 0
w). Once the gradient is null in every direction, we have reached a local

policy optimum.

5 Discussion

We explored the idea that random incentives can limit the cost of corruption by making

side-contracting between criminal agents and monitors more difficult. We show that while

the optimality of random incentives depends on unobserved pre-existing patterns of private

information, it is possible to use naturally occuring data to guide policy choice. We now

briefly discuss several extensions whose full treatment is relegated to Appendix A, and

delineate what we think are the steps needed for a credible empirical evaluation of our

policy recommendations.
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5.1 Extensions

Our framework obviously admits many plausible extensions. We briefly describe a few and

clarify how our results extend in each case. Formal treatment of these extensions is delayed

to Appendix A.

Arbitrary contracting between the principal and the monitor. Throughout the

paper we assumed that the monitor is compensated with a fixed wage contract w and gets

fired if she is caught misreporting. Under this assumption, Section 2 shows that determinis-

tic incentive schemes are expensive under collusion, and that the principal can significantly

reduce the cost of deterring crime by randomizing the monitor’s wage. These results continue

to hold if the principal can use arbitrary contracts to compensate the monitor. With more

sophisticated contracts, the principal can reduce the cost of deterring crime by offering the

monitor a higher compensation whenever she sends report m = 1. Indeed, a high compen-

sation following report m = 1 increases the agent’s cost of bribing the monitor, and remains

cheap for the principal because it tends to be paid off of the equilibrium path. However, our

assumption that reports are only partially verifiable (i.e. false reports are only detected with

probability q) limits the extent to which the principal can exploit such incentives. With

partially verifiable reports, as the monitor’s compensation following message m = 1 gets

large, it becomes optimal for her to report crime regardless of the agent’s action. As a re-

sult, the cost of deterring crime with deterministic incentives remains high, and, as we show

in Appendix A, the cost of keeping the agent non-criminal can be significantly reduced by

using random incentives.

Multiple monitors. Section 2 shows that deterministic incentive schemes are undermined

by the possibility of collusion. This point is robust to the introduction of multiple monitors.

Indeed, while cross-checking the messages of different monitors using mechanisms à la Maskin

(1999) successfully reveals public information in the absence of collusion (see Duflo et al.

(2013) for a recent field implementation), such mechanisms are fragile to the possibility of
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collusion: monitors can collude on what message to send. In an example with no pre-existing

private information described in Appendix A, the cost of bribing two monitors turns out to

be no higher than the cost of bribing a single monitor with twice the incentives. As a result,

endogenous asymmetric information remains an effective way to reduce monitoring costs.

Extortion. The models of Sections 2 and 3 assume that the monitor sends a subgame-

perfect message following disagreement at the side-contracting stage. This implies that the

monitor can never extract bribes from an agent which she observes to be non-criminal. As

Olken and Pande (2012) highlight, this prediction is frequently violated: non-criminal agents

often have to pay bribes. A simple variation of our baseline model accounts for this. Assume

that when the monitor has the bargaining power, she is able to commit to the message she

would send in the event of a bargaining failure. A monitor can then extract rents from an

non-criminal agent by committing to report the agent as criminal unless a bribe is paid.

While this changes the agent’s incentives to engage in crime, we show in Appendix A that

our main results continue to hold in this setting: random incentives may reduce the cost of

corruption, and it is possible to perform local policy evaluation on the basis of conditional

report data.

Dynamic incentives. The model of Sections 2 and 3 is static. In practice, wages w may

represent the present discounted value of future wages which the monitor stands to lose,

should she be fired. One potential difficulty with dynamic extensions to our framework

is that the continuation value of the monitor would depend on her ability to raise bribes

from agents, so that incentives for truth-telling depend on the rents obtained from bribes.

While it is reasonable to expect that our basic qualitative message would survive in some

form, it less obvious that our stronger results, and especially the policy evaluation results of

Proposition 4 would extend. Remarkably, we are able to show in Appendix A that whenever

the monitor’s type η is persistent, Proposition 4 extends as is.
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Participation constraints. Throughout the paper we assume that the monitor is risk-

neutral, so that randomness in wages does not make participation constraints more difficult

to satisfy. Risk-aversion on the monitor’s side may restrain the use of random wages, but our

qualitative results continue to hold in that case. The reason for this is that under collusion,

participation is not binding. Indeed, in Section 2 we show that the cost of keeping the agent

non-criminal with deterministic incentives is equal to πA
q

, compared to an outside option of

0. This means that the principal can use random incentives without affecting the monitor’s

participation constraint.

5.2 Steps towards implementation

Because the cost-savings from random incentives are significant in plausible environments,

and because the fragility of counter-corruption schemes to collusion is increasingly recognized

as a first-order practical issue, we believe the policy recommendation that emerges from our

analysis is an attractive candidate for field implementation. We describe below how we

envision running such an exercise.

Heterogenous incentives without random wages. While randomizing wages is con-

ceptually very simple, it does present significant practical challenges. In particular, it has

distributional implications which stakeholders may find very unfair. We propose two ways

to alleviate this concern while still generating appropriate heterogeneity in incentives.

As we noted in Section 2, the monitor’s incentives for truth-telling are captured by her

expected lost wages qw from misreporting. Although we chose to focus on wages w as a

policy instrument, our analysis would be unchanged if the intensity of scrutiny q was the

policy instrument of interest. Since changing q does not affect the welfare of the monitor

when she reports truthfully, it does not have adverse distributional consequences for non-

corrupt monitors. For this reason, varying the level of scrutiny imposed on monitors may

be a more suitable policy instrument for practical implementation. For instance, in public

infrastructure projects where, as in Olken (2007), local officials play the role of natural
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monitors, one may vary the probability with which the project gets audited.

Alternatively, one may be able to generate heterogenous incentives without randomiza-

tion by letting the monitor’s wage depend deterministically on data that is observable to

the principal and the monitor, but not the agent. For instance, wages may be contingent

on the monitor’s tenure, diplomas, the number of crimes she has reported in the past, and

so on. . . Such compensation schemes also introduce heterogeneity in the monitors’ incen-

tives, making side-contracting more difficult than under schemes that reward monitors with

constant wages.

Picking a candidate policy. One difficulty in setting up a field implementation of random

incentive schemes is to construct a plausible policy alternative to deterministic incentives.

Distributions of wages are high dimensional objects and absent great luck, simple trial and

error seems unlikely to succeed. Fortunately, Proposition 4 provides guidance on what alter-

native policy to choose using report data from any random incentive trial with a sufficiently

rich support: choose the distribution that maximizes reports of crime keeping average wages

constant. This implies that one can form a plausible candidate policy using report data from

a single pilot intervention using any arbitrary full support distribution of wages.

Appendix

A Extensions

We now present several extensions describing how our results continue to hold in settings

allowing for: more sophisticated contracting, multiple monitors, arbitrary bargaining mech-

anisms, extortion from non-criminal agents, repeated interaction, and changes in the timing

of decisions.
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A.1 Efficient contracting between the principal and monitor

Throughout the paper we assume that the principal compensates the monitor with an ef-

ficiency wage contract. This appendix shows how our results extend when we allow for

arbitrary contracts. We consider the same environment as in Section 2, with one minor

modification: we impose a participation constraint that the agent’s payoff cannot be nega-

tive. We stress, however, that the results in the main text would remain unchanged if we

added this constraint.17 We also assume that the cost k0 that a non-criminal agent expects

from the judiciary is strictly positive.

Let s ∈ {∅, f} denote the signal that the principal observes by scrutinizing the monitor’s

report: the principal observes signal s = f when she detects that the monitor’s report is false,

and observes signal s = ∅ otherwise.18 The principal offers a wage contract w(m, s) to the

monitor, which determines the monitor’s compensation as a function of the report she sends

and the principal’s signal. By limited liability, w(m, s) ≥ 0 for all (m, s) ∈ {0, 1} × {∅, f}.

We begin with some preliminary results.

Lemma A.1. Suppose the monitor is compensated with contract w(m, s). Then, the monitor

accepts a bribe τ from a criminal agent if and only if τ > w(1, ∅)− (1− q)w(0, ∅)− qw(0, f).

Proof. The monitor’s payoff from accepting a bribe τ from a criminal agent is τ + (1 −

q)w(0, ∅) + qw(0, f), while her payoff from rejecting the offer and sending a truthful message

is w(1, ∅). The agent accepts bribe τ if and only if τ > w(1, ∅)−(1−q)w(0, ∅)−qw(0, f). �

Lemma A.2. Let w(m, s) be a contract that induces the monitor to send message m = 0

when the agent takes action c = 0 and offers bribe τ = 0. Then, it must be that w(0, ∅) ≥

(1− q)w(1, ∅) + qw(1, f).

17Indeed, when the monitor is compensated with an efficiency wage w ≥ 0 the agent can guarantee herself
a payoff of 0 by taking action c = 0. When we allow for arbitrary contracts, the agent’s participation
constraint rules out wage structures under which the agent needs to bribe the monitor to get a favorable
report after taking action c = 0.

18When the monitor sends report m 6= c, the principal observes signal s = f with probability q and signal
s = ∅ with probability 1− q. When the monitor sends report m = c, the principal observes signal s = ∅ with
probability 1.
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Proof. When the agent takes action c = 0 and offers bribe τ = 0, the monitor’s payoff

from sending message m = 0 is w(0, ∅), while her payoff from sending message m = 1 is

(1 − q)w(1, ∅) + qw(1, f). The monitor sends message m = c = 0 if and only if w(0, ∅) ≥

(1− q)w(1, ∅) + qw(1, f). �

Lemma A.3. Under an optimal incentive scheme (either deterministic or random), a prin-

cipal who wants to induce the agent to take action c = 0 offers the monitor contracts w(m, s)

with w(0, ∅) = (1− q)w(1, ∅) and w(m, f) = 0 for m = 0, 1.

Proof. Suppose the incentive scheme induces the agent to take action c = 0 and satisfies

the agent’s participation constraint. By Lemma A.2, any contract w(m, s) that the principal

offers to the monitor with positive probability must satisfy w(0, ∅) ≥ (1−q)w(1, ∅)+qw(1, f);

otherwise the agent’s expected payoff from action c = 0 would be strictly negative, either

because with positive probability the monitor sends a false report m = 1, or because the

agent needs to bribe the monitor for a report m = 0. In either case, this would violate the

agent’s participation constraint.

This implies that under an optimal incentive scheme that induces the agent to take action

c = 0, on the equilibrium path the monitor sends report m = 0 and receives a wage w(0, ∅).

If w(0, ∅) > (1− q)w(1, ∅) + qw(1, f) for some contract w(m, s) that is offered with positive

probability, the principal would be strictly better-off by reducing w(0, ∅) as this would reduce

wage payments and would also increase the cost of bribing the monitor (Lemma A.1).

By limited liability it must be that w(m, f) ≥ 0 for m = 0, 1. Setting w(0, f) = 0

is optimal as it increases the cost of bribing the monitor. Finally, since w(0, ∅) = (1 −

q)w(1, ∅) + qw(1, f), setting w(1, f) = 0 reduces the wage w(0, ∅) that the principal pays on

the equilibrium path and also increases the cost of bribing the monitor. �

We now consider the case in which the principal compensates the agent with a determin-

istic contract w(m, s). The following result generalizes Lemma 2 to the current setting.
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Lemma A.4. Suppose the principal uses a deterministic contract w(m, s). Under collusion,

the minimum cost of wages needed to induce the agent to be non-criminal is equal to 1−q
2−q

πA
q

.

Proof. By Lemmas A.1 and A.3, the monitor accepts a bribe τ from a criminal agent if

and only if τ > w(1, ∅)− (1− q)w(0, ∅). The agent’s payoff from taking action c = 1 is then

πA − min{k, w(1, ∅) − (1 − q)w(0, ∅)}, while her payoff from taking action c = 0 is 0. To

induce the agent to take action c = 0, it must be that w(1, ∅) − (1 − q)w(0, ∅) ≥ πA. By

Lemma A.3, w(0, ∅) = (1− q)w(1, ∅), so the previous inequality yields w(0, ∅) ≥ 1−q
2−q

πA
q

. �

Consider next the case in which the principal randomizes over the monitor’s contract

w(m, s). By Lemma A.3, it is optimal for the principal to offer contracts w(m, s) such

that w(0, ∅) = (1 − q)w(1, ∅) and w(m, f) = 0 for m = 0, 1. Therefore, it is without loss

of optimality to focus on distributions over wages w(0, ∅), with the understanding that a

contract with w(0, ∅) = w ≥ 0 has w(1, ∅) = w
1−q and w(m, f) = 0 for m = 0, 1.

The following result generalizes Proposition 1 to the current setting.

Proposition A.1. Under collusion, it is optimal for the principal to use random contracts.

The cost-minimizing distribution F̂ ∗w over wages w(0, ∅) that induces the agent to be non-

criminal is described by

∀w ∈
[
0,
πA
q

1− q
2− q

]
, F̂ ∗w(w) =

k − πA
k − qw 2−q

1−q
. (6)

The corresponding cost of wages Ŵ ∗(πA) ≡ EF̂ ∗ [w] is

Ŵ ∗(πA) =
1− q
2− q

πA
q

[
1− k − πA

πA
log

(
1 +

πA
k − πA

)]
<

1− q
2− q

πA
q

πA
k
. (7)

Proof. By Lemma A.1, a monitor with contract w(m, s) accepts a bribe τ from a criminal

agent if and only if τ > w(1, ∅) − (1 − q)w(0, ∅) − qw(0, f) = 2−q
1−qqw(0, ∅), where the last

equality follows since w(1, ∅) = w(0,∅)
1−q and w(m, f) = 0 for m = 0, 1 (Lemma A.3). A

distribution F over wages w(0, ∅) induces the agent to take action c = 0 if and only if, for
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every bribe offer τ ≥ 0, πA− k+ (k− τ)prob(τ > 2−q
1−qqw) ≤ 0, or equivalently, if and only if,

for every τ ≥ 0, F
(
τ
q

1−q
2−q

)
≤ k−πA

k−τ . Using the change in variable w = τ
q

1−q
2−q , we obtain that

wage distribution F induces the agent to take action c = 0 if and only if,

∀w ∈
[
0,
πA
q

1− q
2− q

]
, F (w) ≤ k − πA

k − qw 2−q
1−q

. (8)

By first-order stochastic dominance, it follows that in order to minimize expected wages,

the optimal distribution must satisfy (8) with equality. This implies that the optimal wage

distribution is described by (6). Expected cost expression (7) follows from integration and

straightforward computations. �

A.2 Collusion with multiple monitors

This extension illustrates how collusion can undermine the effectiveness of deterministic

incentive schemes even when the principal can use multiple monitors to cross-check their

reports. We consider a principal who hires two monitors, i = 1, 2, to check the agent. As in

the model of Section 2, the agent chooses whether or not to engage in crime c ∈ {0, 1}, where

c = 1 gives the agent a benefit πA and comes at a cost πP < 0 to the principal. The agent’s

action is not observable to the principal, but is observed by both monitors. After observing

the agent’s action, each monitor i = 1, 2 sends a report mi ∈ {0, 1} to the principal. Report

mi = 1 by either monitor triggers an exogenous judiciary process that imposes an expected

cost k > πA on criminal agents and (for simplicity) a cost of 0 on non-criminal agents.

The principal detects false reports mi 6= c with probability q ∈ (0, 1). If both monitors

send the same report and the principal does not find evidence of misreporting, then both

monitors are paid their wage w. If monitors send different reports and the principal does not

find evidence of misreporting, the monitor reporting m = 0 gets fired and the other monitor

gets wage w. If the principal finds evidence that a report was false, the monitor sending that

report gets fired.
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The timing of the game is as follows:

1. the principal offers a fixed wage w to each monitor;

2. the agent chooses an action c ∈ {0, 1};

3. under collusion, the agent sequentially makes take-it-or-leave-it bribe offers τ1 and τ2 to

monitors 1 and 2 in exchange for sending message mi = 0, which each monitor accepts

or rejects — we assume perfect commitment so that whenever a monitor accepts the

bribe, she does send message m = 0; under no-collusion nothing occurs;

4. under no-collusion or, under collusion if there was no agreement between the agent

and monitor i in the previous stage, monitor i sends message mi maximizing her final

payoff.

The following result generalizes Lemma 2 to the current setting.

Lemma A.5. Assume that the principal hires two monitors and uses deterministic wages.

Under no collusion the principal can induce the agent to be non-criminal at 0 cost.

Under collusion, the minimum cost of wages needed to induce the agent to be non-criminal

is equal to πA
q

.

Proof. Under no collusion, it is an equilibrium for both monitors to send a truthful report

for any wage w > 0. Under this equilibrium, the payoff of a criminal agent is πA − k < 0,

while her payoff when non-criminal is 0.19

Consider next the case of collusion. Solving the game by backward induction, if a crim-

inal agent successfully bribed the first monitor, then monitor 2 accepts a bribe τ2 if and

only τ2 > qw. If the first monitor expects that the agent will successfully bribe the second

monitor, she accepts a bribe τ1 if and only if τ1 > qw. The payoff of a criminal agent who

bribes both monitors is πA − 2qw. The payoff of a non-criminal agent is 0, so the agent will

be non-criminal if and only if πA − 2qw ≤ 0, or w ≥ πA
2q

. Therefore, the minimum cost of

wages needed to induce the agent to be non-criminal is πA
q

. �

19Note that, when q < 1
2 , there is also an equilibrium in which both monitors send message m = 1

regardless of the agent’s behavior or their wage.
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A.3 Arbitrary bargaining

The model of Sections 2 and 3 simplifies the side-contracting stage by assuming take-it-

or-leave-it offers. This appendix allows for arbitrary bargaining mechanisms. We study a

model in which the monitor and the agent can use any individually rational and incentive

compatible mechanism at the side-contracting stage, but that is otherwise identical to the

basic model in Section 2.

By the revelation principle, we can restrict attention to mechanisms under which the

monitor announces her private information (i.e. her wage) and this announcement determines

the bargaining outcome. Such a bargaining mechanism is characterized by two functions: (i)

P (w), the probability with which monitor and agent reach an agreement when the monitor’s

wage is w; and (ii) τ(w), the expected transfer from the agent to the monitor when the

monitor’s wage is w. The monitor commits to send message m = 0 if there is an agreement.

If there is no agreement, the monitor sends the message that maximizes her final payoff (i.e.,

she sends a truthful message).

Given a wage schedule F and a mechanism (P, τ), the agent’s expected payoff from crime

is UA = πA−k+
∫

(P (w)k − τ(w)) dF (w). The individual rationality constraint of a criminal

agent is UA ≥ πA − k, since a criminal agent can guarantee πA − k by not participating in

the mechanism.

The payoff that a monitor with wage w who announces wage w′ gets under mechanism

(P, τ) when the agent is criminal is ŨM(w,w′) = τ(w′) + (1 − P (w′)q)w. By incentive

compatibility, UM(w) ≡ ŨM(w,w) ≥ ŨM(w,w′) for all w′ 6= w. By individual rationality,

UM(w) ≥ w for all w, since a monitor with wage w obtains a payoff of w by not participating

in the mechanism and sending a truthful report.

Given a mechanism (P, τ) and a wage distribution F , the weighted sum of the agent’s

and monitor’s payoff when the agent is criminal is

(1− λ)

∫
UM(w)dF (w) + λUA, (9)

32



where the weight λ ∈ [0, 1] represents the monitor’s bargaining power. For every wage

schedule F and every λ ∈ [0, 1], let Γ(F, λ) be the set of incentive compatible and individually

rational bargaining mechanisms that maximize (9). We assume that, at the side-contracting

stage, the monitor and the agent use a bargaining mechanism in Γ(F, λ). Let ŨA(F, λ) be

the lowest utility that a criminal agent gets under a bargaining mechanism in Γ(F, λ). The

agent has an incentive to be non-criminal if ŨA(F, λ) ≤ 0.

The following result generalizes Proposition 1 to this setting.

Proposition A.2. Suppose that, at the collusion stage, the monitor and the agent use an

incentive compatible and individually rational mechanism that maximizes (9).

(i) If λ ∈ (1/2, 1], the cost minimizing wage distribution F̃ ∗w that induces the

agent to be non-criminal is described by

∀w ∈ [0, πA/q], F̃ ∗w(w) =

(
k − πA
k − qw

) 2λ−1
λ

. (10)

(ii) If λ ∈ [0, 1/2], the cost minimizing wage distribution F̃ ∗w that induces the

agent to be non-criminal has F̃ ∗w(0) = 1.

Proof. By standard arguments, any incentive compatible mechanism (P, τ) must satisfy:

(i) P (w) is decreasing, and (ii) U ′M(w) = 1 − qP (w) a.e.. This last condition and the

monitor’s individual rationality constraint (i.e., UM(w) ≥ w for all w) imply that UM(w) =∫ w
w
qP (w̃)dw̃+w+ c for some constant c ≥ 0 (where w is the highest wage in the support of

F ). Since UM(w) = τ(w) + (1− qP (w))w, τ(w) = P (w)qw+
∫ w
w
qP (w̃)dw̃+ c. The weighted
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sum of payoffs when the agent is criminal is

(1− λ)

∫ w

w

UM(w)dF (w) + λUA

=

∫ w

w

[(1− λ)(τ(w) + (1− qP (w))w) + λ(P (w)k − τ(w))] dF (w) + λ(πA − k)

=

∫ w

w

[P (w)λ (k − qw) + (1− λ)w] dF (w) + λ(πA − k) + (1− 2λ)

(∫ w

w

qP (w)F (w)dw + c

)
.

(11)

We use the following lemma.

Lemma A.6. For all λ ∈ (1/2, 1], the mechanism (P, τ) that maximizes (11) has: (i)

P (w) = 1 if w < w∗ and P (w) = 0 if w > w∗ for some w∗ ∈ [w,w], and (ii) τ(w) =

P (w)qw +
∫ w
w
qP (w̃)dw̃.

Proof. Note first that (11) is maximized by setting c = 0 when λ ∈ (1/2, 1]. Moreover,

when λ ∈ (1/2, 1] any mechanism (P, τ) that maximizes (11) must be such P (w) = 0 for all

w ≥ k/q.

We now show that the mechanism that maximize (11) is such that P (w) only takes values

0 or 1. From above, we know that P (w) = 0 for all w ≥ k/q. Suppose by contradiction

that there exists an interval V ⊂ [0, k/q] such that P (w) ∈ (0, 1) for all w ∈ V , and let

H ≡
∫
V
λ(k−qw)dF (w)+(1−2λ)

∫
V
qF (w)dw. If H ≥ 0, increasing P (w) over this interval

(subject to the constraint that P is decreasing) makes (11) larger. If H < 0, decreasing

P (w) over this interval (subject to the constraint that P is decreasing) also makes (11)

larger. Such improvements are exhausted when P (w) only takes values 0 and 1.20 Since

P (·) is decreasing, when P (·) only takes values 0 or 1 there must exist a wage w∗ such that

P (w) = 1 if w < w∗ and P (w) = 0 if w > w∗. Finally, since (11) is maximized by setting

20Note that these changes in P (w) do not conflict with the participation constraints of monitor and

agent. Indeed, UM (w) =
∫ w
w
qP (w̃)dw̃ + w ≥ w for any incentive compatible mechanism (P, τ). Moreover,

for all w, τ(w) = P (w)qw +
∫ w
w
qP (w̃)dw̃ ≤ P (w)k, where the inequality follows since any mechanism that

maximizes (11) has P (w) = 0 for all w ≥ k/q and since P (·) is decreasing. Hence, UA = πA−k+
∫

(P (w)k−
τ(w))dF (w) ≥ πA − k.
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c = 0 when λ ∈ (1/2, 1], τ(w) = P (w)qw +
∫ w
w
qP (w̃)dw̃. Since P (w) = 1 if w < w∗ and

P (w) = 0 if w > w∗, it follows that τ(w) = qw∗ if w < w∗ and τ(w) = 0 if w > w∗. �

We now conclude the proof of Proposition A.2, beginning with point (i). Fix λ ∈ (1/2, 1]

and let F be a cost-minimizing wage schedule that induces the agent to be non-criminal. Let

(P, τ) be the mechanism that maximizes the weighted sum of payoffs (11) under distribution

F . By Lemma A.6, P (w) = 1w≤w∗ and τ(w) = qw∗1w≤w∗ for some w∗. Under this mechanism

(11) becomes

λ

[
F (w∗)k −

∫ w∗

0

qwdF (w) + πA − k
]

+ (1− λ)

∫
wdF (w) + (1− 2λ)

∫ w∗

0

qF (w)dw

=λ [F (w∗)(k − qw∗) + πA − k] + (1− λ)

∫
wdF (w) + (1− λ)

∫ w∗

0

qF (w)dw,

where we used
∫ w∗

0
qwdF (w) = qw∗F (w∗) −

∫ w∗
0

qF (w)dw. Since (P, τ) maximizes the

weighted sum of payoffs, for all ŵ 6= w∗ it must be that

λF (w∗)(k − qw∗) + (1− λ)

∫ w∗

0

qF (w)dw ≥ λF (ŵ)(k − qŵ) + (1− λ)

∫ ŵ

0

qF (w)dw

Otherwise, if the inequality did not hold for some ŵ 6= w∗, the weighted sum of payoffs would

be strictly larger under mechanism (P̂ , τ̂) with P̂ (w) = 1 if w < ŵ and P̂ (w) = 0 if w > ŵ.

For any ŵ ∈ suppF , let (Pŵ, τŵ) be the mechanism with Pŵ(w) = 1{w≤ŵ} and τŵ(w) =

1{w≤ŵ}qŵ. Recall that Γ(F, λ) is the set of bargaining mechanisms that maximize (11) and

that ŨA(F, λ) is the lowest utility that a criminal agent gets under a mechanism in Γ(F, λ).

By our arguments above,

Γ(F, λ) =

{
(Pŵ, τŵ) : ŵ ∈ arg max

w′
λF (w′)(k − qw′) + (1− λ)

∫ w′

0

qF (w)dw

}
.

Suppose that there exists w1 and w2 > w1 such that (Pw, τw) ∈ Γ(F, λ) for w = w1, w2. Note

that the agent’s payoff from being criminal under mechanism (Pw, τw) is F (w)(k−qw)+πA−k.
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Since (Pw, τw) ∈ Γ(F, λ) for w = w1, w2,

λF (w1)(k − qw1) + (1− λ)

∫ w1

0

qF (w)dw = λF (w2)(k − qw2) + (1− λ)

∫ w2

0

qF (w)dw

and so F (w2)(k−qw2) < F (w1)(k−qw1). This implies that, ŨA(F, λ) = F (w̃)(k−qw̃)+πA−k,

where w̃ ≡ sup{ŵ ∈ suppF : ŵ ∈ arg maxw′ λF (w′)(k − qw′) + (1− λ)
∫ w′

0
qF (w)dw}. Since

F induces the agent to be non-criminal, ŨA(F, λ) = F (w̃)(k − qw̃) + πA − k ≤ 0.

Let w be the highest wage in the support of F . We now show that, if F is an opti-

mal distribution, it must be that w ∈ arg maxw′ λF (w′)(k − qw′) + (1 − λ)
∫ w′

0
qF (w)dw.

Suppose by contradiction that this is not true, so that w > w̃ = sup{ŵ ∈ suppF : ŵ ∈

arg maxw′ λF (w′)(k − qw′) + (1− λ)
∫ w′

0
qF (w)dw}. Pick ε ∈ (0, w− w̃) small and let F ε be

a c.d.f. with F ε(w) = F (w) for all w < w − ε and F ε(w − ε) = 1. By first-order stochastic

dominance, EF ε [w] < EF [w]. By the definition of w̃,

λF (w̃)(k − qw̃) + (1− λ)

∫ w̃

0

qF (w)dw ≥ λF (ŵ)(k − qŵ) + (1− λ)

∫ ŵ

0

qF (w)dw,

for all ŵ, with strict inequality for all ŵ ∈ (w̃, w]. Therefore, there exists ε > 0 small enough

such that, for all ŵ,

λF ε(w̃)(k − qw̃) + (1− λ)

∫ w̃

0

qF ε(w)dw ≥ λF ε(ŵ)(k − qŵ) + (1− λ)

∫ ŵ

0

qF ε(w)dw

This implies that mechanism (Pw̃, τw̃) is still optimal under distribution F ε, and so ŨA(F ε, λ) ≤

F (w̃)(k − qw̃) + πA − k ≤ 0. But this cannot be, since F is a cost-minimizing distribution

that induces the agent to be non-criminal. Therefore, if F is optimal it must be that

w = sup{ŵ ∈ suppF : ŵ ∈ arg maxw′ λF (w′)(k − qw′) + (1− λ)
∫ w′

0
qF (w)dw}. The agent’s

payoff from being criminal under mechanism (Pw, τw) is k − qw + πA − k ≤ 0⇐⇒ w ≥ πA
q

.
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By the arguments above, for all ŵ ∈ [0, w],

λ(k − qw) + (1− λ)

∫ w

0

qF (w)dw ≥ λF (ŵ)(k − qŵ) + (1− λ)

∫ ŵ

0

qF (w)dw

⇐⇒ λ(k − qw) + (1− λ)

∫ w

ŵ

qF (w)dw ≥ λF (ŵ)(k − qŵ) (12)

We now show that, if F is an optimal distribution, (12) must hold with equality for all

ŵ ∈ [0, w]. Suppose by contradiction that there is an interval [w1, w2] ⊂ [0, w) such that

(12) is slack for all ŵ ∈ [w1, w2]. By first-order stochastic dominance, increasing F (·) over

[w1, w2] (subject to the constraint that F is increasing) reduces expected wage payments.

Moreover, increasing F (·) over [w1, w2] relaxes (12) for all ŵ < w1 and does not affect (12)

for all ŵ > w2. This implies that mechanism (Pw, τw) still maximizes the weighted sum of

payoffs (11) after increasing F (·) slightly over [w1, w2], and so the agent’s payoff from being

criminal is k−qw+πA−k ≤ 0. But this cannot be, since F is a cost-minimizing distribution

that induces the agent to be non-criminal. Therefore, if F is optimal, (12) must hold with

equality for all ŵ ≤ w.

Since (12) holds with equality for all ŵ ≤ w, λF (ŵ)(k − qŵ) + (1 − λ)
∫ ŵ

0
qF (w)dw is

constant over [0, w]. Differentiating this expression with respect to ŵ, it must be that

F ′(ŵ)λ[k − qŵ] + qF (ŵ)(1− 2λ) = 0. (13)

The solution to the differential equation (13) is F (w) = C
(

1
k−qw

) 2λ−1
λ

, where C is a constant

such that F (w) = 1; i.e., C = (k − qw)
2λ−1
λ . Finally, by our arguments above, under

distribution F the agent will have an incentive to be non-criminal as long as k−qw+πA−k ≤

0⇐⇒ w ≥ πA
q

. Since the constant C is decreasing in w, an optimal distribution must have

w = πA
q

. Hence, C = (k − πA)
2λ−1
λ , so the optimal distribution is (10).

We now turn to point (ii). When λ ≤ 1/2, the mechanism (P, τ) that maximizes (11)

must make the constant c as large as possible, subject to the agent’s IR constraint; that

is, subject to πA − k +
∫

[P (w)k − τ(w)]dF (w) ≥ πA − k. Recall that τ(w) = P (w)qw +
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∫ w
w
qP (w̃)dw̃+c. The maximum is achieved by choosing c such that

∫
[P (w)k−τ(w)]dF (w) =

0. Therefore, for λ ≤ 1/2 the agent’s payoff from engaging in crime under a mechanism that

maximizes (11) is πA − k < 0, regardless of the wage schedule. This implies that the agent

has an incentive to be non-criminal even when F has all its mass at w = 0. �

A.4 Extortion

This section shows how our results extend to settings in which the monitor can extort

transfers from non-criminal agents by committing to send a false report. The framework we

consider is essentially the same as in Section 3. The only difference is that a monitor who

makes an offer at the side-contracting stage can commit to sending a false report if the agent

rejects her proposal. A report m = 1 triggers an exogenous judiciary process that imposes

an expected cost k > πA on criminal agents and an expected cost k0 ∈ (0, k] on non-criminal

agents.

Lemma A.7. If the monitor acts as proposer when the agent is non-criminal, she demands

a bribe τ = k0 if her type is η < k0, and she demands no bribe (i.e. τ = 0) if her type is

η ≥ k0. A non-criminal agent accepts any offer τ ≤ k0.

Proof. Suppose the monitor makes an offer τ to a non-criminal agent and commits to send-

ing a false message if her proposal is rejected. In this case, it is optimal for a non-criminal

agent to accept the offer if and only if τ ≤ k0: her payoff from accepting such an offer is −τ ,

while her payoff from rejecting the offer is −k0. The monitor’s payoff from making an offer

τ ∈ (0, k0] is τ −η, while her payoff from not demanding a bribe is 0. A type η monitor finds

it optimal to make an offer τ = k0 if only if η < k0. �

Lemma A.8. If the monitor acts as a proposer at the collusion stage, she demands a bribe

τ ≥ k when the agent is criminal. A criminal agent accepts any offer τ ≤ k.
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Proof. The proof of Lemma A.8 is identical to the proof of Lemma 3. �

Lemma A.7 implies that the payoff of a non-criminal agent is −(1 − λ)k0Fη(k0), while

Lemma A.8 implies that the payoff of a criminal agent of type πA is πA − k + λmaxτ (k −

τ)prob(qw + η < τ). Therefore, when the monitor can commit to sending a false report, an

agent of type πA will take action c = 0 if only if

πA − (k − (1− λ)k0Fη(k0)) + λ max
τ∈[0,k]

(k − τ)prob(qw + η < τ) ≤ 0.

From the principal’s perspective, the possibility of extortion by the monitor reduces the

effective punishment cost that a criminal agent incurs when the monitor sends report m = 1

by k − (1 − λ)k0Fη(k0). Note that this term does not depend on the distribution of wages.

Hence, all the results in Sections 3 and 4 continue to hold when the monitor can commit to

sending a false message.

A.5 Dynamic incentives

The model of Sections 2 and 3 assumes that the principal provides incentives to monitors

by taking away one-shot wages in the event that misreporting is detected. This appendix

extends our analysis to settings in which the principal hires the monitor for multiple periods

and in which a monitor who is found misreporting is fired and losses her continuation value

of employment. The goal of this section is to show that it is still possible to identify the

impact of local policy changes using data from unverified reports.

Consider a principal who needs to repeatedly audit a population of agents. The principal

hires a population of monitors to check the agents at each of infinitely many discrete periods.

Monitors are randomly matched with agents at each period. At time t = 0 the principal

commits to a distribution of wages Fw and draws a wage w for each monitor from this

distribution. This wage is observed by the monitor and not by the agents. Each monitor’s

wage is persistent: the monitor receives the same wage at every period at which she is
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employed. Monitors have a persistent cost η from accepting a bribe, where η is distributed

according to Fη. Within each period the structure of the game is the same as that of Section

3. The only difference is that a monitor who is found misreporting receives her current

period wage w but gets fired and therefore losses her continuation value from employment.

Let W (w, η) be the value of remaining employed for a monitor with wage w and type

η. We normalize the monitor’s value of unemployment to zero. The net benefit that a

monitor with wage w and type η gets from accepting bribe τ from a criminal agent is

(1− δ)(τ − η)− qδW (w, η), where δ < 1 is the discount factor. This implies the following.

Lemma A.9. A monitor with wage w and type η accepts an offer τ at the collusion stage if

and only if τ > η + q δ
1−δW (w, η).

The next observation is the counterpart to Lemma 3 in the current setting.

Lemma A.10. If no agreement is reached at the collusion stage, the monitor’s optimal

continuation strategy is to send truthful reports m = c.

If the monitor acts as a proposer at the collusion stage, she demands a bribe τ ≥ k when

the agent is criminal, and a bribe τ = 0 when the agent is non-criminal.

The agent accepts any offer τ ≤ k when she is criminal and any offer τ = 0 when she is

non-criminal.

Lemma A.10 implies that the payoff of a non-criminal agent is 0. Moreover, by Lemmas

A.9 and A.10 the payoff of a criminal agent of type πA is

UA(πA) = πA − k + λ max
τ∈[0,k]

(k − τ)prob

(
q

δ

1− δ
W (w, η) + η < τ

)
.

We allow different agents to derive a different benefit πA from engaging in crime, and assume

that the distribution of benefits FπA is constant across periods. As in Section 4, let C = Ê[c]

be the proportion of agents who are criminal.
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Lemma A.11. Let τ ∗ ≤ k be the offer that criminal agents make. A monitor with type η

and wage w accepts offer τ ∗ from a criminal agent if and only if η < η(τ ∗, w, C), where

η(τ, w, C) ≡ τ(1− δ + δq(1− λ)C)− qδw − qδ(1− λ)kC

1− δ
.

Proof. Consider a monitor with wage w and type η who is indifferent between accepting

and rejecting an offer τ ∗ ≤ k by a criminal agent. The value function of this monitor is

W (w, η) = (1− δ)w + δW (w, η) + (1− λ)C ((1− δ)(k − η)− qδW (w, η))⇒

W (w, η) =
(1− δ)(w + (1− λ)(k − η)C)

1− δ + δq(1− λ)C
. (14)

The last term in the first expression is the net payoff that the monitor gets when she is pro-

poser against a criminal agent: with probability (1− λ)C the monitor is proposer against a

criminal agent, extracts a bribe k in exchange of a false message, pays the idiosyncratic cost

η and is fired with probability q.21 Since this monitor is indifferent between accepting offer τ ∗

or rejecting it, (1− δ)(τ ∗− η) = qδW (w, η), which by equation (14) implies η = η(τ ∗, w, C).

Monitors with wage w and type η such that η < η(τ ∗, w, C) find it optimal to accept τ ∗, and

monitors with wage w and type η such that η > η(τ ∗, w, C) find it optimal to reject τ ∗. �

We now show how Proposition 4 extends to this setting. Take as given a distribution

of wages with cdf F 0
w and density f 0

w. For any alternative policy f 1
w, construct the mixture

f εw = (1− ε)f 0
w + εf 1

w and let C
ε

= Ê[cε|f εw] be the proportion of criminal agents under policy

f εw. Recall that ∇f1w
C is the gradient of equilibrium crime in policy direction f 1

w:

∇f1w
C =

∂Ê[cε|f εw]

∂ε
∣∣ε=0

.

As in Section 4, for any w ∈ supp f 0
w, let Ê[m|w, f 0

w] be the mean report of corruption

21Since this monitor is indifferent between accepting or rejecting offer τ∗ ≤ k, she finds it (at least weakly)
optimal to ask for a bribe k when making offers against a criminal agent.
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from monitors with wage w under policy f 0
w. Recall that P0 is the set of policies f 1

w such

that supp f 1
w ⊂ supp f 0

w and Ef1w [w] = Ef0w [w]. For any f 1
w ∈ P0, let

R0(f 1
w) ≡ Ef0w

[
Ê[m|w, f 0

w]× f 1
w(w)

f 0
w(w)

]
.

Proposition A.3. There exists a fixed coefficient ρ > 0 such that, for all f 1
w ∈ P0,

∇f1w
C = ρ

[
R0 −R0(f 1

w)
]
.

Proof. Let τε be the optimal offer by a criminal agent under policy f εw. Let π0
A denote the

threshold at which agents are indifferent between engaging in crime or not under policy f 0
w.

By Lemma A.11, the probability that a monitor accepts offer τε under policy f εw is

probfεw
(
η < η(τε, w, C

ε
)
)

= Efεw [Fη(η(τε, w, C
ε
))]. The payoff of a criminal agent with type

πA under policy f εw is

U ε
A(πA) = πA − k + λ(k − τε)

[
(1− ε)Ef0w

[
Fη(η(τε, w, C

ε
))
]

+ εEf1w
[
Fη(η(τε, w, C

ε
))
]]
.

By the Envelope Theorem,

∂U ε
A(πA)

∂ε
∣∣ε=0

= λ(k − τ0)
[
Ef1w

[
Fη(η(τ0, w, C

0
))
]
− Ef0w

[
Fη(η(τ0, w, C

0
))
]]

+λ(k − τ0)Ef0w

[
fη(η(τ0, w, C

0
))× ∂η(τ0, w, C

0
)

∂C
0 ∇f1w

C

]
.

The equation above can be written as

∂U ε
A(πA)

∂ε
∣∣ε=0
− λ(k − τ0)Ef0w

[
fη(η(τ0, w, C

0
))× ∂η(τ0, w, C

0
)

∂C
0 ∇f1w

C

]
= λ(k − τ0)

[
Ef1w

[
Fη(η(τ,w,C

0
))
]
− Ef0w

[
Fη(η(τ0, w, C

0
))
]]

=
λ(k − τ0)

1− FπA(π0
A)

[R0 −R0(f 1
w)] (15)
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The last equality in equation (15) follows from two observations. First, mean reports of

crime are equal to the product of baseline crime rates times the probability that equilibrium

bribes are refused:

R0 = [1− FπA(π0
A)]×

[
1− Ef0w

[
Fη(η(τ0, w, C

0
))
]]
.

Second, for any w̃ ∈ supp f 0
w, mean reports Ê[m|w̃, f 0

w] are equal to the product of baseline

crime rates times the probability that a monitor with wage w̃ refuses the equilibrium bribe:

∀w̃ ∈ supp f 0
w, Ê[m|w̃, f 0

w] = [1− FπA(π0
A)]× [1− Fη(η(τ0, w̃, C

0
))]

⇒ R0(f 1
w) = [1− FπA(π0

A)]×
[
1− Ef1w

[
Fη(η(τ,w,C

0
))
]]
.

Finally, note that ∂η(τ0,w,C
0
)

∂C
0 = (τ0−k)δq(1−λ)

1−δ < 0. Since ∇f1w
C = fπA(π0

A)× ∂UεA(πA)

∂ε
∣∣ε=0

, it

follows that

∇f1w
C ×

[
1 + fπA(π0

A)
λ(k − τ0)2δq(1− λ)

1− δ
Ef0w

[
fη(η(τ0, w, C

0
))
]]

=
fπA(π0

A)

1− FπA(π0
A)
λ(k − τ0)[R0 −R0(f 1

w)].

This completes the proof. �

A.6 Alternative timing of decisions

The model in the main text assumes that the monitor and the agent collude after the agent

takes action c ∈ {0, 1}. This appendix studies the role of random incentives in settings in

which the monitor and the agent can collude before the agent chooses her action.

We consider a model in which the agent chooses action c ∈ {0, 1} after side-contracting

with the monitor, but which is otherwise the same as the model in Section 2. At the

side-contracting stage the agent makes a take-it-or-leave-it offer τ ≥ 0 to the monitor. If
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the monitor accepts the agent’s offer, she commits to send report m = 0 to the principal

regardless of the agent’s action. Otherwise, if the monitor rejects the agent’s offer, she sends

the report m ∈ {0, 1} that maximizes her expected payoff. As in Section 2, the principal

detects false messages with probability q. The monitor is compensated with an efficiency

wage w ≥ 0, and losses this wage if the principal detects that the message was false.

Lemma A.12. The agent takes action c = 1 if and only if the monitor accepts her bribe. A

monitor with wage w accepts a bribe τ if and only if τ > qw.

Proof. If the monitor accepts the agent’s bribe τ , the agent’s payoffs from action c = 1 is

πA− τ , while her payoff from action c = 0 is −τ . If the monitor rejects the agent’s bribe, the

agent’s payoff from c = 1 is πA − k < 0 (since in this case the monitor will find it optimal

to send message m = 1), while her payoff from action c = 0 is 0. Therefore, the agent takes

action c = 1 if and only if the monitor accepts her bribe.

By the previous paragraph, the monitor’s payoff from accepting bribe τ is τ + (1− q)w,

while her payoff from rejecting the bribe and sending a truthful message is w. The monitor

finds it optimal to accept bribe τ if and only if τ > qw. �

We now consider the case in which the principal compensates the agent with a determin-

istic wage w. The following result generalizes Lemma 2 to the current setting; its proof is

identical to the proof of Lemma 2 and hence omitted.

Lemma A.13. Suppose the principal uses a deterministic wage w. Under collusion, the

minimum cost of wages needed to induce the agent to take action c = 0 is equal to πA
q

.

Consider next the case in which the principal randomizes over the monitor’s wage. Sup-

pose the principal pays the monitor an efficiency wage drawn from the c.d.f. F . Note that

the agent’s payoff from making an offer τ ≥ 0 is F (τ/q)(πA − τ) + (1− F (τ/q))× 0. Let τ ∗F

be the solution to maxτ F (τ/q)(πA − τ). For any distribution F , the principal’s payoff is

F

(
τ ∗F
q

)
πP − EF [w].
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Under wage distribution F , the monitor accepts the agent’s bribe when her wage is lower

than τ ∗F/q. In this case, the agent takes action c = 1 and the principal incurs cost πP < 0.

Proposition A.4. Assume that the agent and monitor collude before the agent chooses

c ∈ {0, 1}. Then, the optimal wage distribution F̃ ∗ is described by,

∀w ∈
[
0,
πA
q

(
1− e

qπP
πA

)]
, F̃ ∗w(w) =

e
qπP
πA πA

πA − qw
. (16)

When the principal pays the monitor a wage drawn from F̃ ∗w, the agent takes action c = 1

with probability F̃ ∗w(0) ∈ (0, 1).

Proof. Consider first distributions F such that F
(
τ∗F
q

)
= 0. Note that F

(
τ∗F
q

)
= 0 implies

that 0 ≥ maxτ F (τ/q)(πA−τ), and so F (τ/q) = 0 for all τ < πA. Therefore, for distributions

F such that F
(
τ∗F
q

)
= 0, the minimum cost of wages is achieved with a distribution that

puts all its mass at w = πA/q. The principal’s payoff under this distribution is −πA/q. Our

arguments below show that such a distribution is never optimal.

Consider next distributions F such that F
(
τ∗F
q

)
> 0. Since τ ∗F ≥ 0 is the optimal offer,

for all τ ≥ 0,

F

(
τ ∗F
q

)
(πA − τ ∗F ) ≥ F

(
τ

q

)
(πA − τ)⇐⇒ F

(
τ

q

)
≤ F

(
τ ∗F
q

)
πA − τ ∗F
πA − τ

. (17)

By first order stochastic dominance, an optimal wage distribution F with F
(
τ∗F
q

)
> 0 must

be such that (17) holds with equality for all τ such that F (τ/q) < 1.

Next, we show that the optimal distribution F with F
(
τ∗F
q

)
> 0 must be such that

τ ∗F = 0. Let F be such that τ ∗F > 0, and let F̂ be an alternative distribution described by:

F̂ (0) = F (τ ∗F/q) and F̂ (τ/q) = F̂ (0)πA
πA−τ

for all τ ∈ [0, πA(1 − F̂ (0))]. By construction, bribe

τ = 0 maximizes F̂ (τ/q)(πA−τ). Since F̂ (0) = F (τ ∗F/q), the probability that the agent takes

action c = 1 is the same under F̂ than under F . Moreover, for all τ such that F̂ (τ/q) < 1,

F̂ (τ/q) = F̂ (0)πA
πA−τ

> F (τ ∗F/q)
πA−τ∗F
πA−τ

≥ F (τ/q) (where the last inequality follows since offer τ ∗F
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is optimal under policy F ). This implies that EF [w] > EF̂ [w], so the principal’s payoff is

larger under F̂ than under F .

Using the change in variable w = τ/q, the two paragraphs above imply that the optimal

wage distribution F with F
(
τ∗F
q

)
> 0 is such that τ ∗F = 0 and is described by

∀w ∈
[
0,
πA
q

(1− F (0))

]
, F (w) =

F (0)πA
πA − qw

.

The principal’s expected payoff from using this wage distribution is

F (0)πP − EF [w] = F (0)πP −
πA
q

(1− F (0) + F (0) lnF (0)).

This expression is strictly concave in F (0), and converges to −πA
q

as F (0)→ 0. Maximizing

this expression with respect to F (0) yields F (0) = e
qπP
πA ∈ (0, 1). Therefore, the optimal

wage distribution is given by (16). �

Proposition A.4 shows that, when collusion is ex-ante, the principal finds it optimal to

let the monitor and the agent collude a fraction of the time. Intuitively, when collusion

is ex-ante the only way in which the principal can completely deter the agent from taking

action c = 1 is by always paying the monitor a wage w = πA/q: if the principal pays lower

wages with positive probability, the agent will make an offer τ ≥ 0 that a fraction of low

paid monitors will accept and will take action c = 1 every time she faces a monitor with a

sufficiently low wage. The optimal distribution in Proposition A.4 balances the cost πP of

letting the monitor and the agent collude, and the benefit of paying lower expected wages

to the monitor.
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B Maxmin and Bayesian optimal policies

This appendix characterizes optimal wage distributions given a fixed budget w0 when the

principal maximizes subjective expected utility, or maxmin expected utility.

B.1 Maxmin optimal policy design

Given a wage distribution Fw, a distribution of private costs Fη, and bargaining power λ,

we denote by πA(Fw) the highest value of benefit πA such that the agent still chooses to

be non-criminal. We consider a principal who treats environment Fη, λ as a choice variable

available to an adversarial Nature. We emphasize that threshold πA depends on Fη and λ

by using the notation πA(Fw, Fη, λ).

Taking budget w0 as fixed, we ask what is the maxmin crime-minimizing wage distribu-

tion, i.e. the solution to

max
Fw

s.t. EFw [w]=w0

min
Fη ,λ

πA(Fw, Fη, λ).

Denote by π0
A the highest non-criminal threshold affordable under budget w0, when the

cost of keeping an agent of type πA non-criminal is given by the cost function W ∗(·), defined

in Proposition 1, i.e. let π0
A be the unique solution to W ∗(π0

A) = w0. The following result

holds.

Proposition B.1 (max-min optimal incentives). The max-min optimal level of non-criminality

is

max
Fw

s.t. EFw [w]=w0

min
Fη ,λ

πA(Fw, Fη, λ) = π0
A.

It is attained by using the wage distribution obtained in Section 2: F ∗w(w) =
k−π0

A

k−qw . Indeed,

the worst case environment for the principal is also that of Section 2, i.e. it sets Fη(0) = 1

and λ = 1.

Proof of Proposition B.1. The payoff that an agent gets from being criminal is UA(πA) =
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πA − k + λmaxτ∈[0,πA](k − τ)prob(qw + η < τ). For any wage schedule Fw, this payoff

is maximized when λ = 1 and when Fη is such that Fη(0) = 1; that is, the worse case

environment for the principal is that of Section 2.

By Proposition 1, in the worse case environment the cost minimizing distribution that

induces an agent with private benefit πA to take action c = 0 is F ∗w = k−πA
k−qw . When the

principal has a budget constraint w0, the optimal wage schedule under the worst-case envi-

ronment is F ∗w =
k−π0

A

k−qw , where π0
A is such that W ∗(π0

A) = w0. �

B.2 Bayesian optimal incentives

We now characterize Bayesian-optimal incentives under the assumption that Fη is concave

over the range [0, k]. We know from Proposition 3 that in this case, the optimal policy uses

random incentives. For simplicity we also assume that [0, k] is included in the support of Fη.

Fix a target threshold πA for which agents will choose to be non-criminal, as well as a

wage policy Fw. An agent of type πA chooses to remain non-criminal if and only if, for all

possible bribes τ ∈ [0, πA],

πA − k + λ(k − τ)prob(η + qw < τ) ≤ 0 (18)

⇐⇒ prob(η + qw < τ) ≤ k − πA
λ(k − τ)

.

Define

m0 ≡ min
τ∈[0,πA]

k − πA
λ(k − τ)prob(η < τ)

(19)

and denote by τ0 the highest solution to (19). Note that agents with type πA such that

m0 ≥ 1 choose to remain non-criminal for any wage distribution.22 We focus on agents of

type πA such that m0 < 1.

22Indeed, m0 ≥ 1 implies 0 ≥ πA−k+maxτ λ(k−τ)prob(η < τ) ≥ πA−k+maxτ λ(k−τ)prob(η+qw < τ).
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Let τ ≡ πA−(1−λ)k
λ

and note that τ > τ0 for all πA such that m0 < 1.23 Denote by Φ the

operator over c.d.f.s F such that for all w ∈ [0,+∞),

Φ(F )(w) =


m0 if w ∈ [0, τ0

q
),

min
{

1, k−πA
fη(0)λ(k−qw)2

−
∫ qw

0

f ′η(η̂)

fη(0)
F
(
w − η̂

q

)
dη̂
}

if w ∈ [ τ0
q
, τ
q
),

1 if w ≥ τ
q
.

(20)

Proposition B.2 (Bayesian-optimal incentives). Assume that Fη is concave over the range

[0, k]. The optimal wage distribution F ∗w satisfies the following properties:

(i) ∀w ∈ [0, τ0/q], F
∗
w(w) = m0;

(ii) over the range τ ∈ [τ0, k], incentive compatibility condition (18) holds with

equality for all τ such that F ∗w(τ/q) < 1;

(iii) F ∗w is the unique solution to fixed point equation F ∗w = Φ(F ∗w); furthermore,

Φ is a contraction mapping under the sup norm.

Point (ii) of Proposition B.2 echoes Proposition 1. Incentive compatibility of non-criminal

behavior at every τ ∈ [0, πA] implies a bound on the distribution of crime costs η+ qw. The

intuition for point (i) comes from the fact that prob(η + qw < τ) = prob(η < τ)Fw(0) +

prob(η+ qw < τ |qw ∈ (0, τ))prob(qw ∈ (0, τ)). This implies that m0 is necessarily an upper

bound to Fw(0) and that whenever Fw(0) = m0, Fw can place no mass on (0, τ0/q).

We begin the proof of Proposition B.2 with a few preliminary lemmas. It is useful to

note that, for any wage schedule Fw, prob(η + qw < τ) =
∫ τ
q

0 Fη(τ − wq)dFw(w). Incentive

constraint (18) can then be written as: for all τ ∈ [0, πA],

∫ τ
q

0

Fη(τ − wq)dFw(w) ≤ k − πA
λ(k − τ)

. (21)

Note that, for an agent with type πA and for any wage distribution Fw, (21) is satisfied

for all τ ≥ τ = πA−(1−λ)k
λ

.24 Therefore, a principal who wants to incentivize agents with

23Indeed, m0 < 1 implies k−πA
λ(k−τ0) < 1⇐⇒ τ0 < τ .

24For all τ ≥ τ , k−πA
λ(k−τ) ≥

k−πA
λ(k−τ) = 1 ≥

∫ τ
q

0 Fη(τ − wq)dFw(w).
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type π′A ≤ πA to be non-criminal will never find it optimal to pay wages larger than τ
q
.25

Therefore, when looking for the optimal distribution we can focus on c.d.f.s Fw such that

Fw(τ/q) = 1.

Lemma B.1. Suppose Fη is concave over [0, k]. If the distribution Fw satisfies (21) for all

τ ∈ [0, τ ] and Fw(0) < m0, there exists a distribution F̃w which also satisfies (21) for all

τ ∈ [0, τ ] such that EF̃w [w] < EFw [w].

Proof. Let Fw be a wage schedule that satisfies (21) for all τ ∈ [0, τ ] with Fw(0) < m0.

Suppose first that Fw is such that (21) is satisfied with slack for all τ ∈ [0, τ ]. Fix γ > 0

and let F̃w be a distribution such that for all w ≥ 0, F̃w(w) = min{Fw(w) + γ, 1}. Clearly,

EF̃w [w] < EFw [w]. Moreover, since (21) is satisfied with slack for all τ under Fw, by choosing

γ small we can guarantee that (21) is satisfied for all τ under F̃w.

Suppose next that Fw is such that (21) binds for some offer τ . Let τ̂ be the lowest τ at

which (21) binds, so that
∫ τ̂
q

0 Fη(τ̂ −wq)dFw(w) = k−πA
λ(k−τ̂)

. Since Fw(0) < m0, it must be that

Fw( τ̂
q
) > Fw(0): if Fw( τ̂

q
) = Fw(0), then

∫ τ̂
q

0 Fη(τ̂ −wq)dFw(w) = Fw(0)Fη(τ̂) = k−πA
λ(k−τ̂)

, which

would imply that Fw(0) = k−πA
Fη(τ̂)λ(k−τ̂)

≥ m0 (recall that m0 is given by (19)).

We construct an alternative wage distribution F̂w as follows. Fix γ ∈ (0, Fw( τ̂
q
)− Fw(0))

and let F̂w be such that: (i) F̂w(w) = Fw(0) + γ for all w ∈ [0, τ̂
q
], (ii) F̂w(w) = Fw(w) −

(Fw( τ̂
q
)− F̂w( τ̂

q
)) = Fw(w)− (Fw( τ̂

q
)−Fw(0)− γ) for all w ∈ ( τ̂

q
, τ
q
) and (iii) F̂w( τ

q
) = 1. Note

that F̂w is a transformation of Fw that shifts γ of the mass that Fw has in (0, τ̂
q
] to 0 and

the remaining Fw( τ̂
q
) − Fw(0) − γ to τ

q
. By choosing γ small we can guarantee that (21) is

satisfied for all τ ∈ [0, τ̂ ] under F̂w.

25To see this, let Fw be a wage profile that satisfies (21) for all τ , with Fw( τq ) < 1. Let F̃w be such

that F̃w(w) = Fw(w) for w < τ
q and F̃w(w) = 1 for w ≥ τ

q . Clearly, EF̃w [w] < EFw [w]. Moreover, for all

τ < τ,
∫ τ
q

0 Fη(τ − wq)dF̃w(w) =
∫ τ
q

0 Fη(τ − wq)dFw(w) ≤ k−πA
λ(k−τ) , so F̃w also satisfies (21) for all τ .
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We now show that (21) is satisfied for all τ > τ̂ under F̂w. Note first that for all τ ∈ [τ̂ , τ)

∂

∂τ

(∫ τ
q

0

Fη(τ − wq)dFw(w)

)
=

∫ τ
q

0

fη(τ − wq)dFw(w) >

∫ τ
q

0

fη(τ − wq)dF̂w(w) =
∂

∂τ

(∫ τ
q

0

Fη(τ − wq)dF̂w(w)

)
,

where the strict inequality follows since F̂w puts more mass at 0 and less mass over [0, τ̂
q
]

than Fw and since fη is decreasing. Note further that k−πA
λ(k−τ̂)

=
∫ τ̂
q

0 Fη(τ̂ − wq)dFw(w) ≥∫ τ̂
q

0 Fη(τ̂ − wq)dF̂w(w), where the equality follows since (21) binds at τ̂ under Fw and the

inequality follows since (21) is satisfied at τ̂ under F̂w. Since (21) is satisfied for all τ under

Fw, k−πA
λ(k−τ)

≥
∫ τ
q

0 Fη(τ − wq)dFw(w) >
∫ τ
q

0 Fη(τ − wq)dF̂w(w) for all τ ∈ (τ̂ , τ); that is, (21)

is satisfied with slack for all τ ∈ (τ̂ , τ) under F̂w.

For each ε > 0, let F̃ε be the wage schedule such that F̃ε(w) = F̂w(w) for all w < τ−ε
q

and F̃ε(w) = F̂w(w) + (Fw( τ̂
q
)−Fw(0)− γ) for all w ∈ [ τ−ε

q
, τ
q
); i.e., F̃ε is a transformation of

F̂w that puts the mass that F̂w has on τ
q

at τ−ε
q

. For all τ ≤ τ − ε,
∫ τ
q

0 Fη(τ − wq)dF̃ε(w) =∫ τ
q

0 Fη(τ −wq)dF̂w(w) ≤ k−πA
λ(k−τ)

; that is, for all ε > 0, (21) is satisfied for all τ ≤ τ − ε under

F̃ε. On the other hand, for all τ ∈ (τ−ε, τ),
∫ τ
q

0 Fη(τ−wq)dF̃ε(w) =
∫ τ
q

0 Fη(τ−wq)dF̂w(w)+

Fη(τ − (τ − ε))(Fw( τ̂
q
)− Fw(0)− γ) is continuous and increasing in ε. Since (21) holds with

slack for all τ ∈ (τ̂ , τ) under F̂w, for ε small (21) also holds for all τ under F̃ε.

Let ε ≡ sup{ε : (21) holds for all τ ∈ [0, τ ] under F̃ε} and let F̃w = F̃ε.
26 Note that there

must exist τ ′ > τ − ε such that (21) holds with equality at τ ′ under F̃w; i.e., such that

k − πA
λ(k − τ ′)

=

∫ τ ′
q

0

Fη(τ
′ − wq)dF̃w(w) ≥

∫ τ ′
q

0

Fη(τ
′ − wq)dFw(w), (22)

where the inequality follows since (21) holds for all τ under Fw.

We now use (22) to show that EF̃w [w] < EFw [w]. Note that F̃w is a transformation of Fw

26For ε = τ , the cdf F̃ε = F̃τ is such that F̃τ (w) = Fw(τ̂ /q) for all w ∈ [0, τ̂ /q] and F̃τ (w) = Fw(w) for
all w > τ̂/q. Since (21) holds with equality at τ̂ under Fw, (21) is not satisfied under F̃τ . Hence, ε < τ .
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that shifts some of the mass that Fw has on [0, τ̂
q
] to 0 and the rest of this mass to τ−ε

q
. Since

Fη is strictly concave, (22) implies that EF̃w [w] < EFw [w]; otherwise, if EF̃w [w] ≥ EFw [w] the

distribution of τ ′ − wq under wage schedule Fw would second-order stochastically dominate

the distribution of τ ′ − wq under wage schedule F̃w, and so (22) would not hold. �

Lemma B.2. Suppose Fw is such that Fw(0) = m0. If (21) is satisfied for all τ under Fw,

then it must be that Fw(w) = m0 for all w ∈ [0, τ0
q

).

Proof. Suppose by contradiction that Fw(w) > Fw(0) = m0 for w < τ0
q

. Then,
∫ τ0

q

0 Fη(τ0 −

wq)dFw(w) > m0Fη(τ0) = k−πA
λ(k−τ0)

, and so (21) does not hold at τ = τ0. �

Lemma B.3. Suppose Fη is concave over [0, k]. Let Fw be a distribution with Fw(w) = m0

for all w ∈ [0, τ0
q

) that satisfies (21) for all τ . If Fw is such that (21) doesn’t hold with

equality for all τ ∈ [τ0, τ ] such that Fw( τ
q
) < 1, there exists a distribution F̃w which also

satisfies (21) for all τ such that EF̃w [w] < EFw [w].

Proof. Suppose that there is an interval (τ1, τ2) ⊂ [τ0, τ ] such that (21) is satisfied with slack

for all τ ∈ (τ1, τ2) under Fw, with Fw( τ
q
) < 1 for all τ ∈ (τ1, τ2). There are two possibilities:

(i) (21) does not bind for all τ > τ1, or (ii) (21) binds at some τ̃ ≥ τ2. Consider first case (i)

and let w = inf{w : Fw(w) = 1} be the highest wage in the support of Fw. Fix γ > 0 and

let F̃w be a wage distribution with F̃w(w) = Fw(w) for all w < w − γ, and F̃w(w − γ) = 1.

Clearly, EF̃w [w] < EFw [w]. Since (21) is satisfied with slack for all τ > τ1 under policy Fw,

for γ small enough (21) is also satisfied for all τ under F̃w.

Consider next case (ii). Without loss of generality, assume that (21) binds at τ2. Fix

γ > 0 and τ̂ ∈ (τ1, τ2) such that γ(τ̂ − τ1) < Fw( τ2
q

)−Fw( τ1
q

). Let F̂w be a wage distribution

such that: (i) F̂w( τ
q
) = Fw( τ

q
) for all τ ≤ τ1, (ii) F̂w( τ

q
) = Fw( τ

q
) +γ(τ − τ1) for all τ ∈ (τ1, τ̂ ],

(iii) F̂w( τ
q
) = F̂w( τ̂

q
) for all τ ∈ (τ̂ , τ2], (iv) F̂w( τ

q
) = Fw( τ

q
) − (Fw( τ2

q
) − F̂w( τ2

q
)) for all

τ ∈ (τ2, τ), and (v) F̂w( τ
q
) = 1. Note that F̂w is a transformation of Fw that shifts γ(τ̂ − τ1)
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of the mass that Fw has over [ τ1
q
, τ2
q

] to [ τ1
q
, τ̂
q
] and shifts the rest of the mass that Fw has

over [ τ1
q
, τ2
q

] to τ
q
. Since (21) is slack over (τ1, τ2) under Fw, there exists γ and τ̂ ∈ (τ1, τ2)

such that (21) is satisfied for all (τ1, τ2] under F̂w. Moreover, since F̂w(w) = Fw(w) for all

w ≤ τ1
q

, (21) is satisfied for all τ ≤ τ1 under F̂w.

We now show that (21) also holds for all τ > τ2 under F̂w. Note first that for all τ ≥ τ2

∂

∂τ

(∫ τ
q

0

Fη(τ − wq)dFw(w)

)
=

∫ τ
q

0

fη(τ − wq)dFw(w) >

∫ τ
q

0

fη(τ − wq)dF̂w(w) =
∂

∂τ

(∫ τ
q

0

Fη(τ − wq)dF̂w(w)

)
,

where the strict inequality follows since F̂w puts more mass on [ τ1
q
, τ̂
q
] but less mass over

[ τ1
q
, τ2
q

] than Fw, and since fη is decreasing. Note that k−πA
λ(k−τ2)

=
∫ τ2

q

0 Fη(τ2 − wq)dFw(w) ≥∫ τ2
q

0 Fη(τ2 − wq)dF̂w(w), where the equality follows since (21) binds at τ2 under Fw and the

inequality follows since (21) is satisfied at τ2 under F̂w. Since (21) is satisfied for all τ under

Fw, it follows that k−πA
λ(k−τ)

≥
∫ τ
q

0 Fη(τ −wq)dFw(w) >
∫ τ
q

0 Fη(τ −wq)dF̂w(w) for all τ ∈ (τ2, τ);

that is, (21) is satisfied with slack for all τ ∈ (τ2, τ) under F̂w.

The rest of the proof uses the same arguments as the last part of the proof of Lemma

B.1. For each ε > 0, let F̃ε be such that F̃ε(w) = F̂w(w) for all w < τ−ε
q

and F̃ε(w) =

F̂w(w)+Fw( τ2
q

)−F̂w( τ2
q

) for all w ≥ τ−ε
q

; i.e., F̃ε is a transformation of F̂w that moves the mass

that F̂w puts at τ
q

to τ−ε
q

. Note that
∫ τ
q

0 Fη(τ −wq)dF̃ε(w) =
∫ τ
q

0 Fη(τ −wq)dF̂w(w) ≤ k−πA
λ(k−τ)

for all τ ≤ τ − ε. Therefore, for all ε > 0, (21) holds for all τ ≤ τ − ε under F̃ε. Moreover,

since (21) holds with slack for all τ ∈ (τ2, τ) under F̂w, for ε small (21) also holds for all

τ ≥ τ − ε under F̃ε.

Let ε ≡ sup{ε : (21) holds for all τ ∈ [0, τ ] under F̃ε} and let F̃w = F̃ε. Since
∫ τ
q

0 Fη(τ −

wq)dF̃ε(w) is continuous and increasing in ε for all τ > τ − ε, there must exist τ ′ > τ − ε

such that (21) holds with equality at τ ′ under F̃w; that is, such that

k − πA
λ(k − τ ′)

=

∫ τ ′
q

0

Fη(τ
′ − wq)dF̃w(w) ≥

∫ τ ′
q

0

Fη(τ
′ − wq)dFw(w), (23)
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where the inequality follows since (21) holds for all τ under Fw. The distribution F̃w is a

transformation of Fw that shifts some of the mass that Fw has on [ τ1
q
, τ2
q

] to [ τ1
q
, τ̂
q
] and the

rest to τ−ε
q

. Since Fη is strictly concave, (23) implies that EF̃w [w] < EFw [w]; otherwise, if

EF̃w [w] ≥ EFw [w] the distribution of τ ′ − wq under policy Fw would second-order stochasti-

cally dominate the distribution of τ ′ − wq under policy F̃w, and (23) would not hold. �

We can finally turn to Proposition B.2 itself.

Proof of Proposition B.2. Let F ∗w be the optimal wage distribution. By Lemmas B.1

and B.2, F ∗w(w) = m0 for all w ∈ [0, τ0
q

). By Lemma B.3, under F ∗w the constraint (21) holds

with equality for all τ ∈ [τ0, τ ] such that F ∗w( τ
q
) < 1; that is, for all τ in this range

H(τ) ≡ k − πA
λ(k − τ)

−
∫ τ

q

0

Fη(τ − ŵq)dF ∗w(ŵ) =
k − πA
λ(k − τ)

− q
∫ τ

q

0

fη(τ − ŵq)F ∗w(ŵ)dŵ = 0.

Therefore, for all τ ∈ [τ0, τ ] such that F ∗w( τ
q
) < 1,

H ′(τ) =
k − πA
λ(k − τ)2

− fη(0)F ∗w

(
τ

q

)
− q

∫ τ
q

0

f ′η(τ − qŵ)F ∗w(ŵ)dŵ = 0.

Using the change of variable w = τ
q
, for all w ∈ [ τ0

q
, τ
q
] such that F ∗w(w) < 1,

F ∗w(w) =
1

fη(0)

(
k − πA

λ(k − qw)2
− q

∫ w

0

f ′η(qw − qŵ)F ∗w(ŵ)dŵ

)
=

1

fη(0)

(
k − πA

λ(k − qw)2
−
∫ qw

0

f ′η(η̂)F ∗w

(
w − η̂

q

)
dη̂

)
.

It follows that the optimal distribution F ∗w is the solution to F ∗w = Φ(F ∗w), where Φ(·) is

defined in (20).

Let F,G be two cdfs and let ‖ · ‖ denote the sup norm. Note that, for all w /∈ [ τ0
q
, τ
q
),
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|Φ(F )(w)− Φ(G)(w)| = 0. On the other hand, for all w ∈ ( τ0
q
, τ
q
),

|Φ(F )(w)− Φ(G)(w)| ≤
∣∣∣∣ −1

fη(0)

∫ qw

0

f ′η(η̂)

(
F

(
w − η̂

q

)
−G

(
w − η̂

q

))
dη̂

∣∣∣∣
≤ ‖F −G‖

∣∣∣∣ −1

fη(0)

∫ qw

0

f ′η(η̂)dη̂

∣∣∣∣
= ‖F −G‖fη(0)− fη(qw)

fη(0)

≤ ‖F −G‖fη(0)− fη(τ)

fη(0)
,

where the last inequality follows since fη is decreasing. Note that τ = πA−(1−λ)k
λ

< k.

Since fη(·) is strictly positive for all w ∈ [0, k], d ≡ fη(0)−fη(τ)

fη(0)
< 1. It follows that

‖Φ(F )− Φ(G)‖ ≤ d‖F −G‖, so Φ is a contraction mapping of modulus d < 1. �

C Proofs

C.1 Proofs for Section 2

Proof of Lemma 1. Under collusion, the monitor’s payoff from accepting an offer τ from

a criminal agent is τ + (1− q)w. Her payoff from rejecting the offer of a criminal agent and

sending message m = 1 is w. The monitor accepts the offer if and only if τ > qw.

Under no-collusion, or if the monitor rejects the agent’s offer, the monitor’s payoff from

sending message m = c is w. Her payoff from sending a false message m 6= c is (1− q)w, so

the monitor has an incentive to send a truthful report for any wage w ≥ 0.

Note that the expected payoff that a criminal agent gets under collusion is πA − k +

maxτ (k − τ)prob(qw < τ), while her payoff from being non-criminal is 0. If the agent ex-

pects to make a bribe offer τ > πA, her payoff from crime is πA−k+(k−τ)prob(qw < τ) < 0,

so she would strictly prefer to be non-criminal. �
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C.2 Proofs for Section 3

Proof of Lemma 3. If there is no agreement at the collusion stage the monitor’s payoff

from sending message m = c is w. Her payoff from sending message m 6= c is (1 − q)w, so

the monitor has an incentive to send a truthful report.

Consider next a monitor who acts as proposer at the collusion stage when the agent is

criminal. Note that a criminal agent accepts any offer τ ≤ k: her payoff from accepting such

an offer is πA − τ , while her payoff from rejecting the offer is πA − k. The monitor’s payoff

from making an offer τ ≤ k is then τ + (1− q)w − η, while her payoff from making an offer

τ > k is w. A monitor with wage w and type η such that η < k − qw finds it optimal to

make an offer τ = k, and a monitor with wage w and type η such that η ≥ k − qw finds it

optimal to make an offer τ > k.

Finally, when the agent is non-criminal, it is optimal for the monitor to send a truthful

message m = 0 if there is no agreement at the collusion stage. Therefore, a non-criminal

agent is not willing to pay a bribe higher than 0 at the collusion stage. In this case, a monitor

who acts as proposer demands a bribe τ = 0 and sends a truthful message. �

Proof of Proposition 2. The agent’s payoff from taking action c = 1 is

UA(πA) = πA − k + λ max
τ∈[0,πA]

(k − τ)prob(qw + η < τ)

= πA − k + λ max
τ∈[0,πA]

(k − τ)EFw [Fη(τ − qw)].

Consider first the case in which Fη is strictly concave over [0, k]. Let τ0 be the highest solution

to the optimal bribe problem under a deterministic wage w0 (i.e., maxτ (k−τ)Fη(τ−qw0)) and

note that τ0 > qw0. Let Fw be a random wage distribution with EFw [w] = w0 and support

[w0 − γ, w0 + γ], with γ > 0 small enough such that τ0 > q(w0 + γ). For any ε ∈ [0, 1], let

F ε
w = (1− ε)1w=w0 + εFw; i.e., F ε

w is the mixture between a deterministic wage w0 and policy

Fw. Since Fη is strictly concave over [0, k], (k−τ)EF εw [Fη(τ−qw)] < (k−τ)Fη(τ−qw0) for all
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τ close to τ0. For each ε ∈ [0, 1], let τε be the highest solution to maxτ (k−τ)EF εw [Fη(τ−qw)].

Since τε is close to τ0 for ε small, it follows that

(k − τε)EF εw [Fη(τε − qw)] < (k − τε)Fη(τε − qw0) ≤ (k − τ0)Fη(τ0 − qw0),

where the last inequality follows since τ0 solves maxτ (k− τ)Fη(τ − qw0). It follows that for ε

small the expected payoff a criminal agent obtains under F ε
w is strictly smaller than the one

she obtains under the deterministic wage w0.

Consider next the case in which Fη is strictly convex over [0, k]. Note that for any ran-

dom wage distribution Fw with EFw [w] = w0, Fη(·) is convex over the support of τ − qw

for all τ ∈ [0, πA]. Therefore, in this case the agent’s payoff from being criminal under any

random wage distribution with mean w0 is larger than under the deterministic policy w0. �

Proof of Proposition 3. For ∆ > 0, consider the random wage w̃ε defined by

w̃ε =

 w0 − ε with proba ∆
∆+ε

w0 + ∆ with proba ε
∆+ε

.

The expected payoff of a criminal agent under random wage w̃ε is

UA(πA|w̃ε) = πA − k + λmax
τ

(k − τ)probw̃ε(qw + η < τ).

By the Envelope Theorem,

∂UA(πA|w̃ε)
∂ε

∣∣ε=0
= λ(k−τ0)

[
− 1

∆
prob(qw0 + η < τ0) +

1

∆
prob(q[w0 + ∆] + η < τ0) + qfη(τ0 − qw0)

]
.

Bribe τ0, which solves maxτ (k − τ)prob(qw0 + η < τ), must be interior and therefore
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satisfies the first order condition

(k − τ0)fη(τ0 − qw0)− prob(qw0 + η < τ0) = 0⇒ fη(τ0 − qw0) =
prob(qw0 + η < τ0)

k − τ0

.

Setting ∆ ≡ τ0/q − w0, we obtain that

∂UA(πA|w̃ε)
∂ε

∣∣ε=0
= q(k − τ0)prob(qw0 + η < τ0)

[
− 1

τ0 − qw0

+
1

k − τ0

]
< 0

where we used the fact that τ0 ≤ 1
2
k ⇒ k − τ0 > τ0 − qw0.

Hence for ε small enough, using random wage distribution w̃ε reduces crime compared to

deterministic wage w0. �

C.3 Proofs for Section 4

Proof of Lemma 4. The proof is by example. We proceed case by case and assume

throughout that λ = 1. Denote by w and w the maximum and minimum values in the

support of F 1
w. Note that w0 ∈ (w,w).

We first show that R0 < R1 can be consistent with C0 < C1. Consider the case where

k = qw0 , FπA is a mass point at k − ε with ε > 0, and Fη a mass point at 0. For any ε > 0,

R0 = C0 = 0. For ε > 0 small enough F 1
w(w0− ε) > 0, which implies that for ε small enough,

max
τ

(k − τ)probF 1
w
(qw < τ) > k − πA = ε.

Hence for ε > 0 small enough, C1 = 1. Furthermore, for ε > 0 small enough, F 1
w(w0 + ε) < 1,

which implies that R1 > 0 since the agent never offers a bribe τ ≥ k = qw0.

Let us show that R0 < R1 can be consistent with C0 > C1. Set FπA with full support
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over [0, k], and

η =

 η with proba p

0 with proba 1− p

with both η ≤ ε and p ≤ ε. For k large enough and ε > 0 small enough, it is immediate that

max
τ

(k − τ)probF 1
w
(qw + η < τ) < max

τ
(k − τ)prob(qw0 + η < τ)

since as k grows large, it is optimal for the agent to offer bribes respectively converging to

w and w0, and w > w0. This implies that C0 > C1. Let us now show that we can set η and

p so that R0 < R1. A necessary and sufficient condition to obtain R0 = 0 is

k − qw0 − η > (k − qw0)(1− p) ⇐⇒ k − qw0 >
η

p
. (24)

This condition expresses that it is optimal for the agent to offer a bribe τ = qw0 + η rather

than τ = qw0 under the deterministic wage w0. Similarly, under F 1
w, a sufficient condition

to ensure that R1 > 0 is that the agent prefer offering a bribe τ = qw over bribe τ = qw+ η.

A sufficient condition for this is that

k − qw − η < (k − qw)(1− p) ⇐⇒ k − qw <
η

p
. (25)

Since w > w0, it is immediate that for any ε, one can find values p, η < ε, such that conditions

(24) and (25) hold simultaneously. For such values, R1 > R0 = 0, which yields the desired

result.

We now show that R0 > R1 can be consistent with C0 > C1. Set

η =

 η with proba p

0 with proba 1− p
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with both η ≤ ε and p ≤ ε. For k large enough and ε > 0 small enough, we have that

max
τ

(k − τ)probF 1
w
(qw + η < τ) < max

τ
(k − τ)prob(qw0 + η < τ).

Set FπA as a point mass at a value πA such that

πA − k + max
τ

(k − τ)probF 1
w
(qw + η < τ) < 0 < πA − k + max

τ
(k − τ)prob(qw0 + η < τ)

for all ε small enough. This implies that C0 = 1 > C1 = 0. In turn we obtain that R1 = 0.

Finally, by choosing p and η such that (24) does not hold, one can ensure that R0 > 0.

Finally, we show that R0 > R1 can be consistent with C0 < C1. Set η = 0, k = qw0− 1
2
ε

and

πA =

 k + ε with proba p

k with proba 1− p.

It is immediate that C0 = p and R0 = p. Furthermore, since maxτ (k−τ)probF 1
w
(qw+η < τ)

is strictly positive and bounded away from 0 for ε small enough, it follows that for ε small

enough C1 = 1 and R1 < 1. For p large enough, R0 > R1. This concludes the proof. �
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