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Background

• Game theoretical model is a standard tool in studying economic
phenomenons when people interact with each other

• In reality, asymmetric information is prevalent and researchers
model it as a game with incomplete information

• Bayesian Nash Equilibrium (BNE) is a commonly used solution
concept in estimation of empirical games

• BNE enables researchers to recover player’s payoff from player’s
choice data
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BNE Restrictions

BNE places two behavioral restrictions

• Each player maximizes his expected payoff given his belief

• Each player forms an equilibrium/unbiased belief (i.e. each
player’s belief is other players’ actual choice probabilities given
available information)
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Potential Misspecification of Unbiased Belief
• Each player has to figure out other player’s equilibrium strategy
and integrate it over the distribution of other player’s private
information

• In games with multiple equilibria, a player has to know which
equilibrium strategy is used by other player

• Learning other player’s behavior through repeated interactions or
similar past experience is also complicated when economic
environment and market conditions vary dramatically

• Empirical evidence from both laboratory and field show that
equilibrium is inconsistent with players’ behaviors in many
games (i.e. Georee and Holt (2001) and Aguirregabiria and
Magesan (2016))

• Falsely imposing equilibrium yields biased estimation for
interactive effect
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A More General Model
In this paper, I relax the equilibrium belief assumption

• I assume each player chooses an action that maximizes his
expected payoff given his subjective belief

• This subjective belief is allowed to be any probability
distribution over other player’s action set

• This framework nests BNE as a special case when player has
equilibrium/unbiased belief

• It also permits non-equilibrium behaviors and attribute them to
non-equilibrium/biased belief

• Player’s both payoff and belief are treated as unknown
non-parametric functions
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Identification Result
In a game that player 1 has more than two actions and player 2 has
binary choice

• With an exclusion restriction that only affects player 2’s payoff,
player 1’s interactive effect ratio is identified without imposing
BNE

• With another type of exclusion restriction that only affect player’s
interactive effect, player 1’s non-interactive payoff and his
subjective expectation of payoff impacted by player 2 is identified

• Similar identification results are generalized to the case when
player 2 has more than two actions but still smaller than player
1’s actions

• However, there is no identification result for player 2
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Generalization of Identification Results
In an ordered-action game with N players and each player has J + 1
actions

• Suppose interactive effect is multiplicative separable between
player’s own action and other players’ actions

• Each player’s identification problem is conceptually equivalent to
the one for player 1 in previous game with asymmetric number of
actions

• Identification results for player 1 in asymmetric actions game
trivially holds for each player in this ordered-action game

• Conventional two-step estimator can be applied in estimation;
moreover, when payoff and belief are smooth functions, standard
MLE or GMM can be applied to reduce finite sample bias
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Identification Intuition
Suppose player 1 has J1 + 1 actions and player 2 has J2 + 1 actions
with J1 > J2

• Let Z2 be a variable that only affects player 2’s payoff

• As Z2 varies, player 2’s payoff changes and he is likely to alter
his behaviors

• If player 1 anticipate this, he will adjust his belief and also alter
his behaviors

• A new realization of Z2 introduces J2 unknowns (i.e. player 1’s
belief) but imposes J1 restrictions (i.e. player 1’s choice
probabilities)

• The variation of Z2 enables us to establish an over-identification
restrictions for a function of player 1’s payoff
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Relation to Literature

Aradillas-Lopez and Tamer (2008) replace BNE with rationality
assumption in an incomplete information game

• They show for each level of rationality (Bernheim (1984) and
Pearce (1984)), there is an identified set of payoff parameters

• Such identified set shrinks as the level of rationality increases

• I do not assume player’s level of rationality and proves point
identification of non-interactive payoff and subjective expectation
of impact
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Relation to Literature

Aguirregabiria and Magesan (2016) study player’s biased belief in
dynamic game

• They show that Markov Perfect Equilibrium (MPE) is testable
and they attribute the failure of MPE to player’s biased belief

• To identify player’s payoff, they need to assume that player has
equilibrium belief in at least two realizations of state variables

• Similar idea has been applied to static experimental games with
incomplete information by Aguirregabiria and Xie (2016)

• This paper achieves identification in another class of games
without assuming equilibrium belief in any realization of state
variable
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Empirical Application
I study KFC and McDonald’s store type competition in China

• In an isolated market, each fast food chain possesses multiple
stores

• Some of stores open 24 hours while others only open during day
time

• I model this store type decision as an entry game such that each
chain simultaneously chooses how many stores to open in the
night

• Compared with other static entry games, entry cost is small and
retractable in this application

• Potential entrants are clearly defined
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Roadmap
• Model

• Identification Results
• Review of identification under BNE
• Identification in game with asymmetric number of actions
• Identification in game with ordered actions

• Possible Extensions
• Relaxation of known distribution of private information
• Allowing unobserved heterogeneity

• Empirical Application
• Preliminary data

• Conclusions
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Model

• Two players indexed by i ∈ {1, 2} and −i indexes other player

• Let Ai = {a0
i , a

1
i , · · · , AJi

i } denote player i’s action set; assume
J1 > J2

• Cartesian product A = A1 × A2 represents the space of action
profile

• Each player i simultaneously chooses an action ai ∈ Ai
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Payoff Function
When realized outcome is a = (a1, a2) ∈ A, player i’s payoff is

Πi[X, Zi, ε i, a] = πi (X, Zi, ai )+δi
[
X, Zi, (ai, a−i )

]
·1(a−i , a0

−i )+ε i (ai )

• X ∈ RLX is a vector of variables that affect both players’ payoff

• Zi ∈ R is a variable that only affects player i’s payoff

• πi (X, Zi, ai ) represents player i’s payoff of action ai when player
−i chooses action a0

−i

• δi
[
X, Zi, (ai, a−i )

]
measures the change of player i’s payoff of

action ai when player −i’s action varies from a0
−i to a−i

• πi is referred as non-interactive payoff (base return in De Paula
and Tang (2012)) and δi is called as interactive payoff

• Even though they are additive, it is actually non-parametrically
specified Details
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Assumption on Private Information

ε i (ai ) is a variable affects player i’s payoff of action ai and it is player
i’s private information

Assumption
(a) for each player i = 1, 2, ε i =

(
ε i (a0

i ), · · · , ε i (aJi
i )

) ′ follows a CDF
Gi (·) that is absolutely continuous with respect to Lebesgue measure
in RJi+1. Gi (·) is known by both players and econometrician.
(b) ε i is independently distributed across players and independent of
common information X, Z1 and Z2.
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Belief and Best Response
• bi (X, Z1, Z2) =

(
b0i (X, Z1, Z2), · · · , bJ−ii (X, Z1, Z2)

) ′ is a vector
of player i’s belief

• bj
i (X, Z1, Z2) represents player i’s belief about the probability

that player −i will choose action a j
−i

• No more restrictions imposed on this belief vector except:
0 ≤ bj

i (X, Z1, Z2) ≤ 1 ∀ j and
∑J−i

j=0 bj
i (X, Z1, Z2) = 1

• Player i’s expected payoff of action i is

πi (X, Zi, ai ) +
J−i∑
j=1

δi
[
X, Zi, (ai, a−i )] · bj

i (X, Z1, Z2) + ε i (ai )

• Each player i chooses an action that maximizes above expected
payoff and denote such strategy by σi (X, Zi, Z−i, ε i )
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Conditional Choice Probability

Let pi (ai |X, Z1, Z2) =
(
pi (a0

i |X, Z1, Z2), · · · , pi (aJi
i |X, Z1, Z2)

) ′
represent a vector of player i’s conditional choice probability

pi (a j
i |X, Z1, Z2) =

∫
1
{
σi (X, Zi, Z−i, ε i ) = a j

i

}
dGi (ε i )

I use upper letter (X, Z1, Z2) to denote random variables and lower
letter (x, z1, z2) to represent their realizations
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BNE as a Special Case

Definition
Observed data is consistent with Bayesian Nash Equilibrium if each
player’s belief is other player’s actual choice probability, i.e.
pi (a j

i |X, Z1, Z2) = bj
−i (X, Z1, Z2) ∀ 0 ≤ j ≤ Ji and i = 1, 2.
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Data Generating Process

• Researchers have a data set that contains M independent games
played by same two players and each game is indexed by m

• Each player i observes state variables (xm, z1,m, z2,m ) and his
private shock ε i,m and chooses an optimal action based on his
belief bi (xm, z1,m, z2,m )

• Researchers observe (xm, z1,m, z2,m ) and players’ choices
(a1,m, a2,m ) for each game m

• The asymptotics comes from M → ∞; in this case, p̂i (X, Z1, Z2)
can be consistently estimated

• For identification illustration, I assume pi is known by researcher

• Researchers want to use this data set to do inference on player i’s
payoff without imposing BNE
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Normalization and CCP Inversion

Assumption
For player i = 1, 2, the payoff for action a0

i is normalized to zero. That
is πi (x, zi, a0

i ) = 0 and δi
[
x, zi, (a0

i , a−i )
]
= 0 ∀ x, zi, a−i

Hotz and Miller (1993) CCP inversion
• Given previous normalization and distributional assumption on
ε i , there is a one-to-one mapping Fi (·) : RJi+1 ⇒ RJi+1 between
player i’s conditional choice probability and his expected payoff

πi (x, zi, ak
i )+

J−i∑
j=1

δi
[
x, zi, (ak

i , a
j
−i )

]
·bj

i (x, zi, z−i ) = Fk
i

[
pi (x, zi, z−i )

]
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Identification Under BNE

Under BNE assumption, bj
i (x, zi, z−i ) can be replaced by its

counter-part p j
−i (x, zi, z−i )

πi (x, zi, ak
i )+

J−i∑
j=1

δi
[
x, zi, (ak

i , a
j
−i )

]
·p j
−i (x, zi, z−i ) = Fk

i

[
pi (x, zi, z−i )

]

• Conditional on (x, zi ), πi and δi is fixed

• p j
−i has exogenous variation as z−i varies

• It can be seen as a regression of F (·) on p−i where πi is the
coefficient for constant and δi is the coefficient on the regressors

Erhao Xie 21 / 53



Introduction Model Identification Possible Extensions Empirical Application Conclusion Appendix

Identification without BNE

• I focus on player 1 and consider a simple case that player 2 has
binary choice; i.e. A2 = (a0

2, a
1
2)

• (x, z1) are suppressed as arguments since the identification relies
on exogenous variation of Z2 conditional on (x, z1)

• For an action ak
1 , we have following equation

π1(ak
1 ) + δ1(ak

1 , a
1
2)b11(z2) = Fk

1
[
p1(z2)

]
• Suppose Z2 has two realizations, say z12 and z22; we can plug them
into above equation and cancel π1(ak

1 )

δ1(ak
1 , a

1
2)

[
b11(z12) − b11(z22)

]
= Fk

1
[
p1(z12)

]
− Fk

1
[
p1(z22)

]
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Identification without BNE

• For any two actions a j
1 and ak

1 , we then have

δ1(a j
1, a

1
2)

[
b11(z12) − b11(z22)

]
= F j

1
[
p1(z12)

]
− F j

1
[
p1(z22)

]
δ1(ak

1 , a
1
2)

[
b11(z12) − b11(z22)

]
= Fk

1
[
p1(z12)

]
− Fk

1
[
p1(z22)

]
• In case that b11(z12) , b11(z22), δ1 (a j

1,a
1
2)

δ1 (ak
1 ,a

1
2)
can be identified by

δ1(a j
1, a

1
2)

δ1(ak
1 , a

1
2)
=

F j
1
[
p1(z12)

]
− F j

1
[
p1(z22)

]
Fk
1
[
p1(z12)

]
− Fk

1
[
p1(z22)

]
• Even though we assume BNE, player’s payoff is typically
non-identified without Zi
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Economic Interpretation of δ1(a j
1,a

1
2)

δ1(ak
1 ,a

1
2)

• Typically, δ1 receives most interest in empirical games since it
measures the interactive effect

• δ1 (a j
1,a

1
2)

δ1 (ak
1 ,a

1
2)
measures the relative impact of player 2’s behavior on

player 1’s payoff of two actions

• It sheds light on player 1’s choice incentive and competitive effect

• Suppose in a duopoly competition, we have estimated that
compared with action ak

1 , the payoff for a j
1 is less sensitive to

player 2’s behavior

• We can conclude that at least part of the reason that player 1
chooses a j

1 is to alleviate the negative impact of player 2’s action
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Another Type of Exclusion Restriction

• X can be partitioned by two subvectors X̃ ∈ RLX−1 and S ∈ R

• Non-interactive payoff does not depend on S; for instance

πi (X, Zi, ai ) = πi (X̃, Zi, ai )

• Interactive payoff depends on S; for instance

δi
[
X, Zi, (ai, a−i )

]
= δi

[
X̃, S, Zi, (ai, a−i )

]
• In KFC and McDonald’s store type example, S can be a measure
of two chains’ network; for instance, my store’s distance from my
competitor’s store
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Identification

• Suppress ( x̃, z1, z2) as identification relies on S

• As shown above, we have

π1(a j
1) + δ1

[
s, (a j

1, a
1
2)

]
b11(s) = F j

1
[
p1(s)

]
π1(ak

1 ) + δ1
[
s, (ak

1 , a
1
2)

]
b11(s) = Fk

1
[
p1(s)

]
• Simple algebra yields

π1(a j
1)−

δ1
[
s, (a j

1, a
1
2)

]
δ1

[
s, (ak

1 , a
1
2)

] π1(ak
1 ) = F j

1
[
p1(s)

]
−
δ1

[
s, (a j

1, a
1
2)

]
δ1

[
s, (ak

1 , a
1
2)

] Fk
1
[
p1(s)

]
• Note the coefficient on π1(ak

1 ) and terms on right hand side are
identified
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Identification
Given two realizations of S, say s1 and s2, we then have following two
equations

π1(a j
1)−

δ1
[
s1, (a j

1, a
1
2)

]
δ1

[
s1, (ak

1 , a
1
2)

] π1(ak
1 ) = F j

1
[
p1(s1)

]
−
δ1

[
s1, (a j

1, a
1
2)

]
δ1

[
s1, (ak

1 , a
1
2)

] Fk
1
[
p1(s1)

]

π1(a j
1)−

δ1
[
s2, (a j

1, a
1
2)

]
δ1

[
s2, (ak

1 , a
1
2)

] π1(ak
1 ) = F j

1
[
p1(s2)

]
−
δ1

[
s2, (a j

1, a
1
2)

]
δ1

[
s2, (ak

1 , a
1
2)

] Fk
1
[
p1(s2)

]
• This is a linear equation system with two equations and two
unknowns

• π1(a j
1) and π1(ak

1 ) are identified

• δ1
[
s, (a j

1, a
1
2)

]
· b11(s) is identified for every a j

1 thereafter
• All results are generalized to the case that player 2 has more than
two actions Details
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Economic Interpretation

• In KFC and McDonald’s store type decision game, π1(X̃, Z1, a
j
1)

can be interpreted as player 1’s “monopolistic profit”; i.e. firm 1’s
profit of opening j stores during the night if firm 2 opens no store

• δ1
[
X̃, S, Z1, (a j

1, a
1
2)

]
· b11(X̃, S, Z1, Z2) measures player 1’s

subjective expectation about player 2’s impact on him

• It implies interactive effect δ1 is identified up to a scale of player
1’s belief

• If there is just one realization of Z2, say z12, such that player 1 has
unbiased belief; then δ1 is also point identified

• Which state to justify unbiased belief can be guided by the
unbiased belief test proposed by Aguirregabiria and Magesan
(2016) and Aguirregabiria and Xie (2016)
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Game with Ordered-Action

• Suppose Ai = {a0
i , a

1
i , · · · , a

Ji
i } has a natural order interpretation;

i.e. how many stores to open during the night

• Let Ji > 1; no further restrictions on Ji or relationship between
J1 and J2

• Suppose interactive effect can be decomposed in two functions

δi
[
X, Zi, (ai, a−i )

]
= δ̃i (X, Zi, ai ) · ηi (X, Zi, a−i )

• Where ηi (X, Zi, a1
−i ) = 1

• Commonly used parametric assumption in ordered-action game
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Parametric Interpretation

Given that δi
[
X, Zi, (ai, a−i )

]
= δ̃i (X, Zi, ai ) · ηi (X, Zi, a−i )

• δ̃i (X, Zi, ai ) = δi
[
X, Zi, (ai, a1

−i )
]
, it measures the impact of

player −i’s action a1
−i on player i’s payoff of action ai

• ηi (X, Zi, a−i ) measures additional multiplicative impact when
player 2 increases his action

ηi (X, Zi, a−i ) =
δi

[
X, Zi, (ai, a−i )

]
δi

[
X, Zi, (ai, a1

−i )
]

• Aradillas-Lopez and Gandhi (2016) refer ηi as strategic index
and δ̃i as the overall scale of interactive effect
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Identification in Games with Ordered-Action

Player i’s expected payoff of action ai is

πi (X, Zi, ai ) +
J−i∑
j=1

δ̃i (X, Zi, ai ) · ηi (X, Zi, a−i ) · b
j
i (X, Z1, Z2)

=πi (X, Zi, ai ) + δ̃i (X, Zi, ai )
{ J−i∑
j=1

ηi (X, Zi, a−i ) · b
j
i (X, Z1, Z2)

}
=πi (X, Zi, ai ) + δ̃i (X, Zi, ai ) · gi (X, Z1, Z2)

Compared with player 1’s expected payoff of a1 in game with
asymmetric number of actions

π1(X, Z1, a1) + δ1
[
X, Z1, (a1, a1

2)
]
· b11(X, Z1, Z2)
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Identification in Games with Ordered-Action

• All identification results for player 1 in a game with asymmetric
actions hold for both players in this ordered-action game

• Results are generalized to an ordered-action game with more
than two players Details
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A Weaker Assumption on Private Information

• Previous identification results assume researchers know the
distribution of ε i

• A weaker distributional assumption can still achieve
identification

• Consider following assumption such the distribution depends on
a vector of unknown parameters

Assumption
ε i =

(
ε i (a0

i ), · · · , ε i (aJi
i )

) ′ follows a CDF G(·; βi ) where βi is a
vector of parameters with Li dimensions
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Identification Results

Suppress ( x̃, z1) and suppose there exist k ≥ 2 realizations of S, say s1

up to sk , and h ≥ 2 realizations of Z2, say z12 up to zh2

F1
1
[
p1(s1, z12); β1

]
= π1(a1

1) + δ1
[
s1, (a1

1, a
1
2)

]
· b11(s1, z12)

...

FJ1
1

[
p1(s1, z12); β1

]
= π1(aJ1

1 ) + δ1
[
s1, (aJ1

1 , a
1
2)

]
· b11(s1, z12)

F1
1
[
p1(s2, z12); β1

]
= π1(a1

1) + δ1
[
s2, (a1

1, a
1
2)

]
· b11(s2, z12)

...

FJ1
1

[
p1(sk, zh2 ); β1

]
= π1(aJ1

1 ) + δ1
[
sk, (aJ1

1 , a
1
2)

]
· b11(sk, zh2 )
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Identification Results

• This is an equation system with khJ1 equations

• Unknowns contain following:

Parameters # of Unknowns
π1(·) J1

δ1
[
s, (a1

1, a
1
2)

]
b11(s, z2) kh

δ1
[
s, (a1,a

1
2)
]

δ1
[
s, (a1

1,a
1
2)
] (J1 − 1)k

β1 L1

• Order condition satisfies if khJ1 > J1 + kh + (J1 − 1)k + L1
which yields k (J1 − 1)(h − 1) ≥ J1 + L1
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Identification Results

• Let F1(β) =
(
F1
1 [p1(s1, z12); β1], · · · , F

J1
1 [p1(sk, zh2 ); β1]

) ′
• The Jacobian matrix ∂F1 (β1)

∂β1
has full column rank

• Since both order and rank conditions are satisfied, then β1 is
identified

• Note that the column rank condition for Jacobian matrix is a
generic assumption; without it, β1 is non-identified even though
researchers know perfectly about player’s belief and payoff
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Unobserved Heterogeneity
• Previous analysis assumes researchers observe all common
information

• In reality, players typically observe some variables which are
unobserved by econometricians

• In existence of unobserved heterogeneity, player i’s payoff
function turns

πi (X,W, Zi, ai ) + δi
[
X,W, Zi, (ai, a−i )

]
· 1(a−i , a0

−i ) + ε i (ai )

• W ∈ RLW is a vector of state variables observed by both players
but not by researchers

• Please note that if researchers can consistently estimate
pi (X,W, Zi, Z−i ), then previous identification results trivially
hold
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Unobserved Heterogeneity

• I discuss how to apply recent development of unobserved
heterogeneity in games into my framework

• In general, the identifying restrictions for unobserved
heterogeneity when researchers do not assume BNE are not
stronger than the ones when BNE is imposed
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Control Function Approach

Bajari et al. (2010) and Ellickson and Misra (2012) discuss a control
function approach

• Suppose researchers observe a vector of variables V ∈ RLV such
that unobserved heterogeneity W is a smooth function of (X,V );
i.e. W = f (X,V )

• In McDonald’s and KFC example, W can represent Chinese
consumers’ taste towards western style food in a market and V
can be the experience of western fast food chain in such market
(Shen and Xiao (2014))

• Therefore, instead of controlling for (X,W, Z1, Z2), researchers
only need to control (X,V, Z1, Z2) and p1(X,V, Z1, Z2) can be
consistently estimated as V are observables
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Finite Mixture

Aguirregabiria and Mira (2015) study the case when W is discrete and
has finite support

• They have shown that in a game with more than two players,
every player’s choice probability conditional on W is identified

• Their results can be directly applied into my framework as my
identification results have been generalized to an ordered-action
game with more than two players
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Parametric Assumption

Grieco (2014) study an empirical game with flexible information
structure

• He considers a linear payoff function and assumes unobserved
heterogeneity is additive separable to payoff

• He then establishes the identification result through an
identification at infinity approach

• In my framework, if W is assumed to enter payoff linearly and
further assume player believes other players will not choose
strictly dominated action (i.e. level-1 rationality); then Grieco’s
identification result directly holds
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Industry Background
Two western fast food chains start their competition in China from
1990

• KFC opened its first store in Beijing in 1987 and operates 5,051
stores in 2016

• McDonald’s opened its first store in Shenzhen, Guangdong
Province in 1990 and operates 2,232 stores in 2016

• Most stores are chains for both firms
• At end of 2014, about 15% of McDonald’s stores are franchised
(Sina News)

• By 2012, less than 10% of KFC stores are franchised (China
Times)

• Burger King only operates more than 300 stores by 2014

• Subway operates about 600 stores and almost every store is
closed during night
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Industry Background

Some consider Dicos as a competitor of KFC and McDonald’s in
China

• It is a restaurant brand owned by a Chinese company (Ting Hsin
International Group) and operates more than 2,000 stores in
mainland China

• The restaurant sell similar products as KFC and McDonad’s (i.e.
hamburger, French fries, etc.) and has similar decoration

• Most of stores are franchised and rarely open 24 hours store
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Preliminary Data
From both firms’ official website, I obtain following information for
every store in 28 April, 2016

• Each store’s address and store type: 24 Hours, drive through,
delivery, breakfast

• For KFC, I also know whether each store offers birthday party,
self-service machine

• For McDonald’s, I also know whether each store offers a separate
ice cream stand

From google map, baidu map and China Yellow page, I obtain address
of two firms’ distribution centers

• 16 distribution centers for KFC and 7 for McDonald’s (I may
miss one distribution center for McDonald’s)

• The distance from a particular market to its nearest distribution
center is used as an exclusion restriction
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Preliminary Data

I am collecting demographic data and merging it with previous store
data

• Demographic data is from China Data Center by University of
Michigan

• Observe population, land size, unemployment, GDP, retail sales,
educational measure etc.
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Conclusion

• This paper investigates the identification of incomplete
information game without Bayesian Nash Equilibrium

• The framework allows player to have biased belief so that
non-equilibrium play is permissible

• In a game when player 1 has more action than player 2, I show
that player 1’s non-interactive payoff and his subjective
expectation of player 2’s impact are point identified

• This identification results generalize to an ordered-action game
with multiple players
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Non-Parametric Representation

Let ui
[
X, Zi, (ai, a−i )

]
denote player i’s payoff for realized outcome

(ai, a−i ), this is a non-parametric specification. πi and δi can be
defined by following:

• πi (X, Zi, ai ) = ui
[
X, Zi, (ai, a0

−i )
]

• δi
[
X, Zi, (ai, a−i )

]
= ui

[
X, Zi, (ai, a−i )

]
− ui

[
X, Zi, (ai, a0

−i )
]

• By construction δi
[
X, Zi, (ai, a0

−i )
]
= 0 and therefore it is

suppressed Go Back
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Identification when J2 > 1

For some k ≤ J1 − J2, define following J2 × J2 matrix of interactive
effect ∆k :J2+k−11 (x, z1) as



δ1
[
x, z1, (ak

1 , a
1
2)

]
, · · · , δ1

[
x, z1, (ak

1 , a
J2
2 )

]
δ1

[
x, z1, (ak+1

1 , a1
2)

]
, · · · , δ1

[
x, z1, (ak+1

1 , aJ2
2 )

]
...

. . .
...

δ1
[
x, z1, (ak+J2−1

1 , a1
2)

]
, · · · , δ1

[
x, z1, (ak+J2−1

1 , aJ2
2 )

]


Then for any k ′, k ≤ J1 − J2, the function of interactive effect
∆k
′:J2+k ′−1

1 (x, z1) · [∆k :J2+k−11 (x, z1)]−1 is identified
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Proof

Suppress (x, z1) and define following matrices

B̈1(z1:J2+12 ) =



b11(z22) − b11(z12), · · · , b11(zJ2+12 ) − b11(z12)
...

. . .
...

bJ21 (z22) − bJ21 (z12), · · · bJ21 (zJ2+12 ) − bJ21 (z12)



F̈k
1 (z1:J2+12 ) =



Fk
1

[
p1 (z22 )

]
− Fk

1
[
p1 (z12 )

]
, · · · , Fk

1
[
p1 (z

J2+1
2 )

]
− Fk

1
[
p1 (z12 )

]
.
.
.

. . .
.
.
.

F
k+J2−1
1

[
p1 (z22 )

]
− F

k+J2−1
1

[
p1 (z12 )

]
, · · · , F

k+J2−1
1

[
p1 (z

J2+1
2 )

]
− F

k+J2−1
1

[
p1 (z12 )

]

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Proof

For any k ′, k ≤ J1 − J2, we then have following two equations

B̈1(z1:J2+12 ) =
[
∆k :J2+k−11

]−1
· F̈k

1 (z1:J2+12 )

B̈1(z1:J2+12 ) =
[
∆k
′:J2+k ′−1

1
]−1
· F̈k ′

1 (z1:J2+12 )

Equating previous equations will yield

∆k
′:J2+k ′−1

1 (x, z1)·[∆k :J2+k−11 (x, z1)]−1 =
[
F̈k ′

1 (z1:J2+12 )
]
·
[
F̈k
1 (z1:J2+12 )

]−1
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Proof

Suppose there exists another type of exclusion S such that it only
affects interactive effect without impact on non-interactive payoff

• Non-interactive payoff π1( x̃, z1, a1) and perceived interactive
effect

∑J2
j=1 δ1

[
x̃, s, z1, (a1, a

j
2)

]
· bj

1( x̃, s, z1, z2) are point
identified for every ( x̃, s, z1, z2) and a1 ∈ A1 Go Back
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Model of Multi-Player Ordered-Action Game

• There are N players indexed by i, n ∈ {1, 2, · · · , N } and −i
indexes players other than i

• Each player i simultaneously chooses an action ai from his
choice set Ai = {a0

i , a
1
i , · · · , a

Ji
i }

• Cartesian product A = A1 × A2 · · · × AN denote the space of
action profile; assume N ≤ min{J1, J2, · · · , JN }

• Given a realized outcome a = (a1, a2, · · · , aN ) ∈ A in this game,
player i’s payoff is

πi (X̃, Zi, ai )+
N∑

n=1,n,i
δi,n

[
X̃, S, Zi, (ai, an )

]
·1(an , a0

n )+ε i (ai )
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Identification

Assumption
δi,n

[
X̃, S, Zi, (ai, an )

]
= δ̃i,n (X̃, S, Zi, ai ) · ηi,n (X̃, S, Zi, an )

Under above assumption, player i’s expected payoff of action ai is

πi (X̃,Zi,ai )+
∑N

n=1,n,i δ̃i,n (X̃,S,Zi,ai ) ·
[∑Jn

j=1 ηi,n (X̃,S,Zi,an ) ·b j
i,n (X̃,S,Zi,Z−i )

]
+εi (ai )

=πi (X̃,Zi,ai )+
∑N

n=1,n,i δ̃i,n (X̃,S,Zi,ai ) ·gi,n (X̃,S,Zi,Z−i )+εi (ai )

This expected payoff has same structure as player 1 who has more
actions in a two-player asymmetric number of actions game; therefore,
all identification results hold for every player in this ordered-action
game Go Back
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