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Abstract
This paper develops a matching model - in which heterogeneous individuals form pro-

duction teams and choose an appropriate technology - to study how the technological

environment changes the pattern of matching and consequently the production structure

of an economy. The main theoretical result is that, if technology improvements are expen-

sive, teams bring high and low skilled individuals together and all teams choose similar

technologies. In contrast, if improvements are inexpensive, talent concentrates in teams

that choose the most advanced technologies, leading to larger dispersion of economic ac-

tivity. Then, I apply the theory to study cross-country differences in the allocation of

talent. Since relatively poor countries can make cheap and large improvements through

technology adoption, the theory predicts that they should have stronger concentration of

talent than relatively rich ones. I derive an empirical measure of the concentration of

talent from the model to validate this prediction using micro data from several countries;

in the cross-section, using a sample of 63 countries, and in the time-series, comparing the

growth experiences of South Korea and United States. Finally, a dynamic extension of

the theoretical framework demonstrates that endogenous allocation of talent coupled with

localized technological progress may prevent cross-country convergence even in the absence

of exogenous barriers.
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1 Introduction

More than a third of the world’s population lives in countries whose GDP per capita is
smaller than that of the United States in 1900. These individuals, however, have different
opportunities available than Americans did at the end of the 19th century. In particular,
they have access to the technologies invented during the past century. In light of such a
different technological environment, it is natural to expect that developing countries orga-
nize production differently than developed countries have done in the past, and possibly
even do today. Nonetheless, it is often implicitly assumed in the literature that developing
countries today should follow in the footsteps of currently developed ones. This paper
proposes a different view.

I develop a theoretical model of the assignment of talent to production teams in an
environment of localized technological progress: that is, an environment where teams
choose the most appropriate technology given the skills of their members.1 The main result
of the theory is that, allowing for an endogenous technology choice in an otherwise standard
framework, changes the equilibrium pattern of matching and increases the similarity in
skills of individuals working together. More specifically, I make standard assumptions
on the production function to guarantee that, if technology is fixed, the equilibrium is
symmetric: all teams are analogous and formed by high skilled individuals as managers
and low skilled ones as their worker. If instead technology is endogenous and improvements
are sufficiently cheap, the allocation of talent changes to an asymmetric equilibrium: some
teams attract all high skilled individuals, while others are left only with low skilled ones.
I apply this model to study cross-country differences in the allocation of talent. The
theory predicts that in developing countries, since individuals have the possibility to adopt
modern technology, the asymmetric equilibrium should prevail. I validate this prediction
using micro data from several countries: the allocations of talent in developing countries
today are different from the ones of developed countries both today and in the past.

I now provide a more detailed description of the model’s environment. Each economy
is inhabited by a continuum of individuals heterogeneous in their ability.2 Production of
output requires to combine labor input with a costly production technology. Labor input
is produced in teams of two individuals. Technology is complementary with labor input
and is chosen by each team subject to a convex cost of adoption. The production function
of labor input has two key properties. First, there is a motive for task-specialization, since

1Along the lines of the “New view of technological change” of Atkinson and Stiglitz (1969).
2Talent is one dimensional: skilled individuals have an absolute advantage. This differs from Hsieh et

al. (2013) and Lagakos and Waugh (2013) that study the allocation of talent with comparative advantages.
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the two individuals decide who is the manager and who is the worker of the team and
the marginal product of the manager’s talent is higher than that of the worker’s. Second,
there is complementarity : the marginal product of each individual’s talent is increasing
in the talent of his partner. I solve for the competitive equilibrium; individuals pick an
occupation and a production partner, taking into account the optimal technology choice
of the manager-worker team that they form.

The equilibrium assignment is determined by the properties of the production func-
tion. Yet, unlike most matching models, complementarity is not sufficient to pin down the
unique equilibrium. Complementarity in production dictates positive assortative matching
between managers and workers, but in this setting the sets of managers and workers are
themselves endogenous objects. As a result, the assignment depends on a complex trade-
off between task-specialization and complementarity. Task-specialization alone would lead
all the most skilled individuals to become managers and hire the low skilled ones as their
workers, but complementarity pushes identical individuals to pair together. To overcome
this difficulty, most previous work that combines occupational choice and matching uses
functional form assumptions that guarantee that task-specialization is sufficiently strong
with respect to complementarity, and thus a Spence-Mirrlees type condition holds and
separates managers and workers into two connected sets.3 Complementarity is then suffi-
cient again to pin down the unique equilibrium, in which the most skilled individuals are
managers and hire assortatively the less skilled ones. I make that same assumption for
the production of labor input so that, if teams use identical technology, my setting repli-
cates that same pattern of matching. Teams, however, in general do not choose identical
technology.

Allowing for an endogenous choice of technology introduces an additional dimension
to be taken into account to solve for the equilibrium. When an individual evaluates the
production complementarity of his talent with that of potential partners, he must take
into account both the complementarity in the production of labor input and the change
in the optimal chosen technology, since technology and labor are complementary. As a
result, the production complementarity - hence the allocation of talent - depends on the
technological environment, as captured by the properties of the technology cost function.
The main theoretical contribution of the paper is to formally study this relationship.

Endogenous choice of technology introduces a new trade-off. In equilibrium, the team’s
manager is more skilled than the worker, due to task-specialization. Additionally, labor-

3See for example Lucas (1978) and Garicano and Rossi-Hansberg (2006). An exception to this norm
is the work of Kremer and Maskin (1996).
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technology complementarity implies that more skilled teams choose a more advanced tech-
nology. Therefore, an individual faces a trade-off between being a manager in a team that
uses a lower technology and being a worker in one that uses a higher technology. I show
that this trade-off is modulated by the convexity of the cost of technology. In fact, the
lower the convexity, the smaller is the cost difference between any two technologies, leading
teams to have a larger gap in their optimal technology choices. As a result, the smaller
the convexity, the more an individual can increase his used technology by becoming a
worker and thus being matched with a more skilled partner. This argument implies that
complementarity in production decreases in the convexity of the cost of technology.

More specifically, I show that when the convexity is sufficiently high, the same pattern
of matching emphasized in the literature emerges: the most skilled individuals become
managers and hire the low skilled ones, since task-specialization within teams segments
talent by occupation. In contrast, when the convexity is sufficiently low, the opposite
pattern appears: stronger complementarity segregates talent by technology. That is, the
most skilled individuals concentrate in teams that use the most advanced technology, and
some high skilled are therefore assigned to be workers. Intuitively, when convexity is high
all teams use a similar technology and thus high skilled individuals wish to specialize in
the most skill-intensive occupation, becoming managers. In contrast, when convexity is
small, some teams use a much more advanced technology than others, and thus high-skilled
individuals wish to work in these teams, even at the cost of being workers.

I then make simplifying functional form assumptions that allow to characterize analyt-
ically the unique equilibrium even between the two polar cases (talent segmentation and
segregation), thus making the model amenable to an empirical analysis. I derive from this
version of the model a measure of concentration of talent, which captures the expected
similarity in skills of the members of a team.4 I show that the less convex the cost of
technology the stronger the concentration of talent.

Next, I apply the theory to study cross-country differences in organization of produc-
tion. I provide an interpretation of the convexity of the cost of technology in terms of
the distance of a country to the technology frontier, and show that the resulting empirical
predictions are borne out in micro data from several countries.

It has been shown in the literature that cross-country variation in GDP per capita is,
to a large extent, explained by differences in average technology.5 Individuals in countries
that are relatively poor with respect to the frontier have thus a unique opportunity: in

4The maximum concentration is when talent is segregated and the minimum when talent is segmented.
5See, among others, Klenow and Rodriguez-Clare (1997) and Comin and Ferrer (2013).
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principle, they can make large improvements in their technology at a low cost by adopting
the existing technology of rich countries. Motivated by this fact, I interpret relative GDP
per capita across countries as a proxy for how expensive large technological improvements
are, and hence for the convexity of the cost of technology. Under this interpretation, the
theory gives sharp predictions for cross-country differences in the organizational struc-
ture of the economy. In particular, for countries farther from the frontier, the theory
predictions are consistent with many familiar features of developing countries - such as
larger dispersion of technology across teams (or more generally firms and sectors)6 - and
they highlight an aspect of development previously overlooked: a stronger concentration
of talent.

In the main empirical exercise, I therefore use large sample labor force surveys for 63
countries, available from Integrated Public Use Microdata Series (IPUMS), to show that in
the countries farther from the technology frontier - i.e. with lower relative GDP per capita -
the concentration of talent is indeed higher. In the data, we do not directly observe either
teams or individual skill. Nonetheless, I show that if education is positively correlated
with skill and teams sort into sectors depending on the ability of their members,7 then
we can use available data on individual industry and education to compute the measure
of concentration of talent as defined in the model. I construct this measure for each
country-year pair and show how it varies as a function of distance to the frontier, both
in the cross-section and in the time-series. I first compare countries in the cross-section.
Concentration of talent is significantly negatively correlated with GDP per capita and the
magnitude of cross-country differences is sizable. I then compare middle income countries
today (such as Mexico and Brazil) with the United States in 1940, that was at the same
level of development - and critically, it was closer to the technology frontier. Middle
income countries today have significantly higher concentration of talent than the U.S.
did in the past. This result alleviates the concern that cross-sectional differences are
merely capturing differences in levels of development. Last, I compare the growth paths
of South Korea and the United States in the past seven decades. In the United States,
the concentration of talent has remained largely unchanged, consistent with the fact that
they have been growing steadily as world leaders (i.e. on the frontier). In contrast, South
Korea has seen a rapid decline in the concentration of talent as it has approached the
technology frontier.

In the final part of the paper, I develop a dynamic extension of the model to study the
6See for example Caselli (2005), Hsieh and Klenow (2009), and Comin and Ferrer (2013).
7Sorting of teams to sectors can be justified through agglomeration economies at the industry level.
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implications of the allocation of talent for economic growth, and show that countries that
start to grow late may converge to a different growth path. I introduce four additional
elements to the model. First, individuals are infinitely lived. Second, there is a technology
frontier that grows exogenously. Third, there are two sectors, and technology is sector-
specific. Fourth, individuals allocated to a sector decide only on marginal technological
improvements towards the frontier. The state variables in the model are thus the distances
to the frontier in each sector. I study the growth paths of countries that have identical
fundamentals, but exogenously start to grow (or takeoff) at different points in time. The
same mechanism of the static model is present. Therefore, when a country is far from the
frontier, talent concentrates. There is an additional dynamic effect: the technology gap
across sectors propagates over time depending on the allocation of talent. For example, if
skilled individuals concentrate in one sector, they adopt more advanced technology, and
in the next period there is a larger technology gap across sectors. I compute the model
and show that the interaction of the described forces implies that, as long as individuals
are sufficiently impatient, a country that starts to grow late - thus far from the technology
frontier - may converge to a different balanced growth path, which has lower output, larger
technology heterogeneity across sectors, and more concentration of talent.

Related Literature. The seminal work of Lucas (1978) highlighted the role of teams
as means for high skilled individuals to specialize in managerial tasks. More recently, the
literature on hierarchies of production, which builds upon Garicano (2000) and Garicano
and Rossi-Hansberg (2006), emphasizes this same aspect. In these papers, the allocation
of talent is fixed ex-ante by assuming a production function with sufficiently weak com-
plementarities for a Spence-Mirrlees separability condition to hold: in any equilibrium the
most skilled individuals are bound to be managers. Kremer (1993) instead proposes a pro-
duction function in which each task is symmetric, and there is complementarity between
team’s members. As a result, teams put together individuals with identical skills. In my
framework, depending on the properties of the cost of technology, the equilibrium might
resemble either one of these two extremes or lie in an intermediate area. In the studying
the trade-off between complementarity and task-specialization, my work is similar to a
working paper by Kremer and Maskin (1996), that extends Kremer (1993) to allow for
asymmetry across tasks and studies the effect of the increased segregation of skills in the
U.S. labor market on wage inequality. My work diverges in studying how the production
complementarity depends on the properties of the technological environment.

This paper shares with Kremer (1993) the goal of understanding cross-country differ-
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ences in organizational structure. However, Kremer (1993) focuses on average differences
across countries - e.g. in poor countries, firms are on average smaller - while I focus on
cross-country differences in the within-country distribution of economic activity - e.g. in
poor countries large and small firms coexist, while in rich ones all firms are similar in size.

The idea that distance to the frontier may impact organization of production is present
in Acemoglu et al. (2006). They study selection into entrepreneurship with credit con-
straints. I thus see my work as complementary to theirs. Roys and Seshadri (2013) also
studies differences across countries in the way in which production is organized. It uses
a quantitative version of Garicano and Rossi-Hansberg (2006) in which human capital is
endogenously accumulated, as in Ben-Porath (1967). Cross-country differences are there-
fore generated by changes in the distribution of talent, and not by changes in the pattern
of matching, which is fixed ex-ante.

The application of the theory to developing countries fits into the debate on the causes
of the existence of dual economies. Through the lens of my model, a dual economy emerges
endogenously as a consequence of individuals in poor countries having the ability to adopt
advanced technology from the frontier, and the resulting concentration of talent. This
view is original, but resembles most closely the one in La Porta and Shleifer (2014), which
emphasizes how duality is tightly linked to economic development.

The work Acemoglu (1999) and Caselli (1999) establishes, through mechanisms differ-
ent from the one that I propose, a connection between the technological environment and
the allocation of workers to jobs. Acemoglu (1999) focuses on the interaction between la-
bor market frictions and the fact that firms have to commit ex-ante whether to create jobs
for high or low skilled workers and shows conditions for a separating equilibrium to exist.
Caselli (1999) shows that when new technologies are adopted, the most skilled are the
most likely to start using them, thus separating themselves from the rest of the economy.
Both these papers do not consider complementarity between individuals working together.
My work instead focuses exactly on this latter channel and characterizes how the proper-
ties of the technological environment change the overall production complementarity, thus
changing the assignment of workers to jobs.

A key feature of the model is that different teams choose to use a different technology,
depending on the ability of their members. This idea has been explored by Basu and Weil
(1998), who argue that each country might have a different appropriate technology, and
by Acemoglu and Zilibotti (2001), that shows that part of the cross-country productivity
gap might be explained by a mismatch between the low skill intensity of poor countries
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and the skill biased technologies invented in rich countries. I explore the same idea of
appropriate technology, but focus on the implications for the pattern of matching.

The dynamic application of the theory, shares the emphasis on the role of talent allo-
cation for growth of Murphy and Vishny (1991), that argues that the allocation of talent
to rent seeking might lead to stagnation. In this paper, stagnation is instead determined
by skilled individuals not being willing to reallocate where their talent is most needed
to spur growth. Last, Parente and Prescott (1994) assumes the existence of barriers to
technology adoption across countries and calibrate the barrier sizes that fit the data. In
my work, barriers to technology adoption are instead endogenously determined. They are
the consequence of a large technology gap across sectors, which depends on past allocation
of talent and prevents skilled individuals from reallocating, thus leaving one part of the
economy unable to adopt advanced technologies.

The structure of the paper is as follows. The theoretical results are provided in Section
2. In Section 3, I offer an interpretation of the theoretical results in terms of distance to the
technology frontier and provide evidence in support of the resulting empirical predictions.
In Section 4, I provide a dynamic extension to study the theory’s implications for economic
growth. Section 5 concludes. The proofs of all the results are gathered in the Appendix.

2 Theory: Choice of Technology and the Allocation of Talent

I develop a matching model in which heterogeneous individuals form production teams
and choose an appropriate and costly technology. I use it to characterize how the allocation
of talent depends on the properties of the cost of technology.8

2.1 Environment
I consider an economy inhabited by a mass one of heterogeneous individuals, indexed

by a type x 2 X. The type set X is thought of as a set of types that indicate the relative9

skill level, to the extent that if x0
> x, then an individual of type x

0 is more able than
x. In the main text, X is considered to be the interval [0, 1]. All results extend to the
case of finite X. This generality comes at the cost of additional notation; for this reason
is left to appendix A.4. Individuals have an increasing and non-satiated utility function

8An example that highlights the main mechanism in a simplified economy is provided in Section A.3.
9Relative to the country specific skill distribution. x ranks individuals from the most to the least able.
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of consumption and no disutility of labor.

Production Technology. Two agents must team up to produce output. Production
requires them to perform two tasks, which are differentially sensitive to skill, and to choose
a costly technology that is complementary with skills. The individual that performs the
most skill intensive task is called the manager of the team, while the other member of
the team is the worker. A manager of type x

0 and a worker of type x with technology a

produce net output equal to

g (x

0
, x, a) = af (x

0
, x)� c (x

0
, x, a)

where f (x

0
, x) is the production from the labor input of the team, and c (x

0
, x, a) is the

cost of technology a. I interpret this cost as the amount necessary to purchase the vin-
tage of capital associated with a given technology. Higher technologies are costlier, but
yield higher returns by combining more capital to the same amount of labor input. This
interpretation is modeled after the concept of appropriate technology, as in Basu and Weil
(1998), with the difference that technology choice is not country specific - as in their
setting - but each team within a country may have a different appropriate technology.

Few assumptions on the functions f and c guide the analysis and impose that, if
technology is fixed, my setting replicates the same allocation of talent as seen in the
literature. These assumptions thus allow to isolate the role of endogenous technology.

Assumption 1 (Production Function f (x

0
,x)). (1.1) f is twice continuously differ-

entiable. (1.2) f is increasing in both arguments: f

1

> 0 and f

2

> 0. (1.3) management
is more skill-intensive: f

1

(x, x) > f

2

(x, x). (1.4) skills of managers and workers are com-
plementary: f

12

> 0. (1.5) there is single-crossing: min

x

02X f1 (x, x
0
) > max

x

02X f2 (x
0
, x).

A few comments are in order. (1.2) captures the fact that more talented individuals
are better at producing output. It is key for the results that also the skills of workers are
useful for production. (1.3) captures the fact that, for given technology and partner, the
individual’s skill is more useful (has larger effect on output) if employed in a managerial
position. This assumption is common in the literature. See, for example, the seminal paper
by Lucas (1978), which assumes that only manager ability matters for production, and
Garicano and Rossi-Hansberg (2006), which builds from primitives a production function
that features this property.10 (1.4) captures complementarity in production between tasks:

10Both these papers allow one manager to be matched with more than one worker. I assume one to one
matching because the focus on the paper is not on firm size, but rather on skill composition in a firm. I
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the skills of a manager are more useful if paired with a high skilled worker. This is also a
natural assumption, pervasive in the literature. Lastly, (1.5) guarantees that the marginal
effect of increasing the ability of a manager on the labor output of a team, f , is always
larger than the effect of increasing the ability of a worker. This assumption separates, if
technology is fixed, managers and workers and guarantees that the highest skilled should
be managers, as in the previous literature.11

Before introducing the next assumption, it is useful to define ↵⇤
(x

0
, x) ⌘ c

�1

3

(x

0
, x, f (x

0
, x)),

that is the solution of max

a

af (x

0
, x)� c (x

0
, x, a).

Assumption 2 (Cost of Technology c (x

0
,x, a)). (2.1) c is twice continuously dif-

ferentiable, if not otherwise specified. (2.2) c is increasing and convex in a: c

3

> 0 and
c

33

> 0. (2.3) skills of managers are more valuable from a cost perspective c

1

 c

2

(2.4)
c is additively separable in skills of managers and workers: c

12

= 0; (2.5) technology
and manager’s skills are complementary f

1

(x

0
, x)� c

13

(x

0
, x, a) > 0; (2.6) technology and

worker’s skills are complementary: f

2

(x

0
, x) � c

23

(x

0
, x, a) > 0 8a 2

h

0,↵

⇤
(x

0
, x)

⌘

and
f

1

(x

0
, x) � c

13

(x

0
, x, a) � 0 if a = ↵

⇤
(x

0
, x); (2.7) the complementarity in technology-

manager skill is stronger than the complementarity in technology-worker skill: f

1

(x

0
, x)�

f

2

(x

0
, x) > c

13

(x

0
, x, a)� c

23

(x

0
, x, a) 8a 2 [0,↵

⇤
(x

0
, x)].

Again, a few comments are in order. (2.3) implies that increasing the ability of the
manager gives a larger decrease on the cost of technology (or a smaller increase). (2.4) is
useful to isolate the effect of complementarity in production as coming either from f

12

> 0

or from the choice of technology, and not directly through cost reduction. (2.5) and
(2.6) are common, but non trivial assumptions, to the extent that they define the role of
technology as an input in production that is complementary with skills.12 This is consistent
with most studies (see, for example, Goldin and Katz (1998), and in a developing country
setting, Foster and Rosenzweig (1995)).13 (2.7) more specifically implies that the ability of

build the simplest framework that isolates the effects of interest. Most results can be extended to a case
in which one manager is matched with more than one worker, as long as there are no complementarities
between workers themselves. This extension comes at the cost of stronger assumptions on complementar-
ity. For example, supermodularity (f

12

> 0) must be substituted with strict log supermodularity as in the
setting of Eeckhout and Kircher (2012) and Grossman et al. (2013). Results are available upon request.

11Given the key role that this assumption plays, in A.2, I discuss it in details and show that (i) it
corresponds to the Spence-Mirrlees condition in this environment, and (ii) it holds and plays a major
role, in most settings in which heterogeneous workers must make an occupational choice; (iii) it can be
rewritten as a condition on the difference between task-specialization and complementarity in f .

12Notice that (2.5) implies that g

13

> 0 and (2.6) that g

23

> 0. Also, (2.6) can be rewritten as
g

13

> g

23

.
13This assumption may fail in some contexts, such as if computerization simplifies production tasks,

requiring less able workers. However, it is suited to the empirical setting studied in this paper. In Section
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the manager is more important in generating high returns from technology than the ability
of the worker. This is consistent, and (2.3) as well, with recent studies emphasizing the
role of managers in technology adoption and good practices (see Bloom and van Reenen
(2007) and Gennaioli et al. (2013)).

An example that satisfies assumptions 1 and 2 is g (x0
, x, a) = M (x

0
)L (x)� c̃ (a)L (x)

with M

0
(x)L (0) > M (1)L

0
(x); M 0

> 0; L0
> 0; c̃0 > 0; and c̃

00
> 0. Simple functional

forms for M (·), L (·), and c (·) can be: M (x) = x; L (x) = 1 + �x, � < 1; and c̃ (a) =

1

⌘+1

a

⌘+1.

Assignment of Talent to Teams. Production requires one manager and one worker.
Individuals are not restricted ex-ante to belong to either group. We can interpret this
setting as a standard one to one matching in which both sides of the market are themselves
endogenous sets. Individuals in the set X decides which side of the matching to join,
whether to belong to the set of workers, W, or to the set of managers, M. They then
match with an individual from the other side. An allocation in this setting must in fact
specify both the occupational choice of each individual and the production partner that
he would get in either occupation.

Definition 1 (Allocation). An allocation ' is a quintuple of functions {!, µ,m,w,↵},
where (i) ! : X ! [0, 1] assigns to each type the fraction of individuals that are workers;
(ii) µ : X ! [0, 1] assigns to each type the fraction of individuals that are managers;
(iii) m : X ! X assigns to each type the manager he would get if he is a worker;
(iv) w : X ! X assigns to each type the worker he would get if he is a manager; (v)
↵ : X⇥ X ! A assigns to each possible pair of types a production technology in A.

I call ! and µ the occupational choice functions, and m and w the matching functions.14

The set A is the set of available technologies, which, if not otherwise specified, is equal to
the set of positive real numbers.

Definition 2 (Feasible Allocation). An allocation ' is feasible if (i) µ (x)+! (x) = 1

8x 2 X; (ii) x = w (m (x)) if ! (x) > 0 and x = m (w (x)) if µ (x) > 0 8x 2 X; (iii)

3.3, I introduce evidence from firm level data showing that the direct implication of this assumption, i.e.
that high skilled individuals use more advanced technology, holds to a similar degree across countries of
different income levels. Additionally, notice that the theoretical results hinge on the idea that different
individuals have different appropriate technologies, and not necessarily on complementarity between skills
and technology. The theory could be rewritten with strict substitutability between skills and technology,
and still provide similar results.

14I define m and w as matching functions, rather than correspondences. This is without loss of generality
due to the fact that X = [0, 1]. I show this result in A.4 together with the case for X finite.
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! (x) = µ (m (x)) if ! (x) > 0 and µ (x) = ! (w (x)) if µ (x) > 0 8x 2 X. I call F the set
of all feasible allocations.

Each feasibility constraint must hold for each type x. The first one guarantees that an
individual cannot be simultaneously a manager and a worker, the second one that matches
are reciprocal, and the third one that labor market clears. 15

2.2 Planner Problem, Existence, and Decentralization
I consider the problem of a planner who, in order to maximize output, assigns individ-

uals to occupations, forms production teams, and picks the technology used by each team.
The planner therefore picks the feasible allocation that maximizes total output:

max

'2F

ˆ
X

g (m (x) , x,↵ (m (x) , x))! (x) dx. (1)

I focus on the planner problem because, as known16 in the literature, if a competitive
equilibrium exists, it decentralizes the optimal allocation. Moreover, the focus of this
paper is to study the assignment of talent to teams, rather than the prices that support it.
Nonetheless, I outline in Section A.5 the competitive equilibrium, and associated prices,
that decentralize the planner’s allocation. In the same appendix, I prove the equivalence
of my setting to an associated bipartite matching problem.17 I exploit this isomorphism
to prove the next proposition.

Proposition 1 (Existence and Decentralization). There exists an optimal allocation
'

⇤ and '

⇤ can be decentralized in a competitive equilibrium.

Uniqueness is not guaranteed. This does not represent a limitation, since I characterize
the properties that any optimal allocation (and equilibrium) must satisfy.18

2.3 The General Case: Segmentation or Segregation of Talent
I next characterize how talent is assigned to teams in an optimal allocation.

15Notice that I have defined the matching function m and w on the whole support of x. The reason
is that the allocation must define the partner also for eventual deviations. For example, if for a type x

there are no workers (i.e. ! (x) = 0), still we need to define what managers they would be matched with
in case of a deviation.

16See for example Becker (1973) and Chiappori et al. (2014).
17This isomorphism follows from an insight in Chiappori et al. (2014).
18The comparative static is robust (Athey et al. (1998)): it does not depend on the equilibrium selection.
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As a preliminary step, it is convenient to define the value of a team that takes into
account the optimal technology choice. This is given by

v (x

0
, x) = g (x

0
, x,↵

⇤
(x

0
, x)) , (2)

and it is a function of only (x

0
, x), since the optimal technology choice depends only on the

team composition, and not on the optimal allocation '

⇤. The assignment of individuals
into teams depends on the properties of v, which are inherited from the properties of the
production function of labor input, f , and the cost of technology, c.

The characterization of the optimal assignment proceeds in three steps. I first describe
standard results that hold directly due to the properties of the value function v and
that are common in settings with occupational choice and matching, such as Kremer
and Maskin (1996) and Garicano and Rossi-Hansberg (2006). I then describe the role of
endogenous technology choice and show that it introduces a trade-off between occupation
and technology. Last, I show the main result that describes how the the properties of c
affects the optimal assignment.

Standard Results. The ability of the manager and worker are complementary in the
production of team value v (in equation 2).19 As a result, the optimal allocation dictates
positive assortative matching between managers and workers: skilled workers are assigned
to skilled managers.

Lemma 1 (Managers-Workers Assortative Matching). The matching function m

⇤

is weakly increasing: if x0
> x then m

⇤
(x

0
) � m

⇤
(x).

Additionally, the marginal effect on team output of increasing the ability of the manager
is greater than the one of increasing the ability of the worker.20 As a result, as long as
two individuals use the same technology - as is the case when they work together -, the
most skilled is assigned to the task that is more skill demanding, i.e. to be a manager.

Lemma 2 (Workers Match Upwards). Managers are weakly more skilled than work-
ers: m

⇤
(x) � x.

This last lemma has an important implication: workers match upwards, that is, they
work with a partner more skilled than themselves. This feature is at the core of the
trade-off between occupation and technology that I describe next.

19This follows from assumptions (1.4), (2.4), (2.5) and (2.6) - as shown in the appendix.
20This follows from assumptions (1.5), (2.3 ), (2.7) - as shown in the appendix.
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Occupation-Technology Tradeoff. Technology and individuals skills are complemen-
tary.21 As a result, more skilled teams use a more advanced technology.

Lemma 3 (Optimal Technology). The optimal technology of a team (x

0
, x) is given

by ↵

⇤
(x

0
, x) = c

�1

3

(x

0
, x, f (x

0
, x)), and satisfies ↵

⇤
1

↵

⇤ >

↵

⇤
2

↵

⇤ � 0.

Lemma 3 and Lemma 2 together imply that any individual would use a more advanced
technology if he is a worker rather than a manager.

Lemma 4 (Technology of Workers and Managers). Any individual uses a higher
technology as a worker than as a manager. I.e. ↵

⇤
(m

⇤
(x) , x) � ↵

⇤
(x, w

⇤
(x)).

Lemma 4 highlights the trade-off, between occupation and technology, that is generated
by the endogenous choice of technology. An individual, by being a worker, hence taking
a lower skill-intensive occupation, gets access to a more advanced technology. The key
object in this trade-off is the gap between the technology that an individual x would use as
a worker or as a manager. I define this ⌘⇤. It depends on the optimal matching functions:

⌘

⇤
(x,m

⇤
(x) , w

⇤
(x)) =

↵

⇤
(m

⇤
(x) , x)

↵

⇤
(x, w

⇤
(x))

.

The convexity of the cost of technology, pinning down how different are the technologies
appropriate to teams of different ability, determines the size of the technology gap.

Lemma 5 (Technology Gap). For given x, m

⇤
(x), and w

⇤
(x), the technology gap

⌘

⇤
(x,m

⇤
(x) , w

⇤
(x)) decreases in the convexity of c with respect to a, c

33

c

3

.

Main Result. The previous five lemmas completely characterize the optimal allocation
'

⇤, given the occupational choice functions !

⇤ and µ

⇤. However, the main difficulty in
the problem is the characterization of these occupational choice functions, hence of the
endogenous sets of workers and managers. Most of the matching literature focuses on two-
sided matching, for example matching between husbands and wives as in Becker (1973). In
those settings, positive assortative matching is sufficient to pin down the unique optimal
allocation. In contrast, the two sides of the matching, the sets of managers and workers,
are here themselves endogenous objects. As a result, positive assortative matching is not
sufficient to pin down the optimal allocation.

I do not completely characterize !

⇤ and µ

⇤, but I describe two polar cases that might
emerge in the optimal allocation, and show conditions for either one of them to be optimal.

21See assumptions (2.5), (2.6), (2.7).
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These two cases are polar with respect to the occupation-technology tradeoff, and they
also correspond to the maximum and the minimum distance between the skill levels of
individuals working together in a team.

Definition 5 (Segmentation by Occupation). Talent is segmented by occupation if
x

0
> x and µ

⇤
(x) > 0 imply µ

⇤
(x

0
) = 1.

When talent is segmented by occupation, there will be a cutoff type such that all
individuals with ability above this cutoff are managers, and all of those with ability below
the cutoff are workers. This case is illustrated in Figure 1a below.

Definition 6 (Segregation by Technology). Talent is segregated by technology if
x

0
> x implies ↵

⇤
(x, w

⇤
(x)) � ↵

⇤
(m

⇤
(x) , x) with probability 1.

When talent is segregated by technology, more skilled individuals use a higher technol-
ogy than lower skilled ones. Take any x

0
> x such that x

0 is a manager and x is worker.
For talent to be segregated by technology, it must be the case that m

⇤
(x) < x

0, since by
Lemma 1, x would otherwise use a higher technology.22 In fact, each worker’s manager
must be no more skilled than the next highest individual in the economy skill distribution.
This second case is illustrated in Figures 1b.

Figure 1: Two Polar Cases of Allocation of Talent for X = [0, 1]

(a) Segmentation by Occupation (b) Segregation by Technology

Notes: A grey dot represents a worker, while a black dot represents a manager. Dotted lines connect workers to their
managers.

When talent is segmented, there is a larger distance between an individual’s skill and
his partner’s. When talent is segregated, instead, individuals work with others of similar
talent. Last, notice that even in the case in which talent is segmented by occupation,
high skilled individuals use on average a higher technology. However, since workers match
upwards, an individual x uses a better technology than a higher skilled one x

0
> x, if x

22Alternatively it could be that ↵⇤
(m

⇤
(x) , x) = ↵

⇤
(x

0
, w

⇤
(x

0
)), but this equality may hold only if

there are kinks in the cost of technology c, which we assumed away through assumption (2.1 ).
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is a worker, x

0 is a manager, and the manager of x, m

⇤
(x) is more skilled than x

0. If
talent is segmented, this happens for at least some worker. Talent, in fact, cannot be
simultaneously segmented and segregated.

I next characterize which properties on the cost of technology are sufficient for the
optimal allocation to satisfy either one of the two polar cases emphasized above. For
this, it is useful to introduce a last piece of notation. Let the set A

c,X be the set of all
technologies that are optimal, given c, for at least one of the teams that can be formed
given the type set X. Therefore

A
c,X = {↵⇤

(x

0
, x) : (x

0
, x) 2 X⇥ X} .

Proposition 2 (Segmentation or Segregation). There exist 
1

 

2

such that in any
optimal allocation '

⇤, if c

33

(x

0
,x,a)

c

3

(x

0
,x,a)

� 

2

for all x0
, x 2 X and for all a 2 A

c,X then talent
will be segmented by occupation. On the other hand, if c

33

(x

0
,x,a)

c

3

(x

0
,x,a)

 

1

for all x0
, x 2 X and

for all a 2 A
c,X, then talent will be segregated by technology.

The convexity of the cost of technology modulates the role of occupation and tech-
nology in driving the optimal assignment - and more generally the complementarity of v
- and thus changes the pattern of matching. If the convexity is high, the marginal cost
increases steeply and thus every team has a similar optimal technology. The occupation
drives the assignment and teams gather together high skilled managers and low skilled
workers. If the convexity is low, the elasticity of optimal technology to ability is large.
High skilled individuals are paired together to reap the benefits - through skill-technology
complementarity - from using a high technology.

The formal proof of the proposition is left to the appendix. I nonetheless discuss here
the main insights and difficulties. For the purpose of this discussion, I let the cost of
technology not depend on the ability of either workers or managers, that is c

1

= c

2

= 0.
Recall that we need only to solve for the sets of managers and workers. Given those,

Lemmas 1-5 characterize the optimal allocation. The planner, as usual, assigns individuals
to the occupation where they have their comparative advantage. Hence, for example, most
skilled individuals should be assigned to the occupation with a higher marginal value of
their skills. The difficulty stems from the fact that the marginal value of an individual skills
depend not only on his occupation, but also on the production partner and technology,
due to complementarity. Hence the comparative advantage occupation of each individual
depends on the choice of everyone else in the economy. More specifically, the marginal
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values of skills for an individual x in the two occupations, respectively manager and worker,
are

v

1

(x, w (x)) = ↵

⇤
(x, w (x)) f

1

(x, w (x)) (3)

v

2

(m (x) , x) = ↵

⇤
(m (x) , x) f

2

(m (x) , x) ,

where I used the envelope theorem and definition of the value, v, of a team (equation 2).
Equation 3 shows that to compare the marginal value of skills for managers and workers it
is necessary to know the matching functions, since they determine the production partner,
and thus technology, in either occupation. The matching functions are themselves tied to
the occupational choice through market clearing. We thus face a functional fixed point
problem.23 Nonetheless I can characterize the two polar cases even without solving it
explicitly.

First, let’s consider talent segmentation. Due to the previous argument, this requires
that most skilled individuals have a comparative advantage in being managers, hence that
v

1

(x, w (x)) > v

2

(m (x) , x) 8x. This inequality can be rewritten as 8x

f

1

(x, w (x))

f

2

(m (x) , x)

| {z }

Task Specialization

� ↵

⇤
(m (x) , x)

↵

⇤
(x, w (x))

| {z }

.

Technology Complementarity

(4)

The single-crossing assumption (1.5) introduces a motive for task-specialization in the
production function, and guarantees that the left hand side is larger than 1 for any x,
m (x), and w (x). Since workers match upwards, the right hand side must also be larger
than 1 in general, since an individual would use a higher technology as a worker. How-
ever, if the convexity of the cost is large enough, it approaches 1: the gain in terms of
complementarity with a better technology by being a worker disappears since all teams
use a similar technology. As a result, this inequality is satisfied, and talent is segmented
by occupation, since skills are more rewarded in managerial positions.

Next, let’s consider talent segregation. When the convexity of the cost is low, differences
across teams in optimal technology - hence the right hand side in equation 4 - are large.
The increase in marginal value of skills due to the fact that workers use of a better
technology, in fact, more than compensate the loss from being assigned to a less skill-

23This same fixed point problem is circumvented by most settings that combine an occupational choice
and matching, such as Garicano and Rossi-Hansberg (2006). The reason being that in these settings
functional form assumptions guarantee that v

1

> v

2

; the matching pattern is fixed ex-ante and there is
no need to tackle the fixed point problem.
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sensitive occupation. The result is that the jobs that have higher marginal value of skills
are those in which individual use a higher technology, irrespective of their occupation.
Talent is then segregated by technology.

For intermediate values of c, it is necessary to solve directly the fixed point problem
in order to characterize the properties of the assignment. I next undertake this task in a
setting with simplified functional forms.

2.4 A Quasi-Linear Model: a Measure of Talent Concentration
Functional form restrictions allow to completely characterize the optimal allocation

even outside of the two polar cases (talent segregation or segmentation). This setting
generates the testable predictions that I use in the empirical application of Sections 3.2.

Assumption 3 (Quasi-Linear Model). For � 2 (0, 1) and ⇣ 2
�

1

2

, 1

�

f (x

0
, x) = x

0
(1 + �x)

c (x

0
, x, a; a, ā) = c̃ (a; a, ā) (1 + �x)

c̃ (a; a, ā) =

8

>

>

>

<

>

>

>

:

0 if a < a

⇣ (a� a) if a 2 [a, ā].

1 if a > ā

These functional forms satisfy all previous assumptions, with the exception of twice
differentiability of c (due to kinks in the cost of technology). Lemma 3 therefore does not
longer apply: two differently skilled managers might have identical optimal technology. In
fact, only two technologies, a and a, are used due to the piece-wise linearity of the cost
function and to the constant complementarity of f . I call them respectively the advanced
and traditional technologies.

Lemma 6 (Optimal Technology in Quasi-Linear Model). The optimal technology
for a pair (x

0
, x) is given by

↵

⇤
(x

0
, x) =

8

<

:

ā if x0 � ⇣

a if x0
< ⇣

.

The key parameter in this simplified setting is the ratio between the advanced and the
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traditional technology
⌘ ⌘ ā

a

and plays the same role of the convexity of c in the more general setting hence it modulates
the trade-off between occupation and technology. Notice, in fact, that the technology gap
takes either value 1 or ⌘:

⌘

⇤
(x,m

⇤
(x) , w

⇤
(x)) 2 {1, ⌘} .

As a result a low ⌘ correspond to high convexity of c, according to Lemma 5. Additionally,
only the ability of the manager matters for the optimal technology of a team. This gives
tractability, while still satisfying one of the main properties of the solution, namely that
any individual x would use a (weakly) higher technology if he is a worker rather than a
manager.

Total output produced in an allocation ' is given - just as in the benchmark case - by

Y ('; a, ā) =

ˆ
X

g (m (x) , x,↵ (m (x) , x) ; a, ā)! (x) dx,

where g (x

0
, x, a; a, ā) = af (x, x

0
)� c (x, x

0
, a; a, ā).

Lemma 7 (Homogeneity). The planner’s problem is homogeneous in a, that is

max

'2F
Y (�; a, ā) = a



max

'2F
Y (�; 1, ⌘)

�

,

and
argmax

'2F
Y (�; a, ā) = argmax

'2F
Y (�; 1, ⌘)

Lemma 8 (Uniqueness). Under assumption 3, the optimal allocation '

⇤ is unique.

By these two lemmas, the unique optimal allocation depends only on the technology
gap ⌘. I next study the comparative statics with respect to it. To do so, I first define
a measure of the concentration of talent that captures how close the allocation of talent
in '

⇤ is to the previously described case of segregation of talent by technology, and thus
ultimately how similar are the individuals working together in a team.

As preliminary steps for the definition, I first introduce the optimal technology used
by an individual of type x. This is given by a random variable, call it A

⇤
(x), that takes
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into account the probability that he is employed as a manager or a worker

A

⇤
(x) =

8

<

:

↵

⇤
(m

⇤
(x) , x) w.p. !

⇤
(x)

↵

⇤
(x, w

⇤
(x)) w.p. 1-!⇤

(x) .

Next, I consider an hypothetical optimal technology, A
p

, that is built to satisfy segregation
and preserving the same mass of individuals using ā and a as in A

⇤, formally

8x0, x : x

0
> x ) A

p

�

x

0� � A

p

(x)ˆ
1 (A

p

(x) = ā) dx =

ˆ
1 (A⇤

(x) = ā) dx.

I can then introduce the definition of the concentration of talent, that exploits the difference

between the average ability of individuals that use technologies ā and a.

Definition 8 (Concentration of Talent). The concentration of talent in an allocation
'

⇤ is

⇡ =

E (x|A⇤
(x) = ā)� E (x|A⇤

(x) = a)

E (x|A
p

(x) = ā)� E (x|A
p

(x) = a)

. (5)

I can then express ⇡ as a function of ⌘, where the dependence comes from the fact that
A

⇤ and A

p

depend on ⌘, and describe the comparative statics of ⇡ with respect to ⌘.

Proposition 3 (Concentration of Talent). The concentration of talent ⇡ (⌘) is non-
decreasing in ⌘. Additionally, there exist ⌘

1

< ⌘

2

such that if ⌘  ⌘

1

talent is segmented
by occupation and ⇡ (⌘) =

1

2

; if ⌘ � ⌘

2

talent is segregated by technology and ⇡ (⌘) = 1;
and if ⌘ 2 (⌘

1

, ⌘

2

) talent is nor segmented nor segregated and ⇡ (⌘) 2
�

1

2

, 1

�

.

Figures 2 and 3 illustrate the optimal allocation and the measure ⇡ for three values of
⌘. First consider 2c. It describes the occupational choice and technology used for a case in
which ⌘ � ⌘

2

and thus talent is segregated by technology: high skilled workers are allocated
to the high technology ā. Among individuals that use the same technology, the most skilled
are managers. The measure of concentration of talent, ⇡, is constructed in Figure 3c. The
figure shows x̄

a

⌘ E (x|A⇤
(x) = a) plotted as a function of p̄

a

⌘ E (x|A
p

(x) = a) for
a 2 {a, ā}. The measure of concentration of talent is the slope of the line. In this case,
talent is segregated by technology, i.e. x̄

a

= p̄

a

for all a, and as a result, ⇡ = 1. All
the most skilled individuals are concentrated together in teams that use the advanced
technology.
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Figure 2: Allocation of Talent in the Quasi-Linear Model
(a) Segmentation (b) Intermediate Case (c) Segregation

Notes: the squared brackets put together individuals with the same occupation. Workers are highlighted with light grey
square brackets, and managers with black ones. Dotted brackets signal mixing: some are workers and some managers. The
red regions covers the set of individuals using the frontier technology ā. The red striped regions are present in mixing area
on which the workers use ā, while the managers use a. Dotted lines connect examples of workers and managers that are
together in a team.

Figure 3: Measure of Concentration of Talent
(a) Segmentation (b) Intermediate Case (c) Segregation

Notes: in each figure I plot x̄

a

as a function of p̄
a

. By definition, the measure of the concentration of talent is the slope of
the line.

Now consider Figures 2a and 3a. They plot the allocation for ⌘  ⌘

1

and thus talent
segmented by occupation: all the most skilled are managers and teams thus put together
individuals of more different abilities. Only the most skilled managers, and the workers
matched with them, use the advanced technology ā. Workers that use ā are less skilled
than some managers that use a. As a result: x̄

ā

< p̄

ā

and x̄

a

> p̄

a

and the measure of
concentration of talent is smaller than 1. In particular, it turns out that, since teams are
formed by two individuals, ⇡ =

1

2

when there is segmentation. This holds irrespective of
the value of ⇣ (the cutoff that defines the manager that uses advanced technology).

Last, in Figures 2b and 3b, I show an intermediate case ⌘ 2 (⌘

1

, ⌘

2

) in which there is
neither segmentation nor segregation. Some fairly skilled individuals use the traditional
technology, although less than before, and at the same time, some workers that use the
advanced technology are more skilled than managers that use the traditional one. The
result is that the concentration of talent has an intermediate value.
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The ones above are just three special cases of the optimal allocation, that is completely
characterized in Section A.8. As a result of the stricter functional form assumptions, I
am able to directly solve for the fixed point in {!⇤

, µ

⇤
,m

⇤
, w

⇤}. There are two key steps
to do so. The first one is to notice that the optimal allocation can take only one of five
possible shapes, where a shape is defined by the number of cutoffs that separate subsets
of the type space where the occupational choice differ. For example, one shape is when
talent is segmented by occupation. There is only one cutoff type and types below it are
workers and types above it are managers. The second one is to note that the slope of the
matching function m (x) depends on the fraction of workers at x, ! (x), and fraction of
managers at m (x), µ (m (x)). This allows to solve for ! and µ that guarantee that the
marginal value of managers and workers is identical. A condition required over regions of
the type space in which the optimal allocation dictates mixing, as in Figure 2b.24

Let me then discuss the transformation from one polar case to the other (details are
in Section A.8). Consider the case with segmentation of talent in Figure 2a. When ⌘

is smaller than ⌘

1

, the gap between the advanced and traditional technology is small,
thus every team uses a similar technology and high skilled individuals are assigned to be
managers. As ⌘ increases it becomes more skill rewarding for an individual to become a
worker and use ā, rather than being a manager and using a. The reward from being a
manager rather than a worker depends also on the production partner, and thus on the
matching function m. For ⌘ slightly bigger than ⌘

1

, only the lowest skilled among the
previous managers finds it optimal to become a worker. As ⌘ increases further, more and
more individuals who, if they were managers would use a, become workers in order to
get access to ā. When ⌘ � ⌘

2

, access to the advanced technology drives the assignment,
since the gap between technologies is so large that any individual would enjoy a higher
marginal value of his skills if he is the worker using ā rather than a manager using a. The
optimal allocation thus resembles a dual economy: within each technology, there is talent
segmentation, but skills are segregated by technology.

The smooth transition from one polar case to the other as ⌘ increases is in contrast
with most frictionless matching models, which feature a discrete jump between two polar
cases. As an example, consider the case of a CES production function that leads to a
perfectly positive or perfectly negative assortative matching depending on the value of the
elasticity of substitution (see, for example, Grossman and Maggi (2000)).

24A similar insight is present in Low (2013) for a case with bipartite matching.
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2.5 Model Extension: Self-Employment
Last, I allow individuals to choose whether to form a pair or to work alone. This

extension provides an additional prediction - on the average skill level of self-employed -
that can be validated in the data, and sheds light on the motives that drive self-employment
in this environment. I start from the quasi-linear setting and model being self-employed,
relative to being a manager, along the lines of Garicano and Rossi-Hansberg (2004). Under
this setup, self-employment is a more skill intense occupation than being a worker, but
less so than being a manager. Additional details and an analysis of the incidence of
self-employment are left to Section A.9.

Assumption 4 (Self-Employment). Output of a self-employed individual of ability x

with technology a is equal to af

s

(x)� c̃ (a), where f

s

satisfies: min

x

02X f

1

(x, x

0
) � f

0
s

(x) �
max

x

02X f2 (x
0
, x).

As a result of this assumption, in the optimal allocation, among individuals who use the
same technology there is going to be talent segmentation by occupation: self-employed are
more skilled than workers, but less so than managers. If everyone uses a similar technology,
as when ⌘ ⇠ 1, the self-employed are thus going to be as skilled as the average. In Figure
4a, I depict this allocation. Instead, if the gap between the advanced and traditional
technology, ⌘, is large, then the complementarity between labor and technology implies
that a worker using the advanced technology ā has a higher marginal value of his talent
than a self-employed using the traditional technology a. Additionally, self-employed must
be less skilled than managers, due to the fact that they have lower marginal value of skills.
Since - due to the functional form assumptions - at least some manager chooses a, this
implies that no self-employed individual uses the advanced technology ā. This second case,
which displays talent segregation by technology, is shown in Figure 4b. Self-employed are
now less skilled than the average.

Definition 9 (Selection of Self-Employed). The selection into self-employment un-
der an allocation '

⇤ is given by # =

´
x�

⇤
(x) dx �

´
x (1� �

⇤
(x)) dx, where �

⇤
: X !

[0, 1] is the optimal occupational choice function that assigns to each type x the fraction of
self-employed.

This measure captures the difference between the average type of individuals who are
self-employed or work in teams. As before, the model is homogeneous in a, and I can thus
express # as a function of ⌘ and provide the main result of this section.
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Proposition 4 (Selection of Self-Employed). The selection of self-employed # (⌘) is
non-increasing in ⌘.

Figure 4: Allocation of Talent with Self-Employment
(a) Segmentation by Occupation (b) Segregation by Technology

Notes: The squared brackets put together individuals with the same occupation. Workers are highlighted with light grey
square brackets, self-employed with dark grey ones, and managers with black ones. The red regions covers the set of
individuals using the frontier technology ā. Dotted lines connect workers and managers that are together in a team.

2.6 Taking Stock of the Theory
The theoretical analysis shows that the convexity of the cost of technology determines

the shape of the economy’s structure. Specifically, the convexity modulates the role of
occupation and technology in determining the main purpose of team production and thus
the optimal assignment. When the cost is sufficiently convex, so that most teams use the
same technology, the allocation resembles the familiar structure from occupational choice
problems: low skilled individuals are workers and high skilled ones are managers. The
main purpose of team production is to put together differently skilled individuals to allow
the most able ones to task-specialize.

The optimal allocation changes when the cost is less convex. The allocation in this case
is asymmetric. Some teams attract skilled individuals (both managers and workers) and
use advanced technologies. Some other teams instead are left with low skilled ones and use
traditional technologies. Teams now concentrate skilled individuals to reap the benefits
from the complementarity between advanced technologies and their skills. As a result,
there is larger dispersion of talent and technology in the economy. Taking a first step
towards the interpretation of the theoretical results, which will be provided in the next
section, the possibility to adopt frontier technology leads to an endogenous formation of a
dual economy. Teams that adopt advanced technology attract the most skilled individuals,
leaving the rest of the economy with low talent and thus low technology.25

25This feature of the model resembles a mechanism roughly outlined by Acemoglu (2015) (page 454)
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3 Evidence: Distance to the Frontier and Allocation of Talent

In this section, I apply the theory to a cross-country analysis and evaluate its empirical
content, confronting its predictions with previous literature and with micro data from
several countries.

First, I provide an interpretation of the convexity of the cost of technology in terms of
the distance of a country to the technology frontier. This interpretation allows to generate
empirical predictions on differences in the concentration of talent across countries.

It has been shown in the literature that cross-country variation in GDP per capita at
one point in time is to a large extent explained by differences in average used technology
(see Klenow and Rodriguez-Clare (1997) and Comin and Ferrer (2013)). As a result,
individuals in countries relatively poor with respect to the frontier can, in principle, do
large improvements in their technology at a low cost by adopting the existing technology of
rich countries. They have in fact a unique opportunity: they can adopt technologies that
are much more advanced than the ones they could otherwise produce, given their level of
development. Instead, for individuals in countries already on the frontier, it is relatively
more costly to do large technology improvements, since it would require to invent new
technologies. Motivated by this, I interpret relative GDP per capita across countries as
a proxy for how expensive large technological improvements are, hence for the convexity
of the cost of technology.26 Intuitively, differences in convexity capture the fact that
innovation (on the frontier) is a gradual process, while adoption (far from frontier) can be
rapid and direct.

Two comments are in order. First, I have not mentioned cross-country differences
in the level of the cost of technology, but only in its convexity. The level of the cost of
technology does not affect the allocation of talent, but does change average used technology
and total output. Of course, therefore, countries farther from the frontier must also have
a higher cost for each technology, in order to capture the fact that their technology level is
lower. Similarly, the growth path of a country that remains steadily close to the technology
frontier should be interpreted as a decrease in the cost of each technology, keeping constant

for the case of physical capital. He argues that it might be interesting to explore the possibility that “if
technologies imported from the world technology frontier have undergone much improvement only in high
capital–labour ratios, then despite the relatively high price of capital, some firms in developing economies
may end up choosing to operate at these high capital–labour ratios, leaving even lower capital– labour
ratios for the rest of the economy.”

26In the quasi-linear model in Section 2.4 the cost of technology has an even more direct interpretation.
The frontier technology is ā and it is identical for each country at a given point in time. The country
specific traditional technology is instead a. Countries farther from the frontier have lower a, thus higher
⌘ =

ā

a

.
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the convexity. For example, this interpretation implies that, along the growth path of the
United States, the convexity (hence the size of the support of used technology) remains
fairly constant, but new technologies replace the old ones as they become obsolete.27

Second, for the sake of clarity, the discussion so far has not emphasized cross-country
differences in human capital. I load all cross-country differences on one primitive, the
cost of technology. This should be interpreted as the net cost, which takes into account
differences in its return. A high cost of technology is, in fact, isomorphic to a low return
from it, which might be driven by the low level of human capital in countries far from the
frontier. In Section A.14, I provide a microfoundation of the cost function to highlight how
cross-country differences can be modeled as a race between the country’s human capital
and the technology frontier.

Next, I use this interpretation to confront the theory with data on cross-country dif-
ferences in the organizational structure of their economies. The empirical analysis will
comprehend three parts. First, in Section 3.1, I review the literature and show that the
theory qualitatively replicates known empirical facts of developing countries. Second, in
Section 3.2, I use household level data to construct an empirical measure of the concentra-
tion of talent as defined in the model, that I then compare across countries and time. I also
use the same data to show, motivated by the model extension, cross-country differences in
the selection of self-employed. Third and last, in Section 3.3, I provide additional evidence
in support of the theory from firm level data. Firm level data have both advantages and
disadvantages vis-à-vis the household level ones: they allow to have a more narrow notion
of who works with whom, hence also to validate some of the model assumptions, but at
the same time are plagued by cross-country comparability concerns.28

3.1 Confronting the Theory with Existing Empirical Evidence
The theory qualitatively replicates known features of developing countries. The model,

in fact, predicts that as a result of a less convex cost of technology, developing - hence
farther from the frontier - countries should be organized along an asymmetric equilibrium.
Some teams are formed by high skilled individuals and use the advanced technology, while
some other teams are formed by low skilled individuals and use the traditional one. This
is in contrast with developed countries, where all teams should use a similarly advanced

27In Figures A.7 and A.8 I illustrate few examples of technology cost functions consistent with this
interpretation.

28Specifically, I use the World Bank Enterprise Surveys. These data have been recently used by Asker
et al. (2014), who also discuss some of the cross-country comparability concern.
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technology and are formed by high skilled individuals in managerial positions and low
skilled ones as their workers.

The model, therefore, predicts that in developing countries there is larger dispersion of
productivity, both directly and through polarization of skill composition of teams. This
fact is consistent with evidence documented among others by Caselli (2005), Hsieh and
Klenow (2009), and Adamopoulos and Restuccia (2014). Moreover, while the overall level
of technology is lower, the model predicts that, even in developing countries, within some
niches of the economy, the technology used is the same as in developed ones. This is consis-
tent with Rodrik (2012) that shows evidence on unconditional cross-country convergence
within formal manufacturing, and with Comin and Ferrer (2013), that shows that modern
technologies quickly diffuse to all countries, but the penetration rate is much lower in poor
countries. Next, the theory predicts that in developing countries some very low skilled in-
dividuals are employed in managerial positions. This is consistent with evidence in Bloom
and Van Reenen (2010), that documents a thick left tail of poorly managed firms and that
firms with more educated workers have better management practices. More broadly, the
asymmetric equilibrium resembles a dual economy, and duality is a feature often associ-
ated with developing countries (see for example La Porta and Shleifer (2014)). Last, the
model extension predicts many low skilled self-employed in developing countries. In the
model, these individuals become self-employed because those types that would be their
managers in a developed country choose to be workers themselves to get access to the
advanced technology. This type of self-employment resembles the notion of subsistence
entrepreneurship in developing countries, as emphasized by Schoar (2010), Ardagna and
Lusardi (2008) and Banerjee and Duflo (2011).

Most theories that provide an explanation for these empirical facts usually attributes
them to larger market frictions in developing countries. This paper instead proposes a
complementary explanation that differs in three aspects. First, these features of developing
countries are generated in a first best world.29 Second, they are associated with the
distance to the frontier and the resulting option of technology adoption, rather than with
a low level of development. Third, they are tightly connected, and in fact either caused
or exacerbated, by a different assignment of individuals to teams.30 Differences in the

29Other recent papers proposed competitive explanation for cross-country differences in productivity
dispersion. For example, Lagakos (2013) argues too little car’s ownership may lead to low retail produc-
tivity and Young (2013) argues that spacial sorting of workers can explain the rural-urban wage gap.

30One example makes more vivid differences in allocation of talent. Individuals working as cashiers in
supermarket in India are on average more skilled than 80% of the population (data used are described in
the next section). However, they do not perform a complex task. They would be defined “workers” in the
model. We can also find in the same data supermarket managers. They are mildly more skilled than the
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allocation of talent are a new feature of economic development, that has been previously
overlooked. I next show that it has empirical content.

3.2 Evidence on Allocation of Talent from Household Level Data
Next, I use censuses and labor force surveys from 63 countries around the world and

document cross-country differences in the allocation of talent.
3.2.1 Empirical Strategy

The quasi-linear model predicts (Propositions 3 and 4) that in countries with a less
convex cost - hence, along the previous interpretation, farther from the frontier - talent is
more concentrated and self-employed are more negatively selected.

The main empirical challenge is to construct, for each country, a scalar statistic that
summarizes the information in the data on the concentration of talent. Labor force surveys
in fact do not include information on production teams, i.e. on who works with whom. I
build a measure that follows closely the definition of concentration of talent in the theory.
Concentration of talent in the model (Equation 5) is given by the difference between the
average skill of individuals using the advanced and the traditional technologies. This dif-
ference, in turn, is informative about team composition because teams sort into technology
used depending on the ability of their members. In the data, I use a similar insight. Since
I do not directly observe individual skills and technology choice, I use the concentration
of educated individuals across sectors. The model predictions will hold for concentration
of education across sectors if two assumptions are satisfied. First, individual ability and
education years must be positively correlated. This assumption allows to use education
as a proxy for ability. Second, teams must sort into sectors where similarly skilled teams
are. This second assumption allows to use a sector as a proxy for the technology used by
a team.

The first assumption allows to measure skill using an individual’s years of education.31

More precisely, for each country-year survey, I use the distribution of education years to
compute a measure of skill, denoted as x̂, between 0 and 1. For example, a value of x̂ = 0.5

means that this individual is more educated than 50% of the population in that country-

cashiers. What about a country close to frontier? In the United States cashiers are below the median of
the population, while their managers are above the 70%. Thus, in U.S. simple occupations are taken by
low skilled, which are working together with high skilled which take managerial roles.

31A prominent alternative measure of skills is individual income. I choose to use education years for
three reasons: (i) in most countries, only wage income is available, and only a fraction of the developing
country workforce receives a formal wage; (ii) even when non-wage income data are available, it is hard to
compare with wage income, since it might capture non individual returns (e.g. family labor); (iii) income
measures are available only for a subset of countries.
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year survey. There are few concerns. First, education might measure skill with noise.32

This is not a major problem, since due to the fact that I compare average skill by sector,
measurement error will not bias the results. In particular, since there is a large number
of individuals within each sector, measurement error should wash out. Second, although
in the model skill is taken as an exogenous characteristic, education is the outcome of
an endogenous choice. In order to address this concern, in Section A.10, I extend the
model to allow for an endogenous education choice, given exogenous differences in ability.
I show that under standard assumptions, years of education are increasing in ability, and
the relationship between the convexity of the cost function and the optimal allocation is
still present. Third, education might be a noisier measure of skills in poor countries, such
as if some talented individuals are credit constrained and hence do not go to school even
if they would have a high return from it. However, as I discuss in farther detail in Section
3.2.5, this would attenuate my results.

The second assumption allows to measure technology using the industry in which an
individual works. In particular, I rank the implied technology used by each industry
according to the average education of the individuals working in it. Therefore, according
to my measurement, if an industry has a more educated workforce, it also has a more
advanced technology. This is consistent with the model prediction that more skilled teams
sort into higher production technologies.33 It is also consistent with previous literature
that argues that some sectors use technologies with higher degree of skill complementarity
(see for example Buera et al. (2015)) and that documents large productivity gaps across
sectors in developing countries.34 Nonetheless a concern remains, that is, my result would
be biased if industry is a worse proxy for technology used in countries closer to the frontier.
I address this in Section 3.2.5.

The selection of self-employed can be directly measured in the data. I use again
education as a measures of skill, and I observe whether individuals are self-employed. I
can thus calculate the average skill of those who are self-employed and compare it with
those who are not.

Last, equipped with the empirical measures of interest, I can compare them across
countries. As already discussed, I use relative differences in GDP per capita as a proxy

32I use education to make an ordinal comparison across individuals within a country. As a result, any
cross-country comparability concern is alleviated. For example, the concern of Hanushek and Woessmann
(2008) - i.e. that cross-country education differences understate those in cognitive ability - does not apply.

33An extension of the model in which teams explicitly choose in which industry to locate, can replicate
perfect sorting of teams to industries in the presence of economies of agglomeration at the industry level.

34See for example Caselli (2005) and Gollin et al. (2014) on agriculture productivity gaps, and Acemoglu
and Zilibotti (2001) for a more disaggregated study.
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for the convexity of the cost of technology - hence ⌘ in the quasi-linear model. More in
details, it can be useful to recall that ⌘ =

ā

a

. We can then - consistently with the previous
discussion - interpret ā as the frontier technology, and a as the country specific traditional
one. In the model, for a given level of ā, total output is increasing in a (thus decreasing
in ⌘), since the higher the value of a, the lower the cost of each technology. This formally
motivates to use GDP per capita to measure proximity to the frontier and yields the first
and main empirical comparison, that is, the comparison of rich and poor countries at one
point in time. Similarly, the model predicts that when ā is low - i.e. in the past when
the frontier technology was less developed - a must be higher (thus ⌘ must be lower) in
order to achieve a given level of GDP. This yields the second empirical comparison, that
is, the comparison of poor countries today to countries that are currently rich at the time
when the latter were at similar level of GDP per capita as the former today. Last, due
to the homogeneity of output, if the GDP of a country grows faster than the frontier,
then ⌘ should fall. This yields the third comparison: following a country over time as it
approaches the frontier.
3.2.2 Data (Household Level)

I use large sample labor force surveys and censuses available from Integrated Public
Use Microdata Series, International (IPUMS). The data cover 63 countries of differing
income levels, from Rwanda and Tanzania to Switzerland and United States. Part of my
analysis focuses on the South Korean growth experience, for which I use data from the
Korean Longitudinal Study of Ageing (KLoSA) and, to perform robustness checks, the
Korean Labor and Income Panel Study (KLIPS). All GDP per capita data are taken from
the Penn World Table version 8.0.

In the IPUMS data, there are three main variable of interest: education, industry,
and employment status. Completed years of education is coded from the educational at-
tainment variable, and industries are standardized by IPUMS to be comparable across
countries. Their industry definitions span 12 industries. Last, employment status records
indicate whether an individual is a wage-worker, self-employed or an employer. In order
to minimize comparability concerns, I restrict the sample to include only males, head
of households and between 18 and 60 years old. For the baseline results, I also exclude
self-employed, since they do not work in teams. All data are representative of the en-
tire population from which they are drawn. Robustness checks and alternative sample
selections are in Section 3.2.5. Data details are in Section A.11.

KLoSA is a survey gathered with the purpose of understanding the process of pop-
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ulation aging in Korea. It has a sample size of approximately 10,000 individuals and it
is representative of individuals older than 45. The survey has bi-annual frequency and
started in 2006. Hence, it does not allow to directly trace the growth miracle in South
Korea. However, there is a job supplement that asks the complete history of jobs for each
individual. In particular, this contains information on the industry in which the respon-
dent works, their employment status, and their education. Using these data, I retroactively
construct cross-sections for each year from 1953 to 2006. There is one obvious concern
with this procedure: average age of the individuals in my dataset changes over time by
construction, and thus I may confound life-cycle and time-series trends. In Section A.12,
I perform robustness checks to address this concern.
3.2.3 Concentration of Talent

I next use the labor force surveys to document the first empirical prediction.

Empirical Prediction 1 (Concentration of Talent). The farther a country is from
the technology frontier, the more educated individuals are concentrated into sectors.

I build the empirical measure of concentration of talent in five steps. First, I compute
a normalized measure of skill using the country-year specific cumulative density function
of years of education, x̂

i
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i

), where s
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is the schooling year of individual i.35 Second,
I compute the average skill in each industry j: ¯
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is an indicator
function equal to 1 if individual i works in industry j. The ranking of industries according
to their average skill level provides the measure of the technology rank, that is, I rank
industries with higher average education as having a higher technology. Third, I build a
perfect sorting counterfactual in which I assign, keeping industry size constant, all the most
skilled individuals to the industry with the highest average education (hence measured
technology). All the highest skilled ones among the remaining workforce are then assigned
into the second highest and so on.36 Fourth, I compute the average skill in each industry
under the perfect sorting counterfactual: ¯
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35The variable s takes only finite number of values. I therefore renormalize x̂ in such a way that the

lowest skilled individuals have ability x̂ = 0 and the highest skilled ones ability x̂ = 1. Results are robust
to alternatives and available upon request.
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37I weight the regression by the number of individuals in each industry j. Unweighted results are similar

and available upon request.
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concentration of talent is ⇡̂ =
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In fact, the only difference is that the empirical measure takes the average across different
sectors, since there are more than two sectors in the data.

Figure 5: Construction of the Measure of Concentration of Talent
(a) Brazil, 2010
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(b) United States, 1940
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In Figure 5, I show two examples, Brazil in 2010, and United States in 1940, to illustrate
how ⇡̂ is constructed. I plot the average skill in an industry, ¯x̂

j

, as a function of the skill
in the perfect sorting counterfactual, ¯p̂

j

. Each dot in the figure corresponds to an industry
and its size increases in the number of individuals there employed. A linear regression
¯

x̂

j

= ↵+⇡

¯

p̂

j

+ " fits the data well.38 Last, notice that Brazil in 2010 has similar GDP per
capita as U.S. had in 1940, however it has a higher concentration of talent (the regression
line in the figure is steeper). This is consistent with the fact that Brazil in 2010 is farther
from the technology frontier than the United States was in 1940.

I next build this measure of concentration of talent for each country-year pair in my
sample and document systematic differences between countries depending on their distance
from the frontier.39 I do so along the three previously explained empirical comparisons.

38The average R

2 across countries from this regression is ⇠ 0.9 similarly in rich and poor countries.
39For brevity, I do not include Figure 5 for all the countries of my sample. They are however available

on my website at https://sites.google.com/a/yale.edu/tommaso-porzio/home.
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Figure 6: 1

st Comparison: Cross-county Differences in Concentration of Talent
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Notes: light blue circles show how populated each country is. The dotted line is the fit from a regression of concentration
of talent on log of GDP per capita. The regression is not weighted by population, since I treat each country as one
observation.

First, I compare countries with higher and lower level of GDP per capita by plotting
the concentration of talent as a function of GDP per capita relative to one of the United
States in 2010.40 The result is shown in Figure 6: poor countries, i.e. those farther
from the technology frontier, have larger concentration of talent.41 In order to interpret
the magnitude of cross-country differences, it is useful to conduct the following thought
experiment. Consider a country with two industries and two types of workers, high and
low-skilled. Each industry is of equal size, and half of the population is high-skilled and
half is low-skilled. If ⇡̂ in this economy is equal to 0 it means that half of the high skilled
individuals are in each industry. If ⇡̂ = 1 it means that all high skilled individuals are in
one industry, which I call the modern one. If ⇡̂ =

1

2

, instead, 75% of the high skilled are
in the modern industry, and hence a high-skilled individual is three times more likely to
work in the modern industry. Using this thought experiment, the estimates imply that
high-skilled individuals in poor countries would be approximately five times as likely to
work in the modern industry as the traditional one, while in rich ones, they would be only
twice as likely.

40For countries for which I have more than one cross-section, I compute the concentration of talent
for each cross-section and take the average. Other alternatives yield similar results. Likewise, I have
experimented with different measures of GDP per capita, which also does not affect the results.

41The regression line has a positive slope that is significant at 1% level. I am currently calculating
standard errors that take into consideration that the measure of concentration of talent are themselves
estimates. Estimates will be updated when available, but given the large sample sizes and the strong fit,
significance is unlikely to be affected. This same argument holds - and will be omitted henceforth - for all
cross-country regressions.
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Figure 7: 2

nd Comparison: Developing Countries today and U.S. in the past
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Notes: light blue circles show how populated each country is. The blue dotted line is at the level of concentration of talent
of United States in 1940.

Second, I show that poor countries have higher concentration of talent than currently
rich ones when they were at a comparable level of development. This alleviates the concern
that the observed differences might be driven by differences in the level of development
rather than the distance to the technology frontier. Specifically, I have comparable census
data for the United States every ten years from 1940 to 2010.42 GDP per capita in the
United States in 1940 is comparable to the one of many middle income countries - such
as Brazil, Mexico, Turkey, and Argentina - that I observed in my sample between 2000
and 2010. 43 I observe in fact 18 such countries, and among them, 16 have a higher
concentration of talent than the U.S. used to have, as shown in Figure 7.44

42Before 1940 census data did not report education years.
43I have computed a similar comparison for France, for which I have data to calculate the measure of

concentration of talent back to 1962. The results are very similar and available upon request.
44A permutation test of the null hypothesis that the U.S. is not different rejects the null hypothesis

more than 99% of the time.
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Figure 8: 3

rd Comparison: South Korea as it Approaches the Frontier
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Third, I study the growth path of South Korea, a particularly interesting country
due to fact that it converged to the frontier in the past 50 years. South Korea GDP
per capita relative to the one of the United States increased in fact from only 7% to
almost 60%.45 In Figure 8, I plot the growth path for concentration of talent across
sectors for both countries.46 U.S. concentration of talent remained fairly constant along the
growth path, consistent with fact that U.S. has been growing over this period constantly
as a world leader, i.e. on the technology frontier. South Korea’s concentration of talent
instead decreased steeply. This last comparison alleviates the concern that cross-country
differences might be driven by time invariant country characteristics that are correlated
with GDP per capita.
3.2.4 Selection of Self-Employed

Next, I document the second empirical prediction of the model.

Empirical Prediction 2 (Selection of Self-Employed). The farther a country is
from the frontier, the lower the relative education level of its self-employed individuals.

The IPUMS data report whether an individual is self-employed or a wage/salary
worker. In order to build the empirical measure of self-employment, I use my measure
of skill, namely the normalized number of years of education, and compute the difference

45These facts can be appreciated in Figure A.6.
46I use concentration of talent across sectors (hence aggregating industries to agriculture, manufacturing,

or services) because industry measure is not comparable for United States and South Korea. Results with
the concentration of talent across industries are nonetheless comparable and available upon request.
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between the average skill of self-employed and the average skill of wage-workers. More
details are in the Section A.11.

Figure 9: Selection of Self-Employed
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Notes: light blue circles show how populated each country is. The blue dotted line in panel (b) is at the level of selection of
self-employed of United States in 1910.

I follow the same three empirical comparisons as for the measure of concentration of
talent. Results are shown in Figure 9. Poor countries - farther from the frontier - have
more negatively selected self-employed, both than rich ones today and than United States
when the latter were at similar level of development.47,48 Last, as South Korea approached
the frontier, the selection of its self-employed decreased.49

47A regression line from a cross-country regression has a negative slope that is significant at 1% and
the permutation test of the null hypothesis that the U.S. is not different, rejects the hypothesis more than
99% of the times.

48I can compute the selection of self-employed for the United States as far back as 1910. However, from
1910 to 1940 information on number of years of education was not available. I use instead a measure of
literacy rate.

49This result should be interpreted with particular caution. The reason being that the results for South
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3.2.5 Robustness and Alternative Interpretations
I here explore the robustness of the main empirical result, that is the relationship

between the concentration of talent and the distance to the technology frontier.
One main concern is that the underlying patterns of matching are identical across

countries, and the observed differences are driven by mis-measurement resulting by the
failure of either one of the two working assumptions. I argue, however, that failures of the
assumptions would most likely attenuate my results. First, the documented cross-country
patterns could be observed if individuals are perfectly matched on ability in all countries,
and in poor countries, more able individuals are more schooled, while in rich countries the
relationship between education and skills is non-monotonic.50 This hypothesis however is
at odds with the often made claim that in developing countries schooling choices are more
constrained. (See for example Mestieri (2010)). Second, stronger sorting of teams into
industries in developing countries could also explain the observed differences. For example,
if in poor countries only the most skilled teams sort into high technology industries, while
in rich countries both high and low skilled teams do so. A direct implication of this
hypothesis, however, would be that within industries there should be very homogeneous
teams, and thus little dispersion of used technology, in poor countries, and much greater
dispersion in rich ones. This is at odds with empirical evidence that documents, even in
narrowly defined industries, larger dispersion of productivity in poor countries.51

Next, I explore robustness to alternative sample selections or measures of concentration
of talent. All results are reported in Table 1, and I refer below to its rows. For brevity, I
focus on the cross-sectional comparison.

Korea are computed using the job history in one cross-section. As a result, the average age of individuals
in the cross-section increases over time. Hence, these results may be capturing both a life-cycle and
time-series component. This is a particularly relevant concern for self-employment, since it is known that
entry into self-employment is correlated with age. (See for example Roys and Seshadri (2013)).

50Classic measurement error does not bias the results, as long as it averages to zero at the sectoral level.
51E.g., Hsieh and Klenow (2009) and Asker et al. (2014). Other reasons could generate cross-country

differences in within industries dispersion other than teams compositions. Nonetheless, it is reassuring
that failure of the second assumption would lead - through the lens of the model - to counterfactual
empirical implications.
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Table 1: Robustness Table

Point Estimate R2

(1) Baseline -0.0708*** 0.363

(2) Sectors (Agr, Mfg, Ser) -0.0861*** 0.440
(3) Unharmonized Industries -0.0472*** 0.173

(4) Include Non Household Heads -0.0681*** 0.355
(5) Include Women -0.0719*** 0.379
(6) Only Women -0.0610*** 0.150
(7) Include Self-Employed -0.0715*** 0.364

(8) Drop Agriculture -0.171*** 0.553
(9) Only Individuals non in Agriculture -0.0266** 0.087

(10) Correlation -0.0407*** 0.249
(11) Correlation using Normalized Skills -0.0246** 0.103

Measure of Concentration of Talent

Role of Agriculture

Level of Industry Aggregation

Sample Selection

Notes: *** means p-value<0.01; ** means p-value<0.05.

First, I explore alternative definition of industries. I aggregate industries at the sec-
tor level (agriculture, manufacturing, services) or I use, when available, finer definition of
industries. This second alternative comes at the cost of lack of cross-country comparabil-
ity, since for different countries I have different data at a different levels of aggregation.
The results are robust to either industry definition (rows 2 and 3).52 Second, I explore
alternative sample selections. Results are robust to the inclusion of males non household
head (row 4), or females (row 5). I then restrict the sample to only females (row 6).
The fit is weaker, but the coefficient is still very similar. Last, I include individuals who
report to be self-employed, and the result does not change (row 7). Third, given the large
cross-country differences in the share of employment in agriculture, it may be useful to
investigate whether the results are mostly driven by the prevalence of agriculture in de-
veloping countries.53 I address this point through two exercises. I start by recomputing
the measure of concentration of talent dropping agricultural industries in the previously
described cross-industry regression used to compute ⇡̂, i.e. ¯

x̂

j

= B

0

+ B

1

¯

p̂

j

+ ". Row 8
shows that the larger measure in poor countries does not come purely from the gap be-
tween agriculture and non-agriculture, but rather holds also within other sectors. I then

52Examples of Brazil 2010 and United States 1940 are in Figures A.2 and A.3 in the Section A.1. We can
appreciate that the nice fit of the measure of concentration of talent is present at any level of aggregation.

53The comparison between currently poor countries and the U.S. in the past already hinted towards
the fact that the result cannot uniquely be driven by differences in agricultural share, since - as shown in
Herrendorf et al. (2014) - most countries follow the same structural transformation pattern as the one of
the U.S. in the past.
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consider only individuals who are not in agriculture, and recompute both the normalized
measure of skill and the concentration of talent. This exercise calculates cross-country
differences in concentration of talent if suddenly all individuals in agriculture dropped out
of the labor force. Results (row 9) are weaker and smaller in magnitude but still show
more concentration in poor countries. Fourth and last, I compute an alternative measure
of concentration of talent, namely the correlation between individuals education and the
average education in an industry , that is

⇡̂

2

= Corr (s
ij

,E (s

i

|I
ij

= 1)) .

Under this alternative measure, which is equivalent to a variance decomposition exercise,
poor countries have strong concentration of talent. Results hold both if computed with
raw education (row 10) or with normalized skills x̂ (row 11).

3.3 Evidence on Allocation of Talent from Firm Level Data
Last, I provide further evidence using firm level data, that allow to directly observe who

works with whom, and thus to get closer to the model’s notion of a team. In the model,
a team is characterized by two key features: (i) it is made of individuals that interact
with each other, to the extent that there is complementarity in production; and (ii) the
members of a team use identical technology. A firm is the empirical object that better
represents these two features. Individuals within a firm mostly share the same production
technology, task-specialize based on their ability, and interact with each other in a manner
that may generate complementarities.54

3.3.1 Data (Firm Level)
I use firm level data from the World Bank Enterprise Survey (WBES). Since the WBES

questionnaire and methodology changed in 2006, there are two datasets available, both
of which are used since they contain different variables. The first one, henceforth WBES
2006, covers the period 2002 to 2006. The second one, henceforth WBES 2014, covers the
period 2007 to 2014.

As a measure of technology, in the WBES 2014 I use labor productivity, defined as sales
54Firms are usually made up of more than two individuals. However, we can interpret a team as made

up of two groups of individuals. Under this interpretation, the only real disconnect between a team in
the model and a firm in the data is the fact that I assume teams to have a fixed number of managers and
workers. This should not be an empirically important departure, since - as already discussed - the main
theoretical argument of the theory can be extended to a case in which the number of hired workers is a
choice variable. Additionally, in the robustness section, I show that size differences do not seem to be
driving the results.
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divided by total number of employed workers; in the WBES 2006, I can use instead three
different measures: (i) labor productivity; (ii) fraction of labor force that uses computers;
(iii) self-assessed level of technology relative to main competitors.

As a measure of education, hence skill, in the WBES 2006, I use the answer to the
question “What percent of the workforce at your establishment have the following education
levels?”, which allows me to compute the whole distribution of education within a firm. In
the WBES 2014, I use instead the answer to the question “What is the average education
of your production workers?”. In the WBES 2006, I also observe the education of the top
manager in the firm.

The sampling methodology targets formal (registered) companies with 5 or more em-
ployees. These data therefore are representative only of a selected fraction of the popula-
tion, which is smaller for poor countries, where a large part of the population is employed
in the informal sector. For this reason we should be cautious in interpreting the results.
In Section 3.3.3, I farther discuss this concern. Additional details on the data are included
in Section A.11.
3.3.2 Empirical Results

I use the data to provide support to three empirical predictions of the model. Results
are summarized in Figures A.10, A.11, and A.12.

First. One fundamental assumption in the model is that there is complementarity be-
tween skills and technology and between skilled managers and skilled workers.

Empirical Prediction 3 (Complementarity Skills-Technology). In both rich and
poor countries, higher educated workers work in firms managed by higher educated man-
agers and which use a more advanced technology.

I use data from WBES 2006 and run, for each country across firms, a regression of
each of my measures of technology on the average education of firm workforce. The results
show that, similarly in rich and poor countries, high skilled individuals are more likely to
work in high technology firms. I run the same regression for top manager education and
show that high skilled individuals are also more likely to work in a firm whose top manager
is highly educated.

Second. As a result of a less convex cost of technology, the model predicts a larger
dispersion of used technology in countries farther from the frontier, both directly and
indirectly through changes in the optimal allocation. In the model, far from frontier, some
firms use a modern technology, while others find a backward one more convenient. High
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skilled are concentrated in the high technology firms, thus further increasing the gap in
optimal technology. Close to the frontier, instead, most firms use the modern technology,
and the gap in used technology should be smaller.

Empirical Prediction 4 (Dispersion of Technology ). Dispersion of used technology
across firms is larger in poor countries.

I show that the dispersion of technology is indeed larger in poor countries. I first
use log labor productivity, compute the cross-sectional dispersion for each country, and
show that it is significantly negatively correlated with GDP per capita. I then show that
the same significant negative relationship with GDP per capita holds using more direct
measures of technology, namely the fraction of workers that use a computer and the level
of perceived technology.

Third. The model predicts that the farther a country is from the frontier, the more
talented individuals are concentrated in firms (teams) that use relatively high technology.
Thus the relative dispersion of skills within firms should decrease and the dispersion of
skills across firms should increase.

Empirical Prediction 5 (Dispersion of Skills). The ratio between the across firm
variance and the overall variance of education is larger in poor countries.

In the wave WBES 2006, I observe the distribution of individual education years for
each firm. I use this to compute the overall variance of education in each country and
decompose it between the within-firm and across-firm variance. The fraction of overall
variance that is explained across firms decreases significantly in GDP per capita, that is,
poor countries indeed have a larger concentration of talent across firms.55

In the WBES 2014 wave, I only observe for each firm its average education. Therefore,
I cannot directly compute a variance decomposition exercise. Instead, I first show that
cross-sectional dispersion in average firm education is significantly negatively correlated
with GDP per capita, that is, in poor countries the across firms gap in average education
is larger. Next, in order to account for the cross-country differences in distribution of
education, I use the cross-sectional dispersion of education computed directly from the
household data for the countries for which is available. Under the, arguably strong, as-
sumption that the dispersion of education in the sample of individuals working in the

55I compute a similar variance decomposition using the normalized measure of education between 0 and
1, as in Section 3.2. Results are similar - although slightly less significant - and are available upon request.
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WBES 2014 firms is the same as the one of the whole country, I can then compute the
fraction of this dispersion that is explained across firms. When doing so, I show that the
fraction of total dispersion of education explained by firms is also significantly negatively
correlated with GDP per capita, as predicted by the model.
3.3.3 Robustness and Alternative Interpretations

The data cover only registered firms with more than five employees. They thus miss a
large fraction of the population in poor countries, where average firm size is smaller and
informality is widespread. We should thus interpret the evidence as suggestive. It can
nonetheless be useful to discuss and address the most obvious concerns. Results for this
robustness check are shown in Figure A.13.

The empirical results highlight that there is more dispersion of economic activity in
poor countries. One concern would be if the set of firms included in the sample are, in
poor countries, drawn more frequently from the tails of the overall distribution of firms.
I show that in both rich and poor countries firms have similar size, with 100 employees
on average. In developing countries, these firms are likely to be overly representative
of the high productivity portion of the economy. Consistent with this observation, the
workforce there employed is more educated than the country average, and especially so in
the poorest countries. For this reason, we are likely observing a right truncation of the
firm distribution in poor countries. This fact is suggestive that the results might even
understate the amount of dispersion in poor countries, since we are not capturing the
possibly large gap between firms included and those not included in the sample; that is
between the formal and informal side of the economy.56

Another concern is that the larger dispersion across firms in poor countries may be
driven by larger dispersion in size. However, the cross-sectional dispersion of firm size is,
among the firms in the sample, smaller in poor countries, thus alleviating this concern.

Last, we might be concerned that the notion of technology in the data captures a
different concept than the one in the model. The key assumption in the model is that
technology can be improved subject to a cost. For example, this assumption might be
violated if some firms have higher technology and labor productivity simply because their
owners are more able. Firm owner ability is, in fact, an (approximately) fixed character-
istics that arguably should respond little to the quality of the labor force. One question
in the WBES 2006 helps to address this concern: “Over the last two years, what were the

56However, whether a right truncation would over or understate the observed dispersion in the data ul-
timately depends on the shape of the firm distribution. For this reason, this analysis should be interpreted
as suggestive.
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leading ways in which your establishment acquired technological innovations?”. “Embod-
ied in new machinery or equipment” is one of 13 possible choices. Across both rich and
poor countries, approximately 60% of firms ranked this as their first choice.

4 Implications for Economic Growth: A Dynamic Environment

Until this point, the objective of the paper has been to propose a new theoretical
mechanism highlighting differences in the organization of production across rich and poor
countries. The empirical investigation of the previous section supports the main predic-
tions of the theory, suggesting that it has empirical relevance. In this section, I take a
first step towards understanding how (and whether) this mechanism plays a role in the
process of economic growth. Towards this aim, I build a simple dynamic framework and
show that endogenous talent allocation may lead to non-convergence across countries even
in the absence of barriers to technology adoption. The conclusions are thus relevant for
development policy.

Environment. I work with the simplest setting that allows to highlight the dynamic
forces. Time is discrete. Each country is inhabited by four individuals that have linear
utility over income, are infinitely lived and discount the future at rate �. They have types
x

1

< x

2

< x

3

< x

4

. In order to produce - just as in the static setting - individuals
must form two teams, and each team picks a technology. In each country, there are two
sectors, and one team must be assigned to one sector. All countries are identical, with
the exception of an exogenous time at which they transition from stagnation to growth.
For this reason, I omit a country subscript throughout. There are three main differences
with respect to the static setting. First, the cost of technology is endogenous and depends
on past investment in technology, that determines current level of technology over which
individuals make marginal improvements. Second, the level of technology is sector specific,
that implies that we must consider also the assignment of teams to sectors. Third, there
is a world technology frontier that grows exogenously at rate �, starting from an initial
value a

0

= 1, such that the world frontier at time t will be ā

t

= �ā

t�1

= �

t. (I use ā to
distinguish the world technology frontier from other technologies).

Each country goes through two phases: stagnation and growth. The transition from
stagnation to growth happens at a country specific and exogenous time t

0

. During stag-
nation, only one technology is available, a

0

= 1, at zero cost, c
t

(a

0

) = 0. During growth,
technology in each sector is chosen from the set of available technologies, that is the stock
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of all past technologies A
t

= {a
0

, a

1

, ..., ā

t

} = {1,�, ...,�t}. Cost of technology a at time
t depends on frontier technology, ā

t

, and on last period technology in the sector in which
the team operates, a

jt�1

.

Assumption 5 (Growth Model).
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t

) =

 

a

�

log ā
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t

} .

A few comments are in order. First, these functional forms satisfy the assumptions of
the static framework. Second, the complicated functional form for the cost of technology
has both useful properties and an intuitive microfoundation. I leave their detailed descrip-
tion to Section A.14. For the purpose of this section, it is sufficient to highlight that for
a given level of world frontier technology ā

t

, if a given sector’s technology, a
jt�1

, is higher
then the cost function will be lower for each technology and more convex. Third, the time
of takeoff, t

0

, determines the initial distance to the frontier in each sector: a country that
starts to grow late faces an advanced frontier technology but has the same base level of
technology a

0

.

Planner’s Problem. I consider the problem of a planner that takes as given the time
of takeoff, t

0

, and the evolution of the technology frontier and chooses a sequence of teams
and technology in each sector to maximize the presented discount value of the sum of future
income flows.57,58 I show in A.13 that this problem admits a recursive formulation with
states given by the distance to the frontier in the two sectors, defined as d

1

⌘ log ā�log a

1

log �

and d

2

⌘ log ā�log a
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log �

. Without loss of generality, I let d
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.

Lemma 9 (Recursive Formulation). If � <

ˆ

�  1

�

and t >

ˆ

t, the planner’s optimal
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57I am assuming that a country does not have a saving technology, but must consume all his production.
58The problem requires the planner not only to form two teams, but also to assign each team to a

sector. The two sectors might in fact be ex-ante different due to different levels of technology.
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where g

�

x

0
, x, d

0
; d

�

is the rescaled output flows net of technology cost for a team (x

0
, x) that

is in a sector at distance d from the frontier and picks technology at distance d

0; ˜

� = ��.

This formulation of the problem allows the planner to choose between two alloca-
tions, one with talent segmentation by occupation, which I call allocation A and is
{(x

4

, x

2

) , (x

3

, x

1

)}, and one with talent segregation by technology, allocation B, {(x
4

, x

3

) , (x

2

, x

1

)}.
Additionally, the most skilled team is assigned to the sector with higher technology. A
planner that maximizes static flows would not choose any other allocation. A sufficiently
low discount rate � thus guarantees that we are not restricting the choice of the planner.59

Also, distance to the frontier must be, by definition, smaller than t. t > ˆ

t guarantees that
this constraint does not bind.

The Dual Economy Trap. I solve the model numerically, and compute the growth
paths for different values of time of takeoff t

0

. The interaction of allocation of talent and
technology choice may generate path dependence: countries that take off late (high t

0

)
converge to a different balanced growth path, with large technological heterogeneity and
depressed output, a situation that resembles a dual economy trap. I next illustrate the
model solution for parameter values that lead to this sort of path dependence and highlight
the main mechanism at play.

Figure 10: Solution of the Dynamic Model
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In Figure 10a I plot, for both sectors and in either allocation, the optimal technology
choice as a function of current distance to the frontier. The optimal technology depends

59Otherwise, it is possible to construct cases in which the planner might want, for example, to allocate
the manager x

4

to the backward sector. This would lead to static losses, but the gains in terms of future
technology possibility may outweigh them.
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- due to the functional forms - only on the type of the manager, thus it varies across
allocations only in sector 2. If a country is far from the frontier, the gap in optimal
technology across sectors is larger, due to the lower convexity of the cost function. As a
result, due to the stronger complementarity induced by technology choice - just as in the
static theory - in countries far from the frontier is optimal to have talent segregation. This
can be seen in Figure 10b, where I show in the space of distances to the frontier in sector 1
and 2 the regions in which it is optimal to have either allocation. A country at takeoff lies
on the 45

�. If takeoff is sufficiently late, thus far from the frontier, talent segregation is, at
least initially, optimal. Additionally, back to Figure 10a we can notice that, when talent
is segmented, both sectors converge to use the frontier technology (d = 0).60 When talent
is segregated, instead, sector 2 converges to a level of technology far from the frontier (in
this numerical example, approximately 50 steps away from it).

After take-off, there are two additional forces to take into account. First, sector 1

converges faster towards the frontier due to the higher skill of the individuals allocated to
it. This leads to a technology gap across sectors, that increases the return from allocating
all the skilled individuals to sector 1 (talent segregation). Second, as a country approaches
the frontier, the cost of technology becomes more convex. This makes instead talent
segmentation more valuable. The growth path of a country is determined by the trade-off
between these two forces.

Consider now two countries, one that starts to grow early (leader), and one that starts
to grow late (follower). Their paths are shown in Figure 11. The leader starts to grow
close to the frontier, thus with talent segmentation. Some skilled individuals are allocated
to each sector and, as a result, the technology gap across sectors remains low and both
sectors converge to the frontier. The follower converges instead to a different balanced
growth path. It starts to grow late, far from the frontier. This leads to segregation of
talent. All skilled individuals are allocated to sector 1, that quickly catches up to the
frontier. Even when sector 1 is on the frontier, the accumulated technology gap across
sectors is large enough that is not optimal to revert to talent segmentation. As a result,
the country converges to a dual economy trap, with depressed output and large cross-
sectional technology dispersion. The initial time of take-off has persistent effects: there
are two possible balanced growth paths, and a country reaches the one with large output
and homogeneous technology only if it starts to grow early enough.

The two countries converge to different balanced growth paths despite the absence
60The convergence level of technology is given by the point in which the technology policy intersects

with the 45 degrees line.
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of any exogenous barriers to cross-country technology flows. The follower country builds
endogenous barriers to adoption generated by the large technological gap between sectors,
that prevents reallocation of talent where it is most needed to spur growth. The instanta-
neous loss from reallocating skilled individuals to the backward sector (sector 2) dominates
in fact the future gains from reaching the balanced growth path with the higher output.

Figure 11: Growth Path for a Leader and a Follower
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Lemma 10 (Out of a Dual Economy Trap). For any time of take-off t

0

, there
exist � (t

0

) such that if the discount rate � > � (t

0

), the country does not fall into a dual
economy trap, but rather converges to the same balanced growth as the one of a country
with t

0

= 0.

The dual economy trap is generated by a misalignment between short run and long
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run incentives, hence it is sustainable only as long as the discount rate is sufficiently low.
A planner that gives enough weight to the long-run levels of output (high �) would like to
homogeneously allocate talent to both sectors in such a way as to converge to the frontier.
A short sighted planner in a country far from the frontier prefers instead to allocate all
the most skilled individuals to one sector, and reap the benefits from quick convergence
in that sector, even if this comes at the cost of future lack of overall (in both sectors)
convergence.

Discussion. The dynamic framework highlights one new feature of the interaction be-
tween endogenous allocation of talent and technology choice. That is, the same possibility
that has been emphasized in the literature as an Advantage of Backwardness61, namely
the fact that followers can directly adopt the frontier technology, may have unintended
consequences that lead in fact to a Disadvantage of Backwardness. Countries, otherwise
identical, that start to grow late (followers) fail to converge to the frontier despite free
flows of technology. As emphasized, this is not due to inefficiency, but rather to misalign-
ment of short and long run incentives. This prediction is consistent with the general lack
of cross-country convergence. Growth miracles can also be rationalized within the model,
and should be interpreted as the arrival of a more farsighted planner, that reallocates
talent where most needed to spur growth.

It is important however to stress that this framework is purely illustrative of the pro-
posed mechanism. Many features have been left out of the model, and this precludes from
drawing sharp conclusions. For example, if skill could be endogenously accumulated at
a sufficient low cost, countries may be able to grow out of the dual economy trap by in-
vesting in the human capital of low skilled individuals. Additionally, I have assumed that,
within a country, technology is completely rival across sectors - e.g. embodied in capital.
Relaxing this assumption, might also help a country to grow out of a dual economy trap.
Last, the reasons that led some countries to start to grow late have been omitted in the
discussion.

5 Conclusion

In this paper, I argue that the allocation of talent within countries is relevant for our
understanding of economic development. More specifically, I highlight the role that tech-

61This term has been coined by Charles P. Kindleberger in a book review on the Journal of Economic
History and refers to the work of Gerschenkron et al. (1962).
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nology adoption plays in the internal organization of production and the growth prospects
of developing countries today. To do so, I develop a new model of team formation in the
presence of a localized technology choice. The model shows that the allocation of talent
depends on the technological environment of a country, and in particular on how expensive
large technological improvements are. The cheaper they are, the stronger the resulting
production complementarity and thus the more assortative the equilibrium assignment,
that is, the lower the skill gap between individuals working together. The theory thus
predicts that poor countries - where individuals can increase their technology by a lot
through adoption of the frontier one - have a different structure of the economy than rich
ones, with larger dispersion of economic activity, and high skilled individuals clustered
together. New evidence from micro data supports this prediction.

The way in which skilled individuals are allocated may matter for economic develop-
ment and growth. An economy in which high and low skilled individuals interact will
function differently from one in which individuals are segregated to work with others of
similar skills. The paper explores one particular mechanism through which differences in
the allocation of talent change the path of development. It shows that latecomers might
adopt a growth strategy that allows them to reap the benefits from quickly catching up
to the frontier in one sector, but this comes at the cost of falling towards a dual economy
trap in which the backward sectors in the country remain stagnant.

Exploring additional mechanisms remains a promising area for future research. For
example, economies in which individuals of different skills interact more frequently may
be more (or less) efficient at diffusing ideas and good practices. A recent literature (e.g.
Lucas and Moll (2014), Perla and Tonetti (2014), and Buera and Oberfield (2014)) develops
theoretical models in which growth is generated through the diffusion of ideas. If embedded
within these models, the different patterns of assignment in developing countries would
affect the overall speed of learning and possibly generate a trade-off between the allocation
of talent that maximizes output and the one that maximizes technology diffusion.62

62Similarly, Luttmer (2014) builds an assignment model in which student match with teachers for both
production and learning. Evidence of slow accumulation of human capital over the life-cycle, that might
be driven by slow learning due to lack of interaction of individuals of different skills, is documented in
Lagakos et al. (2015).
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A Appendix

A.1 Additional Figures
Figure A.1: GDP per capita
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Figure A.2: Construction of Measure of Concentration of Talent, Brazil in 2010
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(c) Across Unharmonized Industries
Notes: in each of three figures I follow the same procedure, with the difference that in the left one I refer to an
industry as a sector, in the middle one as a 1-digit industry harmonized by IPUMS international, and in the right
one as an unrecoded industry, which in the case of Brazil is at the 3-digits level. In each figure, I plot the average
normalized education in an industry as a function of the average education in a counterfactual scenario in which
there is perfect sorting of individuals across industries. Each dot correspond to an industry, as defined, and the size
of the dot is increasing in the number of individuals employed in that industry. The dotted lines are the prediction
from a linear regression weighted by the number of individuals in each industry. The slopes of the regression lines
are the measures of the concentration of talent, which for Brazil in 2010 are, from left to right, 0.49, 0.51, 0.57.

Figure A.3: Construction of Measure of Concentration of Talent, United States in 1940
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Notes: see Figure A.2. The slopes of the regression lines for United States in 1940 are, from left to right, 0.33;
0.34; 0.41.
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Figure A.4: Concentration of Talent Across Sectors
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(a) Cross-sectional Differences
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(b) Comparison with U.S. in the past
Notes: see Figures 6 and 7. The difference with respect to those figures is that here I plot the concentration of
talent across the three sectors - agriculture, manufacturing, services - rather than industries. Sectors are recoded
from the harmonized variable industry.

Figure A.5: Concentration of Talent Across Unrecoded Industries
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(b) Comparison with U.S. in the past
Notes: see Figures 6 and 7. The difference with respect to those figures is that here I plot the concentration of
talent across unrecoded industries. Unrecoded industries are not harmonized nor across countries nor over time,
but are more detailed than the harmonized one. In fact for most countries, the unrecoded industry variable - IND
in the IPUMS dataset - provides information at the 3-digits level.
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Figure A.6: Growth Paths of United States and South Korea
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Notes: data are from the Penn World Table version 8.0. GDP per capita is computed as rgdpe/pop. Where rgdpe
is expenditure side real GDP and pop is population size.

Figure A.7: Examples of Cost Function for a Country on the Frontier at Two Points in Time

(a) Cost of Technology (b) Optimal Technology Choice

Notes: I plot in the left panel the cost functions for a country close to frontier at time t�d and at time t. As the frontier grows, existing
technologies become cheaper, and new ones are available. However, since the country is at a constant distance from the frontier, this
does not change the curvature of the cost function. As a result, shown in the right panel where I plot the marginal cost of technology,
the gap between the high and low technologies used is constant, and the set of used technologies improves over time. I compute the
used technology set purely as an illustrative example. I am assuming that there are a high skilled and a low skilled individual, namely
x

max

and x

min

which pick technology solving: max ax� c (a).
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Figure A.8: Examples of Cost Function for a Country Close and One Far From Frontier

(a) Cost of Technology (b) Optimal Technology Choice

Notes: I the cost functions (left panel) and their marginals (right panel) for a country close to frontier at time t and one at d steps
from it, still at time t. Both countries have access to the same set of technologies. However all technologies are more expensive for the
country far from frontier. Additionally, the country far from the frontier has a less convex cost. The result is that far from the frontier
the average level of technology is lower, but a large set of technologies are used, from backward to advanced.

Figure A.9: Examples of Cost of Technology Across Countries - Quasi Linear Case

(a) Close to Frontier over Time (b) Close to Frontier and Far from it
Notes: these two figures show the cost functions for a country close to the frontier at two different points in time and for one far from
the frontier according to the cost function in the quasi-linear model.
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Figure A.10: Complementarity Skill-Technology
(a) Labor Productivity
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(b) Computer Use

BEN BRA

CRI

ECU

IDN

IND

KEN

KHM

LKA

MAR

MLI

MNE

OMN

PAK

PER

SEN

SRB

SYR

TZA
UGA

ZAF

ZMB

−
4
.4

−
2
.2

0
2
.2

4
.4

C
o
e
ff
ic

ie
n
t 
o
f 
C

o
m

p
u
te

r 
U

sa
g
e
 o

n
 A

ve
ra

g
e
 E

d
u
ca

tio
n

.01 .025 .05 .1 .15 .4 .5 .75 1
GDP pc Relative to the U.S. in 2010

(c) Education of Top Manager
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(d) Perceived Technology
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Notes: In each figure I plot the coefficients of a linear regression, computed across firms within a country, on the log of average
education of the firm workforce. For example, let me describe the procedure to build the top left panel, since all other ones are
identical. I first compute, for each country, a regression, across firms, of log labor productivity on the average education of the
workforce of the firm. I store the coefficients of this regression and I plot them as a function of GDP per capita relative to the one of
the U.S. in 2010. Each country is represented by its three digit country code and a circle, whose size depend on the population of the
country, and whose color depend on whether the point estimates is significant (blue) or insignificant (green). The dotted line separates
positive from negative coefficients. The data are from World Bank Enterprise Survey standardized waves 2002 to 2006.
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Figure A.11: Dispersion of Used Technology Across Firms
(a) Labor Productivity, WBES 2006
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(b) Labor Productivity, WBES 2014
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(c) Computer Use
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(d) Perceived Technology
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Notes: In each figure I plot standard deviation of log of a measure of the measure of education or technology shown in the figure title.
Specifically, for each country I compute the cross-sectional, across firms, standard deviation of logs and then I plot the country
estimates as a function of GDP per capita. Each country is represented by its three digit country code and a circle, whose size depend
on the population of the country. The dotted black line is the regression line of a cross-country regression on log GDP per capita. All
regressions are significant at 5% or below. Data are from World Bank Enterprise Survey standardized waves 2002 to 2006 (panels a
and c and d) and 2007 to 2014 (panel b).
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Figure A.12: Dispersion of Average Education Across Firms
(a) Fraction of Total Variance Explained Across
Firms, WBES 2006
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(b) Dispersion of Education, WBES 2014
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(c) Fraction of Total Variance Explained Across
Firms, WBES 2014 (a)
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(d) Fraction of Total Variance Explained Across
Firms, WBES 2014 (b)
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Notes: In the top left panel, I plot for each country as a function of GDP per capita the fraction of total variance of education which is
“across firms”. Specifically, for each country I compute the cross-sectional variance of education of the individuals hired at the firms in
the sample. I can compute the country specific distribution of education using a variable that asks what is the fraction of the firm
labor force with 6 years of education, between 6 and 9, between 9 and 12 and more than 12. I then decompose this total variance in
the variance of education within firm and the variance of education across firms. For each country I compute the ratio between
variance of education across firms and total variance and I plot it as a function of the country GDP per capita. In the top right panel,
I compute for each country the cross-sectional variance of the log of average firm education and I plot is as a function of GDP per
capita. In the bottom left panel, I plot the ratio between the variance of average education across firms and the overall variance of
education, which is computed using micro data from IPUMS, the same used in 3.2. Notice that for some countries I do not have micro
data, as such they do not appear in this figure. In order to overcome this limitation, in the right bottom panel I computed the
predicted variance of education from a regression of variance of education on GDP per capita. In this way I can use all countries for
which I have firm level data. Each country is represented by its three digit country code and a circle, whose size depend on the
population of the country. The dotted black line is the regression line of a cross-country regression on log GDP per capita. All
regressions are significant at 5% or below. Data are from World Bank Enterprise Survey standardized waves 2002 to 2006 (panels a
and b) and 2007 to 2014 (panels c and d).
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Figure A.13: Robustness for Firms Level Data
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(a) Average Size
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(b) Comparison Education in WBES and IPUMS
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(c) Dispersion of Size
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(d) Technology Embodied in Capital
Notes: In the top left panel I plot the average firm number of employees for each country as a function of the GDP per capita. In the
the top right panel I plot the average education of workers in the firms in my data as a function of the average country education
taken from IPUMS international micro data as described in Section 3.2. In the bottom left panel I plot the dispersion of log number of
employees computed for each country as a function of GDP per capita. In the bottom right panel I plot for each country, still as a
function of GDP per capita, the fraction of firms that to the question: “Over the last two years, what were the leading ways in which
your establishment acquired technological innovations?: answer as leading way: “Embodied in new machinery or equipment”. Each
country is represented by its three digit country code and a circle, whose size depend on the population of the country. The dotted
black line is the regression line of a cross-country regression on log GDP per capita. All regressions are significant at 5% or below. The
data are from World Bank Enterprise Survey standardized waves 2002 to 2006.
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A.2 Details on the Single-Crossing Assumption

I here discuss few properties of the single-crossing assumption (1.5), that is min

x

02X f

1

(x, x

0
) > max

x

02X f

2

(x

0
, x).

First, the single-crossing is tightly linked to the well-known Spence-Mirrlees condition in mechanism design.
Consider a utility function U = t � C (q,#), where t is a monetary transfer, q the action, and # the unobserved
type. The Spence-Mirrlees condition is C

q#

> 0, and it allows to separate types. In my setting the action q is
a binary choice, whether to be a manager or a worker (and the type # is observed and given by the ability x).
The Spence-Mirrlees thus reduces to a requirement that the marginal value of being manager (interpret q high)
is higher than that of being worker (q low). This gives f

1

> f

2

. However, in this setting we need to take into
consideration that f

1

and f

2

depends themselves on the partner, through complementarity. Thus, in order for types
to be separated into the two occupations, it must be that the marginal value of being a manager is higher than that
of being a worker, regardless of the respective partners. This additional requirement gives the single-crossing (1.5).

Second, I show that the same single-crossing assumption holds, and plays a major role, in many settings in
which heterogeneous workers must make an occupational choice. In order to see the role of this assumption, and
the comparison with other settings, it is useful to briefly describe how it affects prices in a competitive equilibrium.
Since other papers also use an intensive margin for number of workers, let the production function be f (x

0
, x, n (x))

where n (x) is the optimal number of workers given their ability x. The maximization problem of a manager x0 that
has to choose the type of his workers reads as

⇡ (x

0
) = max

x2X
f (x

0
, x, n (x))� w (x)n (x) ,

where w (x) is the wage of a worker of type x. The first order and envelope conditions of this problem yields

w

0
(x) =

f

2

(x

0
, x, n (x)) + n

0
(x) f

3

(x

0
, x, n (x))

n (x)

⇡

0
(x) = f

1

(x

0
, x, n (x)) .

It is then easy to see that, since individuals are not assigned ex-ante to be workers or managers, as long as
⇡

0
(x) > w

0
(x) 8x, high skilled are managers and low skilled workers. This is the essence of the single-crossing

property, that is that the profit and wage schedule cross at most once. Next, I show that this property also holds in
the cited settings. In Lucas (1978) the production function for a manager x0 and n workers of type x is given by xn,
where n does not depend on x. As a result w0

(x) = 0, and single-crossing trivially holds. Next, consider the version
of Garicano and Rossi-Hansberg (2006) with only two hierarchies, as in Garicano and Rossi-Hansberg (2004). The
argument generalizes to the multi-hierarchy setting. The production function of a manager x

0 with n (x) =

1

1�x

workers of type x is given by x

0
n (x). Hence using the equations above, ⇡0

(x

0
) = n (x) and w

0
(x) = xn (x). Since

x 2 [0, 1], single-crossing holds as well.
Third, in order to see how the single crossing assumptions relates to complementarity, we can rewrite the

single-crossing, using the fact that f

12

> 0 as: f

1

(x, x

min

) > f

2

(x

max

, x), where x

min

and x

max

are respectively
the smallest and largest type in X. Next, with a first order Taylor approximation around x on both sides we obtain

f

1

(x, x)� f

12

(x, x) (x� x

min

) > f

2

(x, x) + f

12

(x, x) (x

max

� x)

that rearranging becomes
f

1

(x, x)� f

2

(x, x) > f

12

(x, x) (x

max

� x

min

) . (6)

This last inequality shows that in order for the single crossing to hold, the complementarity of the production
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function must be small with respect to the difference in skill-sensitivity of the complex and simple task.

A.3 An Example in an Economy with Four Individuals

I here propose a stylized example that highlights the main mechanism at work. Consider four individuals of
ability x

1

> x

2

> x

3

> x

4

. Let them have to form two teams of a manager and a worker. I first assume that both
teams must use the same production technology, which I call a, to produce their output. The net output of a team
formed by a manager x

0 and a worker x is given by

a (⇢x

0
+ x)

where ⇢ > 1 captures the fact that the skills of the manager are more important in determining the team’s output.
Under the optimal assignment of individuals to teams, the two most skilled individuals, x

3

and x

4

, will be managers,
and the less skilled, x

1

and x

2

, will be line workers.63 I refer to this assignment, illustrated in the left panel of
Figure A.14, as segmentation of talent by occupation, to emphasize that high skilled individuals are in most task-
intensive occupations. In this particular example, conditional on the vertical choice of occupation within a team,
the horizontal assignment to teams is irrelevant due to the lack of complementarity in ability for this production
function. Hence either manager can be paired with either worker. Intuitively, this is because the most skilled worker
would be more productive, but the gain from this is the same regardless of the identity of the manager, since both
managers use the same technology.

Figure A.14: Allocation of Talent for Four Individuals

(a) Segmentation by Occupation (b) Segregation by Technology
Notes: A grey dot represents a worker, while a black dot represents a manager. Dotted lines connect workers to
their managers.

Next, I allow each team to pick its preferred technology. A team can use a simple technology, a, at a cost of ⇣a,
or and advanced technology, ā, at a cost of ⇣ā. further, let ⇣ 2 (⇢x

4

+ x

1

, ⇢x

3

+ x

2

), so that regardless of whom he
is paired with, only the most talented individual x

4

wishes to use the advanced technology. As a result, x
4

is the
manager of the only team that uses ā. Next, consider the choice of x

3

. He can be either the manager of a team
that works with a, or a worker for x

4

, working with ā. His optimal role depends on the economic conditions, that
in this example are summarized by the difference between the two available technologies. If a

a

> ⇢, the loss from
using his talent towards a simple task is more than compensated for by the gain from using his skills to produce
with the advanced technology.64 If the gap between the available technologies is large enough, the assignment
concentrates high skilled individuals together, in order for them to produce with the best available inputs. I refer to
this assignment, illustrated in the right panel of Figure A.14, as segregation of talent by technology, to emphasize

63For example, consider the case in which x

2

is a manager and x

3

a worker. This would give total output equal
to a (⇢ (x

4

+ x

2

) + (x

3

+ x

1

)) which is smaller than the alternative a (⇢ (x

4

+ x

3

) + (x

2

+ x

1

)) since ⇢ > 1.
64In order to see why this is the case, consider two alternative teams: {(x

4

, x

2

) , (x

3

, x

1

)} or {(x
4

, x

3

) , (x

2

, x

1

)}.
Any other alternative either produces less or equal output. The first assignment produces higher output if and only
if ā (⇢x

4

+ x

2

)� ⇣ā+ a (⇢x

3

+ x

1

)� ⇣a > ā (⇢x

4

+ x

3

)� ⇣ā+ a (⇢x

2

+ x

1

)� ⇣a which simplifies to a

a

< ⇢.
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that high skilled individuals are assigned to the higher technology.

A.4 General Description of the Environment and Case with Finite X

In this section I provide a more general description of the environment that allows to have X finite and that
proves (Lemma 0) that the definition of the allocation and planner problem in the main text is without loss of
generality. All the results in Section 2.3 in the main text hold and are proved for this general environment.

A.4.1 Environment
I consider an economy inhabited by heterogeneous individuals, which are indexed by a type x 2 X and a name

i 2 I. The type set X is thought of as a set of types that indicate the relative65 skill level, to the extent that
if x

0
> x, then all individuals of type x

0 are more able than x. Throughout the paper, X will be considered as
either the interval [0, 1] or a finite subset of it with an even number of elements.66 The economy is inhabited by a
continuum of individuals of each type x, hence I = [0, 1]. Individuals have an increasing and non-satiated utility
function of consumption and no disutility of labor.

Definition A.4.1 (Allocation). An allocation ' is a quintuple of functions {!̃, µ̃, m̃, w̃,↵}, where (i) !̃ : X⇥I !
{0, 1} is a function that takes value one if an individual is a worker; (i) µ̃ : X⇥ I ! {0, 1} is a function that takes
value one if an individual is a manager; (iii) m̃ : W ! M assigns each individual in the set W, that is closure
of the set of workers {(x, i) : !̃ (x, i) = 1}, to a partner in the set M, that is the closure of the set of managers
{(x, i) : µ̃ (x, i) = 1}; (iv) w̃ : M ! W assigns to each manager a corresponding worker; and (v) ↵ : X ⇥ X ! A
assigns to each possible pair of types a production technology in A.

The set A is the set of available technologies, which, if not otherwise specified, is equal to the set of positive
real numbers.

Definition A.4.2 (Feasible Allocation). An allocation ' is feasible if (i) µ̃ (x, i) + !̃ (x, i) = 1 8 (x, i) 2 X⇥ I;
(ii) m̂ and ŵ are measure preserving bijection; and (iii) m (x, i) = (x

0
, i

0
) implies w (x

0
, i

0
) = (x, i) and w (x, i) =

(x

0
, i

0
) implies m (x

0
, i

0
) = (x, i) 8 (x, i) 2 X⇥ I. I call F the set of all feasible allocations.

The first feasibility constraint guarantees that an individual cannot be simultaneously a manager and a worker.
The second one, that each worker is matched with exactly one manager, hence that labor market clears for each
type.67 The third one that matching is consistent, that is for example if an individual (x, i) is matched to a manager
(x

0
, i

0
) than the manager (x0

, i

0
) should be matched himself with worker (x, i). It is also useful to define few auxiliary

functions which I use in the definition and characterization of the planner’s problem.

Definition A.4.3 (Occupational Choice Functions). Define (i) ! (x) =

´
I !̃ (x, i) di the function that de-

scribes the fractions of individuals of type x who are workers; and (ii) µ (x) = 1� ! (x) the function that describes
the fractions of individuals of type x who are managers.

I call ! and µ the occupational choice functions.

65Relative to the country specific skill distribution. x ranks individuals from the most to the least able.
66In particular, the set X is defined as [0, 1] if the skill distribution is continuous, and as a finite and evened set

if such distribution is discrete. The rational for this assumption is as follows. Consider an arbitrary distribution of
(scalar) skills s ⇠ F

s

. If F
s

is a continuous distribution, then X = F

s

(s) ⇠ U [0, 1]. Indeed, X =

´
s

�1 f

s

(t)dt, where
f

s

is the corresponding density of s. Therefore, for any x 2 [0, 1], P(X  x) =

´
{s:
´
s

�1 f

s

(t)dtx} fs(t)dt = x. Then
we can think of X as Supp(F

X

) = [0, 1] and names distributed uniformly in this set. If F
s

is discrete, we consider
the following transformation. Let N be an even integer such that N  |Supp(s)|, where the function | · | denotes
cardinality. Define {y

n

: n  N} such that P[s  y

n

] =

n

N

. Consider the mapping y

n

7! x

n

, where x

n

=

y

n

y

N

�y

1

.

Then X = {x
n

: n  N}.
67Noldeke and Samuelson (2014) shows a case of a matching function that would violate the assumption of a

measure preserving bijection.
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Definition A.4.4 (Matching Functions). I define (i) m

x

: W ! X to be the function that assigns to each
worker the type of his manager, hence if m̃ (x, i) = (x

0
, i

0
) then m

x

(x, i) = x

0; (ii) m : X ! X to be the function
that assigns to each type of workers the average type of its managers, hence m (x) =

´
I mx

(x, i) di if ! (x) > 0

and m (x) =

´
I mx

(x̂, i) di where x̂ = max {x0 2 X : x

0
< x and ! (x) > 0} otherwise; (iii) w

x

: M ! X to be the
function that assigns to each manager the type of his worker, hence if w̃ (x, i) = (x

0
, i

0
) then w

x

(x, i) = x

0; (ii)
w : X ! X to be the function that assigns to each type of manager the average type of its workers, hence w (x) =´
I wx

(x, i) di if µ (x) > 0 and w (x) =

´
I wx

(x̂, i) di where x̂ = max {x0 2 X : x

0
< x and µ (x) > 0} otherwise.68

With a slight abuse of notation, I call m and w the matching functions, and I focus on these functions for most
of the characterization results.

A.4.2 Planner Problem, Existence, and Decentralization
Planner’s Problem. The planner picks the feasible allocation that maximizes total output:

max

'2F
Y (')

where output is given by69

Y (') =

ˆ

X

ˆ

I

g (m

x

(x, i) , x,↵ (m

x

(x, i) , x)) !̃ (x, i) dxdi.

Existence and Decentralization. I tackle the existence and uniqueness problem indirectly. I describe a com-
petitive equilibrium in my setting, as shown in the appendix A.5, and then show that the first welfare theorem
applies. I then recognize, using an insight from Chiappori et al. (2014), that my competitive equilibrium setting is
isomorphic to an optimal transportation (Monge–Kantorovich) linear programming problem, for which Chiappori
et al. (2010) shows existence results. As a result, a competitive equilibrium exists, and the competitive equilibrium
allocation maximizes output. Thus it is the solution to the planner’s problem. This gives the next proposition.

Proposition A.4.1 (Existence and Decentralization). There exists an optimal allocation '

⇤, which can be
decentralized in a competitive equilibrium.

This proposition does not guarantee uniqueness. In fact, the sufficient conditions for uniqueness shown in
Chiappori et al. (2010) are not satisfied. Nonetheless, this does not represent a limitation of the setting, since I
characterize the properties that any optimal allocation must satisfy. Hence, in the spirit of Athey et al. (1998), the
comparative static exercise is robust, to the extent that it does not depend on the equilibrium selection.

For the characterization of the optimal allocation - shown in the main text - we do not need to keep track
of names, and in fact I only work with the functions m, w, µ, and !. Individual names i do not affect their
productivity, given their type. Nonetheless, we had to keep track of them for the general definition of the problem
in order to not constraint ex-ante the planner to assign all individuals of the given type to the same partner. For
the case in which X = [0, 1], all workers of any type x are matched with an identical manager, and similarly all
managers are matched with an identical worker.70 For this reason, I skipped altogether the additional definitions

68Notice that I have defined m also outside of the optimal allocation, hence for those types for which there are
no workers. This is useful when studying deviation to the optimal allocation.

69Note that the integral is taken summing only over individuals that are workers. I alternatively could take the
integral over the fraction of managers, but cannot sum over both managers and workers, since that would double
count the output of a team. Also, notice that for the case in which X is finite, the integral is a sum. The problem
is otherwise identical.

70This intuition for this result is similar to the one for bipartite matching model. See for example Eeckhout and
Kircher (2012).
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of names in the main text. The next Lemma establishes formally this result.

Lemma 0 (Equivalence Result). Let X = [0, 1], and consider an optimal allocation '

⇤
= {µ̃⇤

, !̃

⇤
, m̃

⇤
, w̃

⇤
,↵

⇤}
that solves the planner problem described. First, m

⇤
x

(x, i) = m

⇤
x

(x, i

0
) and w

⇤
x

(x, i) = w

⇤
x

(x, i

0
) 8 (x, i, i0) 2 X ⇥

I ⇥ I. Second, the set of functions {!⇤
, µ

⇤
,m

⇤
, w

⇤
,↵

⇤}, where !⇤
(x) =

´
I !̃ (x, i) di, µ⇤

(x) = 1 � !

⇤
(x), m⇤

(x) =´
m̃

⇤
x

(x, i) di, w⇤
(x) =

´
w̃

⇤
x

(x, i) di maximize the problem

max

ˆ

X

g (m (x) , x,↵ (m (x) , x))! (x) dx

s.t.

µ (x) + ! (x) =

1 8x

! (x) =

µ (m (x)) 8x s.t. ! (x) > 0

µ (x) =

! (w (x)) 8x s.t. µ (x) > 0

x =

w (m (x)) 8x s.t. ! (x) > 0

x =

m (w (x)) 8x s.t. µ (x) > 0

! (x)  1 8x

µ (x)  1 8x

This Lemma shows that the definition of the problem as included in the main text is equivalent, for the case
with X = [0, 1] to the more general one included in this section. Notice that the result shown in 2.3 hold - and are
proved below - for this general setting, thus also for X finite, using in the characterization !, µ, w and m as defined
above.

A.5 Definition of Competitive Equilibrium and Proof of Existence (Proposition 1)

I here the describe a competitive environment that decentralizes the optimal allocation described in the paper.
I first provide a broad description, then give a formal definition of the competitive equilibrium, followed by a result
that shows the equivalence with bipartite matching and the consequent proof of existence.

A.5.1 Competitive Equilibrium
The environment is the same as described in A.4. There is a continuum of heterogeneous individuals with type

x 2 X and name i 2 I. An individual therefore is characterized by a pair (x, i). Production is in teams of two,
according to the production function g (x

0
, x, a), where x

0 is the type of the manager, x is the type of the worker,
and a is the technology.

I now describe individual optimization.

Problem of a Manager. I start from the problem of a manager of ability x

0. He has to pick the optimal type
of his worker x, and the technology a to maximize his profits, that is

y

µ

(x

0
) = max

a2R,x2X
g (x

0
, x, a)� y

!

(x)
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taking as given y

!

(x), that is the equilibrium wage of a worker of type x. I define ↵⇤
(x

0
, x) the optimal technology

for a team of a manager x

0 and worker x

↵

⇤
(x

0
, x) 2 max

a2A
g (x

0
, x, a)

and I define v (x

0
, x) the output of a team taking into account optimal technology

v (x

0
, x) = g (x

0
, x,↵

⇤
(x

0
, x))

Notice that each name i of a given ability x solves the same problem, and has the same profit, hence we do not
need to keep track of the names i for the definition of this problem. Names i are however relevant for market
clearing, since different individuals of the same type might have a different partner (this turns out not to be true in
equilibrium for the case with X = [0, 1], but we do not want to impose it as an ex-ante restriction). In fact, I define
w

x

(x

0
, i) the function that assigns to a manager (x

0
, i) the optimal type of his worker, that is

w

x

(x

0
, i) 2 max

x2X
v (x

0
, x)� y

!

(x) ,

where I substituted the optimal technology choice that takes into account the type of the worker. Also, I define
m

x

(x, i) to be the function that assigns the type of the manager of a worker (x, i). m
x

(x, i) is derived from w

x

(x

0
, i)

as described in market clearing.

Occupational Choice. Each individual (x, i) decides whether to be a manager or a worker. He picks the
occupation that gives him the higher income taking as given the schedules y

⇡

(x) and y

!

(x) he would get in either
occupation. Let !̃ (x, i) be the function that gives value 1 if individual (x, i) is a worker, and µ̃ (x, i) be the same
for managers. The occupational choice can written as

!̃ (x, i) = 1 if y
!

(x) > y

⇡

(x)

µ̃ (x, i) = 1 if y
⇡

(x) > y

!

(x)

!̃ (x, i) = 1 only if y
!

(x) � y

⇡

(x)

µ̃ (x, i) = 1 only if y
⇡

(x) � y

!

(x) .

Market Clearing. Market clearing requires that for each type x, the mass of managers of type x

0 equals the
mass of workers of the types that have x

0 as a manager, that is

ˆ

I

µ̃ (x

0
, i) di =

ˆ

X

ˆ

I

1 (m

x

(x, i) = x

0
) !̃ (x, i) dxdi.

and that w

x

and m

x

are consistent, that is for each type x and x

0

ˆ

I

1 (m

x

(x, i) = x

0
) !̃ (x, i) di =

ˆ

I

1 (w

x

(x

0
, i) = x) µ̃ (x

0
, i) di.

Definition A.5.1 (Competitive Equilibrium). A competitive equilibrium is given by wage and profit schedules
y

!

: X ! R, y
µ

: X ! R; occupational choice functions !̃ : X⇥ I ! [0, 1] and µ̃ : X⇥ I ! [0, 1]; matching functions
m

x

: X⇥ I ! X, w
x

: X⇥ I ! X; and optimal technology choice ↵⇤
: X⇥ X ! R, such that

1. managers pick the optimal type of workers and technology;
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2. individuals pick optimal occupation;

3. labor market clears.

A.5.2 Equivalence Result
The competitive equilibrium described above is called in the matching literature a roommate problem (or one-

sided matching), to emphasize the fact that individuals are allowed ex-ante to match with everyone (i.e. there are
no males and females that must marry to each other). Extending an insight present in Chiappori et al. (2014) to
the case with a continuum of types, I next show that this problem is isomorphic to a bipartite matching model
(two-sided matching), for which we can then use known existence results from the optimal transportation literature.
Since Chiappori et al. (2014) proves the equivalence for a finite number of types, I focus here on the continuous
case, thus for X = [0, 1].

In order to define the associated bipartite model, I split for each type x the set of individuals (names) of that
type into two groups of identical mass. More specifically, I let I

1

=

⇥

0,

1

2

⇤

and I
2

=

⇥

1

2

, 1

⇤

, so that I
1

[ I
2

= I.
I in fact separate the mass of individuals into two identical groups, and then I consider the problem of matching
individuals in one group with individuals in the other group, that is a standard bipartite matching problem. For
convention, I call an individual i of type x in the group 1, (x

1

, i

1

), and similarly for group 2, (x
2

, i

2

). I next define
the associated bipartite matching problem.

Definition A..5.2 (Associated Bipartite Matching Problem). The bipartite matching problem is given by
income schedules y

1

: X ! R and y

2

: X ! R; matching functions m

x

1

: X ⇥ I
1

! X and m

x

2

: X ⇥ I
2

! X that
assigns to each individual in either group the type of their partner; and optimal technology ↵⇤

: X ⇥ X ! R such
that

1. the income schedules solve

y

1

(x

1

) = max

x

2

2X
v̂ (x

1

, x

2

)� y

2

(x

2

)

y

2

(x

2

) = max

x

1

2X
v̂ (x

1

, x

2

)� y

1

(x

1

)

where

↵

⇤
(x

0
, x) 2 max

a2A
g (x

0
, x, a)

v̂ (x

1

, x

2

) = max {g (x
1

, x

2

,↵

⇤
(x

1

, x

2

)) , g (x

2

, x

1

,↵

⇤
(x

2

, x

1

))}

and the outside option of both individuals of not matching is identical for group 1 and 2 and equal to
max {y

!

(0) , y

µ

(0)}.

2. the matching functions are such that for all (x
1

, i

1

) 2 X⇥ I
1

and (x

2

, i

2

) 2 X⇥ I
2

m

x

1

(x

1

, i

1

) 2 max

x

2

2X
v̂ (x

1

, x

2

)� y

2

(x

2

)

m

x

2

(x

2

, i

2

) 2 max

x

1

2X
v̂ (x

1

, x

2

)� y

1

(x

2

)
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3. market clear for each type x

1

and x

2

, that is

1

2

=

ˆ

X

ˆ

I
1

1 (m

x

1

(x, i) = x

2

) dxdi

1

2

=

ˆ

X

ˆ

I
2

1 (m

x

2

(x, i) = x

1

) dxdi

I now show that the two problems are isomorphic, that is, given a solution to the associated bipartite matching
problem (A.5.1) I can construct a solution to the competitive equilibrium in A.5.2 and vice versa. This is summarized
in the next lemma.

Lemma A.5.1 (Isomorphism). Consider a solution {y
1

, y

2

,m

x

1

,m

x

2

,↵} of the problem in A.5.2, if it exists,
then {y

!

, y

µ

, !̃, µ̃,m

x

,↵} solves the problem in A.5.1, where

!̃

1

(x

1

, i

1

) = 1 if m
x

1

(x

1

, i

1

) � x

1

!̃

2

(x

2

, i

2

) = 1 if m
x

2

(x

2

, i

2

) � x

2

µ̃

1

(x

1

, i

1

) = 1 if m
x

1

(x

1

, i

1

) < x

1

µ̃

2

(x

2

, i

2

) = 1 if m
x

2

(x

2

, i

2

) < x

2

;

y

!

(x) =

1

⇣´
I
1

!̃

1

(x, i

1

) di

1

> 0

⌘

y

1

(x) + 1

⇣´
I
2

!̃

2

(x, i

2

) di

2

> 0

⌘

y

2

(x)

1

⇣´
I
1

!̃

1

(x, i

1

) di

1

> 0

⌘

+ 1

⇣´
I
2

!̃

2

(x, i

2

) di

2

> 0

⌘

y

µ

(x) =

1

⇣´
I
1

µ̃

1

(x, i

1

) di

1

> 0

⌘

y

1

(x) + 1

⇣´
I
2

µ̃

2

(x, i

2

) di

2

> 0

⌘

y

2

(x)

1

⇣´
I
1

µ̃

1

(x, i

1

) di

1

> 0

⌘

+ 1

⇣´
I
2

µ̃

2

(x, i

2

) di

2

> 0

⌘

;

!̃ (x, i) = 1 (i = i

1

) !̃

1

(x, i

1

) + 1 (i = i

2

) !̃

2

(x, i

2

)

µ̃ (x, i) = 1 (i = i

1

) µ̃

1

(x, i

1

) + 1 (i = i

2

) µ̃

2

(x, i

2

) ;

and

m

x

(x, i) = 1 (i 2 I
1

) (!̃

1

(x, i)m

x

1

(x, i)) + 1 (i 2 I
2

) (!̃

2

(x, i)m

x

2

(x, i))

w

x

(x, i) = 1 (i 2 I
1

) (µ̃

1

(x, i)m

x

1

(x, i)) + 1 (i 2 I
2

) (µ̃

2

(x, i)m

x

2

(x, i))

Similarly, consider a solution {y
!

, y

µ

, !̃, µ̃,m

x

, w

x

,↵} of the problem in A.5.1, if it exists, then {y
1

, y

2

,m

x

1

,m

x

2

,↵}
solves the problem A.5.2, where

m

x

1

(x

1

, i

1

) = ! (x

1

, i

1

)m

x

(x

1

, i

1

) + µ (x

1

, i

1

)w

x

(x

1

, i

1

)

m

x

2

(x

2

, i

2

) = ! (x

2

, i

2

)m

x

(x

2

, i

2

) + µ (x

2

, i

2

)w

x

(x

2

, i

2

)
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and

y

1

(x

1

) =

´
I
1

!̃ (x

1

, i) y

!

(x

1

) di

1´
I
1

!̃ (x

1

, i) di

1

+

´
I
1

µ̃ (x

1

, i) y

µ

(x

1

) di

1´
I
1

µ̃ (x

1

, i) di

1

y

2

(x

2

) =

´
I
2

!̃ (x

2

, i) y

!

(x

1

) di

2´
I
2

!̃ (x

2

, i) di

2

+

´
I
2

µ̃ (x

2

, i) y

µ

(x

2

) di

2´
I
2

µ̃ (x

2

, i) di

2

;

and last the individuals into I are rearranged such that market clearing holds with I
1

=

⇥

0,

1

2

⇤

and I
2

=

⇥

1

2

, 1

⇤

, where
this rearrangement is without loss of generality since all individuals of a given type x are identical.

Proof. First notice that the optimal technology ↵⇤ is identical in the two settings by definition. Next, I focus on
the income schedules. Let’s notice that taking the envelope condition and the first order condition of the planner
problem in A.5.1, we get that 8 (x, i) 2 X⇥ I

y

0
µ

(x) = v

1

(x,w

x

(x, i)) (7)

y

0
!

(x) = v

2

(m

x

(x, i) , x)

and that taking the first order condition in A.5.2 we get that

y

0
1

(x

1

) = v̂

1

(x

1

, x

2

)

y

0
2

(x

2

) = v̂

2

(x

1

, x

2

)

which using the definition of v̂ and the above defined functions can be rewritten as

y

0
1

(x

1

) = µ̃

1

(x

1

, i

1

) v

1

(x

1

,m

x

1

(x

1

, i

1

)) + !̃

1

(x

1

, i

1

) v

2

(m

x

1

(x

1

, i

1

) , x

1

) (8)

y

0
2

(x

2

) = µ̃

2

(x

2

, i

2

) v

1

(x

2

,m

x

2

(x

2

, i

2

)) + !̃

2

(x

2

, i

2

) v

2

(m

x

2

(x

2

, i

2

) , x

2

)

which implies that, given the above construction, (7) holds if and only if (8) holds. Then, since y

1

(0) = y

2

(0) =

max {y
!

(0) , y

µ

(0)} we have shown that the income schedules satisfy the isomorphism.
Last I need to show that market clearing holds. Market clearing in A.5.2 can be rewritten as

ˆ

I
1

µ̃

1

(x

1

, i

i

) di =

ˆ

X

ˆ

I
2

1 (m

x

2

(x

2

, i

2

) = x

1

) !̃

2

(x

2

, i

2

) dx

2

di

2

ˆ

I
2

µ̃

2

(x

2

, i

2

) di =

ˆ

X

ˆ

I
1

1 (m

x

1

(x

1

, i

1

) = x

2

) !̃

1

(x

1

, i

1

) dx

1

di

1

which, since I = I
1

[ I
2

, implies that the market clearing in A.5.1 holds, that is
ˆ

I

µ̃ (x

0
, i) di =

ˆ

X

ˆ

I

1 (m

x

(x, i) = x

0
) !̃ (x, i) dxdi

Also, given market clearing in A.5.1, we can rearrange i in such a way that market clearing in A.5.2 holds as well.
This rearrangement is without loss of generality, since names are irrelevant for output. This concludes the proof. �

A.5.3 Proof of the Existence
In order to prove existence, we can now apply known results for bipartite matching problems. Since the function

v̂ (x

1

, x

2

) as defined is, by the maximum theorem, continuous we can apply Theorem 1 of Chiappori et al. (2010),
that proves existence of a stable matching that maximizes total output. Applying the isomorphism result, the stable
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matching corresponds to the solution of the competitive equilibrium defined in A.5.1. Hence we have shown that a
solution that maximizes total output exists and provided a decentralization. �

It may be worth to remark that the condition (subtwist) that Theorem 3 of Chiappori et al. (2010) shows to
be sufficient for uniqueness of an equilibrium in mixed strategy is not satisfied in this context.71

A.6 Proofs of Preliminary Results (Lemmas 0-5)

As a preliminary step, let’s define the net output of team that pick the optimal technology as

v (x

0
, x) = max

a

g (x

0
, x, a) ,

where recall that g (x

0
, x, a) = af (x

0
, x)� c (x

0
, x, a). Taking the first order condition of the problem above we get

f (x

0
, x) = c

3

(x

0
, x,↵

⇤
(x

0
, x)) . (9)

Using the envelope theorem, we can calculate the marginal products and the complementarity of v: 72

v

1

(x

0
, x) = ↵

⇤
(x

0
, x) f

1

(x

0
, x)� c

1

(x

0
, x,↵

⇤
(x

0
, x))

v

2

(x

0
, x) = ↵

⇤
(x

0
, x) f

2

(x

0
, x)� c

2

(x

0
, x,↵

⇤
(x

0
, x))

v

12

(x

0
, x) = ↵

⇤
(x

0
, x) f

12

(x

0
, x) + c

33

(x

0
, x,↵

⇤
(x

0
, x))↵

⇤
1

(x

0
, x)↵

⇤
2

(x

0
, x) . (10)

where I used assumption (2.4).

Proof of Lemma 0 I first show that m

⇤
x

(x, i) = m

⇤
x

(x, i

0
) 8 (x, i, i0) 2 X ⇥ I ⇥ I. I showed the equivalence

between the planner’s problem and the competitive equilibrium. Using the first order and envelope conditions in
the competitive equilibrium I showed, in equation (7), that 8 (x, i) 2 X⇥ I

y

0
µ

(x) = v

1

(x,w

⇤
x

(x, i))

y

0
!

(x) = v

2

(m

⇤
x

(x, i) , x) .

Using (10) and assumption (1.2) this implies that m⇤
x

(x, i) = m

⇤
x

(x, i

0
) and w

⇤
x

(x, i) = w

⇤
x

(x, i

0
) 8 (x, i, i0) 2 X⇥I⇥I

must hold, All individuals of type x have the same marginal income and the production function is strictly increasing,
in order for this to be satisfied - conditional on having the same occupation - they must be matched with identical
partners.

Given this, and using the definition of !⇤ and m

⇤ we get
ˆ

X

ˆ

I

g (m

⇤
x

(x, i) , x,↵

⇤
(m

⇤
x

(x, i) , x)) !̃

⇤
(x, i) dxdi =

ˆ

X

g (m

⇤
(x) , x,↵

⇤
(m

⇤
(x) , x))!

⇤
(x) dx.

71This condition can be rewritten as v̂ : X⇥X ! [0,1), is subtwisted if there is a zero measure set X
L

such that
whenever v̂

1

(x

1

, x

2

) = v̂

1

(x

1

, x

0
2

) for some x

1

2 X
1

\X
L

and x

2

6= x

0
2

, then, a fortiori, x
1

is either the unique global
maximum or the unique global minimum of the difference v̂(x

1

, x

2

)� v̂(x

1

, x

0
2

) on X.
72These results comes from the application of the envelope theorem. I omit argument of the functions for brevity.

The first order conditions given f = c

3

, which can be differentiated to get f

1

= c

33

↵

⇤
1

+ c

13

and f

2

= c

33

↵

⇤
2

+ c

23

.
Next, differentiating v with respect to its first argument we get v

1

= ↵

⇤
f

1

+ ↵

⇤
1

f � c

1

� c

3

↵

⇤
1

which simplifies
to v

1

= ↵

⇤
f

1

� c

1

. We can follow the similar steps for v

2

. Next, differentiate v

1

with respect to its second
argument to get v

12

= ↵

⇤
12

f + ↵

⇤
1

f

2

+ ↵

⇤
2

f

1

+ ↵

⇤
f

12

� c

12

� c

13

↵

⇤
2

� c

23

↵

⇤
1

� c

33

↵

⇤
1

↵

⇤
2

� c

3

↵

⇤
12

, which simplifies to
v

12

= ↵

⇤
f

12

� c

12

+ c

33

↵

⇤
1

↵

⇤
2

.
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Last, the fact that '⇤ 2 F directly implies that the constraints of the problem are satisfied as well. This concludes
the proof. �

Proof of Lemma 1 By Lemma 1 and assumption (1.4) the function v has complementarity: v

12

> 0. I prove
the Lemma by contradiction. Let x

0
> x and m

⇤
(x) > m

⇤
(x

0
), where recall that m

⇤
(x) =

´
I m

⇤
x

(x, i) di. There
must be i, i

0 2 I such that m

⇤
x

(x, i) > m

⇤
x

(x

0
, i

0
), Call x000

= m

⇤
x

(x, i) and x

00
= m

⇤
x

(x

0
, i

0
). In order for m

⇤ to be
induced by the optimal allocation it must be that

v (x

000
, x) + v (x

00
, x

0
) � v (x

00
, x) + v (x

000
, x

0
) .

Rewrite the above, using the fundamental theorem of calculus (I use this theorem throughout the appendix, but
acknowledge it only here) as

x

000ˆ

x

00

v

1

(z, x) dz �
x

000ˆ

x

00

v

1

(z, x

0
) dz

which can be farther rewritten as

0 �
x

000ˆ

x

00

x

0ˆ
x

v

12

(z, y) dydz

which contradicts v

12

> 0. �

Proof of Lemma 2 Consider two individuals of type x

0 and x. We need to show that

v (x

0
, x) � v (x, x

0
)

if and only if x0 � x. Let x

0 � x and rewrite the equation above as

x

0ˆ
x

v

1

(z, x) dz �
x

0ˆ
x

v

2

(x, z) dz � 0.

Next, I show that v

1

(x

0
, x) � v

2

(x, x

0
) 8x0 � x. Use (10) and rewrite v

1

(x

0
, x) � v

2

(x, x

0
) as

↵

⇤
(x

0
, x) f

1

(x

0
, x)� c

1

(x

0
, x,↵

⇤
(x

0
, x)) � ↵

⇤
(x, x

0
) f

2

(x, x

0
)� c

2

(x, x

0
,↵

⇤
(x

0
, x))

which can be farther rewritten as

↵

⇤
(x, x

0
) f

1

(x

0
, x)� c

1

(x

0
, x,↵

⇤
(x, x

0
)) +

↵

⇤
(

x

0
,x

)ˆ

↵

⇤
(x,x

0
)

(f

1

(x

0
, x)� c

13

(x

0
, x, a)) da � ↵

⇤
(x, x

0
) f

2

(x, x

0
)� c

2

(x, x

0
,↵

⇤
(x, x

0
)) .

This last inequality holds since: (i) by assumption (1.5) f

1

(x

0
, x) > f

2

(x

0
, x); (ii) by assumptions (2.3) and (2.4)

�c

1

(x

0
, x,↵

⇤
(x, x

0
)) > �c

2

(x, x

0
,↵

⇤
(x, x

0
)); (iii) by assumption (2.5) f

1

(x

0
, x) � c

13

(x

0
, x, a) > 0; and last (iv)

by Lemma 1 ↵⇤
(x

0
, x) > ↵

⇤
(x, x

0
). Hence we have shown that if x0 � x, then v (x

0
, x) � v (x, x

0
). An identical

argument for the case x

0
< x completes the proof. �
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Proof of Lemma 3 Differentiate the first order condition 9 with respect to x

0 to get

↵

⇤
1

(x

0
, x) =

f

1

(x

0
, x)� c

13

(x

0
, x,↵

⇤
(x

0
, x))

c

33

(x

0
, x,↵

⇤
(x

0
, x))

and with respect to x to get

↵

⇤
2

(x

0
, x) =

f

2

(x

0
, x)� c

23

(x

0
, x,↵

⇤
(x

0
, x))

c

33

(x

0
, x,↵

⇤
(x

0
, x))

assumption (2.5) guarantees that ↵⇤
1

> 0 and (2.5) that ↵⇤
2

� 0. Assumption (2.7) guarantees that a

⇤
1

a

⇤ >

a

⇤
2

a

⇤ . �

Proof of Lemma 4 By Lemma 3: m

⇤
(x) � x and thus using feasibility w

⇤
(x)  x. By Lemma 1: ↵⇤

1

> 0 and
↵

⇤
2

� 0. The result follows immediately. �

Proof of Lemma 5 The result follows immediately from the fact that both ↵

⇤
1

↵

⇤ and ↵

⇤
2

↵

⇤ are decreasing in c

33

c

3

, as can
be see from their explicit expression shown in the proof of Lemma 3 and from the fact that ↵⇤

= c

�1

3

(x

0
, x, f (x

0
, x))

and if c
3

is higher, than c

�1

3

is smaller. �

A.7 Proof of Proposition 2

I provide a separate proof for the case in which X is finite and for the case in which X = [0, 1]. I start from the
former.

Proof of Proposition 2 for X is a finite subset of [0, 1] I first prove the conditions for talent segmentation.
The proof is by contradiction. Let’s assume that talent is not segmented. Hence there exist two individuals
(x

00
, i

00
) and (x

0
, i

0
) such that x

00
> x

0 and !̃ (x

00
, i

00
) = 1 and µ̃ (x

0
, i

0
) = 1. By Lemma 2 and 3, it must be that

m

⇤
x

(x

00
, i

00
) � x

00 and w

⇤
x

(x

0
, i

0
)  x

0. Call x000
= m

⇤
x

(x

00
, i

00
) and x = w

⇤
x

(x

0
, i

0
). We are thus considering four types

x

000 � x

00
> x

0 � x. In order for this to be an optimal allocation, the following inequality must be satisfied

v (x

000
, x

00
) + v (x

0
, x) > v (x

000
, x

0
) + v (x

00
, x) .

We can rewrite the inequality above following usual steps as

x

00ˆ

x

0

v

2

(x

000
, z) dz >

x

00ˆ

x

0

v

1

(z, x) dz

which, substituting the previous expression (10) from the envelope condition becomes

x

00ˆ

x

0

[↵

⇤
(x

000
, z) f

2

(x

000
, z)� c

2

(x

000
, z,↵

⇤
(x

000
, z))] dz �

x

00ˆ

x

0

[↵

⇤
(z, x) f

1

(z, x)� c

1

(z, x,↵

⇤
(z, x))] dz. (11)

The left hand side can be rewritten as

x

00ˆ

x

0

[↵

⇤
(z, x) f

2

(x, z)� c

2

(x, z,↵

⇤
(z, x))] zd+

x

00ˆ

x

0

↵

⇤
(

x

000
,z

)ˆ

↵

⇤
(z,x)

(f

2

(x, z)� c

23

(x, z, a)) dadz.

By assumption (1.5) ↵⇤
(z, x) f

2

(x, z) < ↵

⇤
(z, x) f

1

(z, x); by assumptions (2.3) and (2.4) �c

2

(x, z,↵

⇤
(z, x)) <

�c

1

(z, x,↵

⇤
(z, x)); which thus shows that for the inequality (11) to be satisfied, ⇤ ⌘

´
↵

⇤
(

x

000
,z

)

↵

⇤
(z,x)

(f

2

(x, z)� c

23

(x, z, a)) da

must be sufficiently large with respect to ↵⇤
(z, x). Last, notice that by assumption (2.6) f

2

(x, z)� c

23

(x, z, a) > 0
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8a 2
h

↵

⇤
(z, x) ,↵

⇤
(x

000
, z)

⌘

. Hence, for ⇤ to be large enough, it must be that the interval
h

↵

⇤
(z, x) ,↵

⇤
(x

000
, z)

⌘

is
large enough with respect to ↵⇤

(z, x). If c

33

c

3

is small enough ⇤ is small and thus (11) cannot be satisfied. For exam-
ple, in the limit as c

33

c

3

! 1, ↵⇤
(x

000
, z) ! ↵

⇤
(z, x), and the inequality is not satisfied. This gives a contradiction

which proves that talent must be segmented by occupation.
Next, I prove the conditions for talent segregation. The proof is again by contradiction. Let’s assume that talent

is not segregated. Hence there exist two individuals (x

00
, i

00
) and (x

0
, i

0
) such that x

00
> x

0 and A

⇤
(x

0
) > A

⇤
(x

00
).

Applying previous lemmas, this implies that must exist two individuals (x

0
, i

0
) and (x

00
, i

00
) such that !̃ (x

0
, i) = 1

and µ̃ (x

00
, i

0
) = 1 and m

⇤
x

(x

0
, i

0
) > x

00 and w

⇤
x

(x

00
, i

00
) < x

0. Call x000
= m

⇤
x

(x

0
, i

0
) and x = w

⇤
x

(x

00
, i

00
). We are thus

considering four types x

000
> x

00
> x

0
> x. In order for this to be an optimal allocation, the following inequality

must be satisfied
v (x

000
, x

0
) + v (x

00
, x) > v (x

000
, x

00
) + v (x

0
, x) .

Notice that this inequality is just as the one for talent segmentation, but with opposite sign. We can thus follow
the previous steps, and show that in order for this to be satisfied, it must be that ⇤ is small enough with respect
to ↵⇤

(z, x). However, notice that

´
↵

⇤
(

x

000
,z

)

↵

⇤
(z,x)

(f

2

(x, z)� c

23

(x, z, a)) da

↵

⇤
(z, x)

! 1

as c

33

c

3

! 0. Hence, there exist a value of c

33

c

3

small enough such that the inequality cannot be satisfied and as a
result we reach a contradiction. �

Proof of Proposition 2 for X = [0, 1] First, I write the necessary conditions for optimality, exploiting the
formulation used in the main text, and proved in Lemma 0, and noticing that optimal technology is maximized
for each team independently on the occupational choice function, and can thus be solved for ex-ante, we get that
{!⇤

(x) , µ

⇤
(x) ,m

⇤
(x) , w

⇤
(x)} are the solution to the problem

max

!,µ,m,w

ˆ

X

v (m (x) , x)! (x) dx

s.t.

µ (x) + ! (x) =

1 8x

! (x) =

µ (m (x)) 8x s.t. ! (x) > 0

µ (x) =

! (w (x)) 8x s.t. µ (x) > 0

x =

w (m (x)) 8x s.t. ! (x) > 0

x =

m (w (x)) 8x s.t. µ (x) > 0

! (x) 2 [0, 1] 8x

µ (x) 2 [0, 1] 8x

From the first order conditions of this problem with respect to the function ! and µ evaluated for each type x

we get that:

1. 8x s.t. !⇤
(x) > 0 and µ

⇤
(x) > 0 then v

1

(x,w

⇤
(x)) = v

2

(m

⇤
(x) , x);
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2. 8x s.t. µ

⇤
(x� ✏) = 0 and µ

⇤
(x) > 0 then v

1

(x,w

⇤
(x)) � v

2

(m

⇤
(x) , x);

3. 8x s.t. µ

⇤
(x� ✏) > 0 and µ

⇤
(x) = 0 then v

1

(x,w

⇤
(x))  v

2

(m

⇤
(x) , x).

If any of the three conditions are not satisfied, it is possible to construct an optimal deviation. As an example,
consider the case of an allocation ' around a type x̃ that does not satisfy (2) . Then we could construct an
alternative allocation '̃ such that

µ̃ (x̃) = µ (x̃)�� (12)

µ̃ (x̃� ✏) = µ (x̃� ✏) +�

for a small �. This deviation satisfies market clearing by construction and increases total output if v
1

(x,w (x)) <

v

2

(m (x) , x), as assumed. Intuitively then, if equation (12) is not satisfied, there exist a marginal individual x̃ such
that some of those at least as skilled as x̃ are managers and those less skilled than x̃ are all workers,. However, at x̃,
the marginal product of increasing the ability of workers is higher than that of increasing the ability of managers.
As a result, this cannot be an optimal allocation, since it would be optimal to swap a worker and a manager around
x̃. I next use this necessary conditions to prove the proposition.

I start by the case with segmentation. In order to prove that segmentation must be satisfied it is sufficient to
show that v

1

(x,w (x)) > v

2

(m (x) , x) 8x 2 X and for any m and w that satisfies the properties described in Lemmas
1-4 and market clearing. If this condition is satisfied, it is not possible to have a worker equally or less skilled than
a manager, since that would require, according to conditions (1) and (3) above, that v

1

(m

⇤
(x) , x)  v

2

(x,w

⇤
(x)).

Using the familiar envelope condition (10) we can rewrite v

1

(x,w (x)) > v

2

(m (x) , x) as

↵

⇤
(x,w (x)) f

1

(x,w (x))� c

1

(x,w (x) ,↵

⇤
(x,w (x))) > ↵

⇤
(m (x) , x) f

2

(m (x) , x)� c

2

(m (x) , x,↵

⇤
(m (x) , x))(13)

which can be rewritten as

f
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(x,w (x))

f

2

(m (x) , x)

>

↵

⇤
(m (x) , x)

↵

⇤
(x,w (x))

+

c

1
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⇤
(x, x

0
))� c

2
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⇤
(m (x) , x))

↵

⇤
(x,w (x)) f

2

(m (x) , x)

. (14)

Next, by assumption (2.5) f

1

(x,w(x))

f

2

(m(x),x)

> 1, and thus if c

33

c

3

is large enough this inequality is satisfied. To see why this is

the case, consider that in the limit as c

33

c

3

! 1, then ↵

⇤
(m(x),x)

↵

⇤
(x,w(x))

! 1 and c

1

(

x,w(x),↵

⇤
(

x,x

0
))

�c

2

(m(x),x,↵

⇤
(m(x),x))

↵

⇤
(x,w(x))f

2

(m(x),x)

! �

where � < 0 by assumption (2.3) and (2.4). Then, by usual continuity argument, there exists a scalar 
2

such that
if c

33

c

3

� 

2

, then (14) is satisfied. This proves that talent is segmented by occupation if c

33

c

3

� 

2

. Last, notice that I
have been omitting throughout this discussion the support of a over which the conditions on c hold. It is immediate
to see that it is sufficient that they hold over the set A

c,X = {↵⇤
(x

0
, x) : x

0
, x 2 X}. In fact, throughout the proof,

c is not evaluated at values of a outside of A
c,X. Additionally, it has of course to hold for any (x

0
, x) 2 X⇥X. This

same comment holds for the case of talent segregation below.
Next, let’s consider the case of talent segregation. Consider again the inequality v

1

(x,w (x)) > v

2

(m (x) , x) as
shown in equation (13) I rewrite the left hand side (LHS) as

↵

⇤
(x,w (x)) f

1

(x,w (x))� c

1

(x,w (x) ,↵

⇤
(x,w (x))) =

"

↵

⇤
(x, x) f

1

(x,w (x))� c

1

(x,w (x) ,↵

⇤
(x, x))

�
↵

⇤
(x,x)ˆ

↵

⇤
(x,w(x))

(f

1

(x,w (x))� c

13

(x,w (x) , a)) da

#
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and the right hand side (RHS) as

↵

⇤
(m (x) , x) f

2

(m (x) , x)� c

2

(m (x) , x,↵

⇤
(m (x) , x)) =

"

↵

⇤
(x, x) f

2

(m (x) , x)� c

2

(m (x) , x,↵

⇤
(xx))

+

↵

⇤
(m(x),x)ˆ

↵

⇤
(x,x)

(f

2

(m (x) , x)� c

23

(m (x) , x)) da

#

Rearranging we get
"

f

1

(x,w (x))� f

2

(m (x) , x)

� [c

1

(x,w (x) ,↵

⇤
(x, x))� c

2

(m (x) , x,↵

⇤
(xx))]

↵

⇤
(x, x)

#

>

"

´
↵

⇤
(m(x),x)

↵

⇤
(x,x)

(f

2

(m (x) , x)� c

23

(m (x) , x)) da

↵

⇤
(x, x)

+

´
↵

⇤
(x,x)

↵

⇤
(x,w(x))

(f

1

(x,w (x))� c

13

(x,w (x) , a)) da

↵

⇤
(x, x)

#

. (15)

Then, as c

33

c

3

! 0, the RHS diverges as long as m (x) > x, so that there exists a small value ✏, such that if
m (x) > x+ ✏, then v

1

(x,w (x)) < v

2

(m (x) , x) . Where, ✏! 0 if c

33

c

3

! 0.
Next, let’s assume that there is not segregation of talent by technology, hence there exist x

0
> x such that

A

⇤
(x

0
) < A

⇤
(x). In order for this to be the case, it must be that x is a worker, x0 is a manager, and the manager

matched with x is more skilled than x

0, thus m

⇤
(x) > x

0. I next build a contradiction when c

33

c

3

! 0. Let’s
take the smallest x in the interval [x, x

0
] such that µ (x) > 0 . Call it x̂. By the necessary conditions above,

v

1

(x̂, w

⇤
(x̂)) � v

2

(m

⇤
(x̂) , x̂) must hold. For the previous argument, this implies that as c

33

c

3

! 0 m

⇤
(x̂) � x̂ < ✏

with ✏! 0. By the definition of x̂, Lemma 2, and market clearing, we get that m

⇤
(x)  m

⇤
(x̂)� (x̂� x). This in

turn implies that m

⇤
(x)� x < ✏ with ✏! 0 which contradicts m

⇤
(x) > x

0. This concludes the proof. �

Remark It can be instructive to consider the case in which c

1

= c

2

= 0. In this case, the condition v

1

(x,w (x)) >

v

2

(m (x) , x) simplifies to
f

1

(x,w (x))

f

2

(m (x) , x)

>

↵

⇤
(m (x) , x)

↵

⇤
(x,w (x))

which is the inequality I discuss in the main text. This inequality is easy to interpret - and prevents the need to
go through the derivations of (14) and (15). It shows that if the gap in optimal technology is always small enough
- then talent segmentation is optimal. Otherwise, if instead the cost function is close to linear, the RHS diverges
for any m (x) > x - since two similarly skilled teams would pick very different technologies - and thus the previous
limit argument shows that talent segregation is optimal.

Heuristic Argument for Special Case It can be instructive to consider the case in which c

1

= c

2

= 0, and
consider a simple heuristic argument that highlights how the convexity of c maps into stronger complementarity.
Let’s consider the value of a team v (x

0
, x). For standard arguments, if a Spence-Mirrless condition holds on v, then

talent is segmented by occupation. This conditions reads as

min

y2X
v

1

(x, y) � max

z2X
v

2

(z, x)
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which can be further rewritten as

v

1

(x, x

min

) � v

2

(x

max

, x)

↵

⇤
(x, x

min

) f

1

(x, x

min

) � ↵

⇤
(x

max

, x) f

2

(x

max

, x)

We can then do a first order Taylor approximateion around x for both the left and the right hand sides to obtain

v

1

(x, x)� (x� x

min

) v

12

(x, x) � v

2

(x, x) + (x

max

� x) v

12

(x, x)

↵

⇤
f

1

� (x� x

min

)

✓

↵

⇤
f

12

+

f

1

f

2

c

33

◆

� ↵

⇤
f

2

+ (x

max

� x)

✓

↵

⇤
f

12

+

f

1

f

2

c

33

◆

f

1

� f

2

� (x

max

� x

min

)

✓

f

12

+

f

1

f

2

c

�1

3

c

33

◆

(16)

where in the second line I used the envelope theorem, and in the third line I rearranged and used the fact that
↵

⇤
(x, x) = c

�1

3

(x, x, f (x, x)). I also omitted the arguments, since they are all equal to (x, x).
We can then compare equations 16 and 6 in the previous appendix. Equation 6 holds by assumption. How-

ever, notice that equation 16 has an additional positive term on the right hand side, f

1

f

2

c

�1

3

c

33

. In fact, the overall
complementarity is given by the one in the production of labor, f

12

, and the one through endogenous technology
choice, f

1

f

2

c

�1

3

c

33

. This last term is small if the convexity of the cost of technology - thus c

�1

3

c

33

- is large, as a result
the single-crossing holds on v and talent is segmented by occupation. Instead, when the convexity is very low, then
this second term goes to infinite. As a result, the single-crossing holds within small partition of the sample space -
thus for x

max

�x

min

very small. This in turn implies that individuals must match with others of very similar type.

A.8 Characterization and Proofs for the Quasi-Linear Model

I here completely characterize the optimal allocation for the quasi-linear model as a function of ⌘ =

ā

a

. I also
provide the proof of Proposition 3.

The allocation can take one of five shapes, that are described in words in the propositions and are graphically
represented in the Figures A.15, A.16, A.17, A.18, and A.19. Within the proof of this propositions I also provide
the proofs of Lemmas 6, 7, and 8. Note that in the proposition I omit for brevity description of w⇤ since it can be
directly imputed through market clearing, that is w

⇤
= m

⇤�1 and the definition of w itself.

Proposition 3.b (Characterization of Quasi-Linear Model). The optimal allocation {!⇤
, µ

⇤
,↵

⇤
,m

⇤
, w

⇤}
takes one of five shapes depending on the value of ⌘ =

ā

a

. In each shape, the optimal technology ↵⇤ is given by the
cutoff policy shown in Lemma 4. There exists four finite constants bigger than one, ⌘

1

< ⌘

2

< ⌘

3

< ⌘

4

, such that
(i) If ⌘  ⌘

1

. Skills are segmented by occupation: low skilled individuals are workers and high skilled ones are
managers. Specifically,

!

⇤
(x) =

8

<

:

1 if x  1

2

0 if x >

1

2

, µ

⇤
(x) =

8

<

:

0 if x  1

2

1 if x >

1

2

A

⇤
(x) =

8

<

:

ā if x 2
⇥

1

2

� (1� ⇣) ,

1

2

⇤

[ [⇣, 1]

a if x 2
⇥

0,

1

2

� (1� ⇣)

⇤

[
⇥

1

2

, ⇣

⇤

m

⇤
(x) =

8

<

:

1

2

+ x if x  1

2

1 if x >

1

2

.
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(ii) If ⌘ 2 [⌘

1

, ⌘

2

]. Skills are imperfectly segmented by occupation: for a set of middle skilled individuals the
optimal allocation dictates a mixed strategy in which for each type x some individuals are going to be workers and
some managers. In this set, the workers use the frontier technology, ā, while the managers use the traditional one,
a. Specifically there exists constants x̂

1

, x̂
2

such that

!

⇤
(x) =

8

>

>

>

<

>

>

>

:

1 if x < x̂

1

⌘

⌘+1

if x 2 [x̂

1

, x̂

2

] ,

0 if x > x̂

2

µ

⇤
(x) =

8

>

>

>

<

>

>

>

:

0 if x < x̂

1

1� ⌘

⌘+1

if x 2 [x̂

1

, x̂

2

]

1 if x > x̂

2

A

⇤
(x) =

8

>

>

>

<

>

>

>

:

ā if x 2 [x̂

1

� (1� ⇣ � � (x̂

2

� x̂

1

)) , x̂

1

] [ [⇣, 1]

ā

⌘

⌘+1

+

⇣

1� ⌘

⌘+1

⌘

a if x 2 [x̂

1

, x̂

2

]

a if x 2
h

0, x̂

1

�
⇣

1� ⇣ � ⌘

⌘+1

(x̂

2

� x̂

1

)

⌘i

[ [x̂

2

, ⇣]

m

⇤
(x) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x̂

1

+

1

1� ⌘

⌘+1

x if x 2
h

0,

⇣

1� ⌘

⌘+1

⌘

(x̂

2

� x̂

1

)

i

x̂

2

+ x�
⇣

1� ⌘

⌘+1

⌘

(x̂

2

� x̂

1

) if x 2
h⇣

1� ⌘

⌘+1

⌘

(x̂

2

� x̂

1

) , x̂

1

i

x̂

2

+ x̂

1

�
⇣

1� ⌘

⌘+1

⌘

(x̂

2

� x̂

1

) + � (x� x̂

1

) if x 2 [x̂

1

, x̂

2

]

1 if x � x̂

2

.

(iii) If ⌘ 2 [⌘

2

, ⌘

3

]. Skills are even less segmented by occupation: there is a set of workers matched with the
most skilled managers and using the frontier technology ā that are more skilled than some managers which use the
traditional technology. Specifically there exists constants x̂

1

, x̂
2

, x̂
3

such that73

!

⇤
(x) =

8

>

>

>

<

>

>

>

:

1 if x 2 [0, x̂

1

] [ [x̂

2

, x̂

3

]

⌘

⌘+1

if x 2 (x̂

1

, x̂

2

)

0 if x > x̂

3

, µ

⇤
(x) =

8

>

>

>

<

>

>

>

:

0 if x 2 [0, x̂

1

] [ [x̂

2

, x̂

3

]

1� ⌘

⌘+1

if x 2 (x̂

1

, x̂

2

)

1 if x > x̂

3

A

⇤
(x) =

8

>

>

>

<

>

>

>

:

ā if x 2 [x̂

2

, 1]

⌘

⌘+1

ā+

⇣
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⌘+1

⌘

a if x 2 [x̂

1

, x̂

2

]

a if x 2 [0, x̂

1

]

m

⇤
(x) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

x̂

1

+

1

1� ⌘

⌘+1

x if x 2
h

0,

⇣

1� ⌘

⌘+1

⌘

(x̂

2

� x̂

1

)

i

x̂

3

+ x�
⇣

1� ⌘

⌘+1

⌘

(x̂

2

� x̂

1

) if x 2
h⇣

1� ⌘

⌘+1

⌘

(x̂

2

� x̂

1

) , x̂

1

i

x̂

3

+ x̂

1

�
⇣

1� ⌘

⌘+1

⌘

(x̂

2

� x̂

1

) + � (x� x̂

1

) if x 2 [x̂

1

, x̂

2

]

x̂

3

+ x̂

1

�
⇣

1� ⌘

⌘+1

⌘

(x̂

2

� x̂

1

) + � (x̂

2

� x̂

1

) + (x� x̂

2

) if x 2 [x̂

2

, x̂

3

]

1 if x � x̂

3

.

(iv) If ⌘ 2 [⌘

3

, ⌘

4

]. Skills are almost perfectly segregated by technology: most of the individuals which use the
traditional technology a are less skilled than those that use the frontier one ā, there is however a group of managers
that use a which are more skilled than the lowest skilled workers among those that use ā. Specifically there exists

73In order to ease notation I am using again x̂

1

, and x̂

2

. However notice that these constant are not necessarily
identical to the ones defined for the case ā

a

2 [⌘

1

, ⌘

2

]. In fact in general have a different value. This is true for all
constants defined below.
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constants x̂

1

, x̂
2

, x̂
3

, x̂
4

such that

!

⇤
(x) =

8

>

>

>

<

>

>

>

:

1 x 2 [0, x̂

1

] [ [x̂

3

, x̂

4

]

⌘

⌘+1
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2
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3

)

0 x 2
⇣
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1

, x̂

2

i

[
⇣

x̂

4

, 1

i

, µ

⇤
(x) =

8

>

>

>

<

>

>

>

:

0 x 2 [0, x̂

1

] [ [x̂

3

, x̂

4

]

1� ⌘

⌘+1

x 2 (x̂

2

, x̂

3

)

1 x 2
⇣

x̂

1

, x̂

2

i

[
⇣

x̂

4

, 1

i

A

⇤
(x) =

8

>

>

>

<

>

>

>

:

ā if x 2 [x̂

3

, 1]

⌘

⌘+1

ā+

⇣

1� ⌘

⌘+1

⌘

a if x 2 [x̂

2

, x̂

3

]

a if x 2 [0, x̂

2

]

m

⇤
(x) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

x̂

1

+ x if x 2 [0, (x̂

2

� x̂

1

)]

x̂

2

+

1

(1��) (x� (x̂

2

� x̂

1

)) if x 2 [(x̂

2

� x̂

1

) , x̂

1

]

x̂

3

if x 2 [x̂

1

, x̂

2

]

x̂

4

+ � (x� x̂

2

) if x 2 [x̂

2

, x̂

3

]

x̂

4

+ � (x̂

3

� x̂

2

) + x� x̂

3

if x 2 [x̂

3

, x̂

4

]

1 if x � x̂

4

.

(v) If ⌘ � ⌘

4

. Skills are segregated by technology: low skilled individuals use the traditional technology a, and
high skilled ones use the frontier technology ā. Among the individuals that use a, the most skilled are managers.
Similarly, among the individuals that use ā, the most skilled are managers. Specifically, there exists constants x̂

1

,
x̂

2

, x̂
3

such that

!

⇤
(x) =

8

<

:

1 x 2 [0, x̂

1

] [ [x̂

2

, x̂

3

]

0 x 2 (x̂

1

, x̂

2

) [
⇣

x̂

3

, 1

i

, µ

⇤
(x) =

8

<

:

0 x 2 [0, x̂

1

] [ [x̂

2

, x̂

3

]

1 x 2 (x̂

1

, x̂

2

) [
⇣

x̂

3

, 1

i

A

⇤
(x) =

8

<

:

ā if x 2 [x̂

2

, 1]

a if x 2 [0, x̂

2

]

m

⇤
(x) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

x̂

1

+ x if x 2 [0, x̂

1

]

x̂

2

if x 2 [x̂

1

, x̂

2

]

x̂

3

+ (x� x̂

2

) if x 2 [x̂

2

, x̂

3

]

1 if x � x̂

3

.

Proof. Let’s first consider the optimal technology choice. Consider any team (x

0
, x). Given the step-wise linearity

of the cost function and the linearity in a of the marginal return from technology, that are given by x

0
(1 + �x), a

team picks either ā or a. Hence a team picks ā if and only if

āx

0
(1 + �x)� ⇣ (ā� a) (1 + �x) > ax

0
(1 + �x)

x

0
> ⇣

this proves Lemma 5. Also, this gives the usual function v (x

0
, x; ā, a) that takes into consideration optimal tech-
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nology choice and that is given by

v (x

0
, x; ā, a) =

8

<

:

(ā (x

0 � ⇣) + a⇣) (1 + �x) if x0 � ⇣

ax

0
(1 + �x) if x0

< ⇣

Next, let me prove that the problem is homogeneous. Using Lemma 1, total output is given by

Y =

ˆ

X

v (m (x) , x; ā, a)! (x) dx = a

ˆ

X

v (m (x) , x; ⌘, 1)! (x) dx

where the first equality comes from the definition of total output, and the second one from the functional form of v
shown above. Lemma 6 follows immediately. To ease notation I next drop the explicit dependence of v (x0

, x; ⌘, 1)

on ⌘.
I now prove the main part of the proposition. Let’s consider the marginal of v for types x (either when workers

or managers), while matched with their corresponding partners

v

1

(x,w (x)) =

8

<

:

⌘ (1 + �w (x)) if x � ⇣

(1 + �w (x)) if x < ⇣

v

2

(m (x) , x) =

8

<

:

� (⌘ (m (x)� ⇣) + ⇣) if m (x) � ⇣

�m (x) if m (x) < ⇣

also notice that

v

12

(x,w (x)) =

8

<

:

�⌘ if x � ⇣

� if x < ⇣

v

12

(m (x) , x) =

8

<

:

�⌘ if m (x) � ⇣

� if m (x) < ⇣

as a result we get that, since m (x) , w (x) , x 2 [0, 1]

v

1

(x,w (x)) > v

2

(m (x) , x) if x � ⇣

v

1

(x,w (x)) > v

2

(m (x) , x) if m (x) < ⇣

v

1

(x,w (x)) < v

2

(m (x) , x) if x < ⇣and m (x) >  (⌘, w (x))

where
 (⌘, w (x)) = ⇣ +

1 + �w (x)� ⇣�

�⌘

so that lim

⌘!1  (⌘, w (x)) = ⇣ and 

1

< 0. Next, we can use the first order conditions and the above marginal
values to characterize the shape that the optimal allocation must have. As mentioned, with shape I refer to the
number of cutoff in which occupation change. First, let me recall that the necessary first order conditions are

1. 8x s.t. !⇤
(x) > 0 and µ

⇤
(x) > 0 then v

1

(x,w

⇤
(x)) = v

2

(m

⇤
(x) , x);

2. 8x s.t. µ

⇤
(x� ✏) = 0 and µ

⇤
(x) > 0 then v

1

(x,w

⇤
(x)) � v

2

(m

⇤
(x) , x);

3. 8x s.t. µ

⇤
(x� ✏) > 0 and µ

⇤
(x) = 0 then v

1

(x,w

⇤
(x))  v

2

(m

⇤
(x) , x).
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Next, I show two Lemmas that highlights two properties that must hold in order for the necessary conditions to be
satisfied. These are useful for the rest of the proof.

Lemma A.7.1. In the optimal allocation, within the interval x 2 [⇣, 1], there cannot be a worker more skilled
than a manager. This result holds immediately due to the fact that v

1

(x,w (x)) > v

2

(m (x) , x) if x � ⇣.
Lemma A.7.1. In the optimal allocation, there cannot exists (x

1

, x

2

, x

3

) such that x

1

< x

2

< x

3

< ⇣ and
µ

⇤
(x

1

) = 1 , !⇤
(x

2

) = 1 , and µ

⇤
(x

3

) = 1. Therefore in the optimal allocation there cannot be a set of workers
in between two sets of managers, as long as the lowest skill of the most skilled set of managers is less skilled than
⇣. Let me now prove this result. In order for the one described to be an optimal allocation, it must be that there
exist (x

0
1

, x

0
2

), with x

1

 x

0
1

 x

2

 x

0
2

 x

3

such that v

1

(x

0
1

, w

⇤
(x

0
1

))  v

2

(m

⇤
(x

0
1

) , x

0
1

) and v

1

(x

0
2

, w

⇤
(x

0
2

)) �
v

2

(m

⇤
(x

0
2

) , x

0
2

). But this two inequalities cannot hold simultaneously according to the definition of v
1

, v
2

, and v

12

.
In fact, in order for v

1

(x

0
1

, w

⇤
(x

0
1

))  v

2

(m

⇤
(x

0
1

) , x

0
1

) to hold, it must be that m⇤
(x

0
1

) > ⇣, but then since x

0
2

< ⇣ ,
v

12

(m

⇤
(x) , x) > v

12

(x,w

⇤
(x)) 8x 2 [x

0
1

, x

0
2

] and thus v

1

(x

0
1

, w

⇤
(x

0
1

)) < v

2

(m

⇤
(x

0
1

) , x

0
1

), contradicting the second
inequality. This result turns out to be extremely useful in the characterization, because it limits the number of
cases that we have to consider.

Next, I characterize each case as ⌘ increases.
Case 1: ⌘ 2 [1, ⌘

1

]. Consider first ⌘ = 1. It is simple to verify that this implies that v
1

(x,w (x)) > v

2

(m (x) , x)

for any m. Hence, according to the conditions above, there cannot be a worker more skilled than a manager, since
that would require that there exist an x such that v

1

(x,w (x)) < v

2

(m (x) , x). Next, let’s consider ⌘
1

that solves

 (⌘

1

, 0) = 1.

For any ⌘ < ⌘

1

,  (⌘, 0) > 1, hence over the relevant support, v
1

(x,w (x)) > v

2

(m (x) , x). Therefore we have shown
that talent is segmented by occupation for any ⌘ 2 [1, ⌘

1

]. The used technology and the matching function follows
directly from the characterization of the shape of the optimal assignment, hence I discuss them only when some
properties are useful to be emphasized.

Case 2: ⌘ 2
⇣

⌘

1

, ⌘

2

i

, where ⌘
1

is as previously defined and ⌘
2

is such that  (⌘
2

, x̂

0

) = 1, where x̂

0

is defined as
the type such that m

⇤
(x̂

0

) = ⇣. For this values of ⌘ the optimal allocation is given by

!

⇤
(x) =

8

>

>

>

<

>

>

>

:

1 if x < x̂

1

� if x 2 [x̂

1

, x̂

2

] ,

0 if x > x̂

2

µ

⇤
(x) =

8

>

>

>

<

>

>

>

:

0 if x < x̂

1

1� � if x 2 [x̂

1

, x̂

2

]

1 if x > x̂

2

where x̂

1

, x̂

2

, and � must satisfy - by the first order conditions -

v

1

(x,w (x)) = v

2

(m (x) , x) 8x 2 [x̂

1

, x̂

1

]

and since by market clearing m (x) = x̂

1

+ �x 8x 2 [x̂

1

, x̂

2

] and w (x) = 0 + (1� �)x, then we can rewrite the
previous equality as

(1 + � (1� �)x) = � (⌘ (x̂

1

+ �x� ⇣) + ⇣) 8x 2 [x̂

1

, x̂

2

]

which immediately implies that

� =

⌘

⌘ + 1

.

� gives the fraction of managers and workers such that the equality between the marginal product is satisfied.
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Notice that this allocation satisfies, by construction, the necessary conditions for optimality. Also, notice that no
other allocation might satisfy them. Due to Lemma A.7.2, the only other alternative allocation would be to have
a set of only workers that must expand until x > ⇣. However, in order for that to be optimal, it should be that
v

1

(⇣, x̂

0

)  v

2

(1, ⇣) but this is not satisfied, due to the fact that ⌘  ⌘

2

.74

Case 3: ⌘ 2
⇣

⌘

2

, ⌘

3

i

, where ⌘
3

is defined such that  (⌘
3

, 0) = x̂

3

. With this parameter value, the previous
allocation is not optimal anymore. The reason being that for ⌘ > ⌘

2

at ⇣

v

2

(1, ⇣) > v

1

(⇣, x̂

0

)

with x̂

0

defined above. In fact the optimal allocation is given by

!

⇤
(x) =

8

>

>

>

<

>

>

>

:

1 if x 2 [0, x̂

1

] [ [x̂

2

, x̂

3

]

� if x 2 (x̂

1

, x̂

2

)

0 if x > x̂

3

, µ

⇤
(x) =

8

>

>

>

<

>

>

>

:

0 if x 2 [0, x̂

1

] [ [x̂

2

, x̂

3

]

1� � if x 2 (x̂

1

, x̂

2

)

1 if x > x̂

3

where � as before is set to guarantee

v

1

(x,w (x)) = v

2

(m (x) , x) 8x 2 [x̂

1

, x̂

1

] ,

hence � =

⌘

⌘+1

and additionally x̂

3

> ⇣, or otherwise Lemma A.7.1 would be violated. This allocation satisfies by
construction the necessary conditions. The only other allocation that could satisfy the necessary conditions would
be one in which there is a set of managers before the mixed region (x̂

1

, x̂

2

). The condition that  (⌘
3

, 0) = x̂

3

prevents this to be optimal. In fact, for this to be the case, it should be that for some x

v

2

(x̂

3

, x) > v

1

(x, 0) ,

but this is excluded due to the fact that ⌘  ⌘

3

.
Case 4: ⌘ 2

⇣

⌘

3

, ⌘

4

i

, where ⌘

4

solves  (⌘
4

, x̂

1

) = x̂

3

. Now consider a marginal increase in ⌘, then the
previously described deviation (a set of managers before the mixed region (x̂

1

, x̂

2

)) becomes optimal. Hence the
optimal allocation is described by

!

⇤
(x) =

8

>

>

>

<

>

>

>

:

1 x 2 [0, x̂

1

] [ [x̂

3

, x̂

4

]

� x 2 (x̂

2

, x̂

3

)

0 x 2
⇣

x̂

1

, x̂

2

i

[
⇣

x̂

4

, 1

i

, µ

⇤
(x) =

8

>

>

>

<

>

>

>

:

0 x 2 [0, x̂

1

] [ [x̂

3

, x̂

4

]

1� � x 2 (x̂

2

, x̂

3

)

1 x 2
⇣

x̂

1

, x̂

2

i

[
⇣

x̂

4

, 1

i

where as usual � =

⌘

⌘+1

. Additionally, notice that this allocation is optimal as long as x̂

2

< x̂

3

. In fact the only
possible deviation that could satisfy the necessary conditions would be to have an empty region of mixing. This is

74I can also show how to solve explicitly for x̂

0

and ⌘

2

, so that they are not expressed in terms of endogenous
objects. We do this, by using market clearing, that gives

(1� x̂

0

) + (⇣ � x̂

0

)

✓

⌘

2

⌘

2

+ 1

◆

=

1

2

and the definition of  itself.
⇣ +

1 + �x̂

0

� ⇣�

�⌘

2

= 1.
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not optimal as long as
v

1

(x̂

1

, w (x̂

1

)) � v

2

(x̂

3

, x̂

1

)

which is satisfied by the fact that ⌘ � ⌘

4

.
Case 5: ⌘ 2 (⌘

4

,1). Now, the optimal allocation is given by

!

⇤
(x) =

8

<

:

1 x 2 [0, x̂

1

] [ [x̂

2

, x̂

3

]

0 x 2 (x̂

1

, x̂

2

) [
⇣

x̂

3

, 1

i

, µ

⇤
(x) =

8

<

:

0 x 2 [0, x̂

1

] [ [x̂

2

, x̂

3

]

1 x 2 (x̂

1

, x̂

2

) [
⇣

x̂

3

, 1

i

This hold immediately from the fact that ⌘ > ⌘

4

, hence the previously discussed deviation would be optimal and
thus there cannot be any mixing region. Usual arguments show that this is the only possible allocation that satisfies
the necessary conditions and conclude the proof. �

Remark (Solving for the Cutoffs x̂

s

) Given the equilibrium shape, as shown in the previous proposition,
we can solve for the optimal cutoffs by rewriting the planner problem incorporating the shape described and then
simply taking the first order condition with respect to the cutoffs. As an illustrative example, consider the Case 5,
⌘ 2 (⌘

4

,1).
The planner problem becomes

max

x̂

1

,x̂

2

,x̂

3

x̂

1ˆ
0

v (m

⇤
(x) , x) dx+

x̂

3ˆ

x̂

2

v (m

⇤
(x) , x) dx

subject to the market clearing constraints

x̂

2

� x̂

1

= x̂

1

1� x̂

3

= x̂

3

� x̂

2

where

m

⇤
(x) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

x̂

1

+ x if x 2 [0, x̂

1

]

x̂

2

if x 2 [x̂

1

, x̂

2

]

x̂

3

+ (x� x̂

2

) if x 2 [x̂

2

, x̂

3

]

1 if x � x̂

3

and

↵

⇤
(x) =

8

<

:

ā if x 2 [x̂

2

, 1]

a if x 2 [0, x̂

2

]

We can then just take the first order conditions using Leibnitz lemma to find a system of three equations in three
unknowns that can be solved numerically.

Proof of Proposition 3 First, let’s use Proposition 3.b to calculate ⇡ (⌘) for Case 1 and Case 5. For Case 1,
which corresponds to talent segmentation, it is given by

⇡ (⌘) =

(1�⇣)
2

� (

⇣+

1

2

)

2

1

2

=

1

2

.
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For Case 5, which corresponds to talent segregation, it is given by

⇡ (⌘) = 1

since A

⇤
(x) = A

⇤
p

(x) .
Next, I show that ⇡ (⌘) is non-decreasing in ⌘ for values of ⌘ 2 [⌘

1

, ⌘

4

]. Let '⇤
(⌘

0
) be the optimal allocation

for ⌘0, with associated ⇡ (⌘

0
). Next, assume that exists ⌘ > ⌘

0 such that the optimal allocation '

⇤
(⌘) is such that

⇡ (⌘) < ⇡ (⌘

0
). I show that this would lead to a contradiction. Total output in the allocation '⇤

(⌘

0
) can be rewritten

as

a

2

6

4

⌘

0
ˆ

⌦(ā;⌘

0
)

v (m

⇤
(x; ⌘

0
) , x)!

⇤
(x; ⌘

0
) dx+

ˆ

⌦(a;⌘

0
)

v (m

⇤
(x; ⌘

0
) , x)!

⇤
(x; ⌘

0
) dx

3

7

5

where

⌦ (ā; ⌘

0
) ⌘ {x : ↵

⇤
(m

⇤
(x; ⌘

0
) , x) = a}

⌦ (a; ⌘

0
) ⌘ {x : ↵

⇤
(m

⇤
(x; ⌘

0
) , x) = a}

next let’s define

B (⌘

0
) ⌘

ˆ

⌦(ā;⌘

0
)

v (m

⇤
(x; ⌘

0
) , x)!

⇤
(x; ⌘

0
) dx

C (⌘

0
) ⌘

ˆ

⌦(ā;⌘

0
)

v (m

⇤
(x; ⌘

0
) , x)!

⇤
(x; ⌘

0
) dx

thus the output of the allocation '⇤
(⌘) can be written as

a [⌘B (⌘) + C (⌘)] .

Next, ⇡ (⌘) < ⇡ (⌘

0
) implies that

B (⌘

0
) > B (⌘)

C (⌘

0
) < C (⌘)

then optimality of '⇤
(⌘

0
) and '⇤

(⌘) requires respectively that

⌘

0
B (⌘

0
) + C (⌘

0
) > B (⌘) + C (⌘)

⌘B (⌘) + C (⌘) > B (⌘

0
) + C (⌘

0
)

which thus gives

⌘

0
>

C (⌘)� C (⌘

0
)

B (⌘)�B (⌘

0
)

⌘ <

C (⌘)� C (⌘

0
)

B (⌘)�B (⌘

0
)

which contradicts the fact that ⌘ > ⌘

0 and shows that ⇡ (⌘) cannot be decreasing in ⌘.
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Last, notice that 8⌘ 2 (⌘

1

, ⌘

4

), as shown in Proposition 3.b talent is nor segmented nor segregated, which gives
⇡ (⌘) 2

�

1

2

, 1

�

8⌘ 2 (⌘

1

, ⌘

4

) and concludes the proof. �

Figure A.15: Quasi-Linear Model: Segmentation ā

a

 ⌘

1

Notes: I plot the occupational choice for each individual. The squared brackets put together individuals with the
same occupation. If the square brackets is grey with a grey dot on top of it means that individuals in that interval
are workers. If instead is black it means that are managers. Dotted square brackets with one grey and one black
dot on top are regions in which there is mixing, to the extent that some individuals are managers and some others
workers. The red regions highlight the individuals using the frontier technology ā. The red striped regions are
present in mixing area on which the workers use ā, while the managers use a. A grey dot represents a worker, while
a black dot represents a manager. Dotted lines connect a worker with his manager.

Figure A.16: Quasi-Linear Model: ā

a

2 [⌘

1

, ⌘

2

]

Notes: See Figure A.15.

Figure A.17: Quasi-Linear Model: ā

a

2 [⌘

2

, ⌘

3

]

Notes: See Figure A.15.

85



Figure A.18: Quasi-Linear Model: ā

a

2 [⌘

3

, ⌘

4

]

Notes: See Figure A.15.

Figure A.19: Quasi-Linear Model: Segregation, ā

a

� ⌘

4

Notes: See Figure A.15.

A.9 Details on Self-Employment

I here define the planner problem with self-employment and provide a proof of Proposition 4. I also discuss
how the mass of self-employed individuals changes as ⌘ varies.

First let me summarize the assumptions on the environment. I work with the case X = [0, 1], and the quasi-
linear model. I define the production function of a self-employed of ability x with technology a as g

s

(x, a). The
next assumption summarizes the environment

Assumption A.9.1 (Self-Employment Model) For � <

1

2

and ⇣ 2
✓

1

2

+

�+

p
�

2

+�(2��)
4�2�

, 1

◆

X = [0, 1]

f (x

0
, x) = x

0
(2� � + �x)

c (x

0
, x, a; a, ā) = c̃ (a; a, ā) (2� � + �x)

c̃ (a; a, ā) =

8

>

>

>

<

>

>

>

:

0 if a < a

⇣ (a� a) if a 2 [a, ā]

1 if a > ā

g

s

(x, a) = ax� c̃ (a; a, ā) .

Notice that the functional form for f and the conditions on � and ⇣ are changed with respect to the quasi-
linear model in the main text. These functional forms guarantee that in the optimal allocation not everyone is

86



self-employed, but at least someone is. Additionally, they guarantee that at least some manager use the traditional
technology a.

Definition A.9.1 (Allocation). An allocation ' is a septuple of functions {!̃, µ̃, �̃, m̃, w̃,↵,↵

s

}, where (i) !̃ :

X ⇥ I ! {0, 1} is a function that takes value one if an individual is a worker; (i) µ̃ : X ⇥ I ! {0, 1} is a
function that takes value one if an individual is a manager; (iii) �̃ : X ⇥ I ! {0, 1} is a function that takes value
one if an individual is a self-employed; (iv) m̃ : W ! M assigns each individual in the set W, that is closure
of the set of workers {(x, i) : !̃ (x, i) = 1}, to a partner in the set M, that is the closure of the set of managers
{(x, i) : µ̃ (x, i) = 1}; (v) w̃ : M ! W assigns to each manager a corresponding worker; (vi) ↵ : X⇥X ! A assigns
to each possible pair of types a production technology within the available set A; and (vii) ↵

s

: X ! A assigns to
each self-employed type a production technology.

The set A is the set of available technologies, which, if not otherwise specified, is equal to the set of positive
real numbers.

Definition A.9.2 (Feasible Allocation). An allocation ' is feasible if (i) µ̃ (x, i) + !̃ (x, i) + �̃ (x, i) = 1

8 (x, i) 2 X⇥ I; and (ii) m̂ and ŵ are measure preserving bijection; (iii) m (x, i) = (x

0
, i

0
) implies w (x

0
, i

0
) = (x, i)

and w (x, i) = (x

0
, i

0
) implies m (x

0
, i

0
) = (x, i) 8 (x, i) 2 X⇥ I. I call F the set of all feasible allocations.

It is also useful to define few auxiliary functions which I use in the definition of the planner’s problem.

Definition A.9.3 (Occupational Choice Functions). Define (i) ! (x) =

´
I !̃ (x, i) di the function that de-

scribes the fractions of individuals of type x who are workers; (i) � (x) =
´
I �̃ (x, i) di the function that describes the

fractions of individuals of type x who are self-employed; and (ii) µ (x) = 1�! (x)�� (x) the function that describes
the fractions of individuals of type x who are managers.

I call ! and µ the occupational choice functions.

Definition A.9.4 (Matching Functions). I define (i) m

x

: W ! X to be the function that assigns to each
worker the type of his manager, hence if m̃ (x, i) = (x

0
, i

0
) then m

x

(x, i) = x

0; (ii) m : X ! X to be the function
that assigns to each type of workers the average type of its managers, hence m (x) =

´
I mx

(x, i) di if ! (x) > 0

and m (x) =

´
I mx

(x̂, i) di where x̂ = max {x0 2 X : x

0
< x and ! (x) > 0} otherwise; (iii) w

x

: M ! X to be the
function that assigns to each manager the type of his worker, hence if w̃ (x, i) = (x

0
, i

0
) then w

x

(x, i) = x

0; (ii)
w : X ! X to be the function that assigns to each type of manager the average type of its workers, hence w (x) =´
I wx

(x, i) di if µ (x) > 0 and w (x) =

´
I wx

(x̂, i) di where x̂ = max {x0 2 X : x

0
< x and µ (x) > 0} otherwise.

Planner’s Problem. The planner picks the feasible allocation which maximizes total output:

max

'2F
Y (')

where output is given by

Y (') =

ˆ

X

ˆ

I

g (m

x

(x, i) , x,↵ (m

x

(x, i) , x)) !̃ (x, i) dxdi+

ˆ

X

ˆ

I

g

s

(x,↵

s

(x)) �̃ (x, i) dxdi.

The only difference with respect to the quasi-linear problem is the additional term that sums the output produced
by self-employed.

For brevity, I omit the complete characterization of the problem, which follows the same steps of the one for
the quasi-linear problem shown in Proposition 3.b. It is available upon request. I nonetheless provide a proof of
Proposition 4 that does not require the complete characterization.
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Proof of Proposition 4. Lemmas 0 and 2-3 holds trivially for this setting as well. Also, the introduction of
self-employment does not affect the homogeneity in a (Lemma 6). As a preliminary step, let me define, given the
new functional forms, the output of a team (x

0
, x) and the one of a self-employed that takes into account optimal

technology. They are

v (x

0
, x) =

8

<

:

(⌘ (x

0 � ⇣) + ⇣) (2� � + �x) if x0 � ⇣

x

0
(2� � + �x) if x0

< ⇣

v

s

(x) =

8

<

:

⌘ (x� ⇣) + ⇣ if x � ⇣

x if x < ⇣

where I have already used the reformulation of the problem in terms of ⌘, that is possible due to homogeneity. The
marginal products are given by

v

1

(x

0
, x) =

8

<

:

⌘ (2� � + �x) if x0 � ⇣

1 (2� � + �x) if x0
< ⇣

v

2

(x

0
, x) =

8

<

:

� (⌘ (x

0 � ⇣) + ⇣) if x0 � ⇣

�x

0 if x0
< ⇣

v

0
s

(x) =

8

<

:

⌘ if x � ⇣

1 if x < ⇣

I next write the necessary first order conditions. They are in the same spirit as the ones of the model without
self-employment, but with additional conditions resulting from the choice of �⇤.

1. 8x s.t. !⇤
(x) > 0 and µ

⇤
(x) > 0 then v

1

(x,w

⇤
(x)) = v

2

(m

⇤
(x) , x);

2. 8x s.t. !⇤
(x) > 0 and �⇤

(x) > 0 then v

0
s

(x) = v

2

(m

⇤
(x) , x);

3. 8x s.t. µ

⇤
(x) > 0 and �⇤

(x) > 0 then v

0
s

(x) = v

1

(x,w

⇤
(x));

4. 8x s.t. !⇤
(x� ✏) = 0; µ⇤

(x� ✏) > 0; and !⇤
(x) > 0 then v

1

(x,w

⇤
(x))  v

2

(m

⇤
(x) , x);

5. 8x s.t. !⇤
(x� ✏) = 0; �⇤

(x� ✏) > 0; and !⇤
(x) > 0 then v

0
s

(x)  v

2

(m

⇤
(x) , x);

6. 8x s.t. µ

⇤
(x� ✏) = 0; !⇤

(x� ✏) > 0; and µ

⇤
(x) > 0 then v

2

(m

⇤
(x) , x)  v

1

(x,w

⇤
(x));

7. 8x s.t. µ

⇤
(x� ✏) = 0; �⇤

(x� ✏) > 0; and µ

⇤
(x) > 0 then v

0
s

(x)  v

1

(x,w

⇤
(x));

8. 8x s.t. �⇤
(x� ✏) = 0; !⇤

(x� ✏) > 0; and �⇤
(x) > 0 then v

1

(x,w

⇤
(x))  v

0
s

(x);

9. 8x s.t. �⇤
(x� ✏) = 0; µ⇤

(x� ✏) > 0; and �⇤
(x) > 0 then v

2

(m

⇤
(x) , x)  v

0
s

(x);

Using condition (9) and the fact that, given the chosen functional form, v

0
s

(x) < v

1

(x,w

⇤
(x)) 8x, we get that

in the optimal allocation the most skilled self-employed must be less skilled than the least skilled manager. As
a result, since we work with parameter values (high enough ⇣) such that at least some managers use the low
technology a, we get that self-employed use only a. Therefore no self-employed is more skilled than ⇣, and this
implies that for all self-employed v

0
s

(x) = 1. This in turn, using again the first order conditions, implies that the
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set of self-employed is connected, and that �⇤
(x) 2 {0, 1} almost everywhere. Then, in order to calculate the

expected ability of self-employed is sufficient to calculate the difference between the mass of individuals which are
more skilled than self-employed and those that are less skilled than them. In fact, let �

max

= max

x

{x : �

⇤
(x) = 1}

and �
min

= min

x

{x : �

⇤
(x) = 1}, then the average ability of self-employed is given by # =

�

max

+�

min

2

. Where the
set [�

max

, 1] is the set of individuals more skilled than self-employed and [0,�

min

] the set of types less skilled. They
are respectively of masses (defined h and l) h = (1� �

max

) and l = �

min

. We can then rewrite # =

1�(h�l)

2

, that
shows that # is decreasing in (h� l). Next, let’s notice that since v

2

(m

⇤
(x) , x) is increasing in x, while v

0
s

(x) is
constant, it must be that

h =

1ˆ
0

µ

⇤
(x) dx+

1ˆ

x: v

2

(m

⇤
(x),x)=v

0
s

(x)

!

⇤
(x) dx

l =

x: v

2

(m

⇤
(x),x)=v

0
s

(x)ˆ
0

!

⇤
(x) dx,

and then by market clearing we get

h� l = 2

1ˆ

x: v

2

(m

⇤
(x),x)=v

0
s

(x)

!

⇤
(x) dx.

Last, we need to show that 2

´
1

x: v

2

(m

⇤
(x),x)=v

0
s

(x)

!

⇤
(x) dx increases in ⌘. Notice that this is the set of workers that

is matched with managers more skilled than ⇣ and such that v

2

(m

⇤
(x) , x) � v

0
s

(x). This last inequality can be
rewritten, using the functional forms, as

m (x) � ⇣ +

1� ⇣�

�⌘

,

we know that the set of manager more skilled than ⇣ is connected as well (again using the first order conditions),
as a result

1ˆ

x: v

2

(m

⇤
(x),x)=v

0
s

(x)

!

⇤
(x) dx =



min

⇢

1, ⇣ +

1� ⇣�

�⌘

�

, 1

�

which shows that the selection of self-employed is equal to 0 for low enough ⌘, and monotonically decreasing after
that. This thus concludes the proof. �

Remark: Number of Self-Employed It may also be interesting to ask what are the determinants of the number
of individuals which are optimally allocated to self-employment, and how it changes as a function of distance from
the frontier. Let’s consider two individuals x and x

0, with x

0
> x. It is optimal to organize them in a pair if and

only if
g (x

0
, x↵

⇤
(x

0
)) > g

s

(x

0
,↵

⇤
(x

0
)) + g

s

(x,↵

⇤
(x))

where I’ve used the fact that in the quasi-linear setting the optimal technology depends only on the type of the
manager. From the expression above we can notice that forming a pair allows to leverage the technology of the most
skilled individuals, since both workers then use ↵⇤

(x

0
). However there is also a cost to form a pair, since - due to the

chosen functional forms - g (x, x, a) < g

s

(x, a) + g

s

(x, a). The result is that it is never optimal to form a pair with
two identical individuals, but they would rather work both as self-employed. Intuitively, a firm is optimal only to
the extent that the cost in terms of transaction costs within the firms is compensated by the fact that the manager
can leverage his higher talent. Next, with this trade-off in mind we can explore the role of distance to the frontier.
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When a country is farther from the frontier, there is more scope to leverage the talent, since the gap between the
frontier and the traditional technology is higher, this reduces the number of self-employed. However, if we focus
within the traditional sector, then we are left with individuals which use the same technology, and which are more
similar between each other, since all the high skilled ones are allocated to the modern sector. The compression of
the skill distribution in the traditional sector increases the number of self-employed. The overall effect depends on
parameter values, but let me stress that the model is able to replicate, as in the example shown in figures 4a and
4b, the fact that in countries far from the frontier we observe a very large number of low skilled self-employed.

A.10 Model Extension with Endogenous Education

I here show, in a simple environment, that the relationship between the convexity of cost of technology and the
pattern of matching is robust to the inclusion of an endogenous education choice. Additionally, allowing individuals
to choose an optimal investment in education shows that the relationship between education and ability is positive,
as assumed in the empirical application, and provides additional implications that are supported in the data.

I make the following assumptions on the environment. X = {x
1

, x

2

, x

3

, x

4

}, with x

1

< x

2

< x

3

< x

4

and
I = {1}. Production function for a team of individuals of ability (x

0
, x) that choose education investment (s

0
, s) is

given by
ĝ (x

0
, x, s

0
, s, a) = g (x

0
+ s

0
, x+ s, a)�  (s

0
)�  (s)

where

g (x

0
, x, a) = (ax

0 � c (a)) (1 + �x)

c (a) =

a

1+ 

1 +  

 (s) = '

0

s

1+'

1

1 + '

1

The setting is familiar, with the exception of the convex costs of education  (s0) and  (s). Also notice that education
and skills are perfect substitutes. I omit any direct complementarity in order to highlight that this setting implies
naturally a positive correlation between ability and education, even if everyone has identical production function of
ability from school (education).

I need a single crossing condition that takes into consideration the endogenous choice of education. In particular
I impose that � is small enough such that at least in the case in which  ! 1 is optimal to have an allocation with
full skill-segmentation. This assumption is similar to the single-crossing condition, but takes into account also the
endogenous choice of education.

Assumption A.10.1 (Single-Crossing with Endogenous Education)

min

y2X
1 + �

"

y +

✓

�

'

0

◆

1

'

1

#

> �

and notice that if '
0

! 1, hence if education becomes infinitely costly, hence is effectively fixed and equal to 0,
this condition reduces to the same one used in the linear model, hence that � < 1. Also, notice that, this condition
is always satisfied if � is small enough.

Lemma A.10.1 (Talent Segmentation or Segregation) There exist two scalars 
1

and 
2

such that if  � 

1

talent is segmented, and if   

2

talent is segregated.
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Proof. The planner problem is to pick an optimal allocation '⇤
= {(a⇤

1

,m

⇤
1

, w

⇤
1

, s

⇤
m1

, s

⇤
w1

) , (a

⇤
2

,m

⇤
2

, w

⇤
2

, s

⇤
m2

, s

⇤
w2

)}
to maximize total output:

'

⇤ 2 argmax g (a

1

,m

1

, w

1

, s

m1

, s

w1

) + g (a

2

,m

2

, w

2

, s

m1

, s

w1

)

s.t

{m
1

,m

2

, w

1

, w

2

} = {x
1

, x

2

, x

3

, x

4

}

I first show that the optimal allocation displays talent segmentation if  is large enough, and talent segregation
if  is small enough, where notice that  =

c

00

c

0
a

.
Similar to the choice of technology, the choice of education can be solved as a function of the a pair (x

0
, x).

Recall that I defined
v (x

0
+ s

0
, x+ s) = g (x

0
+ s

0
, x+ s, a

⇤
(x

0
+ s

0
, x+ s))

I can similarly define

v̂ (x

0
, x) = ĝ (x

0
, x, s

⇤
m

(x

0
, x) , s

⇤
w

(x

0
, x) , a

⇤
(x

0
+ s

⇤
m

(x

0
, x) , x+ s

⇤
w

(x

0
, x)))

where the optimal schooling of managers and workers are given by

s

⇤
m

(x

0
, x) 2 argmax

s

0
g (x

0
+ s

0
, x+ s

⇤
w

(x

0
, x) , a

⇤
(x

0
+ s

0
, x+ s

⇤
w

(x

0
, x)))

s

⇤
w

(x

0
, x) 2 argmax

s

g (x

0
+ s

⇤
m

(x

0
, x) , x+ s, a

⇤
(x

0
+ s

⇤
m

(x

0
, x) , x+ s))

the problem of the planner then becomes to maximize

v̂ (m

1

, w

1

) + v̂ (m

2

, w

2

)

s.t

{m
1

,m

2

, w

1

, w

2

} = {x
1

, x

2

, x

3

, x

4

}

applying the same arguments as in Lemmas 2-4, it is easy to see that the only two possible allocations are
{(x

4

, x

2

) , (x

3

, x

1

)} and {(x
4

, x

3

) , (x

2

, x

1

)}. The latter is optimal if and only if

x

3ˆ
x

2

v̂

1

(y, x

1

) dy �
x

3ˆ
x

2

v̂

2

(x

4

, y) dy

next, the envelope theorem gives

v̂

1

(x

0
, x) = v

1

(x

0
+ s

⇤
m

(x

0
, x) , x+ s

⇤
w

(x

0
, x))

v̂

2

(x

0
, x) = v

2

(x

0
+ s

⇤
m

(x

0
, x) , x+ s

⇤
w

(x

0
, x))
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which can be used to rewrite the condition as

x

3ˆ
x

2

v

1

(y + s

⇤
m

(y, x

1

) , x

1

+ s

⇤
w

(y, x

1

)) dy �
x

3ˆ
x

2

v

2

(x

4

+ s

⇤
m

(x

4

, y) , y + s

⇤
w

(x

4

, y)) dy

and, using the functional form assumptions, as

x

3ˆ
x

2

(y + s

⇤
m

(y, x

1

))

1

 

(1 + � (x

1

+ s

⇤
w

(y, x

1

))) dy � �

x

3ˆ
x

2

(x

4

+ s

⇤
m

(x

4

, y))

1

 

dy.

This last inequality is satisfied if

(x

2

+ s

⇤
m

(x

2

, x

1

))

1

 

(1 + � (x

1

+ s

⇤
w

(x

2

, x

1

))) � � (x

4

+ s

⇤
m

(x

4

, x

3

))

1

 

.

Next, notice that, from the first order conditions for optimal schooling choice we get optimal schooling of managers
and workers to be respectively

s

⇤
m

(x

0
, x) = 

�1

1

(v

1

(x

0
+ s

⇤
m

(x

0
, x) , x+ s

⇤
w

(x

0
, x)))

s

⇤
w

(x

0
, x) = 

�1

1

(v

2

(x

0
+ s

⇤
m

(x

0
, x) , x+ s

⇤
w

(x

0
, x)))

Using the functional form assumption and substituting into the last inequality we get

 

x

2

+



1

'

0

x

1

 

2

(1 + �x

1

)

�

1

'

1

!

1

 

 

1 + �

 

x

1

+



1

'

0

x

1

 

2

�

�

1

'

1

!!

� �

 

x

4

+



1

'

0

x

4

1

 

(1 + �x

3

)

�

1

'

1

!

1

 

that holds as long as  is high enough, due to the single crossing assumption that modulates the value of �.
Similarly, the allocation {(x

4

, x

3

) , (x

2

, x

1

)} is optimal if and only if

x

3ˆ
x

2

v̂

1

(y, x

1

) dy 
x

3ˆ
x

2

v̂

2

(x

4

, y) dy

which can be shown, following similar steps to the ones above is satisfied if

 

x

3

+



1

'

0

x

1

 

3

(1 + �x

1

)

�

1

'

1

!

1

 

 

1 + �

 

x

1

+



1

'

0

x

1

 

3

�

�

1

'

1

!!

 �

 

x

4

+



1

'

0

x

4

1

 

(1 + �x

2

)

�

1

'

1

!

1

 

that holds as long as  is low enough. This concludes the proof. �

Lemma A.10.2 (Education Skill-Relationship) Optimal education is increasing in individual skills.

Proof. First notice that using the chosen functional form we can solve explicitly for s

⇤
m

(x

0
, x) and s

⇤
w

(x

0
, x),

they are given by

s

⇤
m

(x

0
, x) =



1

'

0

x

0 1

 

(1 + �x)

�

1

'

1

s

⇤
w

(x

0
, x) =



1

'

0

x

0 1

 

�

�

1

'

1

.
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This shows that @

@x

0 s
⇤
m

(x

0
, w (x

0
)) > 0 and @

@x

0 s
⇤
m

(m (x) , x) � 0. Additionally, s

⇤
m

(x

0
, x) > s

⇤
w

(x

0
, x). This

is sufficient to show that education is increasing in skills in the allocation {(x
4

, x

2

) , (x

3

, x

1

)}. However, in the
allocation {(x

4

, x

3

) , (x

2

, x

1

)} a manager, x

2

has lower ability than a worker, x

3

. Thus we have to show that
s

⇤
w

(x

4

, x

3

) > s

⇤
m

(x

2

, x

1

). To do so, notice the previous solution of s⇤
m

and s

⇤
w

, that is

s

⇤
m

(x

2

, x

1

) = 

�1

1

(v

1

(x

1

+ s

⇤
m

(x

2

, x

1

) , x

1

+ s

⇤
w

(x

2

, x

1

)))

s

⇤
w

(x

4

, x

3

) = 

�1

1

(v

2

(x

4

+ s

⇤
m

(x

4

, x

3

) , x

3

+ s

⇤
w

(x

4

, x

3

))) .

In order for {(x
4

, x

3

) , (x

2

, x

1

)} to be optimal, v
2

> v

1

in the equation above, which thus implies - using implicit
differentiation - that s

⇤
w

(x

4

, x

3

) > s

⇤
m

(x

2

, x

1

). �

Lemma A.10.3 (Cross-sectional Dispersion of education) Define the variable s

⇤
(x) that is equal to s

⇤
m

(x,w (x))

if x is a manager and s

⇤
w

(m (x) , x) if x is a worker. Var (log s⇤ (x)) is higher when talent is segregated than when
talent is segmented.

Proof. First notice that the ratio
s

⇤
m

(x

0
, x)

s

⇤
w

(x

0
, x)

does not depend on  , which is the measure of the convexity of c (a), however, if we take x

00
> x

0 we get that

s

⇤
w

(x

00
, x)

s

⇤
w

(x

0
, x)

=

s

⇤
m

(x

00
, x)

s

⇤
m

(x

0
, x)

=

✓

x

00

x

0

◆

1

 

thus the gap in education, for both managers and workers, is higher the smaller is  . Hence, dispersion of education
across workers within the team does not depend on  . While dispersion of education of individuals in different
teams is decreasing in  . Additionally, when  is low enough, we have a reallocation of workers, which farther
increase dispersion of education. Next, notice that we can rewrite Var (log s⇤ (x)) as

Var (log s⇤ (x)) =
1

'

1



1

 

Var (logM (x)) + Var (logL (x)) +

1

 

Cov (M (x) , L (x))

�

where

M (x) =

8

<

:

x if x is a manager

m (x) if x is a worker

L (x) =

8

<

:

(1 + �w (x)) if x is a manager

� if x is a worker
.

M (x) and L (x) depend on the optimal allocation. The dispersion of schooling increases in the distance from the
frontier for two reasons: (i) for fixed allocation, mechanically a lower  increases the variance; (ii) when the allocation
changes, this increases both Var (logM (x)), Var (logL (x)) and Cov (M (x) , L (x)) and thus farther increases the
variance. As a result, when  is low enough, so that there is talent segregation, the dispersion of education is larger.
�

Remark: Multiple Equilibria. In this setting the Proposition 1 on decentralization does not hold anymore.
There are in fact strategic complementarities in the choice of education. As a result, if individuals are not able
to coordinate on the output maximizing equilibrium, there are in general multiple equilibria, and only one among
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them solves the planner problem.

Empirical Prediction Last, recall that I argued that countries far from the frontier have an allocation of talent
that is closer to segregation by technology. Therefore, according to Lemma A.9.3, they should have larger dispersion
of education (in logs)75. I use the previously described micro data from IPUMS international to show that this
prediction is supported in the data. As can be seen in Figures A.20 and A.21, poor countries have larger dispersion
of schooling than rich ones today and than the United States when was at similar level of development.

Figure A.20: Cross-county Differences in Dispersion of Schooling
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Notes: this Figure is identical to Figure 6, with the difference that I plot the measure of dispersion of schooling,
rather than the concentration of talent.

75In order to not drop individuals with zero schooling I assign 1 year of schooling to all individuals that report
zero education. Additionally, I have computed robustness checks using, as a measure of dispersion, the coefficient
of variation rather than the standard deviation of log years of schooling. Results are available upon request.
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Figure A.21: Dispersion of Schooling in Developing Countries today compared to the U.S. in the
past
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Notes: this Figure is identical to Figure 7, with the difference that I plot the measure of dispersion of schooling,
rather than the concentration of talent.

A.11 Additional Details on the Data

A.11.1 Household Level Data
Data Sources. The IPUMS data are available online at https://international.ipums.org/international/, through
the Minnesota Population Center (2011). KLOSA dataset are available online at http://survey.keis.or.kr. KLIPS
dataset are available from Cornell University through the Cross National Equivalent File project, see https://cnef.ehe.osu.edu.
I use the version 8.0 of the Penn World Table, see Feenstra et al. (2013), available online.

Variable Construction and Remarks. Education years are imputed from educational attainment.
The industry variable is INDGEN in the IPUMS dataset. As described by Ipums: INDGEN recodes the

industrial classifications of the various samples into twelve groups that can be fairly consistently identified across all
available samples. The groupings roughly conform to the International Standard Industrial Classification (ISIC).
IPUMS data also report information on the individual occupation, coded following the International Standard
Classification of Occupations. However, this information is not useful to test the predictions of my model due to the
fact that the occupation classification does not correspond to the notion of managers and workers in my model, but
in fact depends on the technology used. As an example, a manager according to ISCO is an occupation with skill
level 4, hence citing from their report available at ilo.org: “Occupations at this skill level generally require extended
levels of literacy and numeracy, sometimes at very high level..” and also “typically involve the performance of tasks
that require complex problem-solving, decision-making and creativity based on an extensive body of theoretical and
factual knowledge..”. For example, the manager of a small and low productivity firm - which is a manager according
to the model language - would most likely not be classified as such in the data.

The variable sector is constructed by aggregating INDGEN into three sectors: agriculture, manufacturing, and
services.
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For each country I also use - when available - the non-harmonized industry variable, that varies from 1-digit to
4-digit in different countries. This is the variable IND in the IPUMS.

Self-employment is coded using the variables CLASSWK and CLASSWK detailed. For almost all countries,
additional details are available and it is possible to distinguish whether a self-employed person is an employer
or an own account worker. In the model, the definition of self-employed is equivalent to the definition of own
account worker in the data. Hence, when available, I use this finer distinction. Since this detailed information
is sometimes missing in few countries, I also computed the results using the coarser definition of self-employed or
dropping countries for which the detailed information was rarely available. Results are very similar and available
upon request. In the main analysis I use the self-employment variable to compute selection using the normalized
skill x as described in the main text. I have explored alternative measures of selection. For example, using simple
differences in average education, or this same differences weighted by the within country standard deviation of
education. Results are robust to these alternative measures and are available upon request.

A.11.2 Firm Level Data
Data Sources. I use the round 2002-2006 and 2007-2014 of World Bank Enterprise Survey (WBES), available
online at http://www.enterprisesurveys.org.

Variable Construction and Remarks. For the WBES 2006, I use the answer to the variable “What percent of
the workforce at your establishment have the following education levels?” to code education. The possible choices
are: “less than 6, 6 to 9, 9 to 12, more than 12 ”. I use mid point of the interval, and impute 14 years of education
for the group “more than 12”. I also use, as a robustness check, two alternative variables that report respectively
the share of firm’s workers with a high school degree and with some college. Results are similar and available upon
requests.

The variable “top managers” in WBES 2006 does not correspond to the managers in the model, which should
include also lower tier management. In fact, taking the model literally managers are the top half individuals in
terms of skills within a firm.

The education variable in WBES 2014 is available only for manufacturing firms.
In order to compute the variance decomposition exercise shown in Figure A.12a, I compute the cross-sectional

variance of education of the individuals hired at the firms in the sample. I can compute the country specific
distribution of education using a variable that asks what is the fraction of the above described variable that asks
to each firm the fraction of labor force with less than 6 years of education, between 6 and 9, between 9 and 12 and
more than 12. I drop countries for which I have less than 10,000 total individuals (7 countries). I then decompose
this total variance in the variance of education within firm and the variance of education across firms. For each
country I compute the ratio between variance of education across firms and total variance and I plot it as a function
of the country GDP per capita.

A.12 Robustness Checks and Additional Results for South Korea Data

A concern with the South Korea data is that we observe only one cross-section. In order to alleviate this
concern, I compare the measure of concentration of talent, for the years for which is available, with data from
KLIPS, that cover the whole population. Results are shown in Figures A.22 and A.23. They show that both the
level of concentration of talent and the morphology of the data are similar in the two datasets. I also compute the
structural transformation path implied by the KLOSA microdata and compare it with aggregate statistics from
the World Bank Development Indicators. This is done in left panel of Figure A.24 and shows that the patterns are
similar.

Last, in A.25 I report the disaggregated data from which the measure of concentration of talent is computed
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from 1960 to 2005. The process of structural transformation is evident in the figure, but we can notice that,
throughout the growth miracle, the linear measure of concentration of talent consistently provides a reasonably
good fit.

Figure A.22: Comparison between KLOSA and KLIPS dataset
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Notes: in the Figure I plot the growth path of concentration of talent across sectors computed from KLOSA data,
as shown in Figure 8, and I compare it with the value of concentration of talent computed from the KLIPS data
for the period 1999 to 2008.
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Figure A.23: Concentration of Talent, Comparison between KLOSA and KLIPS dataset in 2005
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(a) KLOSA, Across Sectors
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(b) KLIPS, Across Sectors
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(c) KLOSA, Across Industries
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(d) KLIPS, Across Industries
Notes: this figure replicates figures A.2 using both the benchmark KLOSA data and the KLIPS. The slopes of the
regressions lines are, for sectors, 0.29 and 0.22 and, for industries, 0.37 and 0.40.

Figure A.24: Structural Transformation of South Korea
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Notes: I plot the fraction of male population employed in either sector. Dots are values from (constructed) cross
sections in KLOSA. The solid line are instead aggregate data for the male population from the World Bank
Development Indicators.
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Figure A.25: Concentration of Talent Across Industries, South Korea Growth Path
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(a) 1960
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(b) 1970
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(c) 1980
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(d) 1990
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(e) 2000
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(f) 2005
Notes: I apply, across industries, the same procedure as described in Figure A.2. Data are from KLOSA 2007.
The slopes of the regression lines, which measure the concentration of talent, are, from 1960 to 2005: 0.61, 0.58,
0.56, 0.51, 0.42, 0.36.

A.13 Sequential Formulation of Dynamic Model and Proofs of Lemmas 9 and 10

I here describe the sequential formulation of the planner problem. The planner chooses an allocation ', given
by
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The planner thus chooses for each sector, in {1, 2}, and each period after t
0

(time of take-off) a manager, a worker,
and a technology. Feasibility of the allocation requires that all individuals are assigned to a sector and a partner,
and that technology is chosen within the set of available technologies. The problem thus read as
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where the planner takes as given the exogenous time of take-off, the growth path of the frontier technology, and the
initial values of technology in each sector. Also, recall that
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Next, I prove Lemma 9.
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[ĝ (m

1t

, w

1t

, d

1t

; d

1t�1

) + ĝ (m
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that the problem can be written recursively as
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) + ĝ (m

2t

, w

2t

, d

2t

; d

2t�1

) +

ˆ

�v (d

0
1

, d

0
2

)

100



s.t

{m
1

, w

1

,m

2

, w

2

} = {x
1

, x

2

, x

3

, x

4

}

Last, notice that if ˆ

� = 0, due to Lemmas 1-4 in Section 2 only two allocation may be optimal {(x
4

, x

2

) , (x

3

, x

1

)}
or {(x

4

, x

3

) , (x

2

, x

1

)}. Therefore, by a standard continuity argument, this holds as long as ˆ

� is low enough and
thus we can rewrite the problem as

v (d

1

, d

2

) = max {v
A

(d

1

, d

2

) , v

B

(d

1

, d

2

)}

v

A

(d

1

, d

2

) = max

d

0
1

,d

0
2

g

⇣

x

4

, x

2

, d

0

1

; d

1

⌘

+ g

⇣

x

3

, x

1

, d

0

2

; d

2

⌘

+

˜

�v

⇣

d

0

1

, d

0

2,

⌘

v

B

(d

1

, d

2

) = max

d

0
1

,d

0
2

g

⇣

x

4

, x

3

, d

0

1

; d

1

⌘

+ g

⇣

x

2

, x

1

, d

0

2

; d

2

⌘

+

˜

�v

⇣

d

0

1

, d

0

2,

⌘

,

which concludes the proof. �
Next, I prove the Lemma 10.

Proof of Lemma 10. If � = 1, eventually any country would turn to an allocation A in order to converge to the
frontier, the reason being that along allocation B future output is lower. Hence, by a standard continuity argument,
for any t

0

there exists a sufficiently high discount rate such that the planner values sufficiently the future and thus
reallocate workers as in allocation A , possibly enjoying current losses, but being compensated by a future higher
output. �

A.14 Cost of Technology, Details

I describe a microfoundation for the cost of technology used in the dynamic model. This microfoundation is
useful to understand which assumptions are needed in order to have that countries farther from the technology
frontier have a lower convexity of the cost of technology. The cost functions drawn in Figure A.7 and A.8 are
computed from the setting described below.

The cost to use technology a is given by the sum of two components, one that is time dependent, c
t

(a), and one
that depends on the distance from the frontier d and is thus country (or sector in the dynamic example) specific,
c

d

(a)
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(a) .

I now describe each cost.

Time Dependent Cost c
t

(a) I interpret the cost c
t

(a) as the price to purchase the capital associated to any given
technology. For example, c

t

(a) could be the price to purchase a computer, or a pencil and an accounting book. This
price is pinned down by the cost of production. Cost of producing available technologies and their set, A
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, evolve as
follows. At time t = 1 the most basic technology, a
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= � > 1, is discovered. Production of this technology costs, at
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where � > 1 modulates the efficiency improvement over time. As a result of this process, at each time t the
technological environment is characterized by a set of available technologies A
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and their cost c
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Country Specific Cost c

d

(a) I index a country d by the number of steps between the country and the technology
frontier. The index d must lie within the set of integers {0, ..., t}.76 For example, d = 0 is a country on the technology
frontier, while d = 5 is a country five periods behind the frontier. I interpret the cost c

d

(a) as a direct cost associated
with using the technology a. I interpret the ability x as an index of the relative skill of an individual within his
country. In fact, I’ve assumed the distribution of x to be constant across countries. For this reason, one natural
way to think at c

d

(a) is that it captures cross-country differences in the return to use each technology. The net
return to use technology a for an individual x in country d is in fact given by ax� c

d

(a). The cost c

d

(a) is linear
in a with marginal cost given by �d

c
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d
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,

where   1 modulates the intensity of the cost and �

d captures the idea that the farther a country is from the
frontier the costlier is to use any given technology. For example due to the fact that technologies produced on the
frontier are targeted for individuals with the skill-set available in those countries or due to the lack of complementary
infrastructure, such as a reliable electrical grid.

However, despite this higher marginal cost, the assumption   1 guarantees that countries far from the
frontier gain from the access to frontier technology. If we compare a country that is d steps behind the frontier with
a country that was on the frontier d periods ago, the former faces not only a larger set of available technologies,
since A

t�d

⇢ A
t

, but also a a cheaper cost for each technology. In fact   1 guarantees that c

t,d

(a)  c

t�d,0

(a)

8a.

Interpretation in terms of race between human capital and technology
It can be useful to notice an alternative environment that provides the same cost of technology, but has a role

for the distribution of human capital. Let each country start with human capital distributed as x ⇠ U [0, 1]. Notice
that here (departing from the rest of the paper) I use x as a cardinal and not an ordinal variable. Let the technology
frontier evolve exogenously as before, with the addition that over time technologies are more expensive, and thus
require an additional linear cost equal to �ta

j

. Next, let the human capital of a country grow constantly, of course
depending on the time in which a country opens up to the frontier. Specifically, let a country that has been growing
for t�d periods have x ⇠ U [0, 1]+

�

�

t � �

d

�

. Human capital increases over time - and in such a way to perfectly
compensate the cost of technology, however, if a country is farther from the frontier, human capital has increased
by less. The functional forms are chosen ad hoc for this environment to yield an identical cost of technology as the
one above.

This functional form has very useful properties that I now characterize. In order to make progress is useful to
keep the assumptions of the quasi-linear model, and consider the problem of a manager x that must choose the
optimal technology. This problem is

V
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j2{0,1..,t}
a

j

x� c

td
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) .

Proofs are trivial and omitted for brevity.

76A country cannot be more than t steps away from the frontier, since otherwise should have negative time. I
throughout assume that t is a very large number so that all countries would choose d < t.
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Lemma A.14.1 (Homogeneity in a
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The optimal technology choice, relatively to the frontier one, is thus constant over time, and is only a function of

the distance, d, of a country from the frontier.

Optimal Technology Choice I define ↵⇤
d

(x) to be the optimal technology choice, relative to the frontier one,
of a manager of type x in country d:

↵

⇤
d

(x) ⌘ arg max

�2{0,�1,..}
a

�

x� c̃

d

(a

�

) .

I next show the properties of ↵⇤
d

(x) as a function of d.

Lemma A.14.2 (Level of Optimal Technology) For any type x, the optimal technology ↵⇤
d

(x) is decreasing
in d.

This lemma shows that countries far from the technology frontier have on average lower level of technology.
This comes directly from the fact that they face a higher cost.

Lemma A.14.3 (Dispersion of Optimal Technology) For any two types x

0
> x, the ratio between their

optimal technologies, ↵
⇤
d

(

x

0
)

↵

⇤
d

(x)

, is increasing in d.
This lemma shows that in countries far from the technology frontier the gap in optimal technology for any two

types is larger than in countries close to the frontier. This comes from the fact that the cost of technology is less
convex77 the farther a country is from the frontier.

Next, let’s assume that the distribution of types x is identical across countries, with support
⇥

xmin, xmax
⇤

and
positive density everywhere. Under this assumption, the set of technologies used in a country d, which I define A⇤

d

,
is simply given by

A⇤
d

= {↵
d

(x

min

) , ..,↵

d

(x

max

)} .

As shown in the next lemma, the number of technologies used is a function itself of the distance of a country from
the frontier, with countries farther from it using a larger number of technologies for a given distribution of ability.

Lemma A.14.4 (Set of Used Technologies) The cardinality of A⇤
d

is increasing in d.

Remark: a Differentiable Version Last, let me notice that this cost function has been defined over a discrete
set of technologies. However, we can define a cost over a continuous a such that at the discrete values �,�2, ....,�t

takes the value of c
td

(a

j

). This function, which I define c̃

td

is

c̃

td

= �

�t

a�

log a

log �

+ �

d

a.

77Since c̃

d

(a

�

) =

�

�

�

+ �

d

�

�

� is a weighted sum of a convex and a linear cost in technology, with the weight on
the linear part being larger the farther a country is from the frontier.
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