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Abstract

This paper studies the quantitative implications of frictions in the creation and
destruction of firm-to-firm trading relationships for aggregate patterns of output and
trade. I develop a structural model of trade between heterogeneous firms in which the
network of firm-level input-output linkages is determined both dynamically and endoge-
nously. The model generates rich predictions regarding firm connectivity, matching, and
relationship dynamics, while remaining computationally tractable. Using both cross-
sectional and panel data on trading relationships between US firms, I estimate the
model’s parameters and show that the model adeptly fits empirical regularities docu-
mented in the paper. I then study the model’s predicted responses of trade patterns
to counterfactual shocks, with four key results. First, endogenous adjustment of firm-
to-firm relationships dynamically amplifies the effects of changes in variable trade costs
on trade volumes and welfare by more than three times. Second, reductions in the cost
of maintaining relationships have effects on trade and welfare that are over 50% larger
than cost-equivalent reductions in variable trade costs. Third, stickiness in firm-level
relationships imparts a high degree of inertia to the dynamics of aggregate trade and
output, with typical responses to shocks exhibiting half-lives of around two years. Fi-
nally, the model suggests that taxing trade flows to subsidize the formation of firm-level

trading relationships can be welfare improving.
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1 Introduction

Many of the goods and services that are traded between firms lack centralized markets
or intermediaries facilitating their exchange Such firm-to-firm trade is therefore contingent
on firms’ active management of direct relationships with their customers and suppliers.
This can often be an integral yet costly aspect of operations. Market analysts estimate,
for example, that firms in the United States spent more than $10bn in 2014 on customer
relationship management (CRM) and supply chain management (SCM) software systems
aloneH Motivated by this observation, this paper studies the quantitative implications of
frictions in the creation and destruction of firm-to-firm trading relationships (henceforth
referred to as relationship stickiness) for aggregate output and trade across locations. When
it is costly to form and adjust trading relationships, how do firms vary their selection of
trade partners in response to changes in the economic environment? Consequently, how do
these decisions translate into the responses of aggregate output and trade to macroeconomic
shocks?

To answer these questions, I develop a structural model of trade between heterogeneous
firms in which the network of firm-level input-output linkages is determined both dynami-
cally and endogenously. In the model, monopolistically-competitive firms in different loca-
tions produce output using a technology exhibiting constant returns to scale and a constant
elasticity of substitution across inputs. Access to additional customers therefore increases the
variable profit of a firm, while access to additional suppliers lowers its marginal cost. These
incentives to form trading relationships are counterbalanced by assuming that firms face a
fixed cost per active relationship, and that the opportunity to activate or terminate each
relationship arrives randomly over timeH The static fixed cost creates a meaningful tradeoff
for firms in their selection of relationships, while the dynamic opportunity cost makes these
selection problems forward-looking. These assumptions therefore allow the model to gener-

ate rich predictions regarding the distributions of customers and suppliers across firms, the

!This is a point dating back at least to Rauch (1999), who was one of the first to argue using empirical
evidence for a view of trade as characterized by networks of buyers and sellers rather than by frictionless
markets.

2See for instance the reports by Gartner, Inc. (2014a, 2014b). Software platforms marketed by industry
leaders such as Salesforce and SAP offer solutions for a wide range of relationship management tasks, such as
the organization of contact databases, monitoring of customer and supplier financial information, tender and
contract management, supplier performance assessment, and so on. This highlights the potentially complex
nature of the costs that firms face in managing business relationships, of which expenses on software are
only one particular facet.

3The fixed relationship cost is analogous to the fixed cost of exporting in Melitz (2003), except that here
it is paid at the firm-to-firm level. The random arrival of opportunities to reset the status of a relationship
is analogous to the price reset shock in Calvo (1983), except that here firms are constrained in their ability
to adjust relationships along the extensive rather than the intensive margin.



assortativity of matching between firms, the persistence of firm-to-firm relationships across
time, as well as the differential responses of these patterns to aggregate shocks in the short-
versus the long-run.

At the same time, the model remains computationally tractable. Cross-sectional firm-
level variables are pinned down by sufficient statistics that are easily computed for any
input-output architecture, and solving for the model’s transition dynamics under rational
firm expectations typically requires about one hour on a standard personal computer. Com-
putational tractability in turn permits structural estimation of the model and the quan-
titative analysis of counterfactual exercises. Using both cross-sectional and panel data on
firm-level trading relationships in the United States (obtained from Standard and Poor’s
Capital I1Q and Compustat platforms), I estimate the model’s parameters via a simulated
method of moments technique. 1 show that the model is able to replicate the majority of
empirical regularities that I document in the paper, with larger firms tending to: (1) have
more suppliers and customers; (2) trade with larger and more connected firms; and (3) have
trading relationships that are more persistent. I then study the quantitative responses of
trade patterns and welfare to counterfactual changes in trade costs, changes in relationship
costs, and idiosyncratic firm-level fluctuations.

The key findings of this paper are as follows. First, the endogenous adjustment of firm-
to-firm trading relationships dynamically amplifies the effects of changes in variable trade
costs on aggregate interfirm trade and welfare. Intuitively, when relationships are sticky,
a fall in trade costs induces firms to not only buy more from existing trade partners but
also to accumulate more trade partners over time. Quantitatively, the magnitude of this
amplification effect is large: the elasticities of aggregate trade and welfare with respect to
trade costs are estimated to be between three to four times higher in the long-run than in the
short—run.@ This suggests that taking into account the timing of policies aimed at reducing
trade costs can be important, and in particular provides a rationale for quick rather than
gradual reduction of trade barriers.

Second, reductions in relationship fixed costs have stronger effects on aggregate trade
and welfare than cost-equivalent reductions in variable trade costs. Consider a planner with
an exogenous subsidy budget who can choose to either subsidize the intensive margin of
trade (through export or import subsidies for example) or to subsidize the fixed cost of each
active relationship (by mitigating communication or meeting costs for instance). The model’s

counterfactuals predict that the latter option would generate increases in aggregate trade and

“The magnitude of this dynamic amplification effect is similar to the size of the amplification effect that
Alessandria, Choi, and Ruhl (2015) estimate, which in their model is generated by firm-level investments in
lowering export costs that respond endogenously to changes in trade barriers.



welfare that are more than 50% larger in the long-run than the gains that would be realized
under the former option, with similar rates of dynamic adjustment. This implies that policy
measures which reduce the frictions that firms face in establishing trading relationships can
be equally as if not more cost-effective than traditional trade policy instruments in terms of
their ability to increase trade and welfare. This may be of particular interest for policymakers
who find the direct promotion of firm-to-firm relationships to be less politically-objectionable
than adjustments in tariff barriers.

Third, when firm relationships are sticky, both macroeconomic shocks as well as idiosyn-
cratic fluctuations in firm-level characteristics can have effects on aggregate trade and output
that are not only large but persistent as well. Following a decline in trade or relationship
costs, the dynamic adjustments of trade volumes and welfare typically exhibit half-lives of
around two years. Similarly, idiosyncratic shocks to firm-level characteristics generate de-
clines in trade and welfare that dissipate gradually with a half-life of around two years,
even when such shocks leave the aggregate distribution of firm characteristics unchanged
(and therefore would have no aggregate effect in a frictionless model). The endogenous ad-
justment of firm-to-firm relationships due to relationship stickiness therefore imparts a high
degree of inertia to the dynamics of aggregate outcomes, whether these dynamics are driven
by macroeconomic shocks or by idiosyncratic firm-level fluctuations.

Finally, a simple policy exercise shows that subsidies to the cost of maintaining relation-
ships with customers financed by a tax on imports can improve welfare. This suggests that
firms in the market equilibrium are trading too much at the intensive margin and too little at
the extensive margin relative to the social optimum. I show analytically that inefficiency of
the market equilibrium stems from two sources. The first is the standard markup distortion
arising from firm monopoly power. The second is a novel source of inefficiency generated
by the network structure of production (often referred to as a network externality): firms
select relationships based only on profit-maximizing criteria and do not internalize the value
of each relationship to all other firms in the network.

The modeling of frictions in firm-level trading relationships in this paper is most closely
related to the models of Oberfield (2015) and Chaney (2014, 2015). In both of these mod-
els, potential buyer-supplier pairs also receive trading opportunities at a finite rate, and
the network of firm-level input-output linkages is an endogenous and dynamic outcome of
this exogenous stochastic process. However, there are two key differences between these
frameworks and the model that I develop. First, I introduce a fixed cost to relationship
formation, whereas activating a trading relationship is costless for firms in both Oberfield
(2015) and Chaney (2014, 2015)H It is this costly nature of relationship formation that gen-

°In Oberfield (2015), firms always have the option of buying from suppliers that they could have traded
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erates the dynamic amplification of shocks discussed above, which I find to be quantitatively
large. Explicitly modeling the costs of relationship formation also allows me to study the
effect of reductions in such costs on aggregate patterns of output and trade.H Second, both
Oberfield (2015) and Chaney (2014, 2015) only partially model variations in the extensive
margin of firm-to-firm trading relationshipsH These models therefore lose identifying power
that might otherwise be gained by exploiting richer heterogeneity in empirically observed
networks of firm-to-firm trade. For this reason, I construct a model that simultaeneously
generates non-trivial predictions about the distributions of both customers and suppliers
across firms.

The theory developed in this paper is also related to the broader theoretical literature
on social and economic network formation, within which there are two qualitatively dif-
ferent approaches to modeling the formation of ties between atomistic agents!d The first
approach posits an exogenous stochastic algorithm for the formation of links, and then pro-
ceeds to study the resulting network propertiesH As these models of network formation
are non-structural, however, they cannot be used to study how networks of trade between
firms respond to changes in economic incentives. The second approach to modeling network
formation assumes that the creation and destruction of links are the result of strategic in-
teractions between agents. These game-theoretic approaches therefore explicitly take into
account optimizing behavior by the agents constituting the network, but the complexity of
solving these models beyond simple illustrative examples precludes quantitative analysis.

The modeling of network formation in this paper can thus be viewed as a combination
of the two approaches discussed above, or in the terminology of Currarini, Jackson, and
Pin (2010), a combination of “chance and choice™ firms receive the opportunity to adjust

relationships according to an exogenous stochastic process, but the activation or termination

with in the past, while in Chaney (2014, 2015), trade occurs automatically once a potential seller acquires
contact with a buyer. In both models, there are no fixed costs of trade between firms.

SBernard, Moxnes, and Saito (2015) and Bernard, Moxnes, and Ulltveit-Moe (2015) explicitly model
fixed relationship costs between firms in the same way that I do here. However, these papers model only the
static formation of relationships between one group of buyers and one group of sellers - in essence capturing
only one tier of the static network of trade between firms.

"In Oberfield (2015), the number of suppliers per firm is exogenously fixed, while in Chaney (2014, 2015),
every firm has the same number of suppliers even though the number of suppliers per firm grows over time.

8See Jackson (2005, 2011) for more in-depth surveys of the network formation literature.

9Well-known examples from the graph theory literature are the Erdés-Rényi (1959) random network, the
Watts-Strogatz (1998) small world model, and the Barabasi-Albert (1999) preferential attachment model.
In the economics literature, Atalay et al (2011) combine the random and preferential attachment algorithms
to model the buyer-supplier network in the US economy.

10 Aumann and Myerson (1988) and Myerson (1991) model network formation as extensive-form and
simultaneous move games respectively. Jackson and Wolinsky (1996) adopt a cooperative game theoretic
approach, while Kranton and Minehart (2001) study buyer-seller networks in which ascending-bid auctions
are used to determine the formation of links.



of a trading relationship conditional on having the opportunity to do so is an endogenous
outcome. This hybrid approach is similar in spirit to the dynamic network formation models
in Bala and Goyal (2000), Watts (2001), and Jackson and Watts (2002), but within the
context of a structural model of trade between heterogeneous producers that can be used for
quantitative analysis.

Finally, this paper contributes to several other areas of research. In studying quantita-
tively how firm-level relationship stickiness affects the responses of aggregate trade to shocks
across different time horizons, this paper adds to the already-vast literature on the dynamics
of firm-level trade and the estimation of trade elasticitiesd Although the concept of trade
studied in this paper focuses on trade between firms and is not explicitly international in
nature, the notion of relationship stickiness applies to firm-to-firm trade in general, whether
goods cross national borders or not. Understanding the effects of these frictions on trade
within a country therefore also adds to our understanding of their effects on trade between
countries. This paper also contributes to the study of how microeconomic shocks translate
into aggregate fluctuations. Gabaix (2011) and Acemoglu et al (2012) argue that the firm
size distribution and the network structure of linkages between sectors matter for how id-
iosyncratic firm- and sector-level shocks translate into aggregate movements, but do not seek
to explain what determines these characteristics of the economy in the first place. The model
that I develop endogeneizes both the firm size distribution as well as the firm-level input-
output architecture, and therefore can be used to study the two-way interaction between
these characteristics and aggregate fluctuations.

The outline of this paper is as follows. In section ], I describe the data and document
empirical regularities in the US production network. In section [3, I develop a static version
of the theoretical model, in which the set of buyer-supplier relationships is taken as given.
I characterize how firm size, trade volumes, and household welfare depend on the existing
production network, and show how to solve the market equilibrium of the model for any given
network of relationships. In section [, I then endogeneize the formation of linkages between
firms in the economy by introducing a dynamic matching process between potential buyers
and sellers. I examine in detail the steady-state of the model, and show how to construct
theoretical counterparts to the empirical moments described in section 2l In section [ I take

the model to data and estimate its parameters via simulated method of moments. Section

1 Bala and Goyal (2000), Watts (2001), and Jackson and Watts (2002) also assume for tractability that
agents are myopic in their decisions about which links to form, whereas firms are my model optimally select
relationships given rational expectations about the future costs and benefits of each relationship.

12Recent work on firm-level trade dynamics includes papers by Costantini and Melitz (2007), Eaton,
Eslava, Kugler, and Tybout (2007), Burstein and Melitz (2011), Impullitti et al (2013), and Alessandria,
Choi, and Ruhl (2015). For examples of recent work on estimating trade elasticities, see Arkolakis et al
(2012) and Simonovska and Waugh (2014a, 2014b).



uses these parameter estimates to quantitatively study the model’s predicted responses of

trade volumes and welfare to counterfactual shocks. Finally, section [7 concludes.

2 Data and Empirical Regularities

2.1 Data

Before describing the theoretical model, I first present several stylized facts about pro-
duction networks in the US economy. These empirical regularities are documented using
two overlapping datasets. The first is obtained from Standard and Poor’s Capital 1Q plat-
form, which collects fundamental data on a large set of companies worldwide, covering over
99% of global market capitalization. For a subset of these firms, both public and private
but located mostly in the US, the database also records supplier and customer relationships
based on a variety of sources, such as publicly available financial forms, company reports,
and press announcements. From this database, I select all firms in the continental US for
which relationship data is available and average revenue from 2003-2007 is positive. This
gives me a dataset comprising 8,592 firms with $16.3 trillion in total revenue, comparable to
the value of $30.0 trillion in total non-farm US business revenue as reported in the Census
Bureau’s 2007 survey of business owners. The Capital 1Q platform also provides the head-
quarters address of the majority of firms in this sample, which I geocode to obtain estimates
of a firm’s location. Using these estimated locations, I then compute estimated distances
between every supplier-customer pair in the dataset. Figure [Ilshows the Capital 1Q network
for illustration, where each circle (node) represents a firm and each line (edge) represents a

trading relationship.

Figure 1: The network of firm-to-firm trade in the continental United States, Capital 1Q
dataset

The second dataset is based on information from the Compustat platform, which is also

7



operated by Standard and Poor. The Compustat database contains fundamental informa-
tion for publicly-listed firms in the US, compiled solely from financial disclosure forms, and
includes firms’ own reports of who their major customers are. In accordance with Financial
Accounting Standards No. 131, a major customer is defined as a firm that accounts for at
least 10% of the reporting seller’s revenue. The Compustat relationship data was processed
and studied by Atalay et al (2011), from whom the dataset was obtained. It contains 103,379
firm-year observations from 1979 to 2007.

Both the Capital 1Q and Compustat datasets have their advantages and disadvantages.
The Capital 1Q platform offers greater coverage of firms with relationship data, as the
database includes both public and private firms and records relationships based on sources
other than financial disclosure forms. However, the main drawback of the dataset is that it
is not possible to tell whether a particular relationship reported in a given year is still active
at a later date. The Compustat data, on the other hand, is in panel form and therefore
allows one to track the creation and destruction of trading relationships across time. The
main weakness of the Compustat data is the 10% truncation level, which implies that a
firm cannot have more than 10 customers reported in a given year, although there is still
substantial variation in the number of recorded suppliers a firm has. For these reasons, I
treat the capital IQ data as cross-sectional and primarily use it to estimate the steady-state
of the model. I use the Compustat data to measure dynamic moments that are also used in

the estimation.

2.2 Empirical regularities

In what follows, I document several empirical regularities characterizing the production
network between firms in the data sample. In section [l a subset of these moments will be
used to estimate the theoretical model by simulated method of moments, and it is therefore
useful at this point to formalize notation. Denoting the set of firms by S, I first define Ny;,

evenly-spaced quantile bins {Bb}be{17...7me}, where:

1, ,be{l, -+ Nypn — 1
B, — [Qb 1 Qb) { b } (2.1)

[%-1,%] , b= Ny
— Q—11%

with ¢, = ﬁ, and define @, = 5

each variable of interest X the quantile of this variable for firm s, ¢* (s), and define
b (s) = {bl¢* (s) € By} as the quantile bin of variable X for firm s. Finally, I define

Sy = {s € S|b* (s) = b} as the set of firms for which variable X falls in quantile bin b.

as the midpoint of bin b. I then compute for



2.2.1 Firm-level distributions

I begin by documenting the high degree of firm heterogeneity along several dimensions.
To do so, I first compute for each variable X the Kaplan-Meier estimate of the cumulative
distribution function of the normalized variable:

~ X (s) — min_
X (5) ( ) : s G?
X (8') — min

s es

X(s)
X(s)

(2.2)

maxyecg

I then evaluate the inverse empirical CDF at the points {qb}be{l .. N,,,} Via linear interpola-

tion, obtaining estimates of the quantile levels {)_(b for each quantile bin. Figure

bt v,
shows these moments for the distributions of log reiizﬁbe;ﬁb%}employment, in-degree (num-
ber of suppliers), and out-degree (number of customers) across all firms in the Capital 1Q)
dataset.

To gain some sense about the parametric form of the distributions, I first compare the
revenue and employment distributions to log-normal distributions with the same mean and
variance by Monte Carlo simulation. As can be seen from the graphs, the distributions are
relatively well-modeled by log-normal distributions, as is a common finding in the literature
on firm size distributions The lognormal approximation slightly overstates the fraction
of firms with revenue below a given amount, however, and does the opposite for the firm
employment distribution.

Next, to characterize the firm-level degree distributions, I compare these to two distri-
butions that play central roles in network theory. It is well-known that in random graph
models, where links form between nodes with a constant probability, the degree distribu-
tion is approximately Poisson. On the other hand, in preferential attachment graph models,
where nodes with a greater number of links form new links with a greater probability, the
degree distribution exhibits a power law. I therefore compare the degree distributions to
Poisson and Pareto distributions. From this, we see that the Poisson distribution is a poor
approximation to the empirical degree distributions, strongly suggesting that relationships
between firms are far from random, as might be expected. The Pareto distribution is a

somewhat better approximation, although the approximation is also far from perfect.

13This normalization is employed so as to make computed moments of the univariate firm-level distribu-
tions scale-invariant, and therefore directly comparable to corresponding moments in the theoretical model.

14See for example Cabral and Mata (2003) and Rossi-Hansberg and Wright (2007).

15The Poisson parameter is chosen to match the mean of the empirical distribution, while the tail index
of the Pareto distribution is computed using the Hill estimation procedure and the lower bound is set to
match the mean of the empirical distribution.
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Figure 2: Firm-level distributions
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2.2.2 Bivariate distributions

Next, [ study how firm-level variables vary with firm size. Toward this end, I compute:

seSE

as the average quantile of variable X for all firms with revenue falling in quantile bin b.
These moments are displayed in Figure [ for employment, in-degree, and out-degree for
all firms in the Capital [ dataset. As expected, firm revenue and employment are highly
correlated, but it is also clear from the graphs that larger firms tend to have larger numbers
of customers and suppliers on average, with the rate of increase in degree also increasing
in firm size. Firm-level variation in the numbers of suppliers and customers as well as the
covariance of these measures with firm size will speak to the magnitude of the static aspect

of relationship stickiness in the theoretical model.

2.2.3 Matching distributions

Having characterized both the distributions and correlations of revenue, employment,
in-degree, and out-degree across firms, [ now examine what kinds of firms match up with
what kinds of firms in the network. In particular, [ study how matching between firms varies
with firm size by first computing g% (s) and ¢ (s) as the quantile of the mean level of
variable X amongst suppliers and customers respectively of firm s (conditional on firm s
having positive in- or out-degree). Next, as in section (Z2.2]), I compute the averages of

these firm-level measures within each revenue quantile bin:

- 1
QY = o s 2.
b SESR
~ 1
QT = 217N () (25)
| b | scSE
b

Figure Bl shows these moments for supplier and customer revenue, employment, in-degree,
and out-degree, for all firms in the Capital I1QQ dataset. From these graphs, we see that the
assortativity of matching between firms is unambiguously positive, whether measured in
terms of firm size or connectivity. On average, larger firms tend to buy and sell from firms
that are also larger and better connected. This finding stands in contrast with the report
of negative assortative matching in Bernard et al (2015) between exporting Norwegian firms

and their trade partners, but agrees with the finding of Sugita et al (2014) that matching
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assortativity is positive between textile firms in Mexico selling to firms in the US. These
patterns of firm matching will be important in identifying the shape of the distribution of

relationship fixed cost shocks in the theoretical model.

2.2.4 Relationship geography

In addition to characterizing the assortativity of firm matching, the geocoded locations
of firms in the Capital IQ dataset allow me to examine the geographic distribution of a firm’s
suppliers and customers. To do so, I first compute Dg (s) and D¢ (s) as the average distance
between firm s and its suppliers and customers respectively, normalized by the maximum
trading distance in the Capital 1Q dataset. I then compute:

_ 1
b1 sesn
_ 1
Dy =z > Dels) (2.7)
|S ‘SGSR

as the averages of the supplier and customer distance measures respectively for all firms with
revenue falling in quantile bin b. These moments are shown in Figure Bl Perhaps somewhat
surprisingly, larger firms tend to sell to customers that are located nearer by, while average

supplier distance does not appear to vary much with firm size

2.2.5 Relationship dynamics

Finally, I make use of the panel nature of the Compustat data to study the dynamics of
firm-to-firm relationships, which will be used to infer the magnitude of the dynamic aspect
of relationship stickiness in the theoretical model. In particular, I examine how the rates at
which firms retain existing suppliers and customers vary with firm size. To address this, I first
compute for every firm s that exists in the dataset in both periods ¢ — 1 and ¢ the variables
P (s) and pS" (s), which denote the fraction of that firm’s suppliers and customers at

date ¢ — 1 respectively that are retained in period t. I then compute the following cross-

16The maximum distance is 4,415 kilometers, which is approximately equal to the horizontal width of the
continental United States. Again, this normalization is employed do as to make empirical moments directly
comparable to the simulated moments in the theoretical model.

17This finding is surprising in the context of trade models featuring fixed costs of exporting, for example,
since these models predict that larger firms are more likely to sell to customers in more distant locations.
On the other hand, it is perhaps less surprising in the context of models featuring agglomeration effects.
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Figure 4: Matching distributions
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sectional averages:

1
_Sret __ S,re
by = W Z pi" (s) (2.8)
bt sESlft
—C,re 1 re
,02{5 = TSR | p (s) (2.9)
} b’t} sESﬁt

where Sj denotes the set of firms in revenue quantile bin b at date ¢ (relative to the cross-

sectional revenue distribution at that date). Finally, I compute the time-series averages of

these moments across time:

T
1 _S,re
= Zpb;t ¢ (2.10)
t=1
1T
_ —C\re
=7 Zpb,t ' (2.11)

where 7" = 29 is the number of years in the Compustat dataset.

These moments are shown in Figure [6l

to retain a larger fraction of both existing

From these graphs, we see that larger firms tend

suppliers and customers, and by implication, the

average duration of relationships is longer for relationships involving larger firms. The mean

duration of trading relationships across all

firms in the Compustat dataset is 1.74 years, and

the average rate at which suppliers and customers are terminated year-to-year are 38.4% and

30.1% respectively.

2.2.6 Summary of stylized facts

In sum, the production network betwe

by the following stylized facts:

en firms in the data sample can be characterized
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Figure 6: Dynamic distributions

1. The firm size distribution is approximately log-normal, and the degree distributions
deviate from both the Poisson and Pareto distributions predicted by statistical network

formation models.
2. Larger firms tend to have more suppliers and customers.

3. The assortativity of matching between firms in terms of revenue, employment, and

degree is unambiguously positive.

4. Larger firms tend to buy from and sell to suppliers and customers that are located

nearer by.
5. Larger firms retain a larger fraction of suppliers and customers year-to-year.

Having documented these empirical regularities, I now turn to development of a simple
model of trade between heterogeneous firms featuring sticky trading relationships, in which
the firm-level degree distributions and matching between firms are endogenous outcomes. I
return to the data in section [bl when [ make use of the moments described above to estimate
the model.

3 Static Model

I begin by describing a static version of the model in which the network of trading re-
lationships between firms is fixed, and show how to characterize and solve for the static
equilibrium conditional on the network. Having done so, I then focus attention on endo-

geneizing dynamic formation of the production network in section [l
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3.1 Basic environment

The economy consists of a representative household and an exogenously-given unit con-
tinuum of heterogeneous firms that each produce a unique variety of a differentiated product.
Firms are heterogeneous over states y = (¢,0), where ¢ and ¢ are what I refer to as the fun-
damental productivity of a firm’s production process and the fundamental quality of a firm’s
product respectively, to be defined below. The exogenous cumulative distribution function
over firm states is denoted by F), with density f, and support S, a bounded subset of R .
For brevity, I also refer to firms with state y as y-firms. I begin by studying a simplified
version of the model in which all firms belong to a single location. In section B3] I show
how it is straightforward to incorporate multiple locations into the model, and in particular
I embed geography which will allow the model to speak to the geographic distribution of

firm-to-firm trade discussed in section 2.2.4]

3.1.1 Households

The representative household supplies L units of labor inelastically and has CES prefer-

ences over all varieties of the differentiated product, given by:

o—1

U= / 6y ()] dFy (x) (3.1)

where o is the elasticity of substitution across varieties, and zy () is the household’s con-
sumption of y-firm Varieties Given the price py () charged by x-firms to the household,

household demand is given by:

ri (X) = Aud” " pr (X)]° (3.2)

Note that conditional on prices, households demand a greater amount of varieties for
which fundamental quality ¢ is higher. As opposed to buyer-seller specific components
of quality, I assume here that 0 is a characteristic of the firm that is common across all

customers. The household’s demand shifter can then be written as:

Ap =UP; (3.3)

8 Note that given the assumed unit mass of firms, integrals of all firm-level variables over the distribution
F, are equal to both the average as well as the total value of that variable across firms.
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and the consumer price index is equal to:

A ) T

3.1.2 Firm production technology

1—-0o

Py = (3.4)

Each firm produces its variety of the differentiated product using labor and the output
of other firms. I assume, however, that firm-to-firm trade is characterized by relationship
frictions, such that every y—firm is only able to purchase inputs from a given x -firm with
probability m (X, X,)- Given that there exists a continuum of firms of every state, this implies
that m (X,X/) is also equal to the fraction of y'-firms that supply a given y-firm, as well
as the fraction of y-firms that purchase from a given x'-firm. I refer to m as the matching
function of the economy, which completely specifies the extensive margin of firm-to-firm
trading relationships in the economy. I take m as given in this section, and endogeneize
formation of firm-to-firm trading relationships once dynamics are introduced into the model
in section [l

Given the matching function, the output of a x-firm is given by the following constant

returns to scale CES production function:

o—1

X(x) = [[¢l ()] +/S m (X,X') [a:v (X,x')] 7R, (X)] (3.5)

where [ (x) is the quantity of labor demanded and x (X, X/) is the quantity of each y'-variety
used as inputs The parameter « is a measure of input-suitability, which I take as constant
across firm pairs for now. Once I introduce geography into the model in section B.3] o will
be a natural means of incorporating trade costs across firms in different locations As
is standard in the literature, I assume that the elasticity of substitution across inputs for
intermediate demand is the same as that for final demand.

Taking the wage as the numeraire and given prices {p (X, X/)} charged by other

x’ESX
firms, the marginal cost of each x-firm is therefore given by:

@7+ of"l/s m <X> X/> [p (X, X)} TaE ()

19Tn the appendix, I show how the model is isomorphic to one in which firms face convex input costs
rather than a production function exhibiting “love of variety”.

20 In section[C. Tl of the appendix, I also discuss how « can be used to capture differences in input suitability
across industries and to match industry-level input-output shares, although I do not pursue this extension
in the numerical analysis.

1

n(x) = (3.6)
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while the quantities of labor and intermediate inputs demanded are given respectively by:

L) =X 00)n(x) ¢ (3.7)
x (x, x') =X ()n()" " 'p (x, x') - (3.8)

Note that conditional on prices, firms with greater fundamental productivity ¢ have lower

marginal costs.

3.1.3 Relationship costs

It is evident from equation (B.6]) that as long as prices are finite, access to additional
suppliers always lowers the marginal cost of a firm, which follows from the CES property of
the production function. Furthermore, since the production function exhibits constant re-
turns to scale, access to additional customers always increases a firm’s variable profit. These
forces generate incentives for firms to form as many upstream and downstream trading rela-
tionships as possible. To allow for the endogenous selection of relationships in the dynamic
model studied in section [, I therefore impose a cost of forming relationships by assuming
that a link between any two firms requires f units of labor. This can be interpreted as the
cost of resources needed to manage ongoing relationships, such as expenditures on customer
and supplier management systems as alluded to in the introduction to this paper or as more
general man-hour costs.

In what follows, I further assume that this fixed relationship cost is paid fully by the
selling firm. As we will see, this assumption implies that firm pricing decisions which are
optimal in the static market equilibrium remain optimal in the dynamic market equilibrium,
and that decisions about which relationships to keep active need to be analyzed only from
the perspective of selling firms. In section of the appendix, I discuss how this assumption
might be relaxed to allow for the buying firm to pay a positive share of the fixed relationship

cost.

3.1.4 Market clearing

The labor market clearing condition can be written as:

JRCEANE (3.9
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where Ly is the total amount of labor used to pay the fixed relationship costs in the economy:

=1 [ [ m(x)andr (X) (3.10)

If we define the total mass of a y-firm’s suppliers and customers respectively as:

Ms (x) = /S m (mx') dF, <X> (3.11)
Me (x) = /S m (xﬂx) dF, (x) (3.12)

then total fixed labor costs can be written equivalently as L; = fo Ms (x)dFy (x) =
Js, Mc (x) dFy (x)-

Since variable labor [ (y) must be non-negative, we see that labor market clearing can be
satisfied for any arbitrary matching function m : S, x S, — [0, 1], including the matching
function m (x, X/) =1 forall y,x € S, specifying the complete network, if and only if the

following assumption holds.
Assumption 1. The fized relationship cost f is less than the total labor supply L.

Finally, market clearing for the output of a x-firm requires:

X(X)ZIH(XH/

L (X', X) @ (X', X) dFy (X)) (3.13)

3.1.5 Firm pricing and market structure

The market structure for all firm sales is assumed to be monopolistic competition. Given
that the household and all purchasing firms face a continuum of sellers of every state and have
demand functions (3:2)) and (3.8)) exhibiting a constant price elasticity, the profit-maximizing

price charged by each firm is equal to the standard CES markup over marginal cost:

pr (X) = um (X) (3.14)
p (X, X’) = pin) <X> (3.15)
= . - (3.16)

As I discuss in section L.1.3] the assumption that selling firms pay the entire share of the
fixed relationship cost implies that the costly nature of relationships has no effect on the

optimal price charged by firms. In section of the appendix, I also discuss how the model
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might be enriched by allowing for a form of bargaining between buyers and sellers, so that
the markups charged by firms remain constant but are not completely determined by the

elasticity of substitution o.

3.2 Static market equilibrium
3.2.1 Firm network characteristics

As described above, the parameters ¢ and ¢ capture exogenous productivity and quality
characteristics that are fundamental to the firm, in the sense that they are independent of
the firm’s connection to other firms. Conditional on prices, firms with greater values of ¢
and ¢ enjoy lower marginal costs and greater final demand respectively. Firm-level outcomes
in equilibrium, however, such as the overall size and profit of a firm, depend not only on
a firm’s fundamental characteristics but also on the characteristics of other firms that it is
connected to in the production network. For an arbitrary matching function, a given firm-
level outcome may therefore in principle be a function of very complicated moments of the
production network, which would render solution of the model intractable.

Fortunately, however, we can rely on the structure of the CES production function spec-
ified in (B.5) to derive sufficient statistics at the firm level that will allow us to compute all
variables of interest with minimal computational difficulty. In contrast with firm fundamen-
tal characteristics ¢ and ¢, it is therefore useful to characterize the static market equilibrium
of the model in terms of what I call a y-firm’s network productivity and quality, defined

respectively by:

() =n(x)"" (3.17)
AG) = 5-X (00 ()" (3.18)

Note that ® () is an inverse measure of a x-firm’s marginal cost, while A () is the demand
shifter of a y-firm in the intermediate demand function (B.8) relative to the household’s
demand shifter Ag.

In what sense do ® (y) and A () capture the characteristics of a y-firm in the production
network as a whole, and how are these quantities determined? Combining the demand
equations (3.2) and (B.8)), the firm marginal cost equation (B.6]), the goods market clearing
condition (B13), and the pricing conditions (B.14]) and (315, we obtain the following system
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of equations:
O(x)=¢" " +p ! /S m (x, x') ® (x) dF, (X) (3.19)

A(X)=p70 " 4y / m (x', x) A <X> dF, (x) (3.20)

SX
Given the matching function, (8:19) and ([3.20) specify a pair of decoupled linear functional
equations in ® (-) and A () respectively, and show how a firm’s network characteristics
depend on both its fundamental characteristics as well as on the network characteristics
of its suppliers and customers. Conditional on ¢ and ¢, firms that are connected to firms
with larger network productivities and qualities also have higher network productivities and
qualities themselves

The following proposition shows that as long as input-suitability « is not too large relative
to the markup p, there exist unique solutions to the equations (3.19) and (3.20) for any
matching function, and that starting from any arbitrary (but bounded) guesses for ® (-) and
A (+), iterating on (8.19) and (B:20) converges to these unique solutions with a known rate.
The proof of Proposition [I] relegated to the appendix, entails showing that the functional
equations (B.19) and (B.20) constitute contraction mappings with Lipschitz constants <%> o

-1

and “—— respectively.

o
Proposition 1. Under assumption [2, there exist unique network productivity and quality
functions ® : S, — Ry and A : S, — Ry for any matching function m : S, x S, — [0,1].
Furthermore, starting from any arbitrary functions ® : Sy — Ry and A Sy — Ry, iteration

o—1 B
on equations (3.13) and (320) converges to ® and A at rates (%) and aw,l respectively.

Assumption 2. Input suitability o is less than the markup p.

Under assumption 2 we can also rewrite equations ([B.19) and ([B.20) to express the

2INote that ® and A are conceptually similar to the measure of weighted average productivity in Melitz
(2003), but in my model, these are measures at the firm-level on both the buyer and seller sides, and depend
on the network structure specified by the matching function.

22When assumption B is violated, it becomes feasible for a pair of firms that are connected to each other
both as buyer and seller to use only each other’s output as inputs for production, thereby generating infinite
output and profits.
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network productivity and quality of a y-firm respectively as:

®(x) = /SX [i (%)d(m) m@ (X,x'>] (¢')J_1dFX (x) (3.21)
sw= [ S () o (¢ | () am () e

d=0

where m(@ is the d**-degree matching function, defined recursively by:

L ifX:X/

m© (XJ(,) _ ) A , (3.23)
0, if x # x

m (x, x') —=m (x, X ) (3.24)

m@ (X, X/> = mgd_l) <X7 XN) m (X", X,> dF, <XN> (3.25)

Sx

Intuitively, one can think of m(® (X, X/) for d > 1 as the probability that a x-firm buys
indirectly from a x'-firm through a supply chain that is of length d. With this interpretation,
equations (B.2])) and (B:22]) show how the network productivity and quality of a firm depend
on its connections to all other firms via supply chains of all lengths. Note that the rate
at which the value of an indirect relationship decays with the length of the supply chain is

decreasing in input suitability « and increasing in the markup pu.

3.2.2 Firm size and inter-firm trade

Once the fundamental and network characteristics of a firm are known, the total revenue,
variable profit, and variable employment of a x-firm are completely determined up to the

scale factor Ay, and are given respectively by:

R(x) = pArA(x) @ (x) (3.26)
m(x)=(n—1)ArA(x) @ (x) (3.27)
LX) = AuA(x) 97" (3.28)

Intuitively, if a firm is twice as productive and produces a product that is twice as good

from the perspective of the entire networked economy, its revenue and profit gross of fixed
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relationship costs quadruples. Total firm profit and employment are given by:

I (x) =7 (x) — fMc (x) (3.29)
L(x)=1(x)+ fMc(x) (3.30)

Total output of a y-firm is also completely determined by firm fundamental and network

characteristics up to a scale factor:

el

X () =ArAKX) P (x)7? (3.31)
as are the value and quantity of output traded from y'- to y-firms:

r(xx) = (%)HAHA e () (3.52)

o

x (x, X') = OZ:AHA (x) @ <X> o (3.33)

3.2.3 Household welfare and demand

To complete characterization of the static market equilibrium, it remains to determine
the scale factor Ay. From the labor market clearing condition (8.9]) and the firm variable

employment equation (B.28)), this is given by:

L—L;
Ay = (3.34)
fsx A (x) 971 Ey (x)
Equations (8:3) and (34) then give the CPI and household welfare respectively as:
e
Py = p [/ @ (x) 87 dFy (x) (3.35)
Sx
vt s, @00 ar, (0] 0
T AR eTAR ()
while household demand is given by:
i (x) = 17 ARd" TR () (3.37)

Using equations (3:21)) and (B:22]) to substitute for ® (x) and A (x) respectively, we see
d(o—1)
that the numerator and denominator of (8.36]) are identical except for the terms <%)
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i\ d
and <O‘M—Ul> , with the difference going to zero exponentially as d increases. An intuitive
approximation to the value of household welfare is therefore:

1

o—1

U= (L-Ly) [ /S /S li (%)d(m) m® (x, x’)] (cw’)”‘l dFy (x) dFy (x’)] (3.38)

d=0

which is exact in the limit as ¢ — 1 (perfect competition). Equation (3.38) suggests that
household welfare is greater when buyers of greater fundamental quality ¢ are connected
with sellers of greater fundamental productivity ¢, with the cost to welfare of additional
relationships appearing in the term L — L;. When p > 1, the same general intuition applies,

although household utility is only given exactly by the slightly more complicated expression

(3.36).

3.2.4 Static market equilibrium definition

Given the matching function m, the exogenous distribution over fundamental firm char-
acteristics F), and the model parameters {L,o,a, f}, we can now define a static market
equilibrium of the economy as follows. In section [A.1l of the appendix, I describe the com-

putational algorithm used to solve for the static market equilibrium.

Definition 1. A static market equilibrium of the economy is a pair of firm network char-
acteristic functions ® : S, — Ry and A : S, — R, satisfying equations (3.19) and
(320), a scalar household demand shifter Ay satisfying (334]), and allocation functions
{L(),X(),z(-,),xm (-)} given respectively as side equations by (3.28), (3.31]), (8.33), and
B.3D).

3.2.5 Static market equilibrium efficiency

To characterize the efficiency of a static market equilibrium, we can compare the resulting
allocation with the allocation that would be chosen by a social planner seeking to maximize
household welfare subject to the same exogenous matching function, production technology,
and resource constraints. The following proposition (proved in section [B.1] of the appendix)

summarizes the solution to the planner’s problem.

Proposition 2. Given a matching function m : Sy x S, — [0, 1], the network characteristic
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functions under the social planner’s allocation satisfy:
m (X ) @5 (') ar, (X) (3.39)

m <X,, X) ASP (X,) dF, (X/) (3.40)

(I)SP (X) — ¢O’—1 +a0—1/

Sx

ASP (X) — 50—1 +O‘0_1/S

and the allocations of output and labor are given by equations (3.28), (3.31), (3.323), and
(337) with p set equal to 1.

This result shows that any static market equilibrium allocation coincides with the cor-
responding planner’s allocation if and only if all firms in the decentralized equilibrium are
perfectly competitive. With monopolistically-competitive firms, the static market equilib-
rium allocation is therefore inefficient relative to the planner’s allocation. This result can be
interpreted as implying that the introduction of relationship frictions into the model through
the exogenous matching function m imposes no additional inefficiency beyond the standard
monopoly markup distortion. Once the matching function is endogeneized in section [l this
will no longer be true, as firm’s decisions about which relationships to keep active generate

an additional dynamic source of inefficiency.

3.3 Embedding geography

Before introducing dynamics and endogeneizing the formation of firm-to-firm trading
relationships, it is useful to first describe how geography can be embedded into the model
to study how relationship stickiness affects trade patterns across different locations, as this
will be one area of focus of the numerical analysis and counterfactuals in sections [ and [6l
Toward this end, I assume that the unit mass of firms is evenly distributed along a unit circle,
with each point on the circle indicating a different location. The distribution over firm states
F, is assumed to be identical in all locations, and we can therefore focus on characterizing
the market equilibrium in a single location.

To model trade costs, I assume that trade between two locations separated by a distance
D along the unit circle is subject to iceberg trade costs equal to 7 (D) > 1, with 7(0) = 1,
7'(D) > 0, and T log—subadditive Since all locations are identical, we can assume for
notational simplicity and without loss of generality that firms in any one location can only
sell to locations located clockwise of their own location. Given these assumptions, the static

market equilibrium with geography embedded is simply characterized by analogous equations

23That is, log T (D1) + log 7 (D2) > log 7 (D + D2) for any Dy, Dy € [0,1], which is equivalent to the
assumption that trade costs satisfy the triangle inequality.
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for the network productivity and quality functions:

d(x) =0 "+ (%)U_l /ol/s T (D)l_am [X>X/|7' (D)} ) (X,) dF, (XI) dD (3.41)
A(x) = =767 4 poar! /0 1 /S (D) m X A (D)] A (X ), () dD (3.42)

where the matching function is now allowed to depend on distance through the trade cost
T (D)

As in the model without geography, there exist unique solutions to equations (3.41]) and
(3.42) for the functions ® and A. Given these, the value of trade between a x-buyer and a
x -seller separated by a distance D is then given by:

R(x\|D) = (%) (D)7 ApA () & (V) (3.13)

Notice that equation (B.43]) resembles a gravity equation for trade volumes at the firm level,
where Ay A (+) and ® (-) capture the economic size of the importer and exporter respectively.
The total value of trade between locations a distance D apart, however, also depends on the
mass of firms that match between the two locations, and is given by:

R(D) = (%)"_17(D)1_"AH /SX /Sxm [X,X’|T(D)} A(X)q><x’>dFX (x) dF) <X> (3.44)

Observe that if the matching function is held fixed, then as in models of trade with CES
roundabout production such as Melitz (2003), the elasticity of trade volumes with respect
to trade costs depends only on the elasticity of substitution o. However, once the matching
function is endogenously determined as the result of firms’ decisions to trade or not to
trade with other firms in various locations, the response of trade volumes to trade costs also

depends on the extent of relationship frictions between firms.

4 Dynamics and Endogenous Network Formation

Analysis of the static version of the model shows that given any arbitrary matching

function m, numerical solution of all firm-level variables of interest is straightforward and

24Note that by writing equation ([.42) in this way, we are implicitly assuming that the representative
household in each location purchases goods only from firms in its own location. Making the alternative
assumption that households also purchase directly from firms in other locations subject to the same trade
costs would simply require multiplying the first term on the right-hand side of ([8.42) by the term 7 =

fol 7 (D)™ 7 dD, and would add nothing of qualitative substance to the model.
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tractable. It is the matching function m, however, that captures all the relevant information
determining the empirical moments in which we are interested, as described in section 2l
Endogeneizing formation of the network is therefore crucial to my analysis, and I accomplish

this by introducing a dynamic process of firm matching, as described below.

4.1 Dynamics of firm matching

Time is discrete and the representative household has preferences at date ¢ defined by:

[e.e]

Vi=> 87U, (4.1)
s=t

where Uy is given by the date ¢ equivalent of (BI)). Since the household’s value function is
linear in per-period utility, household decisions every period are characterized exactly as in
the static model, and the discount factor [ exists only to characterize how firms (which are
owned by the household) discount the future. To economize on notation, I first describe the
dynamic model without geography embedded, and reintroduce geography once I conduct the
numerical analysis and study counterfactuals. The dynamics of firm matching are modeled

based on three main assumptions.

4.1.1 Random fixed relationship costs

First, I assume that the fixed relationship cost f; is a random variable given by f; = f&,
where & is independent and identically distributed across firm pairs and time with cumulative
distribution function F; and unit mean. As in the static model, I assume that regardless
of the realization of &, the selling firm always pays the full share of the fixed cost. The
stochastic nature of the fixed relationship cost is the mechanism that generates the creation
of new linkages between firms and the destruction of existing relationships, even in the
steady-state of the model.

The assumption that & exhibits no serial correlation is made primarily for tractability,
and might jar with one’s intuition that relationship costs should be persistent. Nonethe-
less, the model generates non-trivial predictions about the persistence of relationships via

assumptions about how often firms can reset relationships, described next.

4.1.2 Sticky relationships

[ assume that firm-to-firm trading relationships are temporally sticky in the following

sense. At each date, a firm receives the opportunity to sell to each firm that it did not

28



sell to in the previous period with probability 1 — v, and also receives the opportunity to
terminate trading relationships with each of its existing customers with probability 1 — v.
I refer to this as the reset shock, and assume that it is independent across all firm pairs.
Although the model can easily accommodate differences in the probabilities with which a
firm can create and destroy relationships, I assume for parsimony that these probabilities
are the same. Furthermore, I assume that regardless of whether a reset shock is received,
selling firms can costlessly adjust prices every period, so that firm-to-firm relationships are
sticky only along the extensive margin.

The assumption that firms can only sell to new customers with a finite probability may be
interpreted as modeling the fact that potential trading partners take time to meet and learn
about the suitability of their output for each other’s production processes or to negotiate
new trading arrangements. Similarly, the assumption that firms cannot costlessly terminate
existing relationships may be interpreted as either legal barriers to reneging on pre-negotiated
contractual obligations, or more simply as the notion that winding down trading relationships
also takes time. Allowing firms to costlessly adjust the intensive but not the extensive margin
of trade may be interpreted as assuming that contracts between firms mandate only the
provision of a good by the seller and not the price at which that good is sold.

Note that since the selling firm always pays the full share of the fixed relationship cost,
the buying firm is always agreeable to any trading relationship, and therefore the decision
to terminate or activate relationships only needs to be analyzed from the perspective of
the selling firm. Under these assumptions, the matching function evolves according to the

following law of motion:
m (X> X/> = vmy (x, X') +(1-v)a (X, X’) (4.2)

where a; (X,X/) is the probability that a x'-firm sells to a y-firm in period t conditional
on being given the opportunity to reset that relationship. I refer to a; as the acceptance
function and characterize this in the following section. In any steady-state of the model, the

matching function is simply equal to the acceptance function:

m(x,x) =a (x, x’) (4.3)

Note that f and v capture respectively the static and dynamic aspects of relationship
stickiness alluded to in the introduction of this paper. There are several qualitatively different
cases that one can consider. First, in the absence of the dynamic friction (v = 0), the
matching function converges immediately to its steady-state value of a (+,-), and the short-

and long-run elasticities of trade volumes with respect to aggregate shocks are equal. Second,
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when the dynamic friction is extreme (v = 1), the production network exhibits no dynamics
along the extensive margin. Third, in the presence of extreme static relationship costs
(f = oo and v € [0,1)), any steady-state of the model features an empty network in which
no inter-firm trade occurs. Fourth, in the absence of the static friction (f = 0 and v € [0, 1)),
any steady-state of the model features a complete network in which all firms trade with one
another. Trade therefore does not respond to external shocks along the extensive margin.
Finally, with moderate static and dynamic frictions (f € (0,00) and v € (0, 1)), the model
exhibits both non-trivial steady-state production networks as well as non-trivial transition

dynamics between steady-states.

4.1.3 Dynamic relationship activation decisions

The third and final assumption regards how and when firms decide to reset trading
relationships conditional on having the opportunity to do so. First, note that the assumption
that buying firms pay none of the fixed cost implies that it is never optimal for the selling
firm to deviate from the standard CES markup pricing. Therefore, the variable profit earned

by a y -firm from selling to a y-firm at date t is the same as in the static market equilibrium,

given by equations (3.20) and (3.27)) as:
m () = 077 (=D a” A (0 @ (X') (44)

where @ (-), A (+), and Ay, are defined by the date ¢ equivalents of equations (3.19), (3:20),
and (3.34).

Now, let V" (X,xl|§t) denote the value to a x'-firm of selling to a y-firm in period t
conditional on the realization of the relationship cost shock &;, and let V,~ (X, X,) denote the
value to the firm of not selling!] These value functions are given by the following Bellman
equations:

Vi (XaX/|§t) =m (x,xl) —f&+B8(1—-v)E, [‘/}21 (X7X/|§t+1>} + BrIE [Vtil (XaX/|§t+1)} (4.5)

Vo (0x) =B =0E [V (X len) |+ 8rvizs (X ) (4.6)

where V0 (X, X |§t) denotes the value to a x -firm of having the option to reset its relationship

with a y-firm customer given the relationship cost shock &;:

Ve (x,xl|§t> = max {V;* ()@X'I&) Vo (x,x’)} (4.7)

25Note that since the relationship cost shocks are i.i.d. over time, the value of not selling at date t does
not depend on &;. Furthermore, since there is no aggregate uncertainty in the model, this implies that there
is no uncertainty over the value of V,~ at any date for any pair of firms.
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Note that the assumption of sticky relationships makes the activation and termination
decisions facing a given firm forward-looking. If a firm chooses not to terminate a relationship
given the chance to do so, it may find itself wishing to terminate the relationship in the
future but lacking the opportunity to do so. Similarly, if a firm chooses not to sell to a
potential customer despite having the chance to do so, it may be forced to wait several
periods before being able to activate the relationship. Observe that if relationships are not
sticky (v = 0) or firms are completely myopic (3 = 0) , then V,* (X>Xl|ft) >V, (XaX/) if
and only if m, (X, X/) > f&. In these two special cases, relationships are activated as long as
the static profits accruing to selling firms are enough to cover the fixed relationship costs.
The probability that a y'-firm sells to a y-firm at date ¢ once it has the chance to do so is
then given by:

ay (X,X') =F;

it »
f
From (4.4)), this implies that firms with larger network productivities and qualities are more
likely to form downstream and upstream trading relationships respectively. The assumption
of myopic agents in models of network formation is in fact somewhat standard in the network
literature, and might seem to be a reasonable first approximation to firms’ decision making
processest” We can, however, go further in characterizing the dynamic activation decisions
of firms in this model.

It is instructive to first consider a steady-state of the model in which the functions 7,
V;t, V7, and V0 are all constant. From equations (&3] and (46), it is straightforward to
verify that:

7T<x7x’)—f /
E[vO (x.x1g)] = L :Eii; Z Z: (49)

where S, = {(X, Xl) C S>2<|7r (X, Xl) —f> 0}. This tells us that the option value of a rela-
tionship is positive if and only if the profit from that relationship exceeds the relationship
cost on average. Substituting (4.9) into (A.5]) and (4.6]), we then find:

X.x) = Brf

T e (4.10)

VT (X>X/|§> ~-V- (X,X') _

and therefore the probability that a y'-firm sells to a y-firm conditional on having the chance

26See for example Bala and Goyal (2000) and Jackson (2005).
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to do so is given by:

a (x, X') = I} (4.11)

(. x) = Brf
(1-p8v)f

Comparing this expression with equation (4.8]), we again see that firms with greater net-
work productivities and qualities are more likely to form downstream and upstream trading
relationships respectively, but once the option values of relationships are taken into account,
this effect becomes more pronounced. In particular, for firm pairs such that = (X, X,) > f,
there is a positive probability, equal to a (X,X/) —a (XaX/)a that temporarily-unprofitable
relationships will still be activated because the relationship is profitable enough on average.
Similarly, for firm pairs such that 7 (X, X/) < f, there is a positive probability, given by
a (X, Xl) —a (X, X’), that temporarily-profitable relationships will not be activated because
the relationship is not profitable enough on average. Furthermore, note that (£I1]) implies
that firm pairs with 7 (X, X/) < Prf will never form trading relationships in steady-state.

How do we characterize the activation and termination decisions of firms outside the
steady-state? Iterating forward on equations (LX), (4.0), and (A7), we can write the differ-

ence in the values of selling and not selling as:
vt (x, x'\&e) -V (x, x') =m (x, x') — f&+ f: (Bv)° [ms (x, x’) - f} (4.12)
s=1

which can be interpreted as the expected future stream of profits net of fixed costs until the

relationship can be reset. The acceptance function at date ¢ is therefore given by:

a <X7XI) = F¢ 7

Wfi,x') N i (Bv)° [M N 1” (4.13)

From this, we see that solving for the acceptance function at date ¢ outside of the steady-state
requires solving for the profit functions m;,, for all s > 1. In section [A.2] of the appendix,
I describe the computational algorithm that I employ to accomplish this, which essentially
involves iterating on the path of profit functions {ﬁt+s}sT:1 for some value of T' large enough
such that m,, 7 is close to the eventual steady-state matching function. This allows me to
solve exactly for the model’s transition dynamics between steady-states under rational firm
expectations. In section 6.4l I show why this is important, as the assumption of myopic firms
leads to model predictions that are both qualitatively and quantitatively different from the
rational expectations case.

Note that even though &; is assumed to have unit mean, firms in the dynamic market

equilibrium select relationships based on the realized values of the relationship cost shocks.
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Therefore, the average cost of active relationships is no longer equal to f as it was in the
static model, and the total mass of labor used to pay relationship fixed costs is now given
by:

L=t [ [ frmea (wx) w0 =06 (o)) anan () @

The first term in the integral reflects the cost of relationships that cannot be reset (and hence
for which there is no selection on ), while the second term reflects the cost of relationships
that are voluntarily selected by firms. The term & (X, X,) denotes the average value of the
idiosyncratic component of the cost shock amongst x — x_ firm pairs that receive the reset
shock:

a(un)= [ ) ere (1.15)

and ozt (X, Xl) is the maximum value of the cost shock for which y — x' relationships are

voluntarily selected:

s (1) = ma {% £3 (o) [% - 1] ,o} (4.16)

4.2 Dynamic market equilibrium
4.2.1 Dynamic market equilibrium definition

Having characterized the dynamics of firm matching, we can now define a dynamic market

equilibrium as follows.

Definition 2. Given an initial matching function my : S, x S, — [0, 1], a dynamic market
equilibrium of the model is a list of sequences of matching functions {m,},”,, acceptance
functions {a;},-,, profit functions {m;},~, and network characteristic functions {®;, A;},°,
as well as a list of scalars {A g, };o,, all of which satisfy equations (3.19), (3:20), (3:34), ([2),
(44), and (£I3). Given the matching function m,, the allocation at date ¢ in a dynamic

equilibrium is as defined in the static model.

Similarly, we can define a steady-state of the dynamic model as a dynamic market equi-

librium in which all variables in Definition [2] are constant.

Definition 3. A steady-state equilibrium of the dynamic model is a matching function m,

an acceptance function a, a profit function 7, network characteristic functions {®, A}, as well

as a scalar Ay, all of which satisfy equations (3.19), (3.20), (3.34), (£3)), (£.4)), and (LI1)).
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Given the steady-state matching function m, the allocation in a steady-state equilibrium is

as defined in the static model.

In section [A.2 of the appendix, I describe the computational algorithms used to solve for

both the model’s transition dynamics as well as its steady-state.

4.2.2 Dynamic market equilibrium efficiency

To what extent are the dynamic relationship selection decisions made by firms socially
optimal? Recall that the results of Proposition [2] showed how the static market equilibrium
is inefficient relative to the social planner’s allocation because of the monopoly markups
charged by firms. Similarly, we can characterize the dynamic efficiency of the model by
comparing the market equilibrium allocation with the dynamic allocation that would be
chosen by a social planner subject to the same static and dynamic frictions faced by firms.
In particular, we can compare the cutoff value for the relationship cost shock chosen by
firms, given by equation (LI6), to the cutoff value that would be chosen by the planner.
In section [B.2] of the appendix, I show that the planner’s solution is characterized by the

following proposition.

Proposition 3. The cutoff value for the cost shock at date t chosen by the social planner is

given by:
SP ! 00 sSpP ’
! ) s C s s )
st (6x') = max M+Z(ﬁu) ( ”) mee 00) ] ol
’ f | Gt f
where ©F is the planner’s analog of the profit function:
! aa_l * *!
m” (X) = S AT () o () (4.18)

and Cy is a measure of the total connectivity between firms in the economy:

o—1

o= [ [ e ()| (o6) ancoan (V)] o

d=0

Comparing equations (4.I16) and (A7), we now see that the criterion by which firms
select relationships in the market equilibrium differs from the socially-optimal criterion in
two ways. First, because of the monopoly markup distortion discussed in section B.2.5] the
static social value of a given relationship relative to its cost (measured by #) differs from

the ratio of profits to fixed costs (%) that are faced by selling firms in the market equilibrium.
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Note that holding fixed the network productivity of the selling firm and the network quality
of the buying firm, the function 7% differs from the profit function 7; only by a constant
fraction p=7.

Second, the planner internalizes the effect of each relationship on all other firms in the
production network (often referred to as network externalities) whereas firms in the market
equilibrium do not. To better understand this effect, it is useful to consider the social value
of a given relationship at date ¢, which can be characterized by the static marginal change
in household utility resulting from a marginal increase in the mass of active relationships

between firms of given states. In the proof of Proposition Bl I show that this is given by:

dU,

Ty~ Gl (o) = (4.20)

where m; (X,X') = my (X,X') v 0 fx (X/) denotes the total mass of connections between
x-firm buyers and x'-firm sellers. From equation (Z20), we see that the social value of each
relationship is equal to the difference 7 — f amplified by the aggregate connectivity measure
C:. Intuitively, when firms are more connected to each other (C; is larger), the activation
or termination of a single relationship has larger aggregate effects. Since the amplification
term C; potentially varies across time, the planner values changes in the extensive margin of
firm relationships accordingly. This effect appears through the term % in equation (EIT)
but is absent in firms’ decision making processes about which relationships to activate and

terminate at each date.

4.3 Properties of the steady-state
4.3.1 Firm-level distributions

In our analysis of the static market equilibrium, we saw how the revenue and employ-
ment of a firm are completely determined (up to a scale factor) by the fundamental and
network characteristics of that firm. I now show that variation in firm in-degrees (measured
by Mg) and out-degrees (measured by M¢) is also completely determined by variation in
network characteristics. To see this, first observe from equations (d.3]), (£4), and (4.I1]) that
variations across firm-pairs in the profit, activation, and matching functions depend only on
variations in the product A (x) ® (X/) In particular, the matching function in steady-state

can be written as:

27Given that each firm has a continuum of both suppliers and customers of each state, these functions do
not depend on idiosyncratic realizations of the fixed cost shock &;.
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m (x, x') =m [AHA ()@ (xﬂ (4.21)

where m : R, — R, is an increasing scalar function defined by:

. r—pvf }
m(x) =Fg | ——— 4.22
@) = | Tk (1.22)
with f = M’flozl_" f. As a result, the network quality and productivity of a y-firm are

sufficient statistics for its in- and out-degrees respectively:
Ms (0 = HtsA 001 = [ m[ac0e (x) an] ar (V) (4.2)
X

Me (x) = Mc [® (x)] = /S 7 [A (x) @ (x) AH] dF, (x) (4.24)

Since firm revenue is proportional to the product of firm network productivity and quality,
this implies that firms with larger masses of suppliers and customers also tend to have larger
revenue.

Figure[dshows an example of the network productivity and quality functions in a steady-
state of the model obtained through numerical solution, as well as the supplier and customer
functions Mg () and M¢ (+) defined by equations (B11) and (B12). Note that even though
fundamental firm productivities and qualities ¢ and § may be uncorrelated, a firm’s network
productivity ® () is still increasing in § because a firm with higher fundamental quality
offers greater profit opportunities to potential suppliers, and therefore is more likely to form
upstream trading relationships. Similarly, a firm’s network quality A (x) is increasing in

both its fundamental productivity and and quality.

4.3.2 Matching assortativity

What determines the assortativity of matching between firms in the model? The average

supplier and customer revenue of a y-firm are given respectively by:

= s mex) R(Y) 4 (X)

Rs (x) = Vs () (4.25)
m (X, x) R(x)dF, (x
Re (x) = Jom f\)&; (%) ) (4.26)
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Figure 7: Firm network characteristics and matching in steady-state

Given the analysis in the previous section, the matching between a x-firm and its suppliers
and customers depends only on A (y) and ® (x) respectively, and therefore we can alterna-
tively consider the average supplier and customer revenue of firms with network quality A

and productivity ® respectively (which I henceforth refer to as A- and ®-firms), given by:

= o Js A () Ar] R () dF (X)

Rs(A) = o () (4.27)
8 m[A (X)) @Ax| R(X) dF, (X'
fo (q))zfsx [ (X)MC(}I)) () dF, (X) (4.28)

Since firms with higher network productivity and quality also tend to have higher revenue,
the assortativity of firm matching (in terms of revenue) can be characterized by the gradients
of the functions Rg and R¢. Differentiating equation (£.27), for example, we obtain:

Ry (A) = ﬁm /S X [R (X) ~ Rg (A)] e [A@ (X) AH} m [Acp (X) AH} dF, (X) (4.29)

where €5 is the elasticity of the scalar matching function 7m. From equation (£.29) and the
equivalent derivative of equation (A28]), we make the following observation: if the elasticity
e is constant, then Rg (-) and Re (+) are constant functions, and in this sense the assor-
tativity of matching between firms is neutral, with average customer and supplier revenue
independent of firm size. This suggests that the elasticity ¢; plays a crucial role in shaping

the assortativity of matching between firms in general.
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We can characterize this even further by considering the average revenue of A'-firms that
supply a A-firm, the derivative of which with respect to A is:

R (818) = vy [ [raud®  Rs (@) en (a0 an) i (a0 an)am () (030

Since m is an increasing function, then from this equation we can make an even stronger
observation about the role of €,,: the assortativity of matching between A-buyers and A'-
sellers is positive if €5 is increasing, and is negative if €5 is decreasing. The same is also
true regarding the assortativity of matching between ®-buyers and ®'-sellers.

This analysis then begs the question: what determines the elasticity of the matching

function? From equation ({.22), the matching function elasticity is equal to:

Fy |2t ]

In the special case when v = 0, so that the model is completely static, the elasticity of the
matching function is completely determined by the elasticity of the distribution function F¢
of the relationship cost shock. Consequently, this implies that the assumed parametric form
for F¢ will be crucial for determining the model’s predictions regarding the assortativity of
matching between firms, an issue that we will return to when we discuss numerical estimation
of the model in section [l

4.3.3 Geographic distribution of trade partners

Reintroducing geography into the model simply requires rewriting the matching function

| A(x)® (X/) Apy
T (D)U_1

m X I (D)] =7 (4.32)

and using equations (3.41) and (3:42) to specify the network characteristic functions. We

can then easily compute the average supplier and customer distance of a y-firm as follows:

_Jo Js, P DX 17 (D)] dF () 4D

Ds (x) Ms () (4.33)
' [ Dm[x, x| (D)] dF, (x') dD
De (x) = Jo Js Prm lx LL éoﬂ ) (4.34)
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Exactly the same analysis as in section [4.3.2] can be used to show that the matching function
elasticity plays a key role in determining whether larger firms tend to have suppliers and
customers that are located further or nearer by. When the elasticity is increasing, larger

firms tend to have closer trade partners than smaller firms.

4.3.4 Relationship dynamics

Even in the steady-state of the model, there is churning of firm relationships due to the
stochastic nature of the fixed relationship cost. First, note that the unconditional probabil-

ities that a y-firm will retain any one of its suppliers or customers are given by:
Pt () =v+(1— 1/)/ a <X> X/) dF, <XI> (4.35)
Sx
pot (x) =v+(1- V)/ a (x’, x) dF, <x> (4.36)
SX

Since these probabilities are constant in steady-state, the unconditional duration of rela-

tionships between a y-firm and its suppliers and customers follows a geometric distribution,

with means and 1_p1 respectively. Furthermore, since the matching function is

1
1—p5 (x) o' ()
equal to the acceptance function in the steady-state of the model, then equations (£35) and
(£30) deliver sharp predictions about the relation between the retention probabilities and

the masses of a firm’s suppliers and customers:

ret

ps” (x) =v+(1-
pEt () =v+(1-

v) Ms (x) (4.37)
v) Mc (x) (4.38)

Firms with more suppliers and customers are therefore more likey to retain existing trading
relationships.

Note that firms in the model are also more likely to trade with existing partners than
new ones because of the sticky nature of relationships. If a y — x relationship was active
in the previous period, the probability that it will be maintained in the current period is
equal to v+ (1 —v)a (X, X'), whereas the probability that it will be newly-formed is equal

to(1—v)a (X, X,)- The fractions of suppliers and customers that are new for a y-firm every
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period are therefore given respectively by:

Js, A=v)a(x.x) [1=m (x.x)] dFy (X)

P (X) = s (0 (4.39)
vew s =) a (X x) [L=m (', x)] dFy (X)
P (X) = e (4.40)

Finally, it is useful to point out that the parameter v controls the rate of convergence
between steady-states. As an illustrative example, consider an economy that is in steady-
state at ¢ = 0 with both the relationship fixed cost f and the reset friction v being finite,
and denote the matching function in this economy by mss. Suppose then that the fixed
relationship cost f becomes either infinite or zero, and denote the new steady-state matching
function by m., (identically zero or one respectively). From equations (&2) and (&I, the

matching function evolves according to:
N ’ ot ’
a <X> X ) = ' (X, X ) (4.41)

where m; (X, X/) =my (X, X/) —m;s (X, Xl) is the deviation of the matching function from the
new steady-state. When relationships are stickier (larger v), convergence between steady-

states is slower.

5 Numerical Analysis

Having characterized the theoretical counterparts of the empirical moments described in
section 2.2] I now take the model to data by estimating the steady-state of the model via
simulated method of moments. I begin by specifying the remaining parametric assumptions

in the model.

5.1 Parametric assumptions

First, given that the firm size distribution appears to be approximately log-normal (Figure
2.2.7)), I assume that the log of fundamental firm productivities and qualities, ¢ and J, are

jointly Gaussian with zero mean and covariance matrix given by:

S 5
PUsUs U?
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Note that in the empty network with m (X, X/) =0forall y,x € Sy, this assumption would
imply that firm revenue and employment are exactly log-normally distributed.
Parameterization of the distribution function F¢ of the relationship cost shock requires
slightly more careful consideration. As discussed in section [4.3.2] the elasticity of F plays
a key role in determining qualitative properties of the model, and in particular the gradient
of the elasticity of F¢ is directly related to the assortativity of matching between firms.
As it turns out, almost all of the standard continuous distributions with support on [0, c0)
feature a monotonically decreasing elasticity One notable exception is the Gompertz or
log-Weibull distribution, which is used extensively in survival analysis and has the following
distribution function:
Fe(z) =1 —e b1 (5.2)

where b is a scale parameter and s¢ characterizes the shape of the distribution. From a
mathematical point of view, assuming that the relationship cost shock follows a Gompertz
distribution is desirable because the sign of the elasticity gradient of the distribution is
variable when s € (0,1), which therefore allows for flexibility in the model’s predictions
regarding the assortativity of firm matching.

From an economic standpoint, a Gompertz-distributed relationship cost shock can be
interpreted as follows. Suppose that upon meeting, a pair of firms takes a random amount of
time (within the period) to negotiate the potential arrangements of the trading relationship,
and that the fixed cost of the relationship is proportional to the amount of time that it takes
for negotiations to be completed. Suppose also that the probability with which negotiations
continue to drag on conditional on no agreement having been reached at a given point in
time declines with time. If this process is characterized by the negotiation time having an
exponential hazard rate, then the fixed cost of the relationship has a Gompertz distribution.
Based on these considerations, I parameterize the relationship cost shock according to (5.2).
With the mean of & fixed at 1, this pins down the scale parameter be given a choice of the
shape parameter s¢.

Finally, trade costs are parameterized according to:
7(D) = (14 kD)* (5.3)

where k measures the overall level of trade costs and € measures the elasticity of trade costs

with respect to distance. Since the maximum possible trading distance in the model is

Z8These include (at least) the Fréchet, Weibull, log-normal, Gamma, generalized Pareto, and log-logistic
distribution.

29Note that with this parameterization, 7 is log-subadditive for any ,e > 0, and therefore trade costs
satisfy the triangle inequality.
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normalized to 1, k can also be interpreted as the cost of trading with the most distant firms
relative to trading with firms that are right next door. Note that trade costs are non-existent

when either Kk =0 or e = 0.

5.2 Parameter estimation

The above parameterization of the model gives us a total of 12 parameters: the elasticity
of substitution o; input suitability o; mean f and shape s¢ of the relationship fixed cost;
reset friction v; parameters of the y distribution, vy, vs, and p; parameters of the trade cost
function k£ and e€; labor supply L; and the household discount factor 5.

Since the Compustat data is of annual frequency, I set 8 = .96. Also, note that the total
labor supply L only enters the set of equilibrium conditions through equation ([3.34). If we
write the magnitude of the fixed relationship cost f as a fraction f of the total labor supply,

then from equations (4.4) and (4.13]), we see that the activation function a is independent
of L. Equation (43)) then implies that the matching function is also independent of L, and
therefore so are the network characteristic functions defined by (3.19) and (3.20). In other
words, the parameter L affects equilibrium variables only by scaling firm size one-to-one. I
therefore fix L = 1 and compare normalized moments of the model to the corresponding
normalized moments of the data, as described in section 2.2.11

The remaining 10 parameters of the model are estimated using simulated method of
moments. Recall that the five sets of empirical moments discussed in sections 2.2.1H2.2.5]

were respectively:

1. X,, the normalized quantile level of variable X evaluated at the midpoint of quantile
bin b;

2. Qi | the average quantile of variable X for all firms with revenue falling in quantile

bin b, given by equation (Z3));

3. RQbS”X and RQ?’X, the average quantile of variable X amongst all suppliers and cus-

tomers respectively of all firms with revenue falling in quantile bin b, given by equations

(2.4) and 2.5);

4. Dy and DY, the average normalized supplier and customer distances respectively

amongst all firms with revenue falling in quantile bin b, given by equations (2.6) and
2.3);

5. po"and po", the dynamic moments capturing the rates at which firms retain old

trading partners, given by equations (2.10) and (2.11)).
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One option for the estimation procedure is to target all of the moments described above.
Since employment is highly correlated with revenue in the data, however, I choose to omit
targeting the firm employment distribution (L), as well as the correlation between revenue
and employment (FQF). Furthermore, instead of targeting all of the moments that charac-
terize firm-to-firm matching, I target only the revenue quantiles of suppliers and customers
across firms (RQbS’R and Q%%), and use the remaining matching moments as overidentifica-
tion tests of model fit. This leaves 13 X Ny;, sets of moments for estimating 10 parameters.

The estimation procedure is as follows. First, to reduce simulation error, [ generate Ny,
random seeds (€4, &5) from a two-dimensional standard multivariate normal distribution.
Then, for every candidate set of parameter values, I compute the theoretical moments cor-
responding to the targeted moments described above for a set of N, simulated firms. To
do so, [ first solve for the values of the steady-state network characteristic and matching
functions at a set of Nyiq X Nypig points using the algorithm described in the appendix. I
then solve for the functions R (), Ms (), Mc (+), Ds (+), Do (), pt (), and pf* (+) at these
same grid points using equations (3.26), (BI11), BI12), [@33), (£34), (A35), and (@30).

Given the current values of vy, vs, and p, I then compute:

R 16 I

log d B Vs €s

for each simulated firm (thereby maintaining consistency with the desired covariance matrix
(51)), and then use bilinear interpolation to obtain the theoretical values of R, Mg, M,
Dg, D¢, pist, and pis* for each firm.

Having computed the theoretical counterparts of the target moments, I then compute

the distance between these and the empirical moments according to:
9 = (|%data - %modell)T /4 (I%data - %modelD (55)

where A ju1a and M4 are vectors containing the stacked empirical and model moments
respectively, and # is the pseudo-inverse of the covariance matrix of the empirical moment
vector, estimated by bootstrapping techniques Starting from an arbitrary initial choice of
parameter values, I then execute a simulated annealing algorithm to minimize . Standard

errors are computed using a bootstrap procedure, in which I repeat the estimation procedure

30Tn order to obtain bounded support for the joint distribution of ¢ and J, which is necssary for numerical
solution of the model, I truncate the distributions of both £, and &5 at the 95" percentiles.

3T resample with replacement 2000 times from the set of firms for both the Capital IQ and Compustat
datasets, and compute the covariance matrix resampled data. I do not perform resampling along the time
dimension for the Compustat data, although in principle this is possible using block bootstrapping techniques.
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described above after replacing .#;,, by the corresponding moments from a bootstrap re-
sampling of the original data. To account for simulation error, I also regenerate the random

seeds (€4, &s) each time the estimation is performed.

5.3 Results
5.3.1 Parameter estimates

The parameter values obtained using the estimation procedure described above are shown
in Table Il From this, we make several observations.

First, the estimated value of the mean static relationship cost f appears to be small, but
recall that total labor supply is normalized to 1 in the estimation, and therefore the estimate
implies that around 7% of total production labor is used for managing relationships. At
the firm-level, the model predicts that labor costs associated with managing existing trade
relationships within a firm account for around 1.3% of total labor costs on average.

Second, the reset friction parameter v affects the rate at which firms form new trading
relationships and destroy existing ones. At these parameter estimates, the model predicts
that the mean duration of a firm’s relationships with its suppliers and customers is around
1.9 years, which is very close to the empirically-measured mean relationship duration of 1.74
years. The model also predicts that the average relationship termination rate across firms is
around 34%, which again is very close to the empirical supplier and customer termination
rates of 38.4% and 30.1% respectively.

Third, although the substitution elasticity ¢ is not very precisely estimated, the point
estimate plus or minus one standard error falls well within the range of values typically
estimated in the literature. This is reassuring given that the estimation is based on data
in which the intensive margin of trade (transaction values) is unobserved.

Finally, the parameters governing the distribution of fundamental firm characteristics
appear to be well identified, with relatively small standard errors, but the trade cost param-
eters are less precisely estimated. As discussed below, this is perhaps related to the inability
of the model to match the qualitative relationship between firm size and trading partner

distance.

5.3.2 Model fit

To examine the model’s fit with data, Figures [BHI2] reproduce the graphs characterizing

the empirical moments described in section 22, but with the model’s simulated moments

32Gee for example Broda and Weinstein (2006).
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‘ Parameter ‘ Value ‘ Standard Error ‘

mean of relationship cost f 1 .070 .02
meeting friction v | .647 .03

shape of relationship cost shock se | 585 A1
elasticity of substitution o | 3.02 27

input suitability o | 347 .09

variance of fundamental productivity | v, | .364 .06
variance of fundamental quality vs | .b44 .06
correlation between ¢ and 9 p | -.241 .07
trade cost level Kk | .688 18

elasticity of trade cost with distance | € | .348 12

Table 1: Estimated parameter values

overlaid. With regard to the firm-level distributions shown in Figure [§, we see that the
theoretical firm revenue distribution closely approximates the empirical distribution, and
takes on the same log-normal shape. The firm in-degree and out-degree distributions, on the
other hand, are harder for the model to match exactly, although the theoretical and empirical
distributions share the same convex shape. Comparing the theoretical degree distributions
to the Poisson (random matching) and Pareto (preferential attachment) approximations
described in section 2.2.J] we see that the model’s predicted distributions lie somewhere
between the distributions of the two parametric forms. This is perhaps not surprising, given
that the structural model features both elements of random reset shocks as well as preferential
activation (and non-termination) with larger suppliers and customers. The firm employment
distribution predicted by the model (which is untargeted in the estimation) resembles the
empirically-observed employment distribution in terms of the log-normal shape, but the fit
is poorer compared to the revenue distribution.

Figure [0 shows the model’s fit with regard to the correlation of firm revenue with em-
ployment, in-degree, and out-degree. As in the data, the model predicts that firms with
larger revenue also tend to have larger employment, more suppliers, and more customers.
Furthermore, the model closely matches the specific quantiles of these variables for firms in
each revenue quantile bin, even for the untargeted employment distribution.

Next, we examine the model’s fit with regard to the assortativity of matching between
firms, shown in Figure[I0l From these graphs, we see that the model is able to reproduce the
positive assortative matching between firms documented in the data, whether with regard to
revenue (targeted), or employment, in-degree, and out-degree (untargeted). However, in each
case, the model fit is better for firms at the upper-end of the revenue distribution. The fit

with regard to matching between firms and their suppliers in terms of revenue, for example,
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is almost perfect for firms with revenue above the median, but is poorer for firms with
revenue below the median. This suggests that the economic tradeoffs involved in forming
and terminating trading relationships may be significantly different for small versus large
firms. In particular, the empirical moments of the matching distributions imply that small
firms are likely to match with suppliers and customers that are larger than the theoretical
mechanism in the model suggests.

With regard to the geographic distribution of a firm’s suppliers and customers, Figure
[T shows that the model is unable to replicate the qualitative feature of the data that larger
firms tend to match with trade partners that are located closer to themselves, although in
terms of levels the average normalized distances to suppliers and customers predicted by the
model for larger firms are not too far off from the corresponding empirical moments. This
discrepancy between model and data suggests that additional theoretical mechanisms beyond
the relationship frictions studied in this paper are needed to generate both positive assortative
matching between firms as well as average trade partner distances that decline with firm
size. The pattern observed in Figure [Tl might be generated by a trade model featuring an
endogenous geographic distribution of firms with positive externalities in each location, for
example, so that larger firms tend to be located closer to larger firms. Embedding endogenous
geography, however, is beyond the scope of this paper.

Finally, Figure shows the model’s fit with respect to the moments characterizing
firm relationship dynamics. Here, we see that the model replicates the empirically-observed
positive relation between firm size and the rate at which firms retain existing suppliers and
customers, although the exact moments do not line up perfectly. Nonetheless, as discussed
above, the predicted relationship durations and relationship termination rates are very close

to their empirical counterparts on average.

6 Counterfactuals

Having estimated the parameters of the model, [ now return to addressing the key ques-
tion initially posed in the introduction to this paper: what are the quantitative implications
of stickiness in firm-to-firm relationships for the responses of aggregate trade patterns and
welfare to shocks? To answer these questions, I study the model’s transition dynamics in re-
sponse to three kinds of counterfactual changes: declines in trade costs (section[6.1]), declines
in relationship costs (section [6.2)), and idiosyncratic fluctuations in firm-level characteristics
(section [6.3]). T also examine the importance of accounting for rational firm expectations
in computing these counterfactual dynamics (section [6.4]), and revisit the efficiency of the

dynamic market equilibrium by studying a simple policy exercise in which the fixed rela-
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Figure 12: Model fit: dynamic distributions

tionship cost is subsidized by a planner who obtains revenue from an ad valorem import tax

(section [6.5]).

6.1 Trade cost shocks

To examine how sticky relationships affect the dynamic responses of aggregate trade
volumes and welfare to trade cost shocks, I study the model’s transition dynamics following
a change in the overall trade cost level k to some counterfactual level, starting from the
steady-state of the model with parameters set at the SMM estimates. I assume that the
shock hits the economy at ¢ = 0 after all relationship cost shocks have been realized and all
activation and termination decisions have been made, so that firms can readjust the intensive
margin of trade in the initial period post-shock but not the extensive margin. In other words,
the initial response of the economy to the trade cost shock takes the network of firm trade
as fixed. From ¢ = 1 onwards, firms adjust both the intensive and extensive margins of trade
in response to the shock.

Recall that the aggregate value of imports at date ¢ from a location a distance D away

20



is given by:

r(D) - (2) or s [ [ mex e 0)] a0 (¥) R 0ar ()6
1% Sy /Sy

A decline in the cost of trade 7 (D) therefore affects trade volumes statically through a direct
reduction in the cost of inputs purchased (via the term 7 (D)'™7), as well as dynamically
through changes in the incentives that firms face in forming and terminating relationships
(via the matching function m;). In the initial period of the shock, the matching function
is assumed to be fixed, and the short-run change in trade therefore occurs only through
the static channel. In the long-run, the total effect of the trade cost shock on trade vol-
umes incorporates adjustments of firm-to-firm trade along both the intensive and extensive
margins.

Figure [[3] shows the dynamic responses of trade and welfare following a uniform 5%
decline in gross trade costs across all locations. The first graph shows the transition paths
of exports from a given location (measured as the percentage change relative to the pre-shock
steady-state) to locations integrated over each quadrant of the unit circle. The second and
third graphs decompose these changes in trade volumes into changes along the extensive
and intensive margins respectively, while the fourth graph shows changes in welfare. From
these graphs, we observe the following. First, in the initial period of the shock, exports to
all locations increase, with the total value of exports rising by around 8%. Since the set of
active trading relationships is assumed to be fixed, all of these gains are generated by firms
selling more to existing customers. Notice also that the initial increase in exports is larger
for locations that are further away, so that the geographic distribution of trade immediately
becomes more dispersed following the shock.

After the initial period, the decline in trade costs induces firms to accumulate more
trading partners. Over time, the value of exports to all locations therefore continues to
grow. Observe that along the transition path, the growth in the mass of active relationships
is accompanied by a decline in the amount of trade per active relationship. The dynamic
gains in aggregate trade are therefore driven solely by increases in the extensive margin of
firm-to-firm trade. Once firms have fully adjusted their trading relationships in response
to the shock, total exports to all locations are almost 30% higher relative to the pre-shock
steady-state. The endogenous adjustment of firm-level relationships therefore amplifies the

elasticity of aggregate trade with respect to trade costs by more than three times. Similarly,

33Gpecifically, a change in & corresponding to a 5% decline in the average trade cost measure
Jy (1 + kD) dD .

34Gince all locations are symmetric, the values of exports and imports between any pair of locations are
identical.
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the welfare gains from the reduction in trade costs are close to four times higher in the
post-shock steady-state than in the initial period of the shock (although the absolute welfare
gains are small). Note that the dynamic amplification effect is larger for exports to more
distant locations, so that the geographic dispersion of trade also increases over time.

In addition to studying a uniform decline in the cost of trade across all locations, we can
also use the model to study the effects of a bilateral reduction in the costs of trade between
a given pair of locations. Since the set of locations is continuous, a change in trade costs
between a single pair of locations leaves aggregate variables in each location unchanged
The response of trade is therefore given by equation (6.1) with Ag,, A;(-) and &, (+) held
fixed at their respective pre-shock steady-states. Nonetheless, the economic mechanisms
remain the same: the bilateral decline in trade costs affects trade volumes both statically
and dynamically.

Figure shows the responses of trade following a 5% decline in gross bilateral trade
costs for different distances between importing and exporting locations. Again, we see
that the initial increase in trade is dynamically amplified by the accumulation of additional
trading partners by firms in response to the trade cost shock, and that the magnitude of
the amplification is around a factor of three for all locations but is larger for more distant
locations. Note that the response of trade in the initial period of the shock (the x-intercept
in the first graph) is determined solely by the elasticity of substitution o, as it would be in

the frictionless model.

6.2 Relationship cost shocks

Lower variable trade costs reduce the cost of firm-to-firm trade along the intensive margin.
How do trade patterns and welfare respond to changes in the cost of firm-to-firm trade along
the extensive margin when firm relationships are sticky? To study this, I examine the
model’s transition dynamics following a change in the average value f of the relationship
cost shock. Again, I assume that the shock hits the economy at ¢t = 0 after all relationships
have been set, and only allow firms to create and terminate relationships from ¢ = 1 onwards.
Furthermore, to enable consistent quantitative comparison with the results of the previous
section, I compute the magnitude of the change in f in the following way.

Consider a decline in variable trade costs across all locations corresponding to a change

in x to some counterfactual level . The cost of this change across steady-states if it were

350ne can think of this as a small open economy assumption but applied to a pair of locations.
36Specifically, a change in k corresponding to a 5% decline in (1 + xD)° for each value of D.
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to be implemented by an ad valorem subsidy to exports would be given by:
! 1 ! € = /
TK</€,/€>:/ [(1+HD)6—<1+/<;DHR<D\H>CZD (6.2)
0

where R ('|/€/) is the aggregate value of trade in the steady-state corresponding to x'. Simi-
larly, the cost of a decline in f to some counterfactual value f’ if it were to be implemented

by a subsidy to the cost of maintaining relationships would be equal to:
1y (1.8) = (r=1)Ls (£) (6.3)

where here L; ( f’) is the total mass of labor used to pay relationship fixed costs in the
steady-state corresponding to f. With x and f set at the SMM parameter values, I therefore
compute the value of f such that Ty (f, f’) =T, (/<a, /<L,) for a given value of & .

Figure[13 shows the responses of aggregate trade and welfare in response to a decline in f
corresponding to the 5% decline in global variable trade costs studied in section From
these graphs, we see that the effects of lower relationship costs are qualitatively similar to
the effects of lower variable trade costs: exports to all locations increase over time, driven
by growth in the mass of active relationships and accompanied by a decline in the intensive
margin of trade. Quantitatively, however, the effects of a decrease in f on aggregate trade
and welfare are much larger than the corresponding effects following a decrease in x. The
increase in total exports in the post-shock steady-state relative to the pre-shock steady-state
is around 50% higher than the corresponding increase resulting from the decline in variable
trade costs. Similarly, the long-run welfare gains are around 75% higher. Since the rates of
adjustment in response to the shocks are similar in the two cases, these results suggest that
policy measures targeting the frictions that firms face in establishing trading relationships
can be equally as if not more cost-effective than ad valorem trade subsidies.

As in section [6.I] we can also study the effects of a decline in the bilateral cost of
relationships between firms in a given pair of locations. The results (not shown) are similar,
with a decline in f generating larger gains in trade and welfare than a cost-equivalent decline

in K.

6.3 Idiosyncratic fluctuations and aggregate dynamics

To study how shocks to firm-level fundamental characteristics translate into aggregate

dynamics, I next consider the following counterfactual exercise. Suppose that at ¢t =0 , the

37In terms of parameter values, the comparison is between a 50% decline in & versus an 18% decline in f.
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Figure 15: Responses of trade and welfare to global decline in relationship costs equivalent
to 5% decline in trade costs

economy is initially in steady-state. Next, suppose that all firms receive an unexpected but
permanent shock to their fundamental characteristics that leaves the distribution of states
across firms unchanged. In particular, suppose that the post-shock fundamental productiv-

ities and qualities of a firm are given respectively by:

log ¢ = V1 — slog ¢ + /s, (6.4)
logd = V1 — slogd + v/sts (6.5)

where the idiosyncratic shocks Wy and ws are jointly normal with the same covariance matrix
as log ¢ and log 0, and where the parameter s captures the ratio of the shock variance to the
variance of pre-shock firm states. Under this specification, it is straightforward to verify that
the distribution of ngS and & across firms is identical to the pre-shock distribution of ¢ and
d. It is immediately obvious from this that in a model without costly relationships (f = 0),
this shock would have no effect on the aggregate economy at all. In a world with sticky
relationships, however, even such idiosyncratic fluctuations have aggregate effects.

As before, I assume that the shock hits the economy at ¢ = 0 after all relationships have
been set. Even though individual firm pairs cannot activate new relationships or terminate
existing ones, however, the matching function still responds instantaneously to the fluctua-

tion shock, not because firms adjust the identity of their trading partners, but because the
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states of individual firms change. In particular, the matching function at date 0 adjusts

instantaneously to:

< A/) fsx st ( ) ()A(|X)Q(>A( |X)de (X) de (X) (6.6)

X T T aR0 e KX dFy (x) dFy (Y)

where ¢ is the transition function between pre- and post-shock states implied by (6.4)) and
(65). Since the structural parameters of the model remain unchanged, the steady-state of
the economy is the same as before the shock. However, firm relationships are “scrambled”
by the idiosyncratic fluctuation in firm fundamental characteristics, and it takes time for the
economy to return to its steady-state as firms readjust their relationships.

Figure [16l shows the responses of trade and welfare to the fluctuation shock for different
values of the relative shock variance s. We observe that when s is very small, the fluctuation
in firm states has little effect on aggregate quantities. However, as s starts to increase, the
responses of trade and welfare grow quickly. With relative shock variances of 10% and 20%,
aggregate trade falls immediately by about 10% and 30% respectively. Welfare also falls as
firm states are scrambled, although again the magnitude of the effect is small. Furthermore,
the economy only gradually returns to the steady-state, with the half-life of the trade and
welfare responses being approximately two years.

This effect of idiosyncratic fluctuations on aggregate dynamics in the model can be con-
sidered complementary to the effects studied in Acemoglu et al (2012), where the authors
examine the role of sector-level input-output structures in translating idiosyncratic shocks
into aggregate fluctuations. In the model studied here, idiosyncratic shocks generate ag-
gregate dynamics because the input-output structure of the economy at the firm level is
endogenous, and responds to shocks that would have no aggregate effects in a model without

relationship frictions.

6.4 The importance of rational expectations

Being able to solve for the model’s exact transition dynamics under rational expecta-
tions allows us to compare the model’s predictions to what would be obtained under the
assumption that firms are myopic. As previously discussed, a common approach to model-
ing strategic network formation between atomistic agents is to assume that agents receive
the chance to create or destroy links with finite probability, but that given the chance to
change a relationship, the decision is made myopically based only on the static changes to
the agent’s payoff.

To study the implications of myopia and therefore the importance of taking rational firm
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Figure 16: Responses of trade and welfare to idiosyncratic fluctuations in firm states

expectations into account, I study the model’s predictions under the alternative assumption
that the relationship acceptance function is given by (4.8) instead of (4.13]), and compute the
transition dynamics in response to the same global decline in variable trade costs discussed
in section Figure [I7 shows the transition paths of trade and welfare (analogous to
Figure [[3), from which we observe the following. First, the short-run change in trade and
welfare under both myopia and rational expectations is the same, because the matching
function is held fixed. However, once firms are allowed to adjust the extensive margin of
trade, the transition dynamics and the eventual steady-state of the model differ substantially
under myopia relative to the rational expectations equilibrium. In particular, myopic firms
form too many relationships relative to the rational expectations equilibrium, and welfare
initially declines following the trade cost shock before increasing to a steady-state level that
is about 25% lower than the rational expectations equilibrium steady-state. This divergence
in both the qualitative as well as quantitative properties of the model under myopia clearly

shows that taking agents’ rational expectations into account can have a crucial impact on

theoretical predictions.
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Figure 17: Responses of trade and welfare to 5% decline in global trade costs with myopic
firms

6.5 Trade policy and sticky relationships

Given the central role of relationship stickiness in this paper, a natural policy question to
ask is: can household welfare be improved by subsidies to the cost of forming relationships?
To provide a first look into the effects of trade policy under sticky firm relationships, I
consider the following stylized counterfactual. Suppose that for every relationship formed
by a seller in each location, the policymaker in that location pays a fraction Sy of the
fixed relationship cost, financed fully by an ad valorem import tax Th,. In other words,
policymakers tax the intensive margin of trade to subsidize the extensive margin. Without
transport costs (k = 0), for example, the steady-state matching function under such a

combination of policies would be:

Ax)® (Xl) Ag
(1= Sp) (1+Tn)""

m (X, X,> =m (6.7)
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Figure 18: Effect of relationship cost subsidies on household welfare

where m is as defined by (£22), and where the firm network characteristic functions are

given by:

( ) dF, (x) (6.8)

®(x)=9¢""+ [ﬁ} _ /Sxm(x,x'> ¢ (x
" X) A (Xl) dF, <Xl> (6.9)

A =p 8 1+ Tan)] 7™ [ (x
Sx

Balanced budgets in each location then require:
S¢Ly=TyR (6.10)

where L is given by equation (£I4) and R is total import expenditure:

o—1
— a ! ! /
R= [7] AH/ m(x,x>A(X)<I>(X>dF (x) dF; (X) (6.11)
p(1+Th) Sy x x

Figure [I8 shows the percentage change in household welfare across steady-states relative
to the no-policy equilibrium for different values of Sy. Evidently, the model implies that firm
relationship cost subsidies can be welfare improving even when financed by import taxes that
distort the intensive margin of trade. This is a result of the fact that the market equilibrium

is inefficient relative to the social planner’s allocation, as characterized by Propositions
and [3l
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7 Conclusion

This paper set out to study and quantify the effects of stickiness in firm-to-firm trading
relationships on aggregate patterns of trade. The theoretical model developed to address
these questions is able to adeptly match the majority of empirical moments relating to the
distributions of relationships across firms, the correlation between firm connectivity and
firm size, the assortativity of matching between firms, and the persistence of firm-to-firm
relationships. Numerical estimation and counterfactual simulation of the model then suggest
that firm-level relationship frictions matter for understanding patterns of aggregate trade in
several key ways. First, endogenous adjustment of sticky firm relationships dynamically
amplifies the response of trade and welfare to macroeconomic shocks. Second, subsidies to
the cost of firm-level trade along the extensive margin can be a more cost-effective means
of increasing aggregate trade and welfare than subsidies along the intensive margin. Third,
idiosyncratic fluctuations at the firm-level can generate large and persistent aggregate trade
dynamics when firm relationships are sticky. Finally, selection of trading relationships by
profit-maximizing firms in the presence of relationship stickiness can be socially sub-optimal,
with scope for welfare-improving subsidies to the formation of firm-level linkages.

The issues confronted in this paper also provide scope for future research. In particular,
the model’s inability to fit the matching distributions of firms at the lower-end of the revenue
distribution suggest that more nuanced theory regarding the matching process may be needed
to resolve this discrepancy. Extensions of the model, for instance, may consider the role of
information in firm network formation, how such information propagates across firms, and
how informational frictions may affect smaller versus large firms differentially. Furthermore,
the empirical finding that larger firms tend to trade with partners that are closer by on
average goes against not only predictions of the model developed in this paper, but also
the standard intuition arising from heterogeneous-firm models of international trade that
larger firms are more likely to export to more costly locations. This hints at a role for
economic geography models in exploring the potentially-rich interaction between sticky firm

relationships and the endogenous geographic locations of firms.
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APPENDIX

A Computational Algorithms

A.1 Static algorithm

Given the matching function m, the static market equilibrium specified in Definition [II

can be solved for easily using the following algorithm.

1. Make initial guesses ® and A for the network productivity and quality functions, and
iterate on equations (3.19) and (3.20) until convergence.

2. Solve for Ay using equations (B.10) and (B3.34).

3. Compute the allocation {I (x), X (x),z (x,X) . 2n (X)}XES using (3.28), (3.31), (3.33),
X
and (337) respectively.

Since the functional equations (3.19) and (8.20) constitute contraction mappings with Lips-

chitz constants <%>U_1 and O‘;;l respectively, the iteration procedure in step 1 of the algo-
rithm is guaranteed to converge at those rates. In practice, numerical solution of the model
requires discretization of the state space S, into a mesh grid, of say Ny.iq X Nypiq points.
One can then solve for the functions ® (-) and A (-) in step 1 at each point in the mesh grid,
and then use bilinear interpolation to obtain numerical approximations of these functions as

well as of the allocations {L (x), X (x),z (x, X/) ,xp (x)} for any desired value of y € S.

A.2 Dynamic algorithm

[ first describe the computational algorithm used to solve for the steady-state equilibrium

specified in Defintion Bl which is as follows.

1. Make initial guesses ® and Ay A for the network productivity function and the network

quality function scaled by the household demand shifter.
2. Compute the implied profit function 7 from equation (ZL.4).

3. Compute the implied matching and acceptance functions, m and a, from equations
(E3) and (@EII).

4. Compute the implied network productivity and quality functions, ® and A, from equa-

tions (319) and (3:20).
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5. Compute the implied household demand shifter Ay from equations B34), (@14,
(413)), and ([£I6), and obtain the implied guess for the scaled network quality function,
ApA = AzA.

A

6. Compute the residual R = max {R¢, Ra} where Re = max,es, |® (x) — @ (x)| and

Ra = maxyeg, ApA(x) — AgA(x)|; if R > € for some tolerance level €, update
the guesses for the network productivity and scaled quality functions according to

' = ? and AgA (x) = A’;Ai‘fﬁ, and repeat from step 1 until R < e.

[ now discuss the computational algorithm used to solve for the model’s transition dynamics
as specified in Definition[2l Suppose that the matching and profit functions at date 0 are given
by mg and 7y respectively, and that the economy is not in steady-state. The goal is to solve
for the model’s transition path to the eventual steady-state characterized by the matching
function denoted by mgs. Note that given the matching function m,, it is straightforward
to solve for the static market equilibrium at date ¢ using the algorithm discussed in section
[AJl The challenge in solving the model’s transition dynamics therefore lies in computing
the matching function at date ¢ given the matching function at date ¢ — 1. As we see from
equation (LI3), doing so while fully taking into account firm rational expectations requires
solving for the profit functions {7rt+5}520. To accomplish this, I employ an algorithm that
iterates on the path of profit functions {Wt}le for some value of 7" large enough such that the
matching function at date 7' is close enough to the eventual steady-state matching function

mss. Formally, the algorithm is as follows.

1. Make a guess T for the number of periods that it takes for convergence to the steady-

state.

2. Make an initial guess for the profit functions {frt}fﬁ (e.g. 7 = 3 (mo + ) for all
e fo 1))

3. At each date t € {1, e ,T}, given my_1 (with o = my):

(a) Make initial guesses &, and AgA, for the network productivity function and the

network quality function scaled by the household demand shifter.
(b) Compute the implied profit function 7; from equation (4.4]).

(c) Compute the implied acceptance function a, (LI1]), setting m s = 745 for s €
{1,~-~ ,T—t} and m s = T for s > T —t.

(d) Compute the implied matching function m; from equation (4.2).
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(e) Compute the implied network productivity and quality functions, ®, and A,, from
equations (B.19) and (3.20).

(f) Compute the implied household demand shifter Ay, from equations ([3:34), (Z14),
(4I5), and (AI6), and obtain the implied guess for the scaled network quality
function, AI}At = AH¢At.

(g) Compute the residual R = max {Rqs,R.} where Ry = max,cg, ’Cﬁt (x) — P (X)’

and Ra = max,eg, ’AI}At (x) — AgA, (X)); if R > e for some tolerance level e,
update the guesses for the network productivity and scaled quality functions ac-
cording to ; (x) = 1 [, (x) + &, ()| and Mg, (x) = 1 [And, (x) + AnA, (v)]
and repeat from step (a) until R < e, then set m; = m;.

4. Compute the residual R, = MaXe (. 7} MAX(, g2 }frt (X, X/) — T (X, X,) }; it R, >
" ) X
€, for some tolerance level €., update the guesses for the profit functions according to

A

ﬁ; = % for all t € {2, e ,T}, and repeat from step 2 until R, <e.

5. Compute the residual R,, = max(x’xl)esz }mT (X,X’) — Mg (Xle) ‘; if R,, > €, for

some tolerance level ¢,,, increment T and repeat from step 1.

As in solving for the static market equilibrium, numerical solution of the dynamic market
equilibrium requires discretization of the state space S, into a mesh grid of N4 X Ngpia
points, and bilinear interpolation can then be used to obtain numerical approximations of
firm-level equilibrium variables off the grid points. Note that given the guess of future profit
functions, step 3 of the algorithm has the same computational complexity as solving for the
model’s steady-state, and this part of the computation can be sped up by using the terminal
guesses at the previous date when initializing the guesses for the network characteristic
functions in step 3(a). Furthermore, upon increasing the guess for T to T + 1 in step
5, the new guess for the profit functions up to date T used in step 2 can be set at the
previous terminal guesses for the profit functions up to that date, which also speeds up the
computation.

With a grid size of Ng.q = 20 and tolerance levels € = ¢, = ¢, = 107, executing
the steady-state algorithm typically takes around 30 seconds, while solving for a transition
path such as those discussed in the main text typically takes about one hour on a standard
computer. Since estimation of the model’s parameters only requires solving for steady-
state equilibria, the complexity of executing the dynamic algorithm does not factor into the

tractability of estimating the model.
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B Static and Dynamic Efficiency

B.1 Static efficiency

To chacaterize the efficiency of the static market equilibrium, I compare the result-
ing allocation with the allocation that would be chosen by a social planner whose goal
is to maximize household welfare subject to the production technology and market clear-

ing constraints. Given the matching function m, the social planner chooses the allocation
A= {l (x),. X (), {z (x, X,)}x’esx  TH (X)}Xes according to :

X

o—1

U = max [/SX B2 (0] dFy, (x)

subject to the following constraints:

o—1

X (x) = [[asz (01" + / m (X)) [ax (6 X)] 7 dR (x’)] (B.1)

X(x)sz(X)+/

m (Wox) e (X x) 4R () (B.2)

[ 10dr 0 =11, (B.3)

where L; = ffSX fo m (x,x) dFy (x) dFy (X) is taken as given.
1

Denoting the Lagrange multipliers on constraints (B.2)) and (B.3]) by (&) n(x) fy (%)

1
and <AL) ” respectively, the first-order conditions for the planner’s problem can be expressed
H

i (X) =Ard" 'n(x)"7 (B.4)
L) =X0)n(x) ¢! (B.5)
x (x, x') =X () ()" "y (x')_a (B.6)

Substituting these equations into (B and (B.2)), we get:

O (x)=¢"" + oz”‘l/s m (x, x') @ (x) dF, (x) (B.7)
A(x) =61+ oz"_I/S m <X,, x) A <X,> dF, (){) (B.8)
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where ® (x) =7 (x)' "and A (x) = 2= X () n (x)°-

Note that equations (B.4)-(B.8) are identical to equations (8.2), (8.1), (B), (319), and
(320) respectively only when p = 1. This tells us that the static market equilibrium alloca-
tion is identical to the planner’s allocation if and only if the markups charged by all firms
are equal to one. With a finite elasticity of substitution o, the static market equilibrium
is therefore inefficient relative to the planner’s allocation because of the monopoly markup

distortion.

B.2 Dynamic efficiency

To study the efficiency properties of the dynamic market equilibrium, we consider the
problem of a social planner that chooses the set of relationships to activate and terminate
at each date so as to maximize the present discounted value of household welfare, subject
to the same dynamic frictions faced by firms in the market equilibrium. From the results
in section [B.I] we know that given the matching function m; and the total mass of labor
used to pay relationship costs L¢;, household utility at date ¢ under the planner’s optimal
allocation can be written as:

U= (L—Lys)C (B.9)

where C; measures the total connectivity of the static production network:

Ce
d=0

_/S /S [i ozd(cr—l)mgd) <X,X/>] <5¢/>J_1 dF, (x) dF <X/)] (B.10)

- / &, (x) 8 1dF, (x) (B.11)

=1/, Ay (x) 97 'dF\ (x)

(B.12)

and ®, and A, are given by the date ¢ equivalents of equations (B.7) and (B.8) respectively.

To study the planner’s dynamic optimization problem, let V; (m,;_;) denote the present
value of discounted household utility at date ¢t under the planner’s optimal dynamic allocation
when the matching function in the previous period is given by m;_;. At each date ¢, the
planner’s choice about which relationships to activate and terminate is equivalent to a choice
over the values{&mnaz+ (X, X/>}(x7x')63,% , where &a21 (X, X') specifies the maximum value of

the idiosyncratic relationship cost shock component for which y — x’ firm pair relationships
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are accepted. The Bellman equation for the planner’s problem can therefore be written as:

Vi (my_q1) = max (U + BVig1 (my)] (B.13)

{fmaac,t(Xle)} (X’Xl ) ES%

where the maximization is subject to &az (X, X/) > 0 for all ¢ and (X, x’) € Sf(, as well as
the following constraints:

U,=(L—Ls,)C (B.14)

¢ - [ [ w0rin - (B.15)
= ot [ () () a5 (1) -
ve=rf [ [umt_l (x)+a-n | w0 o ar oar, (V) @an

me (X ) = vmes (xx) + (1= ) Fe [mass ()] (B.18)

For brevity, denote &, + = &maax,t (X*, X*/) and m; = my (X*, X*/) for a given firm pair

(X*, X*/). The first step in solving the dynamic planner’s problem is to find an expression

for the derivative of U, with respect to &, ,. First, we differentiate (B.I7) with respect to
g;la:c,t to get:
dL * ! ex *
dg*i = (1 - V) H <X » X 7£max,t> fgma:v,t (Blg)
max,t

where H (x,x,€) = f (X) fx (xX) fe (€) is the product of three probability densities. Next,
differentiating (B.18)) for (x, X/) = (X*, X*/) with respect to &, , gives:

dm;
de;:

max,t

= (1= v) fe (Enaan) (B.20)

Differentiating the functional equation (B.8)) with respect to & we then obtain:

%
max,t?

d®; (x) _ d®: (x) dmy
dé.:;uzz,t dm? d&?

(o) 20 ()]

mazx,t

=1 =) fe (Ehans) {a"l‘l’t (x) 1 () + of”l/

Sx
0 () [ S0l (1) o (1) (329
d=0

where 1, (x) is the indicator function that equals 1 if x = x* and 0 otherwise. (Note
that equation (B.23) summarizes the effect of a change in the mass of connections between
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x* — x* firm pairs on the network productivities of all firms that are downstream of y*

firms.) Differentiating equation (B.I4) with respect to & ,,, and using (B.I9) and (B.23),

we then get:
T = (=) H (VX ) G [ (3 x) = ] (8.21)

mazx,t

where we have defined:

o—1

Ty <X*7X*/> = :_ 1AH,tAt (xX*) @ <X*l) (B.25)

Note that conditional on the network characteristic functions, 7; differs from the profit
function 7; in the dynamic market equilibrium (given by equation (44])) only by a constant
fraction 7.

The next step in solving the planner’s problem is to derive an expression for the derivative

*

of the continuation value Vi1 (m;) with respect to &, ;.

First, we note that:

dViiq Vi
=(1- . —_— B.26
dg:nax’t ( V) f€ (gmax,t) dm: ( )
The envelope condition then gives us:
dVigr  dUpp dViio
_ e B.27
dms dmy * ﬁydm;;rl ( )
Using the same approach as in solving for d;fUt , it is straightforward to show that:
dU * « - % «
d H;l =vf (X7) fx (X >Ct+1 [Wt+1 (X » X ) - f} (B.28)
my
Combining (B.26), (B.27) and (B.28)), we then obtain:
d¥ort =v(l-v)H (X*vx*/ag;knam t) i (BY)* Cryigs {ﬁt+1+s (X*vx*/) - f} (B.29)
dg:;zam,t ) s=0

Piecing together equations (B.24]) and (B.29)), we can finally write the first-order condition

with respect to &maq (X, X/) in the planner’s problem as:

Emant (x, X’) — max {M + i (Bv)° (CZ) [ms (fX’ X) 1] ,0} (B.30)
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C Model Extensions

C.1 Multiple industries

To introduce multiple industries into the model, we can partition the set of firms €2 into
N subsets of equal mass and allow the input suitability parameter « to vary across industry
pairs. This variation in input suitability captures how “upstream” or “downstream” one
industry is relative to another, and allows the model to match industry-level input-output
tables. Assuming that the distribution of fundamental firm characteristics is the same in all
industries and denoting by «,, the suitability of inputs from industry v for use in producing
goods in industry u, the analogs of equations (3.19) and (B:20) in steady-state are then:

O, (x) =¢" " + % i <a“”>o_1/ My (X,X') o, (x) dFy (x) (C.1)

—\ u 5
Ay (x) =p=767" + % iu‘”aiu_l /S o (X) B0 (X) dF () (C-2)
v=1 X

where now the network productivity and quality functions ®, and A, are industry-specific,
and the matching function m,, is industry-pair-specific. The matching function for each
industry pair can in turn be computed using the corresponding version of equation (4.11).
Given the network characteristic functions for each industry and the matching function
for each industry pair, we can then use equation (8:32]) to calculate input-output shares. The

share of industry u’s inputs that are sourced from industry v, for example, is given by:

b v s s mue (6 X) Au () @0 (X) dBY () dF () ©3)

v 25:1 gt fSX fSX Mauw (X, X)) Au (X) Puw (X) dFy (x) dFy (x)

while the share of industry u’s intermediate sales that accounted for by customers in industry

v 18:
o _ o s s men (6 X) A (0) @ () 4B () dE ()
uv N

- - (C.4)
Zw:l gt fSX fSX M (X5 X) Aw (X) Pu (X') dFy (x) dFy (x)

C.2 Customer-supplier Bargaining and Cost-sharing

In this section, I discuss how the model’s assumptions can be modified to allow for a
more general split of both the relationship surplus and the relationship fixed cost between
the buying and selling firm.

First, note that without loss of generality, we can write the prices charged by a y-firm to

the household and to a potential x'-buyer as markups pg () and g (x, Xl) respectively over
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the seller’s marginal cost 77 (x). The system of equations defining the network productivity

and quality functions in the static market equilibrium can then be written as::

u (X> X')H m (X, X’) ® <X> dF, <X> (C.5)
p(Xx) m(Xox)a(X )R (X) (o)

D(x)=¢"+ a7 /

Sx

A() =pr(x) 707 +a” /

S\chi

while the profit that a y-firm makes from its sales to a x —firm is given by:
7T (X> X/> =u <X> X/> [u <X> X/> - 1] a” ' ApA (x) © <X> (C.7)
Note also that the total profit of a x-firm can be written as:

where

0= [0 0= 0 0 [ (o) (W) - Ja () an ()] e
depends only on variables relating to firm ¢’s customers.

Now suppose that instead of assuming a market structure characterized by monopolistic
competition, we assume that firms take the markups charged by all other firms as given, and
that the markup p (XaX/) is chosen to maximize the product [UC (X,X/)}g [’US (X,X/)}l_e.
In other words, buyers and sellers engage in bilateral Nash bargaining (which we will soon
see is equivalent to multilateral Nash bargaining in the static model), with v¢ (X, X,) and
v (X, X/) denoting the surplus to the customer and supplier respectively of the relationship
between a y-buyer and a x'-seller. The parameter 6 € [0, 1] measures the bargaining power

of the customer relative to the supplier.
From (C.0), (C1), and (C.8)), the surplus values can be written as:

¢ (X, X’) = (X, X’)H a” A (y) @ <X> (C.10)
v’ (x, X/> = (x, X/>_0 [u <X> x’) - 1] a” A () @ (X) (C.11)

Note that A (x) and A () depend only interactions between the y-buyer and its own cus-
tomers, while ¢ (X/) depends only on interactions between the y'-seller and its own suppliers.
In other words, because of the CES structure of the production function, the surplus of the

relationship between a y-buyer and a x -seller is independent of the interactions between
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the buying firm and its other suppliers, and is also independent of the interactions beween
the selling firm and its other customers. As a result, bilateral Nash bargaining is equivalent
in the model to the multilateral generalization of Nash bargaining proposed in Stole and
Zwiebel (1996).

From equations (C.I0) and (C.IIJ), it is then straightforward to verify that firms again

charge a constant markup over marginal cost, but that this markup is now given by:

o—0

oc—1

= (C.12)
Note that when all bargaining power resides with the supplier (6 = 0), the markup charged is
the same as that under monopolistic competition, whereas when all bargaining power resides
with the buyer (f = 1), the markup is the same as that under perfect competition. In general,
we have u € [1, ﬁ} Furthermore, if we assume that firms sell to households indirectly via
a unit continuum of retailers that produce differentiated varieties of a retail good, and that
sales between producers and retailers are characterized by the same bargaining process, then
the same analysis as above can be used to rationalize markups for final sales that are also
constant and given by (C.12).

We can also allow for a more general split of relationship costs between buyers and
sellers by assuming that the buying firm pays a constant fraction b of the fixed cost in
each relationship. In this case, whether a potential relationship is mutually desired by both
buyer and seller depends on how the respective cost shares compare to the surplus values
(C10) and (C.II). Supposing that firms’ pricing decisions remain characterized by constant
markups equal to p, it is straightforward to verify that a relationship is mutually desirable
if and only if profits from that relationship are at least greater than an effective fixed cost

given by:

fers = fmax{bu,1— b} (C.13)

Note that the effective fixed cost is minimized when b = ﬁ This implies that relationships
are more likely to form if selling firms pay a larger share of relationship costs whenever the
markups that they charge are also higher.

Through these additional assumptions, the model therefore allows for richer variation in
inter-firm markups and effective relationship costs. It is important to point out, however,
that these assumptions about bargaining and cost-sharing become much more restrictive
once embedded in the dynamic model with endogenous network formation. For example,
the characterization of the dynamic model discussed in the main text remains valid with

buyer-supplier Nash bargaining only if we rule out repeated bargaining between potential
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buyer-supplier pairs. The possibility of transfers between buyers and sellers also needs to be
ruled out once the fixed relationship cost is taken into account. Furthermore, as discussed in
the main text, once the buying firm pays a positive share of the relationship cost, constant
markup pricing is not necessarily optimal for all firms in the dynamic model. For these
reasons, I retain monopolistic competition as the assumed market structure and set b = 0
in the main model, and leave development of richer models of bargaining and cost-sharing

under the setting of sticky relationships for future work.
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