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ABSTRACT

We study the validity of the bootstrap for the “plug-in” Anden and Rubin (1949) (AR) test of
subvector hypotheses in linear IV regressions where stralcparameters may not be identified.
Our analysis mainly focuses on two plug-in subset AR statisthe first uses the restricted limited
information maximum likelihood (LIML) estimator and thecend utilizes the restricted two-stage
least squares (2SLS) estimator. We provide a characterizaftthe asymptotic distributions of both
statistics without and with weak instruments. Our resuisasthat the asymptotic distributions of
these statistics are non-standard when the nuisance perarttgat are not specified by the subset
null hypothesis are not identified, so correction to usugirgeotic critical values are needed. For
this, we first provide a bootstrap procedure similar to tHd¥loreira et al. (2009). We show that
this bootstrap provides a high-order refinement of the nistributions of the statistics when the
nuisance parameters are identified, but it is inconsisfehese parameters are not identified. We
thus proposed a Bonferroni-based size adjustment thalsyielsts with correct asymptotic size,
even when the nuisance parameters are not identified. WengrasMonte Carlo experiment that
confirms our theoretical findings.
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1. Introduction

There is now a growing interest on inference proceduresehiirtg subset hypotheses in IV regres-
sions where structural parameters may not be identifiddhis literature falls generally into two
categories: (1) the projection method, and (2) the “pldgsiinciple.

The projection method consists of inverting an identifmatiobust statistfcto build confidence
regions for the full set of the structural parameters, armah thses the projection technique to ob-
tain confidence sets for the subset of parameters of intehesiddition to being robust to weak
instruments, the projection technique based on the Andeasd Rubin (1949) statistic also enjoys
robustness to instrument omission in the first-stage reigmesHowever, it can yield a test with low
power, especially when too many instruments are used. Tutgiplprinciple consists of replacing
the nuisance parameters that are not specified by the hygi®tbiinterest by estimatops.It is
now well understood that the plug-in based method outpeigatheir projection counterpart, and
in addition, never over-rejects the true parameter valiag inuisance parameters not specified by
the null hypothesis of interest are identified. However,ghmg-in based method does not perform
well when the corresponding plug-in estimator is incomsist This particularly the case when the
nuisance parameters are not identified. Recently, Gugggebet al. (2012) and Guggenberger
and Chen (2011) show that the plug-in subset AR test is astioglly robust to identifying as-
sumptions, while the plug-in Kleibergen (2002) (K) testéssitive to such assumptions. However,
even though the plug-in subset AR test is asymptoticallysbln weak instruments (in the sense of
level control), it can be overly conservative thus yieldmgest with low power when the nuisance
parameters are not identified; see Doko Tchatoka (2014).

In this paper, we focus on linear structural models and pievei characterization of the asymp-
totic distributions of the plug-in AR statistics based oe tlstricted LIML and 2SLS estimators,
without and with weak instruments. Our analysis providemesmew insights and extensions of
earlier studies. In particular, we show that both AR subtsgistics are asymptotically pivotal when
the nuisance parameters are identified, but they have mmasth asymptotic distributions when
these parameters are not identifieso correction to usual asymptotic critical values are aded

For this, we first investigate the validity of the bootstrayikar to that of Moreira, Porter and
Suarez (2009). We show that this bootstrap provides a higbroefinement of the null distributions
of the statistics when the nuisance parameters are idehtifig it is inconsistent if these parameters
are not identified. This contrasts with Moreira et al. (20@8p show that bootstrap is valid for the
AR statistic of the null hypothesis specified on the full weodf structural parameters, whether

1For example, see Stock and Wright (2000), Dufour and Jag(Xl), Kleibergen (2004, 2008), Dufour and Taamouti
(2005, 2007), Startz, Nelson and Zivot (2006), Guggenlieagd Chen (2011), Guggenberger, Kleibergen, Mavroeidis
and Chen (2012), and Kleibergen (2015).

2See Dufour (1997), Dufour and Jasiak (2001), Dufour and Tasini2005, 2007).

3See Stock and Wright (2000), Kleibergen (2004, 2008), and5ét al. (2006).

4Similar to Guggenberger et al. (2012) and Doko Tchatoka4p01



identification is strong or weak. The inconsistency of bivafsfor subset AR statistics studied is
mainly due to its inability to mimic theoncentration factothat characterizes the strength of the
identification of the nuisance parameters. We thus propasBdnferroni-based size adjustment
that yields tests with correct asymptotic size, even whemtlisance parameters are not identified.
We present a Monte Carlo experiment that confirms our thieatdindings.

This paper is organized as follows. Section 2 presents tiiagethe model assumptions, and
the subset AR statistics studied. Section 3 characterigdirhiting behavior of these statistics.
Section 4 presents the proposed bootstrap method and ssitali@asymptotic validity. A Monte
Carlo experiment on the finite-sample performance of bothstandard and bootstrap subset AR
tests is presented in Section 5, while Section 6 deals wéhBibnferroni-based size adjustment.
Conclusions are drawn in Section 7. The auxiliary lemmatbxoofs are provided in the appendix.

Throughout the papetq stands for the identity matrix of ordey. For any full-column rank
nx mmatrix A, Pa = A(A’/A)~1A is the projection matrix on the spaceAfandMa = I, — Pa. The
notationvedA) is thenmx 1 dimensional column vectorization 8f B > 0 for am x m squared
matrix B means thaB is positive definite, andech{B) is the%m(m+ 1) dimensional half-column
vectorization oB. Convergence almost surely is symbolized by, “ P stands for convergence
in probability, while “4» means convergence in distribution. The usual orders ofnitade are
denoted byOy(.), 0p(.), O(1), ando(1). ||U|| denotes the usual Euclidian or Frobenius norm for
a matrixU. For any set%#, 0.4 is the boundary of and (0.%)¢ is the e-neighborhood of#.
Finally, sup . [f(w)| is the supremum norm on the space of bounded continuousureetidns,
with topological space2.

2. Setting

Let (vi,X,W,Z)), i =1, ..., n be a sample oh observations, wherg is observation on an
outcome variableX;,W are observationson (possibly) endogenous regressors, Znig a vector
of observations on instrumental variables. The usual linear IV regressiaitien in matrix form,
consists of the following structural and reduced-form eignas:

y = XB+Wy+e, (2.1)
(X,W) = Z(Mx 1 M) + (Vx, Vi), (2.2)

wherey ¢ R", X ¢ R", W € R", andZ € R™!, (g: Vg : Vi) € R" x R" x R" are unobserved errors,
B,y <R, andly, Ny, € R" are unknown parameters. We assume that2 is fixed, and denote:

!/

<]
Il

VX W] =Y,V Za=1{27, 25, .., 25)
Rn = vech(2y2n) = (f(2h), f2(Z0),..., fk(20)), (2.3)



where 2i = (vi,%,W,Z{) and f(-) [p=1,...,K = 3(L+2)(L+ 3)] are elements of the matrix
2o Zn.
We are interested in testing the subset hypothesis

Ho : B = BO> (24)

wheref, € R is fixed andy is a nuisance parameter. In the literature, two proceduses bften
been used to assedg and build confidence regions fBg: the projection-based techniggiend the
conventional plug-in based principlelt is now well known that the plug-in principle outperforms
their projection technique counterpart [for example, segdenberger et al. (2012)], so we only
focus on the plug-in principle in this study.

To be more specific, consider the problem of testing jointtlyesisH (8o, o) : B=Bo: Y= VYo
in (2.1)-(2.2). The well known Anderson and Rubin (1949) JA&st of this joint hypothesis is
given by

2

1 _
AR,\(Bo, Vo) = L 1S1(Bos Vo) ||~ (2.5)

whereS,(Bo, Vo) = (Z'Z)~Y2Z/Y (7 Qy) Y2, Oy = 2L Y'MZY, andr = (1, —Bg, — Vo)’ The plug-
in subset AR statistic fafg in (2.4) is then defined as

AR‘I(BO?V) = %EA%(BQVL (26)

wherey =: argmin,cr AR\(Bo, y). It is known from the literature on simultaneous equatiort tha
Y=V, in(2.6), wherey, is the restricted LIML estimator of underHo, i.e.

Y/UML = [ /(PZ - ELIML MZ)W] _lwl (PZ - ELIML MZ) (y_ XBO)7 (2'7)

L = Ky /(N—L) andk,,, is the smallest root of the characteristic polynomjieldy —
Y (Bo)'PzY(By)| = 0. So, the statistidAR,(8B,, ¥) in (2.6) can also be expressed as

=

2

AR‘(BO’VUML) = % HQ(BO’VLIML” ) (2.8)

Whereg(ﬁmvum) = (Z/Z)il/ZZ/V(BO)FLIML(FLMLQWFLIML)il/z? ?(BO) = [V(BO) :W]a y(BO) =
y—XBo» Qw = 2 Y(Bo)'MzY (Bo), andr?,, = (1,—¥,, ) Itis often the case that alternative
restrictedk-class estimators of are used in (2.6); for example, see Startz et al. (2006). When

is identified, thes&-class estimators yield statistics that are asymptoyieuivalent to the one in

5See Dufour and Jasiak (2001) and Dufour and Taamouti (20,2
6See Stock and Wright (2000), Kleibergen (2004, 2008), Stral. (2006), Mikusheva (2010), Guggenberger et al.
(2012), Doko Tchatoka (2014), and Kleibergen (2015).



(2.8). However, ify is not identified, the behavior of these statistics can sulbisily differ from that

of the statistic in (2.8); for example, see Doko Tchatokal@Cor the case of the restricted 2SLS
estimator. Therefore, it is interesting to also study thapprties of these statistics, especially when
the identification ofy is weak. In this paper, in addition to the subset AR statistth the restricted
LIML estimator, we also consider the one with the restri@&dS estimator. Both statistics can be
expressed in a unified way as

2 je{LIML, 2SLS, (2.9)

AR(Bo 7)) = T [[$(Bo. 1)

wherey,s, sis obtained by setting . .= K,,,, = 0in (2.7).

In order to characterize the asymptotic null distributiohthe statistics in (2.9), it will be useful
to consider the following assumptions on the model vargbleherelE|-] denotes the expectation
with respect to the relevant probability measure and

B !
ZU — ass O-Vg , Z — ass vas ] ,
O-Vs ZV vas GVWVW
O-V Vs O-V W !/
Sy = i WL, Ove=(0y,, 0y,) (2.10)
anVw GVWVW

Assumption 2.1 (ui,in,Vwi,Z{)’,i =1,...,n, are i.i.d. with common distribution F.

Assumption 2.2 The vectors U= (u;, Vi, Vii)',i = 1, ..., n, have zero means and the saffirite)
nonsingular covariance matrix:

EUU]=5,>0,i=1,...,n,
where2y is defined in2.10).

Assumption 2.3 E[ZU/] = 0, E[ZZ]] =: Qz > 0, and E [veqZ U;) (veqZU))'] = 2y ® Qz for
ali=1,...,n.

Assumption 2.4 (i) E[||Ry||?*"] < e for some r> 0, and (i) limsupg . | E[expit'Ry)] [< 1,
wherei=+/—1and R, is defined in(2.3).

Assumption 2.5 As the sample size n converges to infinity, we have
n~Y2vec[Z/(g, Viw)] LN vec[ze, Yy, ~ N[0, Z®Qz],

whereZX is defined in(2.10) and® denotes the Kronecker product of two matrices.



Assumption2.1is commonly used in the IV literature; for example, see Guggeger et al.
(2012). The distributiorF may depend om, but for convenience we writé rather thar, where
there is no confusion.

Assumption2.2 and2.3 are also common in the |V literature. While Assumpt®2 requires
that model errors have mean zero and second finite momenssimiution2.3 state the (usual)
orthogonality condition between the errors and IVs, alorith the existence of the same (finite)
second moments for the instrument vedgi = 1,...,n.

Assumptiong2.4-(i) and -(ii) are similar to Assumptions 2-3 in Moreira et €009) withr =
s—2 ands > 3. While (i) requires thaR, has second moments or greater, (ii) imposes that the
characteristic function oR, be bounded above by 1. In particular, the second momeng;, of
exist if E(H%nHz(”Z)) < oo for somer > 0. The bound on the characteristic function in (ii) is the
commonly used Cramér’s condition [see Bhattacharya anaG{i®78)].

Assumption2.5holds by the central limit theorem (CLT) property; for exdesee Staiger and
Stock (1997), Kleibergen (2002, 2004), Guggenberger €2@l2).

Now, let 6 = (y, Iy, F) denote the parameters of the model unidgr where by the notation
(y, My, F) and elsewhere, we allow components of a vector, column k&ateatrices (of different
dimensions), and distributions to be tackled. Followingg@enberger et al. (2012), we define the
parameter space fé as

6= {9 = (y, My, F) such that Assumption®.1-2.3 hold}. (2.11)

For a givenB € O, we define the finite sample null rejection probability (NRP}re subset AR
test usingy;, j € {LIML, 2SLS, as:

NRP,, = P [AFen(BO,Vj) > Xffl,H] , (2.12)
wherexf_l(a) is the 1— a quantile of ax?-distributed random variable with — 1 degrees of

freedom, andPg[An] denotes the probability of the eveff. Similarly, theasymptotic sizef this
test is defined as

AsySz, [xi_1(a)] = limsupsupPe [AR(Bo,¥;) > x{_1(a)] i € {LIML,2SLS . (2.13)

n—e fcO
Under Assumptiong.2-2.3and2.5, Guggenberger et al. (2012) show tHa;lyS;mML [Xf_l(a)] <
a even wheny is not identified butAsySg,

2SLS
plies that the subset AR test with restricted LIML has a adressymptotic size even under weak

[x?_,(a)] > a under weak instruments. This im-

instruments, while that with restricted 2SLS does not ettjoy property. Even though we have
AsySz.,  [x2_1(a)] < a evenwheryis notidentified, NRR, in (2.12) can be strictly less than
a in small samples when is not identified, thus yielding an overly conservative iétle subset



statisticAR, (B, Y v ) IS used; see Doko Tchatoka (2014). So, correction to usyeitstic crit-
ical values are needed. To better understand these raswih be illuminating to summarize the
asymptotic properties of the subset AR statistics in (2.9).

3. Preliminary results

In this section, we characterize the asymptotic null distibns of the subset statistics
AR\(Bo,¥j): ] € {LIML, 2SLS . To do this, we find useful to distinguish the case in whicls
identified to the one where it is not identified. Since the getuwhich y is identified is relatively
easy to tackle, we start with that case first.

3.1. High-order approximation wheny is identified

Let G_,(-) andg, ,(-) denote the cumulative density function (cdf) and the praipaldensity
function (pdf), respectively, of g2-distributed random variable with— 1 degrees of freedom. Let
alsoF, denote the distribution dr, given in (2.3). Theorer3.1 provides a high-order refinement
of the distributions of the subset AR statistics under

Theorem 3.1 Suppose Assumptio@sl—2.4 are satisfied. If further i hold and /Ty, # 0O is fixed,
then for some integer» 1, we have

sup PQ[AR“I(BmVj) < T] - GL—l(T) -

TER

—h . B
n pQRj(T;FRH,Bo,nW,Vj)gLil(T) :O(n r)

0,
™~

forall j € {LIML, 2SLS, where |§R_ is a polynomial int with coefficients depending @y, M,
]
¥j, and the moments ok

It is worth observing that Theore®\1 provides a more greater accurate approximation of the
distribution of AR, (S, VJ-) underHg than the usual first-order asymptojé approximation. In par-
ticular, the - a quantile of the distribution oAR, (B, Y/J-) underHg can be approximated uniformly
in¢ <a<1-forany0<{ <1/2byc, (a)~X?,(a)+Shon o (x2,(a)), whered, is
a polynomial derivable frorrp)ﬂRj andxffl(a) is the solution of the equatioB, ,(7) =1—a; see
Hall (1992). Therefore, the corresponding tests haweect asymptotic sizeven if the parameter
of interestf is not identified. However, this high-order improvementdkiavable only whely is
identified. Ify is not identified, we show in the next section that even thedirder asymptoticy?
approximation no longer valid for all subset statistics.



3.2. Asymptotic distribution when y is not identified

We now study the asymptotic behavior unétrof the subset AR statistics wheris not identified.
To proceed, lef6,, = (Y, Mwn,Fn) : N> 1} denote the subsequences of paramete@ssatisfying:

nt/2 (EFH [VVai])il/Z (EFn [Zizi/])l/z Myn — h,,, € I@L,
(Er, [£]EF, [V\Azl,i])il/zEFn (Vwi&i) = h,, € -1, 1], (3.1)

)*1/ 2 Oy.> Er[] is the expectation with respect &, andR =: RU

whereh,, = (0,0,
{—o, 40} is the extended real line. The parametgy, in (3.1) characterizes the identification
strength ofy, and is referred to as the “concentration factor” in the raaer of our analysis.
From (3.1), we can partition the space of the concentragatof f,,) as{hww: ||h,,| < +o}U
{h,., : Ih.ll = +}. Note that if||hww|| = o in (3.1), then strong instrument asymptotics apply;
for example, see Guggenberger (2012), Guggenberger anmd (26&1), and Guggenberger et al.
(2012). However, ifih,, || < +oo, it is the easy to see thaj,, = o(n*/?) andy is not identified’
This case is similar to theveak IV asymptotiof Staiger and Stock (1997). Guggenberger et al.

(2012) show that the asymptotic behaviorAR,(B, Y

) underHg is driven only by the subse-

guences in (3.1), hence we focus on those subsequences @malysis. In addition, since strong
identification is covered in Theore®l, we deal only with the setup of weak identification, i.e., the
case in whichlh,, || < +co.

To proceed, led nn =: (N, .. N Do) D€ Sequence of parameters such that

nww? ' ‘new? " nF

o = (Br N2 7% (Br,[22Z)) " My, (3.2)

e = (Brle2EeNZ]) *Er (V&) andh,, = F,. (3.3)

n.ew

If ||Pwwl| < +o0, we see from (3.1) that the drifting sequer{de,n) ..., in (3.2)-(3.3) satisfies:

n/2h,,.. = N, €RY . —h,, € [-1,1], andh,, — F asn — w. (3.4)
Now, define the standardized random variahlgs = o, /?Q, Y ztpsz and g, = 0:2Q, 2y,
Under Assumptions2.2-2.3 and 2.5 we havevedy,, ¢y, | ~ N(0, 2y ® Qz), where 3y =

(hl h;W) -Finally, leth=: (h,,,.h,,,). and se#, = h,, + i, Also, define

Anj = (H4h—Kn)) (Y —Knjhy,), Sij=W—%hanj,j € {LIML,2SLS, (3.5)

wherek, ,, is the smallest root of the determinantal equatitu, : 44)' (Y, : $h) — KnZh| = 0

7It worth mentioning that even if the conditidfh,, || < o is viewed as the case of weak IVs, high valuegiaf, ||
may indicate that the 1Vs are not very weak, ijeis in the neighborhood of the identification region.



andk, , s=0.

Theorem3.2characterizes the asymptotic distribution unidgiof the statisticAR, (B, Y/J- ), ] €
{LIML, 2SLS .

Theorem 3.2 Suppose that Assumptio@sl-2.3, and 2.5 are satisfied. If further bl holds and
(Anh),s, satisfies(3.2)—«(3.4), then we have

2

1 .
d for all j € {LIML, 2SLS,

. ~1/2

whered, j and §j are defined in3.5), and h=: (hww,h,,,)-

Theorem3.2 shows that the limiting distribution undéty of A&(BO,Vj) is completely char-
acterized by the parameter=: (h,,,h,,,). More interestingly, the distribution d;(h) depends on
h=:(h,,.h,,) only through the localized parametéfts, || andh,, [see Guggenberger et al. (2012)].
Therefore, the asymptotic size of the t&&,(B,, ¥;) is driven only by||h,, | andh,,,. As both||h,, |
andh,_, do not depend on the specific val(g tested, the asymptotic size of this test does not also
depend orf3,. However, it depends opthrough the covariance endogeneity paramijgrMore
precisely, consider the following reduced-form equatifmrdothy' =y — X, andW underHo :

y = ZMwy+vi, W=ZlMy+ Vi, (3.6)

wherev; =V, ¥+ €. Under Assumption2.1-2.3, we have:

(o) a,
E [(Vli : Vw7i)/(V1i : VWJ)] - <U 11 va1> L Oyn = OV Oviaes

Vivl ViV
011= Oee +20V,eY + V¥ O\, (3.7)
~1/2 ,
Hence, we can express, = (0,.0,,,) Oy, as:
hsw = hsw(y) = (Gss GVWVW)_l/z(Gle - GVWVW y) (38)

Moreover, we also have e =: O¢e(y) = 011 — 20, Y+ yza\,w\,w from (3.7), ando.. > 0 under
Assumptions2.1-2.3. Hence the last term in the right-hand side of (3.8) is athfrimonotonié
function ofy.

. - . . o, ,)?>—0110,
8The partial derivative oh,,(y) with respect toy is Za — (Oy)—0u Yo,
y O\ (0'11*20'\,\'\/1V+V UVWVW) !

which has the sign of

o (o] . .
“lo 1 o Wl | — (c;'\,wl)2 — 0110, 7 0 (under Assumption®.1-2.3) for any value ofy in the parameter spac.

Vvl Visv



As the distribution of¢;(h) depends only orjh,,| andh,,,
localized values of|h,,|| andh,,. For the values offh,, | andh,, in the neighborhood of their

it can be simulated given any

true values, the resulting simulated distributionfqth) can produce a good approximation to the
finite-sample distribution 0AR,(B,,¥;). The difficulty, however, is that neithdth,, || nor h,, is
known, and both cannot be consistently estimated uhigeand the subsequences (iB12)—(3.4).

In the next section, we investigate whether bootstrappamgprovide a valid approximation of the
distribution of& ; (h).

4. Bootstrapping subset AR statistics

We adapt the bootstrap of Moreira et al. (2009) to the subsesttistics. Our bootstrap differs
slightly from Moreira et al. (2009) in the senbk : B = 3, is imposed in the resampling scheme,
while theirs uses a “ super-consistent” estimatof3gf We think that there is no need to replace
B, by an estimator because the asymptotic distributions udgef the subset AR statistics do not
depend on the unknown valyy tested. Furthermore, in practice, researchers usuajtymere on
reporting identification-robust confidence regionsfgrin this type of model, rather than a specific
pointwise test outcome. Section 4.1 describes briefly oatdti@p algorithm.

4.1. Bootstrap algorithm

Let [Ty = (Z2'Z)~1Z'X andll,, = (Z’Z)~1Z'W denote the ordinary least squares (OLS) estimators of
My andry in (2.2). Let alsoflj, j € {LIML, 2SLS, denote the restricted estimatoryptinderHo.
We suggest the following resampling scheme for our bogistra

1. For a given, and the observed data, compuﬁig, 1, and Y/j, along with all other items
necessary to obtain the realizations of the statiéf(B,,Y;) and the residuals from the
reduced-form equation (3.6y1 = §(B,) — ZMw¥;, Vi = X — Z[y, andVyy =W — Z[1,,. Re-
centered these residuals by subtracting sample meanddq\ﬁe:/x,vw);

2. For each bootstrap sample= 1, ..., B, generate the data following

X* = ZM+Vy, (4.1)
W' = ZMly+ V), (4.2)
Y = X'Bo+Z My +Vi, (4.3)

where (Z*,vi,V,V,y) is drawn independently from the joint empirical distrilouti of
(Z,%1,V, V). Compute the corresponding bootstrap subset AR statis®:S (B,, Vi), b=



1...,B, as

AR (B0 7)) = 18" (Bo¥) IP (4.9

1/2

§"Bo¥) = @2V (B (7Y Qhnf) (4.5)

whereV*(B,) = (§(Bo) : W*) andr} = (1,-¥;)";

3. The bootstrap test rejedt if = zb_lll[AF{; (BO, i) > AR(Bo, V)] is less theru.

In the reminder of the papeF, denotes the empirical distribution & = vech(ﬁ&”ﬁﬂ%ﬁ)
conditional onZ ", P" is the probability under the empirical distribution fureti(conditional on
Z 1), andEE its corresponding expectation operator. As in Section 3dea separately with the
case wherg is identified and the one where it is not.

4.2. Bootstrap consistency whery is identified

In this section, we study the validity of the bootstrap fax #ubset AR statistics when the nuisance
parametey is identified. Lemmat.1summarizes the results.

Lemma 4.1 Suppose that Assumptiodd—2.4 are satisfied. If further glhold andrT,, #~ O is fixed,
then for some integer» 1, we have

sup
TER

P [AR:(Bo,7) < 1] - Gy (T) - hﬁ 0B, (3P PG, (1] = o)
=1

forall j € {LIML,2SLS, p ~is a polynomial int with coefficients depending (yn, Iy, Iy, and
the moments df,.

The above lemma shows that the bootstrap estimate and th&)-term empirical Edgeworth
expansion in Lemma&.1 are asymptotically equivalent up to tbén~") order undeHy wheny is
identified. Furthermore, the bootstrap makes an error ef@{n—') underHp, which is smaller as
n — 4o than bothO(n~%/2) and the error made by the first-order asymptotic approxaomatlhe
bootstrap provides a greater accuracy thanQte '/2) order because each subset AR statistic in
(2.9) is a quadratic function of a symmetric pivotal statiftee Horowitz (2001, Ch. 52, eq. 3.13)]
underHp wheny is identified.

Now, Ietc;;R =: min *[AR*]([BO,V-*) < 71]—(1-—a)| denotes the * a quantile of the empirical
distribution ofARﬁ(BO, ¥j)- We can state the following theorem on the high-order appnakion of
the size of the subset AR tests when the bootstrap critidtaésaare used in the inference.

10



Theorem 4.2 Suppose that Assumptio@sl-2.4 are satisfied. If further bl hold andrl,, # O is
fixed, then we have

Po[AR(Bo, Vj) > Car] = a@+o(n™t) forall j € {LIML,2SLS .

Theorem4.2 shows that the bootstrap critical values undiryield correct level for the AR
tests throughO(n—1). Hence, the bootstrap only makes an error of €&a~!) underHy if the
nuisance parametgris identified. It is worth noting that the identification Bfplays no role here,
so Theoremd.2 holds even wherfly = 0 in (2.2)— complete non-identification @ or close to
zero— weak identification @B.

Moreover, even though Theorem?2 focuses on the size properties of the tests, there is no
impediment to expanding it to the power analysis. For exampé can show that ffl,, £ 0 is fixed,
test consistency holds as longfass identified (i.e., iff1x £ 0 is fixed). However, the bootstrap tests
have low power if3 is not identified. This proof is omitted in order to shortea #xposition of our
results.

We now study the validity of the bootstrap whgis not identified.

4.3. Bootstrap inconsistency whely is not identified

As before, we focus on the subsequences of param@tets(y,, Mwn, Fn) satisfying (3.1)—(3.4),
and we provide the characterization of the asymptoticiligions undeHg of the bootstrap subset
AR statistics in (4.4).

To ease readability, we séff = Y4+ g, W, | = Y, — @Y2An Yy, and define

/ 71 /
A = (WU kR)) (W KRN ) SR = W - AR
hewj = (1—2h,4nj+42) Y2(h, —Oh)),j € {LIML,2SLS, (4.6)

— -1 B _ B i i -
where @,, = 0¢:0y,\,,» Kasis= 0, KQjmL is the smallest root of the determinantal equation

‘(L,U&j B (g, s W) —KZhJ‘ =0,and%, | = < ) . Lemmad4.3presents the results.

ew, j
Lemma 4.3 Suppose that AssumptioAd—2.3, and 2.5 are satisfied. Suppose also thag hblds
and (Anp),., satisfies(3.2)~(3.4). If further E(||Zi[|*°, ||(&i,Vawi)'[|*"®) < +oo for somed > O,

then we have )

—1/2
d *
AR(BoT) | Fn 5 €)= (1- 2wy + 03)7)

forall j € {LIML,2SLS .

First, we observe from Lemm&3that the bootstrap statistiesR;(Bo, ¥}), j € {LIML, 2SLS,,
do not converge to the asymptotic distributions unigrof the standard statistics jfh,,|| < «
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[see Lemma3.2]. In particular, we show in Lemma&.2 that the asymptotic distribution of of
A&(BO,Vj) is completely characterized ty=: (h,,,hew). However, the limit of bootstrap coun-
terpart in Lemmat.3, E’j‘(h, w,,), depends not only oh but also on the variance ratw,,. This
provides evidence of the bootstrap is inconsistent wheanpatery is not identified.

Second, we note that the inconsistency of the bootstrap iislyrdue to the fact that undéy
and the subsequences of drifting parametérs,>1 satisfying (3.1)—(3.4), replacing w with [y
andy,, with Y/J- in the bootstrap DGP adds an extra noise term to the origitllaed-form residuals
01 andVl, during the resampling process. For example, wiilg/y,/n)~Y/2(2'2 /n)~Y2z'W / /i %

Y, = hyw + Yy, its bootstrap counterpait,; Viy; /n)~Y/2(Z*'2* /n)~Y/22*W* /\/n converges almost
surely toyB = ¢, + Py,,- Hence, iftH, < oo with probability one, as is the case whigh,, || < «, the
bootstrap fails to mimic the asymptotic behavior(W§V,,/n)~¥2(2'z/n)~Y/22'W/,/n under the
above subsequences of drifting parameters. A similartrésldl for many the arguments of each
bootstrap statisti\R; (B, ¥j) written as a function oRy.

We now examine the finite-sample performance of both thedatainand bootstrap subset AR
tests through a Monte Carlo experiment.

5. Performance of the standard and bootstrap subset AR tests

We examine the performance of both the standard and bgotsiitzset AR tests in a Monte Carlo
experiment. The data generating process is described byad (2.2) wherg, X andW arenx 1
vectors. The errors, Vy, Wiy are drawn i.i.d. normal with zero mean and unit variance, thed
whereh,, € {0,0.1,0.5,0.9} . The

L columns of the instrument matrik, L € {3,5,10,20}, are drawn i.i.d.N(0, I_) independently

correlations between them are such that sét at h,, =h,,,
from [€ : Vi : Viu]. The true values o8B andy are set at 2 and 1 respectively. The reduced-form co-
efficient matrixrly andrl,, is chosen such that the concentration paramqetxéxrﬁvsz which describe
the strength o satisfy u? = 2 € {0,0.05,1,10}, whereu? =0 is the setup of a complete
non-identification (irrelevant IVs);,lvzvW = 0.05 represents weak instrumenpszvav = 1 designates
moderately weak instruments, apnﬂww =10 is for strong instruments. The rejection frequencies
are computed usindl = 10,000 replications for the standard subset AR tests, whileghaf the
bootstrap subset AR tests are obtained Wita 10,000 replications anB = 299 bootstrap pseudo-
samples of size = 100. The nominal level of all tests is set at 5%.

Table 1 shows the empirical rejection frequencies of thesteghe first column of the tables
contains the statistics. The second column indicates thebau of instrumentsL() used in the
inference. The other columns show the rejection frequenfae each value of the endogeneity
parameteh,, and the instrument qualityvsz.

First, we note that when the restricted LIML estimator is used akig-im estimator and the
usual asymptotig¢? critical values are applied, the resulting subset AR tesv@ly conservative
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with weak instruments (see colump%W € {0,0.05} in the table). These results are similar to those
in Doko Tchatoka (2014). However, the test has rejectionsecto the nominal 5% level when iden-
tification is strong (see columr)zszwW = 10 in the table). Note however that the rejection frequencie
of this test are slightly greater than the nominal 5% levetwhoth the endogeneity parametey J
and the number of instruments)(increase (for example, with,, = 0.9 andL = 20, the rejection
frequency is around 7%). Meanwhile, the subset AR test wighrestricted 2SLS is less conser-
vative than those with LIML when IVs are weak and the asyniptgt critical values are applied
(see columnsyvzvW € {0,0.05} in the second block of Table 1). This is not surprising beeahs
inequalityAR(By, ¥, J > AR(Bo, V,,, ) iS always true. In particular, with weak instruments, the re
jection frequencies of this test are close to the nominal &2l lfor small endogeneity (see columns
h,, € {0,0.1} and/ulvzvW € {0,0.05} in the table), but they are greater than 5% for large endayene
(see columr,, =09 anduvsz € {0,0.05,1}). We also observe that this test over-rejects sometimes
when identification is strong. For example, the rejecti@yfrencies wheh,, = 0.9 andufVW =10
(strong instruments) are about 8.6%, 16.7%, and 39.6% fo5, 10, 20 instruments, respectively.
So, while the subset AR test with the restricted 2SLS seenmatiperform the one with the re-
stricted LIML under weak instruments and small endogenditgver-rejects the null hypothesis
when identification is moderate or strong and the endogepaitameter is large.

Secondwe observe that bootstrapping does not improve the sizeepiies of either test when
identification is weak, as shown in cqump%W € {0,.05} of the last block of Table 1 for all values
of L and the endogeneity paramethys. This confirms the inconsistency of the bootstrap for subset
AR tests when identification is weak (see Section 4.3). Hewethe bootstrap provides a better
approximation of the size of the tests than the asymptaiticakvalues when identification is strong
and the number of instruments is moderate, especially ioake of restricted LIML estimator. Note
that even in the case of restricted 2SLS estimator, the tvaptdas improved the size of the test
for a moderate or large number of instrumerits=(10,20) and large endogeneiti ( = 0.9). For
example, the rejection frequencies of the test vaéwpz 10 andh,, = 0.9 are about 5.5% and
24.7% forL = 10, 20, respectively. This represents a huge drop comparedhégthsual asymptotic
critical values where these rejection frequencies weré%band 39.6%, respectively.
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Table 1. Rejection frequencies (in %) at 5% nominal lergl= 1 andB = 299

Asymptoticx? critical values

h, =0 | h, =0.1 | h,, =05 | h,, = 0.9

Statistics| L | uvsz—> 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10 0 0.05 1 1
Restricted LIML

AR 3 0.34 0.69 390 523 0.38 058 398 557 029 080 4.79 51700.396 518 5.26

- 5 0.23 0.27 252 499 029 024 239 498 0.20 050 3.33 5462 0.Rp93 500 5.47

- 10 0.30 0.26 1.13 449 039 037 1.16 499 0.27 037 144 55700.R66 467 5.97

- 20 0.37 029 095 368 041 042 0.69 387 030 043 1.02 45530845 390 7.06
Restricted 2SLS

AR 3 281 273 448 554 260 274 434 517 3.00 344 6.03 5486 241.89 10.98 6.54

- 5 342 378 438 526 369 338 4.82 549 348 406 7.06 6.712 3BL.31 19.43 8.63

- 10 486 4.38 5.04 6.17 433 441 5.19 584 471 487 811 8.104 49.84 34.83 16.65

- 20 6.53 6.04 6.47 7.27 6.14 6.78 6.41 7.12 6.22 6.12 9.01 11.651 6.8.84 45.00 39.63

Bootstrap critical values
h, =0 | h, =0.1 | h, =05 | h,, =0.9

Statistics| L | uvsz—> 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10 0 0.05 1 1
Restricted LIML

AR 3 0.65 128 757 471 146 0.75 218 575 030 132 379 47951331 6.00 3.72

- 5 0.57 0.47 6.01 448 127 062 294 345 092 047 391 25210R75 856 5.30

- 10 0.35 0.27 158 331 033 046 1.82 282 0.18 0.23 104 32530826 565 524

- 20 0.04 0.14 0.16 292 0.39 034 0.63 231 020 063 068 3.746 0.p.20 222 4.11
Restricted 2SLS

AR 3 239 056 6.02 6.16 536 274 452 464 165 216 193 4167 2®H..79 182 557

- 5 284 199 225 395 207 387 463 7.36 578 357 360 5681 368 435 331

- 10 457 299 4.07 434 269 461 460 6.98 152 154 750 4.348 2372 3058 5.52

- 20 351 291 467 325 320 485 6.44 405 434 391 933 7.019 2.887 37.00 24.69




6. Bonferroni-based size correction

In this section, we provide a method to compute critical @alfor the subset AR statistics that yield
tests with correct size uniformly over the nuisance paraméspace®. Without loss of generality,
we focus on cases in whighis not identifiable, i.e., the drifting subsequence of pagtars(6,)n>1
satisfying (3.2)—(3.4) with{h,, || < .

Let 57 be the space of the paramekathat characterize the distribution 6]‘(h),9 ie.

A = {heR":h=:(h,,h,), [Ih,[ <, |h,| <1} (6.1)

Let cjn(a) define the(1— a)t" quantile of the distribution o ;(h) for a givenh € J#. The
least favorable critical value (LFCV) of the subset M(BO,Vj) is defined [see Andrews and
Guggenberger (2009) and McCloskey (2015)] by

Cr,(1—a) = hsggcj.h(a), j € {LIML,2SLS. (6.2)
c A

Now, consider the test that reje¢is whenAR,(Bo, ¥;) > ¢ (a). Then, it easy to see that

LF,j

lim supesug]% [AR\(Bo,¥)) > ¢ (a)] = limsupPs [AR\(Bo,V;) > (a)] =
n—o §c n— oo
lim 5, [ARu(Bo.¥) > G (@) < im B (ARG (Bo. 7)) > 6, (1)

= Pg[&;(h)>c, (a)] =a, (6.3)

where{én : n>1} is a sequence i® and{wyp : N> 1} is a subsequence ¢h: n> 1} satisfy-

ing (3.1)—(3.4)° Equation (6.3) clearly shows that using, (a), j € {LIML, 2SLS, yields tests
with correct asymptotic sizeven ify is not identified. However, there are two drawbacks related t
the implementation of such tests. First, (o) must be computed over the entire parameter space
J, which represents a challenge whier» 2. Second, the computeg). (o) from (6.2) can be
very large, thus yielding overly conservative tests. Tfmee there is a need to both reduce the
dimension of7#” and adjusting;, . ; () computed from the reduced space.

6.1. Reduction of the parameters’ space and simple Bonferro critical values

As seen in Section 3.2, the distribution §f(h) depends ot =: (h,,,,h,,) only throughp,,, =
Ih,, [l andh,,. This implies that the distribution &;(h) is invariance to the mapping that transforms
h=:(h,,,h,) € Rt x [~1,1] into yp = (Hyw N.w) € [0,%0) x [—1,1]. So, it suffices to compute

9See Lemma.2 )
10andrews and Guggenberger (2009) and Guggenberger et dl2Y2how that the sequencé@n: n> 1} and
{wnp: n> 1} always exist.
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C.r, (a) over the image of7” by this mapping, i.e., over the set

A ={1, = (M Ne) 0 1, = [N ll >0, Thy, | <1} (6.4)

Clearly, in cases where the nuisance parameiem scalar, finding . (a) = sup cj, h(l— a)
“whej{i‘ "

only involves a maximization over two dimensions, no maltiew large is a number of IVs. This
obviously is less cumbersome than solving the problem (&specially ifL > 3.

We may even want to further reducg;, by constructingc . (a) dependently upon the data
through the (inconsistent) localization (semi)-estirdadefting sequence of parameters

ﬂn,h = (ﬂn.whv hn.F) = (ﬂn,wwa hn.£w7hn,F)7 (6.5)

whereh, = (0,,0,,) Y/?Er, (Vwi&i) andh, . are the sequences in (3.2)~(3 R = || inwwl| =
16, /H(Z'Z /M) Y2 |, Fun and &, are consistent OLS estimators @, and My in (2.2).
Under the drifting subsequence of parametgts),>1 in © satisfying (3.2)—(3.4), and if further
|huwll < o0, both ,,,, andh,,, cannot be consistently estimated because 1Vs are weak. \1owe
is easy to provide a simple confidence setior with a correct asymptotic coverage probability
using the (inconsistent) estimatﬁ;w, while such a simple valid confidence Seis not available
for h,,,. Because of this, we focus on reducing the dimensioggfin the direction ofu,,,,.

For this, consider the sequence of parametéys,), ., satisfies(3.2)—(3.4). Under Assump-
tions2.1-2.3, and2.5, it is straightforward to show that_the following convergerholds jointly:

(02 020 i) S (A P, (6.6)

whereh,, = h,,,+ @y, andf,_ = |/h,,|. This means that™/21_is not consistent tyr = ||h,,|
when||h,, || < «. Nevertheless, we have, ~ N(h,,,I.) and the projection-type confidence set

~ 1/2

Cl,(h,) = [Anww—n~ ’ ]

~ -1
Zl—v/z’L’ hn7WW+n Zl—v/ZIL (6'7)

for h,, has an asymptotic coverage probability equalle- v) for somev € (0,1), i.e.,P[h,, €
.2 1S the(1—v)?

guantile of the standard normally distributed random \@&a\We may thus endeavor to adapt the

Cl,(h,)] = 1—v asnincreases, wherg is aL x 1 column vector of ones argl

~

data by maximizing:; n(a) not over the entire spac#;,, but only overCl, (h,) x [—1,1]. By the

invariance property that leads to (6.4), this also amountsaximizingc; h(or) overCl, ([ X

nwh )

11This is mainly becaush,, depends on the unidentified structural parameyeasd o, in a complicated way as
given in (3.8), so that the usual Wald-type level confiderets are not valid. See Doko Tchatoka and Dufour (2014) for
further details on these issues.
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[—1,1], where

~ ~1/2

Cl(f,,) = maxp,, —n "z 0,0, +n 7] (6.8)

is the (1 - v) delta-type confidence set for, = [/h,, || obtained from (6.7). We then define the
simple (as opposed to adjusted) Bonferroni critical vabiBCV) as

c'j?’_s(a,a _ 57[1n,wh) = sup Cj7“wh(5)7 j € {LIML, 2SLS, (6.9)
“WheCIG—é(un.wh)X[_l’l]

wherev = a — 6 for somed € [0,a). It will be useful to consider the following additional asspim
tions.

Assumption 6.1 For some fixed € (0,1) : (i) cj7pwh(5) is continuous as a function frog?}, into
R; and (ii) the distribution of¢ ; (1, ) is continuous at g, h(c‘S) forall u,, € 7.

wh

Assumption 6.2 Vv € [0,1] andV u € %, Cl, : R, x [-1,1] =R, is continuous and compact
valued withP[u € ClI, (it )] >1—v,wherefi =: ({1, h,)andi is definedin6.6).

wh ww’ ' EW

We can now state the following theorem on the asymptoticaizke subset statistics when the
simple Bonferroni critical values?*s(a, a—94,i_ ) are used in the inference.

Theorem 6.3 Suppose that AssumptioBd—2.3, and 2.5 are satisfied. If further gland Assump-
tions6.1-6.2 hold withv = a — o € [0, a), then we have

AsySZ, [c‘f’s(a, a—3, pln‘wh)] <a forallje {LIML,2SLS.

Theorem6.3shows that the simple Bonferroni critical values yieldsesgith correct asymptotic
size whethel is identified or not. However, they can be very large CVs stfttia corresponding
tests are overly conservative, especially small valueg Qf (i.e., when the identification of is
very weak). In Section (6.2), we seek an adjustment of thelsiBonferroni critical values that
yields tests with better size properties in finite-sampdpeeial when the identification ¢fis very
weak.

6.2. Size adjusted Bonferroni critical values

Leta € (0, 1) andd € [0,a). Let alsoc; h(5) denote the *- 6 quantile of the distribution of
&(u,,)=:&;(hy) foragivenu , €Cl, (i ) x[-1,1]. Define the size-corrected factor

ﬁ%:inf{ﬁj eER: sup Po[&;(H,,) >CJB*A(a,a—5,ﬁwh)+ﬁj] < a}, (6.10)
H,,€Cl, s (R, )< [=1.1]
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whereﬁj =: F;j(uwh) and CJB‘S(a,a —0,1,,) is given by(6.9). As in Section 6.1, we make the
following assumptions on the behavior@f.(-) andﬁj(-).

Assumption 6.4 For some pair(J.,6") € [0,a] with0< 4, < a — &", as a function oy, and g,
Cj.u,, (0) is continuous over?] x [3.,a — o'

Assumption 6.5 (i) 1’(-) : Ry, x [~1,1] = R is continuous (i) Pg[& (1) > & S(a,v,[I )+
Al(u ) <aforall p e .

We can now state the following theorem on the uniform validitthe subset AR tests.

Theorem 6.6 Suppose that AssumptioBd—2.3, and 2.5 are satisfied. If further gland Assump-
tions 6.2—6.5 hold, then

AsySz, [ A(a,a 38,1, )+7i <a forallj€{LIML,2SLS.

Theoremb.6 shows that the adjusted Bonferroni critical values yiekidevith correct asymp-
totic size no matter how weak the identification yfs. In practice, we propose the following
algorithm for the computation af *(a,a — 5,11_,) andf! for all j € {LIML,2SLS.

1. Choose the desired nominal v and d such that Assumption8.2—6.5 hold, and compute
Cl, (@) following (6.8).

2. Create a fine gride of the spacé (1 ) x [~1,1] and call it29,

3. Foreachy , € %”ﬂ”‘ﬂ simulateR draws of the asymptotic distributiofy (1 , ) of the subset
statisticARy (B, ;) and:

(a) find CjBfA(a7a — 5’i:ln,wh) = sup _de7IJWh(5)- Then setS% _ [_CjB*A(a’a B
I"whejg‘j’grl
8., ¢ A(a,a—5, )] and create a fine gride & :callits)™;

(b) compute il € Sj,grid such that suPe(€;(k,,) > ¢ Aa,a—d,f )+ Al over

r

(uwh,ﬁj) €Cl, ,(f,,) < [-1,1] x ij " is less or equal tar.

It worth noting that while in theoryﬂ] € R, the simulations show the solution of (6.10) always

lies in the intervals), = [—c¢§ Aa,a—-6,0_ ), ¢§ (a,a—6,f,)]. Therefore, the optimization

is run over a fine grid of this interval in 3.(b).

6.3. Finite-sample performance with the adjusted criticalvalues

In this section, we examine the performance of the subset & twhen the above adjusted
Bonferroni-type critical values are applied. To do this, eomsider again the setup of the Monte
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Carlo experiment described in Section 5. The adjusted Banmfetype critical values are computed
following the algorithm below Theore®.6 with a = 0.05, d = 0.025 andR = 100,000 draws.

Table 2 presents the results. Despite a relatively smalpkasize (= 100), it is straightforward
to see that the subset tests with adjusted Bonferroni-tyitieat values outperform the ones with
standard and bootstrap critical values in Table 1, espgaidien the nuisance parameters not
identified (i.e., WheruvzVW € {0, 0.05, 1}). More interestingly, the size adjustment works very well
even for the subset test with the restricted 2SLS estimasdhe size distortions of this test observed
in Table 1 WheryvzVW € {0, 0.05, 1} have completely disappeared in Table 2.
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Table 2. Rejection frequencies (in %) at 5% nominal levehvibnferroni-type adjusted critical values

Restricted LIML

h,,=0 h,, =01 | h,, =05 | h,, =0.9
Statistics| L | uvsz — 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10 0 0.05 1 1
AR 5 398 491 460 499 201 395 4.04 491 2.12 3.01 398 3919 285 4.97 4.80
- 10 4.02 495 4.7 502 400 4.01 4.04 503 3.00 398 399 4.05 3401 511 4.99
- 20 514 501 485 51 491 471 467 496 450 475 491 501 4404 497 5.01
Restricted 2SLS
h,,=0 | h,, =01 | h,, =05 | h,,=0.9
Statistics| L | uvsz — 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10 0 0.05 1 1
AR 5 3.00 3.96 4.03 5.03 350 4.03 4.00 490 4.00 3.98 4.00 4.500 3400 4.01 4.51
- 10 401 4.02 451 5.06 4.00 4.01 3.01 501 4.01 497 4.10 3.600 2421 4.02 4.62
- 20 463 4.81 5.02 5.02 485 498 490 5.03 4.05 5.09 499 4941 4490 5.04 5.12




7. Conclusions

In this paper, we study the asymptotic validity of the baafstfor the plug-in subset AR tests
based on the restricted limited information maximum likebd (LIML) and two-stage leas squares
(2SLS). We consider linear IV regressions where structp@aameters may not be identified, and
provide a characterization of the asymptotic distribugianh both statistics without and with weak
instruments. Our results provide some new insights andsides of earlier studies. We show that
the asymptotic distributions of these statistics are rtandard when the nuisance parameters that
are not specified by the subset null hypothesis are not fihtiso correction to usual asymptotic
critical values are needed. We find that the bootstrap proesdsimilar to that of Moreira et al.
(2009) provide a high-order refinement of the null distiibs of the statistics when the nuisance
parameters are identified, but is inconsistent if thesenpeters are not identified. This contrasts
with Moreira et al. (2009) who show that bootstrap is validtfee AR statistic of the null hypothesis
specified on the full vector of structural parameters, waettientification is strong or weak. The
inconsistency of bootstrap for subset AR statistics studignainly due to its inability to mimic the
concentration factothat characterizes the strength of the identification ohtlieance parameters.
The inconsistency of bootstrap for subset AR statisticsaimip due to its inability to mimic the
concentration factothat characterizes the strength of the identification ohtlieance parameters.
We thus develop a Bonferroni-based size adjustment thhatsytests with correct asymptotic size,
whether the nuisance parameters are identified or not. Veiprex Monte Carlo experiment that
confirms our theoretical findings.

A. Appendix
We begin by presenting the supplemental lemmata in Sectibn@ection A.2 contains proofs.

A.1l. Supplemental lemmata

Lemma A.1 Suppose Assumptio2sl-2.4 are satisfied. If further bl hold andri,, # 0 is fixed,
then for some integer» 1, we have

r
supPg[Si(Bo. ¥;) < 1] — Z A (T3P Bos T, ) 0(1) | = o(n™"/?)

TeR

forall j € {LIML,2SLS, where ;Qh is a polynomial int with coefficients depending ¢y, I,
]
¥;, and the moments of,F

Lemma A.2 Suppose that Assumptio@sl-2.3, and 2.5 are satisfied. If further gl holds and
(Anh),s, satisfies(3.2)—«(3.4), then we have
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(a) V Yo _> Giéz Ah §E) WhereAhJ = ("I'lht”"h Knh J) 1(q’}h/w£ - Kh~jh£w)7 Ky asis = 0 and

Ky 1S the smallest root o, : )’ (Y, 1 $h) — KnZh| =0

o A & d
(b) FiQWFj = Oz j = Oee (1_ Dot +A§‘j> |

-1/2

(©) S(Bo.¥;) 4 (1— 2h,,Anj +A§.j> Shj, where §j =, — $hdn .
where h=: (h,.h,,).

LemmaA.2 - (a) shows that both the restricted LIML and 2SLS estimagoesnconsistent under
the sequenc@np),. , satisfies3.2)—(3.4) if ||h,, || < . Under Assumption&.1-2.3, and2.5, we
haveveqy,, g, ) ~ N(0, Zh®1L) so that, | ¢y, ~ N(h,, Wy, . (1—h2)IL). As a result,

VZSLS Yol Py, ~ N( gw(%%)_lqﬁwij (l_hfw)(q‘ﬁ%)_1>- (A.1)

We see from (A.1) that the unconditional distributionynf — v, is a mixture of Gaussian processes
with nonzero means. This is not the case for the LIML estimataleed, sinc&,,,, #0a.s.y, —

Yo | Yy, does not necessarily follow a Gaussian process. Henge,— Y, does not necessarily
converge to a mixture of Gaussian processes [similar to Oakatoka (2014)].

LemmaA.2- (b) shows that ~QWr converges to a random procesgifs weakly identified.
This contrast with the case wheyas identified so that j‘_QWr j converges in probability to a pos-
itive scalar. Similarly§1([30,§/1) does not have a standard normal distribution even fer2SLS
as it is the case with strong instruments [see Lendn2x (c)]. While Sn(BO, ¥, follows asymp-
totically a mixture of Gaussian processes with nonzero nueaerHo, the limiting distribution of
S (Bo, VL) is nonstandard because of the presenae gf in it.

Lemma A.3 Suppose Assumptio2sl—2.4 are satisfied. If further bl hold andri,, # 0 is fixed,
then for some integer» 1, we have

su;){p*[ég(pojyjk) i '} (t; Fn,yj,ﬂx,l'lw)(p( )| =o(n""/?)

TER

for all j € {LIML, 2SLS, where é‘n is a polynomial int with coefficients depending 95, Iy,
)

Iy, and the moments &, @(-) and @(-) are the cdf and pdf of a standard normally distributed
random variable.

Lemma A.4 Suppose that Assumptiosl—2.3, and 2.5 are satisfied. If further bl holds and
(Anh)ps1 satisfies3.2)—(3.4), then the following convergence holds jointly fo {LIML, 2SLS :

* Py d .
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(b) E* [ vi (Vi V*lyj)] = Oy,e.j = OV, c— o2 01/2 Anjas;
* s \+ | PR
(c) E [VWJVWJ} = Oy, &S

Lemma A.5 Suppose that AssumptioBd—2.3, and 2.5 are satisfied. Suppose also tha hblds
and (Anp),., satisfies(3.2)~(3.4). If further E(||Zi[|**°, ||(&i,Vawi)'||*"°) < +o for somed > O,
then we have

! 71/2 + AVES ~ —
zV'7* Z* (ViVa) 1/2 Py,
(22) (2R ) @™ | e[ e [z 2)) e
m

—1/2 [ —1pa¥ 1 p—1pg/ 0 Q
n (n M*1,—n M]ln> W, m

where M= (my,...,my), m = vechzZ*) € RD/2 Q= Var(my), and M* = (mi,..., ),
m = vech(ZZ") are the bootstrap counterparts of M and m; ahglis a nx 1 vector of ones.

Lemma A.6 Suppose that AssumptioBd—2.3, and2.5 are satisfied. Suppose also tha hblds
and (Anp),., satisfies(3.2)~(3.4). If further E(||Zi[|**°, ||(&i,Vwi)'||*"°) < +o for somed > O,
then we have

1/2
(@) V; yjyﬁéfn%asé]a\/wv Ahjas

o AL d :

(©) S(Bo.¥) | 205 (1- 200w A8+ (48,2) ) as

-1 ,
for j € {LIML,2SLY whereAZ; = (WEWE— k)~ (WE'w,; — kB hew; ) , whenkEs s =0
and kB, is the smallest root of the determinantal equat‘céng WY (g, WB) - sz-‘ =

1/2 1 2 1/2 1/2
0, th "’U‘FL.UV v Yej =Wy, — Uy, (Vo+Usé UVW\; ) Y, — Geé va\;wAhJL/—’va Zhj=

1 hew; _
<h £W7J> ’ th.j = (GSE~jO-VWVw) UZO‘VWS’J' == (l— ZhSWAh’j +A|’%])_1/2(hsw - Ah.])’ GEE,j ==
EW, |

Oce(1—2h,, 00 +42)), Ov,ej = 0Oy, _ oY 01/2 Bnj, ;=W —HPAR,, and4yj is given
in LemmaA.2.

The asymptotic behavior of the bootstrap statistics in Lermdb (a)-(c) differ substan-
tially from those in LemmaA.2 (a)-(c) if ||h,, < «||. Therefore, the bootstrap fails to mimic
the asymptotic distributions of these statistics unéigr and the subsequence of parameters
Anh)ns1 satisfying (3. 2) —(3.4) wheny is not identified (i.e., wherh,, < »|)). For example,
while y; — vy, L\ 0%20 w,Anj in LemmaA.2-(a), we havey| — ¥, | Zn L\ Oge(1—2h,,Anj +

A7, )1/201/2 A ; as. in LemmaA.6-(a), wheredy, j # A; with probability one if||h,,, < el|.
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A.2. Proofs

PROOF OF LEMMA A.1  We show the proof for the statlstls1 (Bo, 2SLS) The proof for
([30, Y,u) can be deduced similarly. First, observe that we can ex;ﬁf{% V,s.s) UnderHo
as$(Bo, V.o, = vVNN/D, where

v (R TR (R

_ _ -1 _
(%) 1/2{%5-(2'?) () (%) @) (B E) e
¥ (Bo)Mz¥(Bo) ZV(BO)MZV_V~ W/MZW

n—L n—L Yosist = ZSLS> (A-3)

e - {(W;Z><?>1<Z':v>jl<W'Z><ﬂ> L J—

n n
So,from (A.2)-(A.3), we can writ&(B,, ¥, ) underHo as

D =

S$(Bo.Ve) = VNH(Ry) =vN[H(Ry)—H(u)] (A.4)

whereH () is a real-valued Borel measurable function®f with derivatives of ordes > 3 and
lower, being continuous on the neighborhooduot E(R,) when'l,, # 0 is fixed, andH (i) =0
underHop. Note that the derivatives of ordet> 3 and lower ofH (-) are not well-defined under the
sequenceg [Myn =0:n> 1} and does not even exist under the sequeqdd®g, = MyoCn : Cn |
0vn > 1,1y € R" is fixed}; see Moreira et al. (2009, footnote 2) and Doko Tchatoka gp@dr
a similar result. Lemma\.1 follows by applying Bhattacharya and Ghosh (1978, Theorgto 2
(A.4) withs—2=r. O

PROOF OF THEOREM 3.1  From (2.9), we havé x AR(B,,¥;) = Hén(Bo,Vj)Hz. We want to
approximatePs [ARy(Bo, ¥;) < ] uniformly in © underHo. First, we can writé?s [AR(Bo, ;) < 1]
as:

Po[AR(Bo, ¥j) < T] = Po[AR(Bo. ¥;) € %7l

where%; = {x € R;x?> < T} are convex sets. From Bhattacharya and Rao (1976, Cordlajy
we have su@((d%7)?) < d.e for some constard ande > 0. So, Bhattacharya and Ghosh (1978,

TeR

Theorem 1) holds witB = %; andW, = $,(8,, ¥i), ] € {2SLSLIML}. By using the approximation
of ]P’g[én(Bo,Vj) < 1] in LemmaA.1 and the definition of6;, Theorem3.1 follows directly from
the fact that the odd terms of the quadratic expansion ame eve O
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PROOF OFLEMMA A.2 (&) We start with the proof fof = 2SLS We have

WRW
sz = O (MaunZ'ZMuin +NGZMuun + MiynZ Vo + VP2 Vi)
Vv
!
_ (nl/z *1/2Q1/2Fl )QZl/Z (Z_nZ) QY2 (nl/ZO.\;N]\./CVZQ%/ann)_i_
7V Z'V,
L) Q5 (120,20 ) + (20,1208 ) 5 (325

( ViwViv
( 1/ZZ/VW) < Z) N (al/zz/lv)

VwViv n Vi \/ﬁ
P W P L+ U B, = (B U, ) (4 U,) = Y44

By the same token, we have

(O-ESO-VWVW)il/ZW/PZE = (affavww)il/z(n\;v.nzlg'i'vvlvpzs)

_ 1/2 . _12Z'€
| et ootz

NG\ (Z'Z\7 ) _1,Z'¢
() (7)) (#755)
i h\/NWWS"i'w(/WWS:q“ﬁwg'

Yo = (W'RW) 'W'Ps¢, the result follows immediately.
For the case oy

LML’

Becausey2SLS

we note thak . is the smallest root of the characteristic polynomial

‘K-éw — (Y(Bo) : W) Pz (J(Bo) :W)| =0.

Observe thaPz (§(Bg) :W) =P

10
ZMNwn(y:)+ (g Wy) ( 1)] . Substituting this into the char-
y

!/
1 0 1 0
acteristic polynomial, and pre-multiplying >< 1) and post-multiplying by'( 1)
-y -y

yields

K3 — (€1 ZMwyn+Mu) Pz (€ ZMyn +Vov)| =

!
R 1 0\ - 1 O 0 0
wheres = Ow = AG“ afvw .
-y 1 -y 1 OVye 2V

From Theorem 1(a) and Theorem 2 in Staiger and Stock (199 yjelv

_ 2/~ _
(asslavwvw)l/ (VUML - VO) E) ApumL = {‘H{% - Kh,LIML} ! {"H{q-’s - Kh,LIMLhSW} )
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wherekn v is the smallest root of the characteristic polynomial

1 h
[(We : W) (We - $h) —KnZh| =0, Zh = (h iw>

EW

Thus, the result follows.
(b) Similarly, we have

FiQwfj = (n-L)*

(¥
= (n—L) e/
-1

(Bo) —W)" Mz ((Bo) — W)

e—(n—k) "y, - Vo) W'Mze — (n—L)~*e/'MaW (¥, — vo)

(Vi — vo) W'MZW (¥; — vo)

i O¢e (aiéz V%/ 2An J> Ov,e — Tevy (aié V%/CVZAh )
(ot 0y (o2t

= O (1-2h,,0n+4F))

(0). First, note thal(By, ;) = (22) 2/ (§(Bo) : W) T; (7} Quwf;) ~*/2. However, we have
- zz\?ze  (zZ\*zW
Z/Z) 1/22/(57(3 ) IW)F = &L ze (42 —(y _V)
( 0 j n \/ﬁ - \/ﬁ ; J
= o ad? g K Z_/£+ nt/2g-1/2 E § r
£ £ n \/ﬁ ViV n w,n
Z/Z —1/2 Z/\/\N B
~1/2 12 1/2 N
+ O <T> Vvn oee’ "0y (o= y)

S ol { e — i (Wh— k) (AW — kngh) b
e (e — Yhddn,).

O-ES

Combing this with (b), the result follows.
O

PrROOF OFTHEOREM 3.2 The proof follows immediately from equation (2.9) and Lem#a.
Therefore, it is omitted. O

ProOOF OFLEMMA A.3 The proof follows the same steps as in Theorem 3 of Moreirh €@09)
and is therefore omitted. O
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PROOF OFLEMMA 4.1 The proof follows the same steps as in Theorem 3 of Moreira €@09)
and is therefore omitted. O

PROOF OFTHEOREM 4.2 The proof is similar to that of Hall and Horowitz (1996, Theor 3)
upon exploiting the results of Theorednl and Lemmad.1, hence it is omitted. O

PROOF OFLEMMA A.4 (@). First, we have

n
E | (v~ V)P = Y (o ~Voi)°
= T - 2(n W) (0NN (7;)2
E} O-EE (l— ZthAhj +A|’i]) .

(b). Similarly to (a), we have

B Vo (i —Veip) | = i — (n ) ¥,
= Wb - (n_1\7’\7w) Yo+ (M VoV (Vo — Yi)
d

(). Similarly, we finde* (v* v ) =N, B o

W Wl ViV as.

O

PrROOF OFLEMMA A.5 The proof follows closely Lemma A.2 of Moreira et al. (2009)et
(¢,d’) be a nonzero vector with= (c},c,)’ € R andd € R-(-+1/2, Define

= {d (' ®Z)+d (M)} /v

whereV* = (v*l,vV;) is theith bootstrap draw of the (re-centered) reduced-form redsdm =

n-1s",m. We use the Cramer-Wald device to verify the condition oflttagunov Central Limit
Theorem forXy;.

(@) E*[X;] = O follows from the independence of the bootstrap drawstijd*| = 0
(b) By noting thaf" |V;*V;*'] = V'V /n, whereV = (¥ : Vi), andE*[ZZ"] = Z'Z/n, we have
E* [X,Tf] =nHc [(mVV)® (n1Z'Z)]c+ d’f)mm} < 00,
whereQum=n"15" (m —m)(m —m)’.
(c) By using the same argument as in Lemma A.2 of Moreira et &009), we have
liMn_e S, E* Ux;l |2+5} =0as. SinceE* [n—lz*’z*} =n"'Z'Zandn1z2¥z* —n122| 22, %
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0 by the Markov law of large numbers (LLN), we also haveé-Z* Z* | Zn Ly Qz a.s. In addition,

it is easy to see thady Lt Qw. Therefore, Lemma.5 follows by applying the Liapunov Central
Limit Theorem. O

PROOF OFLEMMA A.6

(8. As before, we begin with the 2SLS estimator. LB, = nY2Ml, +
(n"12'2)~* (n"/22,), then

[ 1] -1 ’
(E* ViV ) W P W

= (B [ Vo (n Z"Z* Pl +-Vr 2" P+ Z Ny Vi P Ve )

1 Al Ve sV
) {”B( ) (5 ) e (5
Z¥'z* Z*V*

V/n

* %~ \2 % [\ g%\ g% 1/2 *'

(B [ Ve, ? B _ijvw) w *(vl Wv,)

* * x ~ \2 w [\ gy \ g% 1/2 *~

= (E [(VLi_VWJVj) ]E _VWJVWI { WVJ)+V I:)Z ( Vij)}
* * * ~ * I * « 1/2 Z* V V*y

= <E [(VLi_VwJVj)Z]E _Vw7iV { ( : Jn . J)>

. (W\%) (znz> (z* (vlﬁ )}

Sincen~1z¥7* | 27 23 E(zZ/) = Q from LemmataA.4-A.5, we have

- (E* Vi iVis

(v* z*>

and similarly, we have

(5 Mo ]) W W | 20 S (ot 20y, (20, aS

= (Yhtuy) (o) =Wy
Similarly, we have

* * % ~ \2 * VLY -1/2 * * *~ d B/
(E (V1 = VeV E [VwJV\MiD WPz (Vi =Va¥)) | 20 = W We 251528,

1/2 1/2
wherey, ,g s= Yy, — Yy, (Yo + O i GVW\;WAZSLS) =y.—0 A UVW\;WAh,zngl’VW-
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For LIML, observe thak{ ,_is the smallest root of

‘KilflML (VN s Z V) Poe (Vi = V¥ 25w+ Vi)

LIML LIML - 0’

/
~ 1 0 A 1 0
where we have |, = . Qn . .
—Yim 1 —Yim 1

So, by following the same steps as in the case of 2SLS and usimgnaA.2, we get (conditionally
onZn)

1/2

E* [Vvaivvt:i} ~ ~ d B (1B B \—1/yB B
E* (Vi = ViV )? (y:uvu_ - VLIML) = (W - Kp,j) (h Yeim ~ Kb, Mo o)
7 LiML

W,

as., WhereKﬁ j is the smallest root of the characteristic polynomial

1 €
‘(w“-”v”- : %B)/ (WemL t W) — Khzh7LIML‘ =0, ZhumL = ( " MML) :

e, LIML 1

This establishes Lemma.6-(a).
(b) Similarly, we have

i Qwf; = (=) (5 (Bo) ~W'¥}) Mz (7 (Bo) —W'¥})
= (=L)7 (Vi =Veb) (Vi —Vea;) — (n—L) (V= %) WMz (V7 =V, ;)
—(n—=L) " MzW* (7 = 7)) + (n—L) "1V = ) W' MzW* (7 = 7)) .
SinceQ3y | 2023 Qu, it follows that
P Qi | 20 0pej (1- 20, AP+ (48)%) as
(c) Again, we have

JoNY2_ o~ o

(z'z) (57 (Bo) W

, “1/2 0 o e , 12 i (e
- <Z*Z*> Pz v —VWVj)+<Z*Z*> Pzw (1 -7)

n \/ﬁ n \/ﬁ

N V- S o\ 12
_ g2 ) 2 (L2 Z° (Vi —Vay)) o222 B
g€, £g,j n NG + ViwViw n w,n

! _1/2 /,
_ AN VAR _1/2 .~
+ovW1va2( s ) ﬁw)aesé oéxéw(v,-m}wpm-
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Thus, by proceeding as in (a) and (b), we get
=% _1/2 % o~ . K\ ok d
(') 25 (Bo) W | 20 03l (W — WRAE ) s,

/ -1 / .
whereAS; = (Wh HB KE’J-> (Wh We —Kﬁjth,j>. The final result follows from the above
limits and (b). 0

PROOF OFLEMMA 4.3 Lemmad4.3follows from equation (4.4) and the results of Lemmis.
Therefore, the proof is omitted. O

PROOF OFTHEOREM6.3  First, we can expresasySz, (§Sa,a-0d,0,,)] as:

AsySz, [c?*s(cr, a—3,0 )] = limsupsupPg[ARy(Bo,¥;) > CJB*S(a, a—3,i )

n—o fcO
= limsupPg [AR\(Bo,¥) > ¢ (a,a—o.4,,,)]  (A5)
— 0 ’

A

- nIiLnooPéwnh [Aan,h(Bm VJ) > C?_S(a’ a- 5’ “%,h»Wh)]

where{én : n>1} is a sequence i® and {wnn: N> 1} is a subsequence d¢h: n> 1} sat-
isfying (3.1)—(3.4). Andrews and Guggenberger (2009) shioat such sequence and subse-
guence always exists. So, it suffices to show that Iim;upimn%mpewn,h (AR, (Bo,¥j) >
CJB*S(or,a — 57ﬁ“’n.h’Wh)] <aforall u , €, subsequencwnn: n>1} of {n: n>1} and se-
quences 8, : N> 1} satisfying (3.1)—(3.4). Let; (5’ﬁ’wnh,wn) be the value o, (6) evaluated
atp =t Then, for anyu € 77, we have

“’n,h’Wh'
limsupPa,,, ARy, (Bo:¥j) > ¢} a,a=8.4,,,) (A.6)
— ' '
= lim P5, [ARw,,(Bo.¥j) > S(a,a 5,41, )=Pe[&;(h) >cf(a,a—5.0,)]

W h,Wh

underHp, Assumption®.1-2.3, 2.5 and Assumption§.1-6.2, wherecJB(a, a—9, ﬁwh) is a random
variable becausg , = (Hyw,h,,,) and,, = [h,, + @y, || is a random variable. Now, we have

Pg[€;(h) > P S(a,a—8,0,)] = Pg

IN +  +
~
[es)

™ Mo MM M

IN
~
®

IA
1
_l_
Q

!

N/
I
Q
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It follows from (A.6)—~(A.8) thatAsySz, (¥ S(a,a—-5,f )] < a as stated.

PROOF OFTHEOREM6.6 The proof is similar to those if.3and it is omitted.
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