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Abstract. This paper provides a positive identification result for procurement

models with asymmetric bidders, statistically dependent private information, and in-

terdependent costs. When bidders are risk neutral, the model’s payoff-relevant prim-

itives are: (i) the joint distribution of private information and (ii) each bidder’s full-

information expected cost—the expected cost conditional on own and competitors’ in-

formation. These primitives are nonparametrically identified from the distribution of

bids conditional on observable cost shifters under the following four assumptions. First,

each bidder’s private information can be summarized by a real-valued signal. Second,

the joint distribution of bidders’ signals does not depend on cost shifters. Third, each

bidder’s full-information cost depends on own cost shifters but not on competitors’.

Fourth, the observed data are generated by the repeated play of the same equilibrium

where bidders use monotone pure strategies. I illustrate how the identification argu-

ment is useful for estimation using data from Highway Procurements in Michigan. The

estimates are used to evaluate policies that reduce the severity of the winner’s curse by

restricting participation.
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1 Introduction

In procurement auctions with interdependent costs the information about each bidder’s cost is

scattered among all bidders. Bidders should realize that the result of the auction is informative

about competitors’ information and that they win the projects deemed too costly or undesirable by

other participants. This adverse selection phenomenon is usually referred to as the winner’s curse

in the auctions literature. The effect of procurement policies on equilibrium behavior and outcomes

depends crucially on the nature and extent of the winner’s curse and on how bidders adjust their

bids in response to it.

While the interdependent costs model has been analyzed extensively in the theoretical literature,

the empirical literature has mainly analyzed two polar cases. In one extreme, there is the private

costs model where each bidder knows its own costs and there is no room for the winner’s curse. In

the other extreme, there is the pure common cost model where all bidders would incur in exactly

the same cost if they win, but they are uncertain about it. Intermediate cases have received little

empirical attention mainly because of the lack of positive identification results.1 In fact, Laffont

and Vuong (1996) provide a negative result. They show that any joint distribution of bids that is

rationalizable by an interdependent costs model is also rationalizable by some private costs model.

This paper provides a positive identification result using variation in competitive conditions.

One of the main insights of the theoretical analysis of models with interdependent costs is that

changes in competitive conditions have different effects on equilibrium bid strategies depending on

the true information structure. In models with strong interdependence, the effect of the winner’s

curse is important and bidders may bid less aggressively in more competitive environments. If

interdependence is weak or inexistent, so is the effect of the winner’s curse and bidders may bid more

aggressively is more competitive environments. Haile, Hong, and Shum (2004) use these insights

to develop a test for the null hypothesis of private costs against an alternative of interdependence

exploiting variation in the number of participants. In this paper, I assume richer variation in

competitive conditions generated by cost shifters that take over a continuum of values, e.g., distance

from each bidder’s plant to the project location.

The objects to be identified are the primitives of the Bayesian game that represents the pro-

curement. When bidders are risk neutral and the rules of the auction are known, the game is fully

defined by (i) the distribution of bidders’ private information, and (ii) each bidder’s full information

cost: a function that returns the expected completion cost conditional on own and competitors’

private information. While these payoff-relevant primitives are coarser than the joint distribution

of costs and private information—regarded as the true primitive by Athey and Haile (2002, 2007)—

they are sufficient to analyze the effects of many relevant policy changes (e.g., rules of the auction,

1The theoretical literature includes Athey (2001); Reny and Zamir (2004); McAdams (2003, 2007); Maskin and

Riley (2000). Laffont, Ossard, and Vuong (1995); Athey, Levin, and Seira (2011); Roberts and Sweeting (2013);

Krasnokutskaya (2011) are examples within the private values/cost paradigm, while Athey and Levin (2001a); Bajari

and Hortasu (2003); Hendricks and Porter (1988); Hendricks, Pinkse, and Porter (2003a) are examples within com-

mon values/cost paradigm. Hong and Shum (2001) is one of the few empirical papers that estimate a model with

interdependent costs.
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reserve prices, subsidies) on outcomes such as bidding behavior, project allocation and prices.

The payoff-relevant primitives are nonparametrically identified from the distribution of bids

conditional on observable cost shifters under four assumptions on technology and information.

First, each bidder’s private information can be summarized by a real-valued random variable: a

signal. Second, the joint distribution of bidders’ signals does not depend on the cost shifters. Third,

each bidder’s cost shifter affects his own full-information cost but not his competitors’. Fourth,

the observed data are generated by the repeated play of the same equilibrium where bidders use

monotone pure strategies.

The restrictions on the auction format are that bidders submit simultaneous or sealed bids, the

project is awarded to the bidder who submits the lowest bid and the payment that each bidder

receives is given by a publicly known function of all the bids submitted to the auction. The

description encompasses a wide variety of sealed bid auctions including first-price, second-price and

all-pay. It also allows for preferential treatments, bid discounts and subsidies.

The point identification result in the paper requires that observed cost shifters induce enough

variation in the observed conditional distribution of bids and that the observed distribution of bids

satisfy other conditions that ensure that no information is lost due to equilibrium strategies. If the

conditions fail, it will still be possible to obtain some informative nonparametric bounds on the

primitives.

The identification result shows that the observed distribution of bids uniquely determines the

payoff-relevant primitives of the model without relying on further distributional or functional form

assumptions. Even in the simplest model with two bidders, the full-information cost function has

three arguments: own signal, competitor’s signal and own cost shifter. Nonparametric estimators

of this object may suffer from the curse of dimensionality. Applied researchers may employ some

convenient parametric and distributional assumptions to address the curse of dimensionality and

use variation in cost shifters to estimate the parameters that determine the magnitude of cost

interdependences. I illustrate how the identification arguments can be used for estimation in an

application to first-price Highway Procurements in Michigan using bidder’s distance to the project

as the bidder-specific cost shifter. The estimation method is semiparametric and has multiple steps

(Hubbard, Li, and Paarsch, 2012; Aryal, Gabrielli, and Vuong, 2014; Campo, Guerre, Perrigne,

and Vuong, 2011). The first step consists in estimating the joint distribution of signals semipara-

metrically as in Hubbard, Li, and Paarsch (2012). The second step uses the bidder’s first-order

condition to recover the marginal cost that rationalizes each observed bid as in Campo, Perrigne,

and Vuong (2003); the marginal cost is the expected full information cost conditional on the event

where the observed bid is pivotal, i.e., the set of competitors’ signals such that their minimum bid

equals the observed bid. The third step consists in estimating competitors’ pivotal signals. The

fourth and final step uses instrumental variables quantile regression methods (Chernozhukov and

Hansen, 2006) to estimate the parameters of the full information costs.

The full information cost estimates point to a structure that lies between the two polar paradigms

of private and pure common costs. The effect of competitors’ signals is statistically significant but

of smaller magnitude than the effect of own signals. To illustrate the economic importance of the
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estimated degree of interdependence and the implied winner’s curse, I perform a series of counter-

factuals where the Department of Transportation restricts participation. Restricting participation

reduces the severity of the winner’s curse and, under some conditions, it may even reduce procure-

ment costs (Matthews, 1984; Hong and Shum, 2002). The estimates suggest that the effect of the

winner’s curse is strong enough that bidders bid more aggressively when participation is restricted,

but not enough to generate cost savings. Even if each individual participant submits a lower bid,

the minimum bid still increases as the minimum is taken over a smaller set of bids.

This paper contributes to the literature on identification of auction models. The initial contri-

butions focused on the private values model with independent (Guerre, Perrigne, and Vuong, 2000)

or affiliated private information (Li, Perrigne, and Vuong, 2002; Campo, Perrigne, and Vuong,

2003). Laffont and Vuong (1996) showed that the affiliated or interdependent value model is not

identified from the joint distribution of bids. Li, Perrigne, and Vuong (2000) studied the condi-

tionally independent private information model and showed identification of the two polar cases

of private and pure common values. Fevrier (2008) considered a particular class pure common

values model. More recently, the literature has focused on cases where the researcher has access to

the distribution of bids conditional on other covariates that introduce some exogenous variation in

competitive or informational conditions. This additional source of variation can be used to test the

null hypothesis of private values (Haile, Hong, and Shum, 2004; Hortasu and Kastl, 2012), and the

null of pure common values (Hendricks, Pinkse, and Porter, 2003b, footnote 2). It can also be used

to identify attitudes towards risk (Guerre, Perrigne, and Vuong, 2009), correlated private values

in ascending auctions (Aradillas-Lopez, Gandhi, and Quint, 2013), and a selective entry process

(Gentry and Li, 2012). In this paper, I show that variation in cost shifters can be used to identify

all the payoff-relevant characteristics of the interdependent values model with risk-neutral bidders.

The rest of the paper is organized as follows. Section 2 describes the general interdependent

cost framework. Section 3 shows the main identification results. Section 4 presents an application

using highway procurement data from Michigan. The last section concludes.

2 The interdependent cost model

2.1 Primitives

An auctioneer procures the completion of a project and runs a sealed-bid auction between n risk-

neutral bidders. The cost to bidder i is a random variable Ci and his information is summarized

by a signal Si. I will adhere to the convention of using upper-case and lower-case letters to denote

random variables and their realized values, respectively. At the time of the auction, i knows si, the

realization of his own signal, but is uncertain about the realization of the vector of competitors’

signals S−i = [Sj ]j 6=i and own future project completion cost Ci. In other words, each bidder

knows his own information but does not know his competitors’; moreover, his information only

allows him to make an imperfect forecast of his own costs. Denote the full random vector of signals

by S = [Si]
n
i=1, and the vector of costs by C = [Ci]

n
i=1.
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All bidders have access to the following public information: bidder-specific cost shifters

[x1, x2, ..., xn], and a set of observable auction characteristics x0. All public information is de-

noted by x = [x0, x1, x2, ..., xn] ∈ Xo ⊂ Rm, m ≥ n + 1. Cost shifters and auction characteristics

are not necessarily one-dimensional. For example, the cost shifter of bidder i may include his dis-

tance to the project site and publicly observable predictors of his capacity constraints. Auction

characteristics x0 may include publicly available estimates of the cost and duration of the project.

Observed heterogeneity x0 can be conditioned upon and omitted from notation.

The primitives of the model are the joint distribution of costs and signals conditional on public

information. Its cumulative distribution function (CDF) is denoted by FC,S|x, or F for short. The

CDF of i’s completion cost given his information at the time of the auction is FCi|si,x and its expec-

tation is E (Ci|si, x). If i learns all competitors’ signals, the CDF of his costs becomes FCi|s−i,si,x

with expectation E (Ci|s−i, si, x). This expectation is bidder i’s full-information expected comple-

tion cost or, for short, full-information cost. All these distributions and expectations of costs are

uniquely determined by the primitive F .

The identification results in this paper require the following assumptions on bidders’ technology

and information:

A.1. Cost shifters and signals are independent: FS|x = FS .

A.2. Signals are one-dimensional random variables. The joint distribution FS , admits a contin-

uously differentiable density function f that satsifies the following regularity condition: for

every I = [si, si] in the support of Si, the class of random variables{
Y : Y =

(
d log f (S−i|si)

dsi

2
∣∣∣∣∣Si = si

)
, si ∈ I

}

is uniformly integrable.

A.3. The full-information cost of bidder i is ci (s−i, si, xi) which does not depend on xj for all

j 6= i, i.e.,

ci (s−i, si, xi) := E (Ci|s−i, si, xi) = E (Ci|s−i, si, x) , (1)

and satisfies the following regularity conditions: for every I = [si, si] in the support of Si and

every xi: ci (s−i, ·, xi) is continuously differentiable on I, supsi∈I E
(∣∣∣ ddsi ci (S−i, si, xi)

∣∣∣∣∣∣ si) <
∞ and supsi∈I E

(
ci (S−i, si, xi)

2 |si
)
<∞.

Assumptions A.1 and A.3 define the conditions that an observable auction characteristic has to

satisfy to be considered a cost shifter instead of one of the characteristics in x0. Assumption A.1

states that the joint distribution of signals do not depend on cost shifters. Assumption A.3 requires

that bidders’ cost shifters only affect their own full-information cost but not competitors’. For

example, if xi is distance to the project, these assumptions rule out that bidder i has systematically

lower or higher costs when j is close to the project. They also rule out the case where i regards the

signal of bidder j as more informative when j is close to the project.
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Assumption A.2 states that bidders summarize all private information in a single dimensional

variable. It rules out the possibility that bidder i receives two signals: one that is informative

about his own costs (e.g. own equipment availability) and one that is informative about competitors’

information and costs (e.g. conditions in the equipment rental market). The boundedness condition

rules out distributions where the support of S−i depends on Si, e.g, if S1 and S2 are perfectly

correlated.2 With the sole purpose of simplifying notation it will be assumed that signals are

marginally uniformly distributed, and therefore, the distribution FS is a copula. This is just a

normalization as signals are ordinal.

Most models considered in the single-unit auction literature are special cases of the interdepen-

dent cost model. Write F = FC|S,xFS|x. Typical models impose conditions on either FC|S,x or FS|x.

Conditions on FC|S,x determine whether the model is in the private cost paradigm. Conditions on

FS|x determine how bidders private information is distributed.

In private costs models each bidder knows his own expected completion cost, so i’s full-

information cost does not depend on competitors’ signals, i.e.,

ci (s−i, si, xi) = ci (si, xi) for all s−i, si and xi. (2)

In the traditional independent private values (costs) model, FC|S,x satisfies (2) and FS|x is the

product of the marginal distributions
{
FSi|x

}n
i=1

(Milgrom and Weber, 1982, Section 2.1). The

affiliated private values model allows signals to be affiliated (Li, Perrigne, and Vuong, 2002).3

In pure common costs models the cost of completing the project is common to all bidders.

They all share exactly the same full-information cost; ci(s−i, si) = cj(s−j , sj). For example, in

Rothkopf (1969) and Wilson (1977) bidders have identical completion costs (C = Cj for all j) and

receive a noisy signal with distribution FS|C . This is a special case of the model in this paper

where FCi|S = FCj |S for all i, j. Fevrier (2008) shows identification of a Pure Common Values

Model under the additional assumption that the support of the distribution of signals changes with

the cost. Hendricks and Porter (1988) present and estimate a model where one bidder is privately

informed about the common value of the good being auctioned and there are n − 1 uninformed

bidders. In equilibrium, uninformed bidders play mixed strategies that can be purified by a set of

signals. In this case, signals are independent and all bidders have the same full information cost

that depends only on the informed bidder’s signal.

The General Symmetric Model in Milgrom and Weber (1982) assumes that ci (s−i, si, xi) is

interchangeable in competitors signals, that the function ci is identical across bidders and that

the random variables (C, S) are statistically affiliated. This model includes as special cases the

independent private cost and pure common cost models, as well as a range of intermediate models.

The interdependent cost model is more general than the pure common costs and the private

2If f (S−i|si) is interpreted as a likelihood of obtaining sample S−i from the distribution of S−i given a single

parameter si, the regularity condition implies that the Fisher information contained in one sample is finite.
3Bidders’ signals are affiliated if fS(s′∨s)fS(s′∧s) ≥ fS(s)fS(s′) for all s, s′, where ∨ and ∧ denote the component-

wise maximum and minimum, respectively. Affiliation is a stronger notion of positive correlation. See Milgrom and

Weber (1982) for more details.
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cost paradigm. First, it allows for arbitrary interdependence. Each bidder may have a different full-

information cost function which may arbitrarily depend on competitors’ signals. Second, private

information need not be independent. FS|x is not necessarily the product of the marginals). Third,

bidders can be asymmetric. FS|x is not required to be exchangeable in its arguments and ci (·) may

be different than cj (·)). Fourth, it allows for for asymmetries introduced by observable cost shifters

which will be key for the identification argument.

Example 1. Hong and Shum (2001) use Wilson (1998) log-additive model where each bidders log

costs is logCi = Ai + V , where Ai is a private component of i’s costs and V is an unknown cost

component that is common across bidders. They assume that Ai ∼ N
(
ā, σ2

a

)
and V ∼ N

(
m,σ2

v

)
.

Each bidder has a noisy signal of its cost Si = logCi +Ei, where Ei = N
(
0, σ2

e

)
. This implies that

logCi|s ∼ N
(

σ2
v

σ2
a + σ2

e +Nσ2
v

(
ā+m+

σ2
e

σ2
a + σ2

e

Σj 6=isi

)
+ αsi, σ

2
eα

)
where

α =
1

N

(
1 +

(N − 1)σ2
a

σ2
a + σ2

e

− σ2
v

σ2
a + σ2

e +Nσ2
v

)
.

The model can be renormalized so that each signal has a marginal uniform distribution.

Example 2. (Gaussian Information Structure) The log-additive model can be generalized so that

bidder i’s cost is Ci = ψ−1
xi

(
β′iV +Ai

)
, where ψxi is a strictly monotone function that may vary

with xi, V is a vector of common costs distributed N (0, I), βi is a bidder specific vector of weights

and Ai is a private cost component distributed independently N
(
0, σ2

ia

)
. Each bidder’s signal is

Si = ψ (Ci) +Ei where Ei = N
(
0, σ2

ie

)
. Notice the special cases of independent private costs when

βi = 0 for all i; the affiliated private costs when σ2
ie = 0 for all i; and the pure common values

model when βi = βj and σ2
ia = 0 for all i 6= j.

In the most general case, the vector of Gaussian signals is S ∼ N(0, B′B + Σa + Σe), where

B’s i-th column is βi, Σa and Σe are diagonal matrices with σ2
ia and σ2

ie in the i-th diagonal entry,

respectively. ψxi (C) |S ∼ N (µS,Σ) where

µ = I − Σe

(
B′B + Σa + Σe

)−1

Σ =
(
B′B + Σa

) ((
B′B + Σa

)−1 −
(
B′B + Σa + Σe

)−1
) (
B′B + Σa

)
.

Therefore, the full information cost of bidder i is a function of µiS and the i-th row of Σ. Signals

can be renormalized to be marginally uniform.

2.2 Auction Rules

The identification results apply to auctions where bidders submit simultaneous or sealed bids and

the project is awarded to the bidder with the lowest bid. Let pi (bi, b−i) be the function that

determines i’s payment given own and competitors’ bids, r be the maximum price the auctioneer is
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willing to pay and 1 (bi ≺ b−i) be an indicator that is one if and only if bi beats bids b−i given the tie-

breaking rule in place.4 In first-price auctions pi (bi, b−i) = min (bi, r) 1 (bi ≺ b−i), in second-price

auctions pi (bi, b−i) = minj 6=i (bj , r) 1 (bi ≺ b−i), and in all pay auctions pi (bi, b−i) = min (bi, 0) +

1 (bi ≺ b−i) r. The identification results in this paper only require that the set of discontinuities

of pi (·, b−i) is ∪∞k=1 {dk (b−i)}, where functions dk : Rn−1 → R are Borel measurable. First-price,

second-price and all-pay auctions satisfy this condition with dk (b−i) = minj 6=i bj .

Sealed-bid auctions are modeled as Bayesian games. Each primitive F and each market config-

uration x define a game in which bidders are players, signals are types and bids are actions. The

payoff functions and joint distribution of signals are common knowledge. The payoff function of a

risk-neutral bidder is:

ui (b, s, x) = pi (bi, b−i)− ci (s−i, si, xi) 1 (bi ≺ b−i) . (3)

The information structure of F is defined as the pair:

{{ci (s−i, si, xi)}ni=1 , FS} . (4)

This information structure summarizes the payoff-relevant characteristics of the primitive F . The

full-information costs and the rules of the auction determine the players’ payoffs and the joint

distribution of signals is the joint distribution of types. All other characteristics of F are irrelevant

for the description of the game. This paper studies identification of the information structure (4).

Non payoff-relevant characteristics of F pose no additional restriction on observed behavior and

will not be identified.

The information structure is sufficient to compute the equilibrium behavior and outcomes in

many counterfactual situations. Any change in the rules of the auction that alters the payment

function or the allocation rule can be represented by a Bayesian game with primitives that depend

only on the identified information structure (e.g., changes in reserve prices, subsidies to some

preferred bidders, participation fees, changes in auction format from first-price to second-price

auction, random allocation among the two lowest bidders). As long as the counterfactual situation

does not require that bidders make bidding or bargaining decisions after they learn additional

information, their payoff functions still depend only on their full-information costs and payment

rule. For an example where bidders do make decisions after they learn additional information,

consider a counterfactual policy that allows resale or subcontracting after bidders learn their costs.

Suppose that at the subcontracting stage there is no private information and that each bidder’s

publicly known cost is its full-information cost evaluated at the realized signals plus an idiosyncratic

ex-post shock. The winner may make a take-it-or-leave-it offer to the competitor that has the lowest

ex-post costs. His resale market opportunities are more profitable when the variance of the ex-post

shock is larger because the expected minimum competitors’ cost is lower. Because bidders should

take into account the possibility of subcontracting (or resale as in Haile, 2001), this policy results

4The main results of this paper are valid under any tie-breaking rule as long as the winner is selected among those

bidders who tied with the lowest bid.
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in a more competitive auction environment if the variance of the ex-post shock is large. This

variance is not an identified characteristic of the model. Therefore, it is not possible to compute

this counterfactual using the identified information structure.

2.3 Observables

I consider situations where the data consist of a sample of independent auctions. In each auction

there is a draw of signals and costs from F . Each bidder submits a bid after observing his own

private signal and all public information. The researcher observes bids and public information.

Let Bi denote the bid made by i, HBi|x its CDF conditional on public information, and H

the joint distribution of bids conditional on public information (this is a shorthand notation for

HB|x). If bidder i decides not to participate in an auction, his bid is recorded as infinity; therefore,

supbi∈RHBi|x (bi) may be less than one. Xo is the observed support of x, and Xo
i that of xi.

For simplicity, assume that Xo = Xo
1 × ... × Xo

n. It will be useful to define QBi|x as the right

continuous quantile function of Bi|x and HMi|Bi=bi,x as the CDF of Mi = minj 6=iBj conditional on

Bi = bi, X = x.

If bidder i plays a monotone pure strategy in every market configuration x, then his behavior

is described by a bid function βi (si, x) that is increasing in its first argument. The set of bid

functions β = {βi}i=1..n describe how each bidder behaves under different private and public

information. It is said that β generates H if each marginal distribution of bids HBi|x is generated

by repeated play of the strategy βi, i.e., if HBi|x (bi) = P (β (Si, x) ≤ bi) for all x ∈ Xo, i ∈ {1, .., n}
and bi ∈ R. Similarly, (β, F ) generates H ∈ H if the repeated play of strategy profile β given

the joint distribution of signals FS generates the joint distribution of bids H, i.e., if HB|x (b) =

P (∩ni=1 {βi (Si, x) ≤ bi}) for all (x, b).

Throughout the paper it will be assumed that the observed data is generated by the repeated

play of equilibrium strategies:

A.4. The observables H are generated by (β, F ), where F represents the true primitives of the

model and β are bid functions that constitute a Bayes Nash equilibrium in monotone pure

strategies in every x ∈ Xo.

This assumption does not rule out existence of multiple equilibria, but it requires that in the

game indexed by x bidders always play the same equilibrium.5 The theoretical literature on auctions

has derived sufficient conditions for existence of equilibria in monotone pure strategies (Reny and

Zamir, 2004; Athey, 2001; McAdams, 2007) depending on the rules of the auction. Reny and Zamir

(2004) show that if signals are affiliated, the first-price auction has an monotone equilibrium. These

results do not extend to second-price auctions.

5Similar assumptions are required to identify and estimate dynamic models (Bajari, Benkard, and Levin, 2007).
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3 Identification

Assumption A.4 provides the key links between observables and economic primitives. By mono-

tonicity, bid functions and marginal bid distributions are inverses of each other. In particular,

βi (·, x) = QBi|x (·) at every continuity point and

HB|x (b) = P (∩ni=1 {βi (Si, x) ≤ bi} |x) = FS|x (s) ,

where si = HBi|x (bi) for all i. The implications of this expression are threefold. First, Assumption

A.1 is testable because it implies that HB|x (b) = HB|x′ (b
′) whenever x, x′ and b, b′ are such that

HBi|x (bi) = HBi|x′ (b
′
i) for all i. Second, FS|x (s) is identified if there is a vector b such that

s =
[
HBi|x (bi)

]n
i=1

. Third, if equilibrium strategies are such that βi (·, x) is constant for an interval

I ⊂ (0, 1), then FS|x (s) is not identified whenever si is in the interior of I.

Another key implication of Assumption A.4 is that for every signal si, bi = QBi|x (si) satisfies a

best-response condition. This is true even at discontinuity points of QBi|x because expected costs

are continuous in own signals. In second-price auctions, for example, the first-order condition of

bidder i is (See Athey and Haile, 2002):

bi = E

(
Ci|Si = si,min

j 6=i
βj (Sj , x) = bi, xi

)
. (5)

The right hand side is the expected cost conditional on submitting a pivotal bid—a bid that ties

with at least one competitor for the lowest bid. The event “submitting a pivotal bid” or “tie with a

competitor for the lowest bid” is
{
s−i : minj 6=i βj (sj , x) = bi

}
. This set has Lebesgue measure zero

if competitors’ bid functions are continuous. Therefore, it is important to define the right hand

side of (5) as the limit of the conditional expectation on events with positive probability:

bi = lim
ε↓0

E (Ci|Si = si, S−i ∈ Lε (bi, x) , xi) , (6)

where Lε (bi, x) =
{
s−i : minj 6=i βj (sj , x) ∈ [bi, bi + ε]

}
.6 Each event Lε (bi, x) can be described

in terms of the observables. Let R (bi, x) =
{
s−i : sj ≥ HBj |x (bi)

}
denote the set of competitors

signals for which bidder i wins with bid bi in configuration x. This set is an n− 1 dimensional box

in the space of signals. Then Lε (bi, x) = R (bi, x) ∩R (bi + ε, x)c, i.e., it is the set for which i wins

with bid bi but loses with bid bi + ε. If n = 3, this set has an L-shape in the unit square.

In first-price auctions the first-order condition becomes:7

bi −
Pr (Mi ≥ bi|Bi = bi, x)

∂
∂m Pr (Mi ≥ m|Bi = bi, x) |m=bi

= lim
ε↓0

E (Ci|Si = si, S−i ∈ Lε (bi, x) , xi) . (7)

6Athey and Haile (2002) describe the symmetric case where the right hand side of (5) becomes

E (Ci|Si = si,minj 6=i Sj = si, xi). This simplification only applies to the symmetric case.
7See Campo, Perrigne, and Vuong (2003); Athey and Haile (2002). For ease of exposition, I assume that equilibrium

bid functions are differentiable. The formal proof does not use any differentiability assumption. All the results in

this paper apply when bid functions are non-differentiable.
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Notice that the right hand side of equations 6 and 7 are identical. In both cases, the optimality

condition states that the marginal expected revenue of choosing a bid that wins with a marginally

larger probability should equal the marginal cost. The marginal expected revenue is identified from

observables, while the marginal cost is the expectation of ci(S−i, si, xi) conditional on S−i ∈ L

where L is a set that can be written in terms of observables.

As noted by Haile, Hong, and Shum (2004), Assumption A.3 and the null hypothesis of private

values imply that the marginal costs do not depend on x−i which is a testable prediction. The

identification argument in this paper shows how to recover ci(s−i, si, xi) exploiting rich variation in

competitors’ cost shifters. Intuitively, x−i is an (n− 1)-dimensional instrument that identifies the

effect of S−i, which has dimension (n− 1), on the full-information cost.

It is illustrative to consider a second-price auction between two bidders: 1 and 2. Because

there is only one competitor to tie with, the event “tie with a competitor for the lowest bid” has

a simple representation in the space of competitors’ signals: “S2 = HB2|x (b1)”, that is, the event

where bidder 2 receives signal HB2|x (b1) which is the signal that prompts 2 to bid b1. Bidder 1’s

best-response can be written as:

b1 = E
(
C1|S1 = HB1|x (b1) , S2 = HB2|x (b1) , x1

)
= c1

(
HB1|x (b1) , HB2|x (b1) , x1

)
. (8)

The identification argument is straightforward: each bid b1 equals the full information cost of

bidder 1 evaluated at s1 = HB1|x (b1), s2 = HB2|x (b1) and x1, where x = [x1, x2]. Evaluating this

expression for different values of (x2, b1) results in the full-information cost evaluated at different

pairs of signals while x1 is held constant. The exclusion restriction A.3 avoids confounding the

effect of x2 on the pairs of signals with a direct effect on costs. If there is a pair (x2, b1) such

that s1 = HB1|[x1,x2] (b1), and s2 = HB2|[x1,x2] (b1), then the full-information cost c1 (s1, s2, x1) is

identified by b1.

The identification argument for first-price auctions is very similar. The best-response condition

is

b1 −
1−HB2|B1,x (b1|b1)

hB2|B1,x (b1|b1)
= E

(
C1|HB1|x (b1) , HB2|x (b1) , x1

)
, (9)

where HB2|B1,x (b1|b1) is the distribution function of B2 conditional on B1 = b1 and X = x = [x1, x2]

evaluated at b1, and hB2|B1,x (b1|b1) is its density. The identification argument remains intact. If

for the pair (s1, s2) there is a pair (x2, b1) such that s1 = HB1|[x1,x2] (b1), and s2 = HB2|[x1,x2] (b1),

then the full-information cost c1 (s1, s2, x1) is identified by the left hand side of (9), which is the

bid b1 minus the markup.

If n > 2, the event “tie with a competitor for the lowest bid” has a more complex representation

because there are more than one competitor to tie with. It takes the form “S−i such that Sj = sj

for some competitor j and Sk ≥ sk for all other competitors”. Consider a second price auction with

three bidders: 1, 2 and 3. Figure 1 shows the pair of competitors’ signals that makes them both bid

exactly b1 along with Lε (b1, x), an L-shaped set containing all competitors’ signals such that their

minimum bid is in [b1, b1 + ε]. The right-hand side of (6) denotes the expected cost conditional on

this set as ε→ 0. This limit can be written as:
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∑
j=2,3

[
hBj |x (b1) f (s1, sj)P (S5−j ≥ s5−j |s1, sj)∑

k=2,3 hBk|x (b1) f (s1, sk)P (S5−k ≥ s5−k|s1, sk)

]
E (C1|s1, sj , S5−j ≥ s5−j , x1) (10)

where sj = HBj |x (b1) and hBj |x is the density of Bj |x. The term in the square bracket is the

probability that bidder i ties with bidder j conditional on tying with at least one competitor.

These probabilities are identified from the observed distribution of bids. The objects of interest

are the two terms E (C1|s1, sj , S5−j ≥ s5−j , x1)— the expected cost conditional tying with bidder

j while underbidding the other bidder for j = 2, 3. The best-response condition implies that each

observed bid equals (10), which results in a single equation for two unknowns. The information

provided by a single bid is insufficient to identify these terms. It will be shown that using bids under

different values of competitors’ cost shifters will generate additional information that identifies the

expected costs conditional on winning: E (C1|s1, S2 ≥ s2, S3 ≥ s3, x1).

Consider again Figure 1 and fix ε > 0. Keeping s1 and x1 constant, find a triplet [x2, x3, t] so that

s1 = HB1|[x1,x2,x3] (t) and Lε (t, [x1, x2, x3]) stacks on top of the previous L-shaped set. The expected

cost conditional on the union of these two sets is equal to a weighted average of the expected cost

conditional on each L-shaped set. The weights are given by the probability of each set which are

identified from the joint distribution of signals. The expected cost conditional on each L-shaped set

can be approximated by observed bid. This process can be repeated to obtain a weighted average

over the whole rectangle {Sj ≥ sj}j=2,3, as shown by Figure 2. Under assumption A.1, signals are

independent from cost shifters and this average equals E (C1|s1, S2 ≥ s2, S3 ≥ s3, x1), which is the

expected cost conditional on the event where 1 wins the auction. If ε→ 0, the approximation error

for each L-shaped set vanishes and the average becomes an integration. The set of points in Figure

2, which are determined by the thickness of the legs of each L-shaped set, becomes a parametric

curve over which the integration is performed.

If E (C1|s1, S2 ≥ s2, S3 ≥ s3, x1) is identified around a neighborhood of (s2, s3), then its deriva-

tive is also identified. Differentiating it with respect to s2 and s3:

d2E (C1|s1, S2 ≥ s2, S3 ≥ s3, x1)P (S2 ≥ s2, S3 ≥ s3|s1)

ds2, ds3
= c1 ([s2, s3] , s1, x1) fS2,S3|s1 (s2, s3) ,

(11)

where fS2,S3|s1 is the density of competitors’ signals conditional on S1 = s1. The full-information

cost is obtained dividing the left hand side of (11) by the density of signals, both identified objects.

Theorem 1 formalizes and generalizes this argument allowing for non-differentiable bid functions,

n > 3 bidders, and a general payment function. Theorem 2 in Appendix A generalizes this result

further by relaxing the independence assumption A.1 substantially.

Theorem 1. Under Assumptions A.1-A.4, ci (s−i, si, xi) is identified from H if:

C.1. Non-vanishing competition: There is a constant κ > 0 such that for all δ > 0 and x ∈
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{xi} ×Xo
−i,

HMi|Bi=bi,x

(
b′i
)

= 1 or

HMi|Bi=bi,x (b′i)−HMi|Bi=bi,x (bi)

1−HMi|Bi=bi,x (b′i)
≥ κδ,

where bi = QBi|x (si), b
′
i = QBi|x (si + δ).

C.2. Uniformly integrable payments: There is an interval I = [si, si] ⊂ (0, 1) such that si < si < si

and the class of random variables{
Y : Y =

(
pi (bi, B−i)

2
∣∣∣Bi = b′i, x

)
, x ∈ {xi} ×Xo

−i, bi, b
′
i ∈
[
QBi|x (si) , QBi|x (si)

]}
is uniformly integrable.

C.3. Variation of cost shifters: For all ŝ−i ≥ s−i:[
HBj |x

(
QBi|x (si)

)]
j 6=i

= ŝ−i

for some x ∈ {xi} ×Xo
−i.

Conditions C.1-C.3 are imposed on the observables H, and therefore, can be verified. They

ensure that the cost shifters generate enough variation in bidding behavior and that equilibrium

bid functions preserve all relevant information. C.1 implies that there is no probability mass at any

bid that has some positive probability of winning and that for every bi in the support of Bi|x, there

is a competitor who also bids in the neighborhood of bi. C.2 restricts the tails of the distribution

of payments. It is trivially satisfied if either pi (bi, ·) is bounded by a maximum payment or if the

support of B−i|Bi = bi, x is bounded for all x ∈ Xo and all bi ∈
[
QBi|x (si) , QBi|x (si)

]
. C.3 ensures

that cost shifters generate enough variation in the distribution of bids: for any ŝ−i ≥ s−i, it is

possible to find x−i ∈ Xo
−i such that the vector of marginal distributions of bids conditional on

[xi, x−i] evaluated at QBi|[xi,x−i] (si) equals the vector ŝ−i.

Proof: The proof consists in approximating

φi (s−i|si, xi) := E (Ci × 1 (S−i ≥ s−i) |s−i, xi) =

∫
{τ :τ≥s−i}

ci (τ , si, xi) fS−i|si (τ) dτ . (12)

using a finite number of pivotal or L-shaped sets as those in Figure 2 and showing that the ap-

proximation error converges to zero as the measure of each set shrinks to zero and the number of

pivotal sets goes to infinity.

For every δ > 0, construct a sequence of pairs {(τ t, xt)}Tt=1 so that τ1 = s−i and for every t,

xt ∈ {xi} × Xo
−i is such that

[
HBj |xt

(
QBi|xt (si)

)]
j 6=i

= τ t, which exists by Condition C.3, and

τ t+1 =
[
HBj |xt

(
QBi|xt (si + δ)

)]
j 6=i

. Define Lt = {τ : τ ≥ τ t ∧ τ < τ t+1}. {Lt}Tt=1 is a collection

of disjoint sets that satisfy {τ : τ ≥ s−i} − ∪Tt=1Lt = {τ : τ ≥ τT }. By Condition C.1, if we choose

T ≥ − (κδ)−1 log δ, then P (S−i ≥ τT |si) ≤ δ.
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Define the expected revenues, costs and profits for bid bi, signal si, and market conditions x as:

ri (bi, si, x) := E (pi (bi, B−i) |si, x) (13)

qi (bi, si, x) := E (Ci × 1 (bi ≺ B−i) |si, x) (14)

Ui (bi, si, x) := ri (bi, si, x)− qi (bi, si, x) , (15)

where for all j 6= i, Bj = βj (Sj , x).

Lemma 2 in the appendix shows that ri (bi, ·, x) and qi (bi, ·, x) are absolutely continuous and

differentiable; therefore, the Envelope Theorem 2 in Milgrom and Segal (2002) applies: if βi is a

best-response to competitors’ monotone strategies β−i, then

Ui (β (si + δ) , si + δ, x)−Ui (β (si) , si, x) =

∫ si+δ

si

∂

∂si
ri (βi (σ) , σ, x)− ∂

∂si
qi (βi (σ) , σ, x) dσ. (16)

Continuity of the profit function with respect to own signals and optimality of strategy β implies:

Ui (βi (si) , si, x) = lim
σ→si

Ui (βi (σ) , si, x) = ri
(
QBi|x (si) , si, x

)
− qi

(
QBi|x (si) , si, x

)
, (17)

where ri (bi, si, x) := lima↓bi ri (a, si, x), qi (bi, si, x) := lima↓bi qi (a, si, x) = E (Ci × 1 (bi < B−i) |si, x).

Take any t = 1, .., T and let bt = QBi|xt (si) and b′t = QBi|xt (si + δ). The sets {s−i : s−i ≥ τ t}
and

{
s−i : bt < βj (sj , xt)

}
coincide up to a set of measure zero and, by Assumptions A.2 and A.3,

φi (τ t|si, xi) = qi
(
QBi|xt (si) , si, xt

)
. Replacing in (16),

φi (τ t|si, xi) = ri (bt, si, xt)− ri
(
b′t, si + δ, xt

)
+

∫ si+δ

si

∂

∂si
ri (βi (σ) , σ, xt) dσ + φi (τ t+1|si, xi) + νt

(18)

where

νt =

∫ si+δ

si

∂

∂si
qi
(
b′t, σ, xt

)
− ∂

∂si
qi (βi (σ) , σ, xt) dσ

Replacing recursively in equation 18:

φi (s−i|si, xi) =
T∑
t=1

(
ri (bt, si, xt)− ri

(
b′t, si + δ, xt

)
+

∫ si+δ

si

∂

∂si
ri (βi (σ) , σ, xt) dσ

)
+ ν+ η (19)

where ν =
∑T

t=1 νt and η =
∫
{τ :τ≥τT } ci (τ , si, xi) fS−i|si (τ) dτ . By integrability of ci (·, si, xi),

η → 0 as δ → 0.

|ν| =

∣∣∣∣∣
T∑
t=1

∫ si+δ

si

∂

∂si

(∫
{τ :βi(σ)≺β−i(τ)6≺b′t}

f (τ |σ) ci (τ , σ, xi) dτ

)
dσ

∣∣∣∣∣
≤

T∑
t=1

∫ si+δ

si

∫
Lt

∣∣∣∣ ∂∂si [f (τ |σ) ci (τ , σ, xi)]

∣∣∣∣ dτdσ
=

∫ si+δ

si

∫
{τ :τ≥s−i}

∣∣∣∣ ∂∂si [f (τ |σ) ci (τ , σ, xi)]

∣∣∣∣ dτdσ
≤ δκ′.

14



The first line obtains after writting qi as an integral over competitors’ signals. The second line

line follows from differentiating under the integral sign, passing the absolute value through the

summation and integration operators and integrating over a weakly larger set of τ for each value

of σ. Lemma 1 in the Appendix shows that for every I in the interior of the support of Si,

sup
si∈I

∫
[0,1]n−1

∣∣∣∣ ∂∂si [f (τ |si) ci (τ , si, xi)]

∣∣∣∣ dτ < κ′, (20)

for some finite κ′. This result ensures that the step of differentiating under the integral sign is

legitimate. The third line follows from the fact that {Lt}Tt=1 ⊂ {τ : τ ≥ s−i}. The last line follows

from the bound in (20). As δ → 0 while I remains fixed, the approximation (19) becomes arbitrarily

precise.

The next step of the proof is to show that the terms in brackets in (19) are identified. Lemmas 1

and 3 in Appendix A show that ∂
∂si
ri (βi (si) , si, xt) is bounded and continuous almost everywhere.

Therefore, it is Riemann integrable and its integral over σ ∈ [si, si + δ] can be approximated by

the Riemann sum
∑K−1

k=0 (ri (btk, sk+1, xt)− ri (btk, sk, xt)) where sk = si+
kδ
K and btk = QBi|xt (sk).

Each of the terms in brackets in the right hand side of (19) becomes:

K∑
k=1

(
ri
(
bt(k−1), sk, xt

)
− ri (btk, sk, xt)

)
(21)

By Condition C.1, conditioning on sk is equivalent to conditioning on btk:

ri (btk, sk, xt) = lim
a↓btk

E (pi (a,B−i) |Bi = btk, xt) . (22)

Each of the K terms in (21) is identified as the difference in expected payment that bidder i would

have received if it bid bt(k−1) instead of btk and competitors bid according to HB−i|Bi=btk,xt .

To sum up, for large enough T and K

φi (s−i|si, xi) ≈
T∑
t=1

K∑
k=1

(
ri
(
bt(k−1), sk, xt

)
− ri (btk, sk, xt)

)
,

with arbitrary precision. Therefore, φi (σ−i|si, xi) is identified for all σ−i ≥ s−i. Differentiating,

dn−1φi (s−i|si, xi)
ds−i

= ci (si, s−i, xi) fS−i|si (s−i) . (23)

The full-information cost can be recovered dividing by the conditional density of signals which is

also identified.

It may be possible to derive sufficient (and even necessary) conditions on primitives that guar-

antee existence of equilibria that generate observables satisfying C.1-C.3. These conditions will

depend on the particular rules of the auction. For example, Appendix C derives sufficient condi-

tions for first-price auctions with two bidders. It also shows that Condition C.3 requires variation

of x−i over a bounded set which means that it is not necessary to take any competitor’s cost shifter

to infinity to achieve point identification.
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The exercise of finding restrictions on primitives that ensure C.1-C.3 is not very useful from

an empirical perspective. In any empirical application, the distribution of observables can be

estimated and the researcher can test whether C.1-C.3 hold. If they hold, the full-information cost

is identified. If they do not hold, some information is lost and some features of the primitives are

not identified. Even in this case, it is still possible to construct informative bounds for the expected

costs conditional on winning (see Appendix B). In practice, applied researchers may follow a semi-

parametric approach where one first obtains an estimate Ĥ imposing conditions C.1-C.3 and then

estimates the parameters of a parsimonious interdependent cost model. This is the approach I

follow to obtain estimates from data on highway procurements in Michigan.

4 Winner’s Curse in Michigan Highway Procurement

Each year the Michigan Department of Transportation (MDOT) uses first-price sealed-bid auctions

to award around 1,050 highway construction and maintenance contracts at a cost of 1.2 billion

dollars. On each monthly letting date, 150-200 firms submit a sealed bid for one or more of 50-70

contracts. Firms may participate in as many auctions per letting date as allowed by their work-

type and financial prequalification status. The work-type prequalification status of a firm is a list

of all the classes of work that the firm can perform. There are 52 work classifications and the

typical firm is prequalified for 6-10 of these. The financial rating of a firm is the maximum dollar

amount of contracts it can have pending with the MDOT. While the work-type classification is

public information, the financial rating of a firm is confidential.

Contracts are advertised for at least 45 days before the letting date, so bidders have detailed

information about them. The information about future projects is less precise. The MDOT pub-

lishes a 3-month projection of future projects and a 5-year Transportation Improvement Plan, but

these are subject to frequent changes and updates.

Prior to submitting a bid, firms download the technical plan and submit a form to become

eligible to bid. The MDOT keeps an updated list of both eligible bidders and plan holders that

is publicly available on its website. Firms may submit the eligibility form as late as 5:00 p.m. on

the day preceding the letting date, and may not appear in the list of eligible bidders prior to the

bid submission deadline. Moreover, eligible bidders and plan holders often choose not to bid. As

a result, firms are unable to predict with certainty the set of participants in an auction. Thus

it is likely that firms base their expectations of competition largely on the location and technical

characteristics of the project.

Each contract describes a list of tasks that the contractor has to perform. A task specifies

a description and a quantity, e.g., earth excavation, 600 cubic yards. For each task, the MDOT

engineer sets a unit price, so that the total estimated cost of the task is the price times the quantity.

The engineer’s estimate for the contract is the sum of all the tasks’ estimated costs. Bidders submit

a unit bid for each task, and the total bid is the inner product of unit prices and quantities. The

bidder with the lowest total bid wins. If the are no modifications to the contract, the MDOT pays

16



the winner its total bid upon project completion.8

Although there is no formal reserve price, the procuring agency has the option to reject all bids

if the lowest bid exceeds 110% of the MDOT engineer’s estimate. In the case the bids are rejected,

the project can be revised and offered in a future letting date. If the agency accepts a bid despite

exceeding the estimate, it must justify in writing why the estimate was not correct or why the bids

were excessive. From 2001 to 2010, the lowest bid exceeded 110% of the engineer’s estimate in 11%

of cases and 15% of these were rejected.

4.1 Why distance matters

This paper will focus on contracts where contractors must be prequalified to perform Hot-Mix-

Asphalt (HMA) work. HMA is the pavement material used in 96% of all paved roads and streets

in the US. It consists of asphalt or bitumen and mineral aggregate that is heated and mixed in a

plant. The mix must be trucked to the project site, laid on the road and compacted while the mix

is sufficiently hot (above 275◦F/135◦C). The temperature of the mix at the time of compaction

is key to the quality of the pavement mat. Once the mix falls below 175◦F/79◦C, it cannot be

further compacted, and a poorly compacted mat will age faster. HMA pavement projects are

rarely performed during winter for this reason.

Trucking time from the plant to the project location is an important determinant of costs not

only because of transport costs, but due to the cooling process. During transport, the surface layer

of the mix cools faster than the inner mass. Once the mix is dumped into the paver and laid on the

road, these temperature differentials may persist and result in cool spots in the pavement mat that

cannot be properly compacted. These problems can be mitigated by incurring additional labor and

rental costs, for example, by using a Material Transfer Vehicle to remix on site. Thus firms that

own plants located close to the project have lower transportation costs and lower costs associated

with excess cooling of asphalt.

4.2 Data

Data for all auctions and bids from 2001 to 2010 are available through the MDOT. For each auction,

the data includes the project’s description, location, prequalification requirements, the engineer’s

estimate of the total cost of the project, and the list of participating firms and their bids. To obtain

the geographical coordinates for each project location, I match the road names in the description

to the database of roads available at the Michigan’s Geographical Data Library.

The location of each firm’s plants and mineral aggregate quarries were obtained from several

sources: the MDOT contractor directory; individual firm searches using OneSource North American

Business Browser, Duns & Bradstreet’s Hoovers and yellowpages.com; firm websites; and the data

8The unit bid for each task becomes relevant if the quantity has to be modified after the award of the contract,

e.g., if the contractor needs to excavate 650 cubic yards insted of 600. The payment is adjusted by the unit bid times

the difference between the actual and estimated quantities. Bidders’ incentives to skew their bids are analyzed in

Athey and Levin (2001b) and Bajari, Houghton, and Tadelis (2011).
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on firms collected by Einav and Esponda (2008). A firm location was included in the final data set

if it appeared in at least two sources or if it was listed explicitly on a firm’s website.

Of the 10,522 MDOT auctions that were run from January 2001 to December 2010, 3,851

auctions required the prime contractor or one of the subcontractors to be prequalified to perform

work with HMA and in 1925 auctions this is the only prequalification requirement for the prime

contractor. Table 1 shows the main descriptive statistics of this set of auctions. The typical auction

has three bidders. The median engineer’s estimate is around $633,000, while the median winning

bid is around $586,000. It is convenient to normalize bids with respect to the engineer’s estimate.

Let the normalized bid be b = Bid/Engineer−1. The median normalized winning bid is 6% below

the engineer’s estimate. The median participant is located 38 km (26 miles) from the project, while

the median winner is only 22 km (14 miles) away. The average “money-left-on-the-table”, or how

much higher the second lowest bid is relative to the lowest, is about 8%.

It is interesting to observe how normalized bids vary with the number of actual participants.

Table 2 shows that the average winning bid is decreasing with the number of participants, but

the average bid is not. In a standard symmetric independent private cost model with exogenous

participation, both the expected lowest bid and the expected bid should be decreasing in the number

of bidders. Of course, in this setting it is likely that the symmetry and exogenous participation

assumptions fail.

4.3 Estimation

The primitives of the interdependent cost model are high-dimensional even in the simplest case with

only two bidders. In most empirical settings, including the one in this paper, it will be necessary to

use some parametric and distributional assumptions to deal with the curse of dimensionality. This

section proposes an estimation method that follows the ideas in Guerre, Perrigne, and Vuong (2000)

and Campo, Perrigne, and Vuong (2003) of estimating the marginal distributions of bids flexibly in

a first step. These estimates are used to estimate a parsimonious Gausian Information Structure

as in Example 2. In particular, the joint distribution of signals is assumed to be a Gaussian copula

with correlation matrix Σ and the full information cost of bidder i is assumed to be additively

separable in cost shifters and signals:

ci (s−i, si, x0, xi) = α′i0x0 + αi1xi + αi2
∑
j 6=i

µijΦ
−1 (sj) + αi3Φ−1 (si) (24)

where Φ−1 is the inverse of a standard normal cumulative distribution function so that Zj =

Φ−1 (Sj) is a standard normal and the vector Z =
{

Φ−1 (Sj)
}n
j=1

is jointly normal with covariance

matrix Σ.

One important implication of this functional form assumption is that the parameters of the

full information costs are linked with those of the joint distribution of bids. The parameters µ are

such that for all distinct i, j and k: µij/µik = σ̃ij/σ̃ik, where σ̃ij is the ijth element of Σ−1. This

is particularly convenient for the empirical setting under consideration. The parameters µ will be

identified from the correlation in bids across different bidders. The degree of interdependence is
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summarized by the parameter αi2. This parameters is identified using the exclusion restriction on

competitors’ cost shifters which, after controlling for own distance, exhibit only one-dimensional

variation.9 With private costs αi2 = 0, and with interdependent values αi2 > 0. The Gaussian

structure is falsified if αi2 < 0.

I estimate the model parameters in several steps. In the first step, the parameters of the

joint distribution of signals are estimated by simulated maximum likelihood. In the second step,

the marginal cost that rationalizes each observed bid is obtained using the approach in Guerre,

Perrigne, and Vuong (2000) and Campo, Perrigne, and Vuong (2003). In the third step, the set

of pivotal signals is estimated. The fourth and final step estimates the parameters of the full

information cost by instrumental variables quantile regression using cost shifters as instruments.

4.3.1 First step: estimation of the joint distribution of signals

Monotonicity of the bid function implies that the copula of bids conditional on the vector of cost

shifters is equal to the joint distribution of signals. The conditional copula is estimated semi-

parametrically. In the first stage, the univariate conditional marginals are estimated flexibly. In

the second stage, the copula parameters are estimated by likelihood methods.

I estimate the univariate conditional marginals using splines. Instead of conditioning on the full

vector of competitors’ distance, I condition on the geographical coordinates (lat, lon) of the project

location. These coordinates fully determine the vector of distances as firms’ plants locations are

fixed. The marginal distribution of Bi|lat, lon is estimated as:

F̂Bi|lat,lon (b) =

Klat∑
j=1

Klon∑
k=1

ĉjkθj (lat) θk (lon)

where θj and θk are cubic B-splines and the coefficients ĉjk solve the following problem:

min
c∈[0,1]Klat×Klon

T∑
t=1

1 (bit ≤ b)−
Klat∑
j=1

Klon∑
k=1

cjkθj (latt) θk (lont)

2

.

The restriction that c ∈ [0, 1]Klat×Klon ensures that the predicted probabilities lie between zero and

one. The set of splines in each dimension are chosen to cover the full range of locations observed

in the data. I use Klat = Klon = 15 in the sample which results in one knot every 87 km from east

to west and one knot every 91 km from south to north.

For each bidder i and auction t, I obtain a set of coefficients ĉjk and construct ŝit = F̂Bi|lat,lon (bit).

This is an estimate of the signal that prompted bid bit. If bidder i does not participate in auction t,

I obtain F̂Bi|lat,lon
(
b
)
, where b is the maximum finite normalized bid observed in the data. This is

an estimate of the threshold signal where bidder i is indifferent between participating and staying

out. Non participation implies that the realized signal was above F̂Bi|lat,lon
(
b
)
.

9It may be possible to exploit the fact that firms have multiple plants to vary the set of competitors’ who may be

close, and estimate a more flexible structure than the Gaussian.
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The data now consists on a T realizations of a vector of signals that may be truncated due to

non-participation. The likelihood of the observed data can be written explicitly for each correlation

matrix Σ which is assumed to have a factor structure: Σ = LL′ + Λ, where L is a n × l loading

matrix and Λ is a positive diagonal matrix that ensures that the elements on the main diagonal of Σ

are all one. Restricting l < n−1 reduces the number of free parameters. I estimate the parameters

L using a Simulated Maximum Likelihood estimator proposed by Kamakura and Wedel (2001).

4.3.2 Second step: bid inversion

Following Guerre, Perrigne, and Vuong (2000) and Campo, Perrigne, and Vuong (2003), one can

estimate the marginal cost that rationalizes each observed bid as the left hand side of (7) that

depends on the probability of winning and its derivative. The probability of winning with the

observed bid b is estimated as:

P̂ (Mi ≥ b|b, lat, lon) =

Klat∑
j=1

Klon∑
k=1

Kb∑
m=1

ĉjkmθj (lat) θk (lon) θm (b)

where θj , θk and θm are the cubic B-splines and the coefficients ĉjkm solve the following problem:

min
c∈[0,1]Klat×Klon×Kb

T∑
t=1

1 (mit ≥ bit)−
Klat∑
j=1

Klon∑
k=1

Kb∑
m=1

cjkθj (latt) θk (lont) θm (bit)

2

.

The restriction on c ensures again that the fitted probabilities lie between zero and one. The

derivative is estimated in a similar way except that the ĉ′ coefficients solve

min
c∈[0,1]Klat×Klon×Kb

T∑
t=1

1

h
K

(
mit − bit

h

)
−
Klat∑
j=1

Klon∑
k=1

Kb∑
m=1

cjkθj (latt) θk (lont) θm (bit)

2

,

where K is a kernel function and h is a bandwidth. The set of splines for each geographical

dimension identical to those in the previous step. I use 5 splines for bids that are chosen so that

the knots partition the support of bids in 5 segments of the same length. The location of the knots

vary by bidder i. The estimate of the marginal cost that rationalize each observed bid as:

mĉit = bit −
∑Klat

j=1

∑Klon
k=1

∑Kb
m=1 ĉjkmθj (lat) θk (lon) θm (b)

max
(∑Klat

j=1

∑Klon
k=1

∑Kb
m=1 ĉ

′
jkmθj (lat) θk (lon) θm (b) , ν

)
where ν is a vanishing positive constant that corrects for estimation error in the denominator that

may result in very small densities.

4.3.3 Third step: pivotal signals

The signal that makes j tie with bidder i at bid b is estimated by

F̂Bj |lat,lon (b) =

Klat∑
j=1

Klon∑
k=1

ĉjkθj (lat) θk (lon)
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where the coefficients ĉjk solve the following problem:

min
c∈[0,1]Klat×Klon

T∑
t=1

1 (bjt ≤ b)−
Klat∑
j=1

Klon∑
k=1

cjkθj (latt) θk (lont)

2

.

For each bidder i, competitor j and auction t such that bit is finite, I obtain a set of coefficients ĉjk

and construct ŝ
(i)
jt = F̂Bj |latt,lont

(bit). The set of splines are the same as those used in the previous

steps.

I also estimate the probability that bidder i ties with bidder j conditional on tying with at least

one competitor. First, I estimate:

π̃
(i)
jt =

Klat∑
j=1

Klon∑
k=1

Kb∑
m=1

ĉjkmθj (latt) θk (lont) θm (bit) .

where the coefficients ĉjkm solve:

min
c∈[0,1]Klat×Klon×Kb

T∑
t=1

1

h
K

(
bjt − bit

h

) ∏
k 6=i,j

1 (bkt ≥ bit)−
Klat∑
j=1

Klon∑
k=1

Kb∑
m=1

cjkmθj (latt) θk (lont) θm (bit)

2

.

This is an estimate of the unconditional probability that j ties for the lowest bid with i. The

conditional probability is estimated as

π
(i)
jt =

π̃
(i)
jt∑

k 6=i π̃
(i)
kt

4.3.4 Fourth step: determinant of costs

The last estimation step obtains the parameters of the full information cost function in equation

(24). There are two complications that need to be addressed. First, the second step recovers the

marginal cost that rationalizes each observed bid not the full information cost on the left hand

side of (24). Second, the marginal cost that rationalizes non-participation cannot be recovered

unambiguously.

The identification argument shows how high-dimensional variation in cost shifters can be used

to recover the full information costs from marginal costs. In the MDOT estimation, I will restrict

the information structure to be Gaussian so that one dimensional variation in competitors’ cost

shifters suffices for to identify the parameter αi2 that determines the degree of interdependence.

Under the Gaussian information structure:

mcit = α′i0x0 + αi1xi + αi2kit + αi3zit. (25)

where

kit =
∑
j 6=i

µij

[
lim
ε↓0

E (Zj |si, S−i ∈ Lε (bi, x))

]

=
∑
j 6=i

µij

[π(i)
jt z

(i)
jt

]
+
∑
k 6=i,j

π
(i)
ktE

(
Zj |s(i)

kt , si,
{
Sm ≥ s(i)

mt

}
m 6=i,k

) .
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The previous steps obtained estimates of π
(i)
jt and z

(i)
jt = Φ−1

(
s

(i)
jt

)
. The expectation of Zj con-

ditional on s
(i)
kt ,si, and

{
Sm ≥ s(i)

mt

}
m6=i,k

can be calculated numerically given the estimated joint

distribution of signals. These are all the elements needed to obtain an estimate of kit.

Assume for the moment that bidders always participate so that it is always possible to invert

the observed bid. It is tempting to estimate equation (25) by ordinary least squares replacing mcit

and kit by their estimated counterparts and letting the error term be εit = αi3zit. One problem

with this approach is that kit and εit are correlated because a higher signal prompts a higher bid

which changes the pivotal set. In fact, kit is a function of bidders’ own signal sit and the vector

of cost shifters x = (lat, lon). The identification result in this paper indicates that competitors’

distance to the project can be used as instruments for k.

The censoring problem introduced by non-participation can be addressed by quantile regression

approaches.10 Monotonicity of the bid functions imply that there will be a cutoff signal such

that only signals below it prompt finite bids. Denote this unobserved cutoff by ψi (lat, lon), which

stresses that the cutoff is specific to the bidder and to the full vector of cost shifters. Conditional on

a market configuration (lat, lon) and a given k, the marginal cost MCi is just a monotone function

of i’s signal. The τ -th quantile of MCi is:

Qτ (MCi|x0, x1, k) = α′i0x0 + αi1xi + αi2k + αi3Φ−1 (τ) . (26)

The probability of obtaining a realization less than Qτ (MCi|x0, x1, k) conditional on participation

is τ [ψi (lat, lon)]−1. This observation gives rise to the following set of moment conditions:

E
(

1 (Bi <∞)
[
1
{
MCi − α′i0x0 + αi1xi + αi2Ki ≤ 0

}
− τ [ψi (lat, lon)]−1

]
X
)

= 0 (27)

where the instruments X are functions of (x0, xi, x−i). The moment conditions are similar as those

implied by quantile regressions and include an adjustment for censoring that was first proposed by

Buchinsky and Hahn (1998).

The parameters α can be estimated using the techniques developed for instrumental variables

quantile regressions. I use the procedure proposed by Chernozhukov and Hansen (2006) in Remark

5 and Chernozhukov and Hansen (2008) in Comment 3. The OLS projection of ki on (x0, xi, x−i) is

used as the instrument for ki and x0, xi are used as instruments for themselves. I construct a grid

of values {αj , j = 1, ..., J} and run for each j the τ -Quantile Regression of MCi−αjKi on the set of

included instruments (x0, xi) and the instrument for ki to obtain coefficients α (αj , τ) and γ̂ (αj , τ),

respectively. I choose α̂2 (τ) as the value among {αj , j = 1, ..., J} that sets γ̂ (αj , τ) = 0. The

estimate of α̂ (τ) is given by α̂ (α̂2 (τ) , τ). I calculate standard errors for the coefficients of interest

by bootstrap. I run the same multi-step procedure for 200 bootstrap samples of 1925 auctions each,

and report the standard deviation of each parameter across samples.

10Bidders may decide not to participate because their maximum expected profits may be negligible or below some

bid preparation cost (Samuelson, 1985). Models with information acquisition costs are beyond the scope of this paper.
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4.4 Results

I focus on the 19 firms that were observed participating with higher frequency in the final sample.

The rest of the firms are grouped together as a fringe 20th bidder and I keep only the lowest of

their bids. The results below show the firm-specific parameters estimates for the distribution of

signals and full-information costs.

4.4.1 Correlation of signals

I estimated the correlation structure for l = {0, 1, 2, 3} factors and used the Akaike Information

Criterion to select l = 2. 11 Table 3 shows the estimates of the parameters of the loading matrix L

and the elements on the diagonal of Λ. It also shows a decomposition of the total signal variance

in the l factors and the bidder specific component. The first factor introduces correlation in the

signals of bidders 1, 2, 3, 5, 9, 11, 13, 14 and 17. The implied correlation among their signals ranges

between 0.17 and 0.29 (see Table 4). This factor explains up to 20% of the signal variance for bidders

in this group. It also introduces negative correlation between the signals of this group and that

of bidder 4 (between 0 and -0.15). The second factor introduces correlation in signals of bidders

3, 4, 5, 7, 10, 15, 19 and the fringe bidder. This factor explains up to 25% of the signal variance

for bidders in this group. Many of the firms in this group also participate in construction projects

(which are excluded from the sample) and they may have different technology and capabilities. In

particular, Firms 4 and 10 do not own asphalt plants. In paving projects, they have to buy asphalt

from other firms.

4.4.2 Full Information Costs

Table 5 shows the estimates of the full information cost for bidders 1 - 12. The included exogenous

covariates are a set of dummies for projects farther than 10, 50 and 100 kilometers, a measure

of road density in the vicinity of the project that allows for potential differential costs in highly

urbanized areas12 and three constants: one for the 25th percentile of the distribution of costs, one

for the difference between the 50th and the 25th percentile and one for the difference between the

75th and the 25th percentile.

The expectation of the common cost components conditional on the set of pivotal signals was

constructed following equation (25) and is included as an endogenous variable. I use the set of

competitors’ distance as instruments and collapse them into a one dimensional variable as suggested

11The AIC selects l = 2: AIC1−AIC2 = 120 and AIC3−AIC2 = 6.5. The BIC is inconclusive between l = 1 and

l = 2, but strongly rejects l = 3: AIC1 −AIC2 = −0.28 and AIC3 −AIC2 = 121.
12I used geographical information on all roads available at the Michigan Center for Geographical Information

http://www.mcgi.state.mi.us/mgdl/framework/statewide/allroads mi.zip. I compute each road segment’s length and

assign a weight based on its classification (Interstates, 3.5; Freeways, 3; Principal Arterials, 2.5; Minor Arterials,

2.2; Major Collectors, 2; Minor Collectors, 1.5 and Local Roads, 1). I compute a the density of roads using a 10

km bandwidth kernel an evaluate it at each project location. This measure was subsequently standardized. Rural

areas have a standardized measure of approximately -1, sparse areas such as Holland, MI have 0, denser areas such

as Grand Rapids have 1 and Detroit reaches 3.5.
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by Chernozhukov and Hansen (2008). This is achieved by projecting the endogenous variable on a

space of piecewise linear functions of the vector of distances with kinks at 10, 50 and 100km and

using the fitted value as the instrument for the instrumental variable quantile regression.

The estimate of the full information cost for bidder 1 evaluated at the 25th percentile own

signal and the 50th percentile competitors’ signal for projects within 10km of its plants is 73% of

the engineer estimate. For projects in the ranges 10-50km and 50-100km, this cost increases by

2.5 and 15.7 percentage points, respectively. Bidder 1 does not seem to be more efficient in denser

areas. The 50th (75th) percentile cost is 8.2 (18.1) percentage points higher than the 25th. Table

7 provides a easy way to compare the estimated effect of own and competitors’ signals on the full

information cost. A one standard deviation increase in the Gaussian signal received by bidder 1

increases its full information cost by 10 percentage points. The effect of the same increase in a

competitor’s signal depends on the identity of the competitor. The average effect over competitors

is 4 percentage points and the maximum is 7.

The results for other bidders are qualitatively similar but there are a couple of noteworthy

differences that justify estimating these cost functions separately. While the private cost hypothesis

is rejected for bidders 1 and 2, it cannot be rejected for bidder 3. The coefficient on the common

cost for bidder 3 is precisely estimated around zero. The same can be said about bidder 9. Another

important difference that while bidders 3, 5 and 10 seem to be more efficient in road-dense areas,

bidder 9 seem to be more efficient in less dense areas. Because bidders 13-19 are not observed

participating as regularly, their parameters are estimated less precisely. Nonetheless, the point

estimates are comparable to those of firms that are observed participating more often.

4.5 The Effect of Competition

I consider cases where participation is restricted to a set of invited bidders. Inviting more bidders

will always result in more competitive bidding and lower procurement costs in independent private

cost auctions (Bulow and Klemperer, 1996) but the results may be different in affiliated private

or in common cost models. Pinkse and Tan (2005) show that affiliation of signals can offset the

pro-competitive effect of an additional bidder. This affiliation effect arises because bidders realize

that winning in the presence of one more bidder implies that it is more likely that rivals’ costs are

high (due to affiliation), and that they can profitably increase their markups. Interdependent or

common costs models have the additional anti-competitive effect of adverse selection or winner’s

curse. Each bidder realizes that it wins on an adversely selected sets of states of the world: when

competitors have bad signals. Their expected completion cost conditional on winning is thus higher

than the unconditional one. Bidding against an additional bidder worsens the selection problem so

bidders may react by increasing their bids to account for higher expected costs.

To evaluate the effects of increased competition on bidding behavior and procurement costs, I

simulate the effects of a policy that restricts bidder participation in 250 randomly drawn auctions

from the 1925 in the sample. I order bidders according to their estimated median full information

cost in each auction excluding those that are estimated to participate with less than 0.07 probability.
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I assume that only the first N bidders with the lowest median cost will be allowed to participate.

The set of invitees will vary across auctions because bidders have different estimated costs depending

on the location of the project. Three different set of primitives/models are considered: the common

cost (CC) model that uses the primitives estimated in the previous section; the affiliated private

cost (APC) model that sets all common cost coefficients α2 to zero; and the independent private

cost (IPC) model that also sets the parameters of the loading matrix to zero.13 For each model

and each N = {2, 3, ..., 10}, I compute a Bayes Nash Equilibrium using a numerical algorithm

described in Appendix C and simulate auction outcomes drawing 250,000 signal realizations from

the estimated joint distribution (in APC or CC models) or from independent distributions (in the

IPC model).14

Figure 3 illustrates the effect of competition under the three models. To construct this figure

I averaged the transaction price across the 250,000 signal realizations and averaged over the 250

auctions weighting by the engineer’s estimate. I normalized this average it by the duopoly outcome

for each model. The figure plots the resulting average transaction price (relative to the duopoly)

for each model and number of invitees. The three models predict that inviting an additional bidder

reduces procurement costs. The magnitudes are different though. The IPC model has the largest

effect followed by the APC model. The CC model has the smallest effect. For example, increasing

the number of invitees from 2 to 7 reduces costs by 5.69 percentage points in IPC, 5.15 pp in APC

and 4.42 pp in CC. In all three models, the effect of inviting a ninth or a tenth bidder is negligible

because this bidder is typically quite inefficient.

Figure 4 shows the effect on the bid submitted by the bidder invited first which is the most

efficient ex-ante. I constructed this figure using the same procedure as above but using the bid of

the first invitee instead of the transaction price. While both IPC and APC models predict that this

bidder will bid more aggressively when faced with more competition, the CC model predicts the

opposite. This bidder reacts to increased competition by bidding higher as it faces a more severe

winner’s curse.

To illustrate the magnitudes of the different effects at play, I decompose the total effect of

competition on CC models in four components. The Competitive Effect is the reduction in the

average bid of the first invitee in the IPC model. The Affiliation Effect is the difference in this

average bid reduction between the APC and the IPC models. The Winner’s Curse Effect is the

difference in this average bid reduction between the CC and the APC models. The Sampling Effect

is the difference between the reduction of the average bid of the first invitee and the reduction in

procurement costs in the CC model.

Table 8 shows the results of this decomposition. The first panel compares the outcomes of

inviting N = 3, ..., 10 relative to inviting only 2. The competitive effect has cost-saving effects that

are increasing in the number of invitees. They range from 2.24 to 3.5 percentage points. Affiliation

13A more precise name for the APC model is Correlated Private Costs. The estimated joint distribution of signals

has some negative correlations which implies that the signals are correlated but not affiliated.
14In cases where there is multiple equilibria, the numerical algorithm can be thought of selecting a particular

equilibrium among many possible according to some pre-specified rules. See Appendix C for details.
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has an offsetting effect of 0.54 - 0.69 pp. The Winner’s Curse has a stronger offsetting effect of

1.07-3.63 pp. These three effects combined make the overall response of the first invitee to be

increasing in the number of bidders for any N > 3. The sampling effect has a strong cost-saving

effect of 2.31-5.25 pp that ensure a total reduction in procurement costs between 2.9 and 4.4 pp.

The second panel compares the outcomes of inviting N bidders relative to N − 1. It shows that

the magnitude of these effects decays rapidly as more and less efficient bidders are invited.

5 Conclusion

I provide a positive identification result for the payoff-relevant characteristics of the interdependent

costs model. When bidders are risk neutral, these characteristics are the joint distribution of signals

and each bidder’s full-information costs. They are sufficient to analyze the effects of most policy

changes (e.g., rules of the auction, reserve prices, subsidies) on outcomes such as bidding behavior,

project allocation and prices. They are not sufficient to analyze counterfactuals where the timing of

the auction changes so that bidders are required to make decisions after some additional uncertainty

in the model is resolved.

The result applies to auctions where bidders submit simultaneous or sealed bids, the project

is awarded to the bidder who submits the lowest bid and the payment that each bidder receives

is given by a publicly known function of all the bids submitted to the auctions. The first-price,

second-price and all-pay sealed-bid auctions satisfy these conditions.

The identification result holds under the following assumptions. Each bidder’s private infor-

mation can be summarized by a real-valued signal. The joint distribution of bidders’ signals is

independent from cost shifters. Each bidder’s cost shifter affects his own full-information cost but

not his competitors’. The observed data is generated by the repeated play of the same equilibrium

where bidders use monotone pure strategies.

The full-information cost is nonparametrically identified provided that the some verifiable con-

ditions on observables hold. Some auction rules are more conducive to these conditions than others.

For example, Appendix C shows that they are generally satisfied in a first-price auction model with

two bidders. Even if these verifiable conditions fail in the observed data, it is still possible to bound

the full-information cost function as described in Appendix B.

I propose an estimation method that follows the indirect approaches proposed in the literature

on estimation of independent private values and extend them to obtain estimates of the parameters

that describe the primitives of the interdependent cost model. I apply the estimator to bidding data

from the Michigan Department of Transportation and find that the estimated full-information cost

is increasing with distance to the project and with competitors’ signals. Despite being statistically

significant, the effect of competitors’ signals on expected costs is weaker than the effect of own

signals suggesting that the model is closer to pure private costs than to symmetric pure common

costs. Policies that restrict the number of participants to ameliorate the winner’s curse are successful

at inducing more aggressive bidding among participants but fail at reducing overall procurement

costs. In other words, the effect of the winner’s curse is strong enough to make each bidder bid
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lower when there is less competition, but not enough to compensate the procurer for the times

when a bidder that was not allowed to participate would have won the auction.
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APPENDIX

A Point Identification

This Appendix collects intermediate results used to prove Theorem 1 and the statement and proof

of Theorem 2 that generalizes it.

A.1 Intermediate Results for Theorem 1

Consider a model where Assumptions A.1, A.2 and A.3 hold. Fix xi and interval I such that

Condition C.2 holds.

Lemma 1. For every x ∈ xi ×Xo
−i and bi ∈

[
QBi|x (si) , QBi|x (si)

]
,

sup
si∈I

∫
[0,1]n−1

∣∣∣∣ ddsi [ci (τ , si, xi) f (τ |si)]
∣∣∣∣ dτ <∞

and

sup
si∈I◦

∫
[0,1]n−1

∣∣∣∣pi (bi, β−i (τ , x)
) d

dsi
f (τ |si)

∣∣∣∣ dτ <∞.
Proof: Consider the payment function first.∫

[0,1]n−1

∣∣∣∣pi (bi, β−i (τ , x)
) d

dsi
f (τ |si)

∣∣∣∣ dτ
≤ E

((
d log f (S−i|si)

dsi

)2
∣∣∣∣∣ si
)1/2

E
(
pi (bi, B−i)

2 |si, xi
)1/2

,

where the inequality follows after dividing and multiplying by f (τ |si) and using the Cauchy–

Schwarz inequality. Assumption A.2 and Condition C.1 imply that this term is uniformly bounded

in si in the interior of I.

Consider the cost function:∫
[0,1]n−1

∣∣∣∣ ddsi [ci (τ , si, xi) f (τ |si)]
∣∣∣∣ dτ

≤
∫

[0,1]n−1

∣∣∣∣ ddsi ci (τ , si, xi)

∣∣∣∣ f (τ |si) dτ +

∫
[0,1]n−1

∣∣∣∣ci (τ , si, x)
d

dsi
f (τ |si)

∣∣∣∣ dτ
≤ E

(∣∣∣∣ ddsi ci (S−i, si, xi)

∣∣∣∣∣∣∣∣ si)+ E

((
d log f (S−i|si)

dsi

)2
∣∣∣∣∣ si
)1/2

E
(
ci (S−i, si, x)2 |si, xi

)1/2

The first inequality follows from the chain rule and differentiability of the cost and density functions.

The second inequality uses the Cauchy–Schwarz inequality. Assumptions A.2 and A.3 imply that

both terms are uniformly bounded in si ∈ I.
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Lemma 2. qi (bi, ·, x) and ri (bi, ·, x) are absolutely continuous and differentiable in I. Their deriva-

tives are
∫

1(bi≺β−i(τ |x))

∣∣∣ ddsi [ci (τ , si, xi) f (τ |si)]
∣∣∣ dτ and

∫
[0,1]n−1

∣∣∣pi (bi, β−i (τ , x)
)

d
dsi
f (τ |si)

∣∣∣ dτ .

Proof: Assumptions A.2, A.3 and Condition C.1 imply that:

• ci (τ , si, xi) f (τ |si) and pi
(
bi, β−i (τ , x)

)
f (τ |si) are integrable over τ for all si ∈ I.

• ci (τ , si, xi) f (τ |si) and pi
(
bi, β−i (τ , x)

)
f (τ |si) are continuously differentiable (and abso-

lutely continuous) functions of si for all si ∈ I.

Lemma 1 implies:

• d
dsi

[ci (τ , si, xi) f (τ |si)] and p
(
bi, β−i (τ , x)

)
d
dsi
f (τ |si) are integrable (and locally integrable)

over τ for all si ∈ I.

These conditions suffice to show that it is legitimate to differentiate under the integral sign.

Therefore, d
dsi
ri (bi, si, x) and d

dsi
qi (bi, si, x) exist for all si ∈ I. Absolute continuity of ci (τ , si, xi) f (τ |si)

and p
(
bi, β−i (τ , x)

)
f (τ |si) with respect to si ∈ I imply that ri (bi, ·, x) and qi (bi, ·, x) satisfy Fun-

damental Theorem of Calculus, and therefore, are absolutely continuous.

Lemma 3. The function v (si) = ∂
∂si
ri (βi (si) , si, x) has, at most, countably many discontinuities

in I.

Proof: Let D0 be the subset of I where βi (·, x) is discontinuous, by monotonicity it has count-

ably many elements. Let C0 be the open subset of I where βi (·, x) is constant, i.e., s ∈ C0 if and only

s ∈ (s′, s′′) ⊂ I and βi (s′, x) = βi (s′′, x) = βi (s′′, x). For each set of competitors’ bids b−i, the set

of discontinuities of the payment function is given by ∪∞k=1 {dk (b−i)}. The functions dk
(
β−i (·, x)

)
:

(0, 1)n−1 → R are Lebesgue measurable because the functions dk are Borel measurable and βj are

monotone. µ
({
τ : dk

(
β−i (τ , x)

)
< t
})

is monotone in t and has countably many discontinuities.

Construct the following countable set: Dk =
{
s ∈ I − C0 : µ

(
τ : dk

(
β−i (τ , x)

)
= βi (s, x)

)
> 0
}

.

The rest of the proof shows that v (si) is continuous for all si ∈ B = I − ∪∞k=0Dk.

Consider a sequence{st}∞t=1 such that st → si for some si ∈ B. Define two (measurable) func-

tions [0, 1]n → R: Y (τ) = d
dsf (τ |si) and Z (τ) = p

(
bi, β−i (τ , x)

)
for bi = βi (si, x); and two families

of measurable functions: Y =
{
Yt : Yt (τ) = d

dsf (τ |st)
}

, and Z =
{
Zt : Zt (τ) = p

(
bt, β−i (τ , x)

)}
for bt = β (st, x).

• {Yt}t converges in measure to Y :

lim
t→∞

µ (|Yt − Y | > ε) = lim
t→∞

µ

({
τ :

∣∣∣∣ ddsi f (τ |st)−
d

dsi
f (τ |si)

∣∣∣∣ > ε

})
= 0

by continuous differentiability of f (Assumption A.2).

• {Zt}t converges in measure to Z:

lim
t→∞

µ (|Zt − Z| > ε) = lim
t→∞

µ
({
τ :
∣∣p (bt, β−i (τ , x)

)
− p

(
bi, β−i (τ , x)

)∣∣ > ε
})

= 0

because either si ∈ C0, in which case bt = bi for all t greater than some t∗, or bt → bi and

p
(
·, β−i (τ , x)

)
is continuous at bi for almost all τ ∈ [0, 1]n−1.
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• Therefore, ZtYt → ZY in measure.

• {ZtYt} is a uniformly integrable function. Consider any A ⊂ [0, 1]n−1:∫
A
ZtYtdµ = p

(
bt, β−i (τ , x)

) d
ds

ln f (τ |st) f (τ |st) dτ

≤

√∫
A

∣∣p (bt, β−i (τ , x)
)∣∣2 f (τ |st) dτ ×

∫
A

∣∣∣∣ dds ln f (τ |st)
∣∣∣∣2 f (τ |st) dτ

Choose any ε > 0. By uniformly square integrability of
{
p
(
bt, β−i (τ , x)

)}
and

{
d
ds ln f (τ |st)

}
there are δp > 0 and δs > 0 and such that for all A and t, µ (A) < δp and µ (A) < δs imply

that each of the two factors under the radical sign is less than ε. Take δ equal to the minimum

of δp and δs. For all µ (A) < δ and t,
∫
A ZtYtdµ < ε.

The Vitali Convergence Theorem implies:∫
ZtYtdµ =

∂

∂si
ri (βi (st) , st, x)→

∫
ZY dµ =

∂

∂si
ri (βi (si) , si, x) .

A.2 Relaxing the assumption of independence

The independence Assumption A.1 can be relaxed significantly. One can assume local independence

at the cost of strengthening Condition C.3.

A’.1. Cost shifters and signals are locally independent: There is a finite partition of Xo denoted by

{Xo
1 , X

o
2 , ..., X

o
P } such that for all p ∈ {1, ...P}, {x, xp} ∈ Xo

p implies FS|x = FS|xp .

A’.2. Signals are one-dimensional random variables. For every p ∈ {1, ...P}, the joint distribution

FS|xp , admits a continuously differentiable density function fp that satisfies the following

regularity conditions:

(a) For every I = [si, si] in the support of Si, the class of random variables{
Y : Y =

(
d log f (S−i|si, xp)

dsi

2
∣∣∣∣∣ si, xp

)
, si ∈ I

}
is uniformly integrable.

(b) For any p, p′ ∈ {1, ...P}, the random variables S|xp and S|xp′ have the same support

denoted by S.

A’.3. The full-information cost of bidder i is ci (s−i, si, xi) which does not depend on xj for all

j 6= i, i.e.,

ci (s−i, si, xi) := E (Ci|si, s−i, xi) = E (Ci|si, s−i, x) , (28)

and satisfies the following regularity conditions: for every p ∈ {1, ...P}, every signal si in

the interior of the support of Si and every xi: ci (s−i, ·, xi) is continuously differentiable,

E
(∣∣∣ ddsi ci (S−i, si, xi)

∣∣∣∣∣∣ si, xp) <∞ and E
(
ci (S−i, si, xi)

2 |si, xp
)
<∞.
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The Assumptions in the main paper hold when P = 1. Allowing for P > 1 relaxes the assump-

tion of independence.

Theorem 2. Under Assumptions A’.1-A’.3 and A.4, ci (s−i, si, xi) is identified from H if:

C’.1. Non-vanishing competition: There is a constant κ > 0 such that for all δ > 0 and x ∈
{xi} ×Xo

−i,

HMi|Bi=bi,x

(
b′i
)

= 1 or

HMi|Bi=bi,x (b′i)−HMi|Bi=bi,x (b′i)

1−HMi|Bi=bi,x (b′i)
≥ κδ,

where bi = QBi|x (si), b
′
i = QBi|x (si + δ).

C’.2. Uniformly integrable payments: There is an interval I = [si, si] ⊂ (0, 1) such that si < si < si

and the class of random variables{
Y : Y =

(
pi (bi, B−i)

2
∣∣∣Bi = bi, x

)
, x ∈ {xi} ×Xo

−i, bi ∈
[
QBi|x (si) , QBi|x (si)

]}
is uniformly integrable.

C’.3. Continuity and sufficient variation of cost shifters: For all ŝ−i ≥ s−i, there exist p ∈ {1, ...P}
and ε > 0 such that for all s′−i in an ε-neighborhood of ŝ−i[

HBj |x
(
QBi|x (si)

)]
j 6=i

= s′−i

for some x ∈ {xi} ×Xo
−i ∩Xo

p .

Proof: Suppose that there are two different full-information cost functions consistent with

observable H. Let c1
i and c2

i be these two functions and

φmi (s−i|si, xi, p) :=

∫
{τ :τ≥s−i}

cmi (τ , si, xi) f (τ |si, xp) dτ

for m = 1, 2. Let Ψp be the support of ψ (·|si, xi, p) :=
(
c1
i (τ , si, xi)− c2

i (τ , si, xi)
)
f (τ |si, xp). By

the same support Assumption in A’.2, Ψ := cl
({
τ ≥ s−i : c1

i (τ , si, xi) 6= c2
i (τ , si, xi) , (τ , si) ∈ S◦

})
=

Ψp for all p. Define s−i = arg maxs−i∈Ψ
∑

j 6=i sj . By Condition C.3, there are ε > 0 and p ∈ {1, ...P}
such that for all s′−i ∈ ∆ := {τ : maxj 6=i |τ j − sj | < ε}[

HBj |x
(
QBi|x (si)

)]
j 6=i

= s′−i

for some x ∈ {xi} × Xo
−i ∩ Xp. Restricting the space of competitors’ signals to ∆ and the set

of cost shifters to Xo
p , the Assumptions and Conditions of Theorem 1 hold. Therefore, for all

s̃−i ∈ ∆̃ :=
{
τ : maxj 6=i |τ j − sj | < ε (n− 2)−1

}
, it is possible to approximate to arbitrary precision:

φmi (s̃−i|si, xi, p) ≈
T∑
t=1

K∑
k=1

(
ri
(
bt(k−1), sk, xt

)
− ri (btk, sk, xt)

)
+ φmi

(
s′−i|si, xi, p

)
,
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with maxj 6=i s
′
j ≥ sj + ε and

∑
j 6=i s

′
j >

∑
j 6=i sj . It follows that {τ : τ ≥ s′−i} ∩ Ψ = ∅,

φ1
i

(
s′−i|si, xi, p

)
− φ2

i

(
s′−i|si, xi, p

)
= 0 and

ψ (s̃−i|si, xi, p) = φ1
i (s̃−i|si, xi, p)− φ2

i (s̃−i|si, xi, p) = 0.

This is true for all s̃−i ∈ ∆̃ contradicting s−i ∈ Ψ. The support of Ψ is empty. Therefore, for any

τ ≥ s−i such that (τ , si) ∈ S, c1
i (τ , si, xi) = c2

i (τ , si, xi).

B Partial Identification

The optimality conditions can be used to derive bounds on average costs even when the conditions

on observables in Theorem 1 do not hold. This section derives bounds for φi (s−i|si, xi) fixing

(s−i, si, xi). The additional assumption that allows for partial identification is that ci (τ , si, xi) ≥ c
for all τ ≥ s−i and some finite c.

It will be useful to define HBj |x as the left-continuous CDF of Bj |x, Q
Bi|x

(si) as the left-

continuous quantile function ofBi|x, ri (bi, si, x) := lima↑bi ri (a, si, x) and q
i
(bi, si, x) := lima↑bi qi (a, si, x).

Therefore:

q
i
(bi, si, x) = φi

([
HBj |x (bi)

]
j 6=i
|si, xi

)
, and

qi (bi, si, x) = φi

([
HBj |x (bi)

]
j 6=i
|si, xi

)
.

B.1 Upper-bound

For any x ∈ {xi} ×Xo
−i and δ ≥ 0, define the pivotal set L+ (x, δ) as:

L+ (x, δ) :=

{
τ ∈ [0, 1]n−1 :

[
HBj |x

(
Q
Bi|x

(si)
)]

j 6=i
≤ τ <

[
HBj |x

(
QBi|x (si + δ)

)]
j 6=i

}
.

Let L+ be a collection of pivotal sets defined as:

L+ :=


L : L = L+ (x, δ) ,

x ∈ {xi} ×Xo
−i, δ ≥ 0,

∀ε > 0, QBi|x (si − ε) < QBi|x (si) < QBi|x (si + ε)


Let F+ denote the collection of all the subsets of L+ whose union includes the set {τ : τ ≥ s−i};
formally,

F+ :=

{
{Lt}Tt=1 : ∀t ∈ {1, ..T} , Lt ∈ L+;

{τ : τ ≥ s−i} ⊂ ∪Tt=1Lt

}
.

Take any (xt, δt). The optimality condition

lim
σ↓si+δt

Ui (β (σ) , si, xt)− lim
σ↑si

Ui (β (σ) , si, xt) ≤ 0
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implies:

q
i

(
Q
Bi|xt

(si) , si, xt

)
−qi

(
QBi|xt (si + δt) , si, xt

)
≤ ri

(
Q
Bi|xt

(si) , si, xt

)
−ri

(
QBi|xt (si + δt) , si, xt

)
.

It follows that:

φi (s−i|si, xi) ≤ inf
{Lt}Tt=1∈F+

 ∑T
t=1 r

(
Q
Bi|xt

(si) , si, xt

)
− ri

(
QBi|xt (si + δt) , si, xt

)
+
(

Pr (S−i ≥ s−i|si)−
∑T

t=1 Pr (Lt|si)
)
c

 ,

where Lt = L+ (xt, δt).

B.2 Lower-bound

For any x ∈ {xi} ×Xo
−i and δ ≥ 0, define the pivotal set L− (x, δ) as:

L− (x, δ) :=

{
τ ∈ [0, 1]n−1 :

[
HBj |x

(
Q
Bi|x

(si − δ)
)]

j 6=i
≤ τ <

[
HBj |x

(
QBi|x (si)

)]
j 6=i

}
Let L− be a collection of pivotal sets defined as:

L− =


L : L = L− (x, δ) ,

x ∈ {xi} ×Xo
−i, δ ≥ 0,

∀ε > 0, QBi|x (si − ε) < QBi|x (si) < QBi|x (si + ε)


Let F− denote the collection of all the subsets of L+ composed of disjoint subsets of {τ : τ ≥ s−i};
formally,

F− =


{Lt}Tt=1 : ∀t ∈ {1, ..T} , Lt ∈ L−,

Lt ⊂ {τ : τ ≥ s−i} ,
∀t′ ∈ {1, ..T} \t, Lt ∩ Lt′ = ∅

 .

Take any (xt, δt). The optimality condition

lim
σ↓si

Ui (β (σ) , si, xt)− lim
σ↑si−δ

Ui (β (σ) , si, xt) ≥ 0

implies:

q
i

(
Q
Bi|x

(si − δ) , si, xt
)
− qi

(
QBi|x (si) , si, xt

)
≥ ri

(
Q
Bi|x

(si − δ) , si, xt
)
− ri

(
QBi|x (si) , si, xt

)
It follows that:

φi (s−i|si, xi) ≥ sup
{Lt}Tt=1∈F−

 ∑T
t=1 ri

(
Q
Bi|xt

(si − δt) , si, xt
)
− ri

(
QBi|xt (si) , si, xt

)
+
(

Pr (S−i ≥ s−i|si)−
∑T

t=1 Pr (Lt|si)
)
c

 ,

where Lt = L− (xt, δt).

36



C First Price Auctions

This section focuses on first-price sealed-bid auctions, an auction format that is widely used in

practice and has attracted considerable theoretical interest. The first section discusses whether

equilibrium strategies typically generate data that satisfy the monotonicity condition in Assumption

A.4 and the conditions in Theorem 1. The second section presents an algorithm to compute

equilibrium strategies.

C.1 Properties of Equilibrium Bid Strategies

This section presents sufficient restrictions on primitives for existence of equilibria that satisfy

Assumption A.4 and generate observables that satisfy the conditions in Theorem 1. The goal

of these restrictions is to show that the identification result is far from being vacuous, and that

conditions in Theorem 1 should hold in a large class of models. Because these restrictions should

not be assumed a-priori to obtain identification, I will not seek for maximum generality. Instead,

the conditions below were chosen to simplify proofs and use existent results in the literature.

FPA.1. Signals are affiliated: fS(s′ ∨ s)fS(s′ ∧ s) ≥ fS(s)fS(s′) for all s, s′, where ∨ and ∧ denote the

component-wise maximum and minimum, respectively.

FPA.2. Bounded density: there are positive f, f such that f < f (s) < f for all s ∈ [0, 1]n.

FPA.3. Common Values: there is a constant κ > 0 such that for all j, k and xj :
∂cj(sj ,s−j ,xj)

∂sk
> κ.

FPA.4. Full-information costs are additively separable in cost shifters and cost shifters are scalars:

E (Ci|S, xi) = ci (S) + xi.
15

FPA.5. Bounded full-information costs: for all j, cj := ci (1, ..., 1), cj := E (ci (S) |Sj = 0, S−j ≥ [0, .., 0])

and ci (0, ..., 0) are all finite.

FPA.6. Support of cost shifters: Xo
−i =

∏
j 6=iX

o
j where Xo

j =
[
xi − (cj − ci)− h, xi +

(
ci − cj

)
+ h
]

and
maxk

(
cj − cj

)
1−maxk Pr (S−k ≥ s−k|Sk = 1)

< h <∞.

Monotonicity

Reny and Zamir (2004) show that if signals are statistically affiliated, there exists an equilibrium

in monotone pure strategies. McAdams (2007) shows that affiliation also implies that every mixed-

strategy equilibrium is outcome-equivalent to a monotone pure strategy equilibrium. These results

15More generally, the vector of cost shifters for bidder i can be decomposed into: xi =
[
x
(1)
i , x

(2)
i

]
, where x

(1)
i is a

scalar that enters separably into the full-information cost: E (Ci|S, xi) = ci
(
S, x

(2)
i

)
+ ki

(
x
(1)
i

)
for some monotonic

function ki. The original condition holds after conditioning all the analysis on a particular realization of {x(2)
i }i=1..n

and renormalizing the scalar cost shifters so that xi = ki
(
x
(1)
i

)
.
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justify the practice of restricting attention to monotone strategies. Therefore, a restriction that FS

exhibits affiliation suffices to ensure existence of equilibrium bid functions that satisfy Assumption

A.4. Of course, existence of such equilibrium does not preclude existence of other equilibria that

violate Assumption A.4. Therefore, the assumption that the observed data is generated by the

repeated play of equilibrium monotone pure strategies may not be relaxed.

Maskin and Riley (2000) prove that the support of the winning bid is a convex interval and that

there are no atoms in the interior of its distribution. This implies that there exist an equilibrium

in pure strategies that are strictly monotone except at the highest bid that has some positive

probability of winning. Moreover, in the interior of the set of serious bids, the marginal distribution

of bids is continuous.

Condition C.1

The existence proof in Reny and Zamir (2004) constructs a sequence of auction games where bidders

are restricted to select bids from a finite set and show that for each game there is an equilibrium in

monotone pure strategies. As the grid of available bids becomes dense in the real line, there exists a

subsequence of equilibrium bid functions that converges to a set of monotone bid functions defined

over the real line. They also restrict bidders with signals higher than 1− ε to bid infinity—not to

participate—and they allow ε → 0 as the number of available grid of bids becomes dense. They

show that the limiting bid functions are an equilibrium of the game where all types of bidders are

allowed to bid any real number. For any equilibrium with a finite number of bids, all bids (except

non-participation) have positive probability of winning. Therefore, bidders profits conditional on

winning should be nonnegative. By continuity of the full-information costs, this property also

applies to the limit strategies that constitute an equilibrium of the unrestricted game.

Proposition 3 in Maskin and Riley (2000) ensures that the support of the distribution of the

winning bid is an interval [b∗, b
∗] and its CDF is continuous in [b∗, b

∗]. The following Lemma uses

restrictions FPA.1-FPA.5 to characterize further the distribution of W = mini∈{1,..,n}Bi under

equilibrium strategies where bidders make non-negative profits conditional on winning. Let HW be

the CDF of W conditional on a fixed x which is omitted from notation.

Lemma 4. Under restrictions FPA.1-FPA.5, equilibrium bid functions are such that (i) every bid

b ∈ [b∗, b
∗] belongs to the support of bids of at least two bidders, (ii) HW (b∗) = 0, (iii) HW (b∗) =

1, (iv) HW is continuous and strictly increasing in [b∗, b
∗], (v) b∗ ≤ cj + xj for all j such that

cj + xj > mink ck + xk, (vi) b∗ ≥ cj + xj for all j such that cj + xj > mink ck + xk and (vii)

0 ≤ b∗ − b∗ ≤ maxj cj − cj

Proof: Part (i): Take any b ∈ [b∗, b
∗) and suppose that it belongs to the support of only bidder

i. The type of bidder i that bids in the neighborhood of b can deviate to some b′ > b and win

in exactly the same states of the world but earn higher profits. Therefore, b has to belong to the

support of at least two bidders. Now suppose that b∗ belongs to the support of bids of at most one

bidder. There is a positive ε such that every b ∈ (b∗ − ε, b∗) does not belong to the support of at

least n− 1 bidders. This contradicts that [b∗, b
∗) belongs to the support of at least two bidders.

38



Part (ii): Suppose that HW (b∗) > 0. There is at least one bidder who submits bid b∗ with

positive probability. Part (i) and FPA.3 imply that there is a ε > 0 and another bidder who bids

b∗ + ε who can profitably deviate bidding b∗ − ε.
Part (iii): Suppose that there are two bidders that bid b∗ with positive probability and all

bidders with higher priority stay out whenever they receive signals above sk. Formally, ∃i, j such

that β (si) = β (sj) = b∗ for all si ∈ [si, si] and sj ∈
[
sj , sj

]
, where si < si and sj < sj . For all

si ∈ [si, si] bidder i could discontinuously increase its probability of winning by reducing its bid by ε.

His expected costs conditional on winning will be weakly lower because the set of competitors signals

is now slightly better. The fact that this bidder chooses not to reduce his bid implies that b∗ ≤
E (Ci|si, S−i ≥ s−i, x), for all si ∈ [si, si]. However, because strategies are the limit of a sequence

of strategies where each bid has a positive probability of winning, b∗ = E (Ci|si, S−i ≥ s−i, x) for

all si ∈ [si, si], which contradicts strict monotonicity of si. Therefore, there is at most one bidder

that bids b∗ with positive probability.

Suppose HW (b∗) < 1. If i bids b∗ with positive probability, he can deviate to a slightly higher

bid and win in exactly the same (positive probability) set of realizations of competitors’ signals and

receive a higher payment. Instead, if there is no bidder that bids b∗ with positive probability, then

for every b′ > b∗ there is an ε and a bidder i such that when i bids b−ε, he has a profitable deviation

to b′ that results in an arbitrarily small change in the (positive probability) set of realizations of

competitors’ signals where he wins and a discrete increase in the payment he receives in that set.

Thus, HW (b∗) < 1 leads to a contradiction.

Part (iv): Maskin and Riley (2000) show that HW is continuous and strictly increasing in

[b∗, b
∗). I have to show only that limb↑b∗ HW (b) = 1, i.e., that there is no atom at b∗. Suppose

that there is an atom at b∗. By the same arguments used to prove part (iii), there is at most one

bidder who bids b∗ with positive probability. There has to be a bidder j who bids between b∗ and

b∗ + ε; otherwise, the bidder who bids b∗ has a profitable deviation to a slightly higher bid. Bidder

j makes non-negative profits conditional on winning when he bids b∗ + ε. Bidding b∗ − ε instead

would increase the probability of winning and improve discretely the states of the world where it

wins. There exist an ε for which this deviation is profitable. This contradicts the existence of an

atom at b∗.

Part (v): For all j, let sj = HBj (b∗). Parts (iii) and (iv) show that sj = 1 for some j. If

b∗ − E (Ci|si, S−i ≥ s−i, x) > 0 then si = 1. Otherwise, there has to be a bidder j 6= i such

that sj = 1 which implies that bidder i should bid below b∗ when it receives signal si + ε for

some ε > 0 contradicting the definition of si. Suppose that there are two or more bidders with

b∗ − E (Ci|si, S−i ≥ s−i, x) > 0; therefore, si = 1 and b∗ is in the support of Bi because otherwise

b∗ would not be in the support of W . Each of these bidders has a profitable deviation towards a

lower bid that ensures them positive profits and positive probability of winning. Therefore, for all

but one bidder:

b∗ ≤ E (Ci|si, S−i ≥ s−i, x) ≤ ci + xi.

Part (vi): Let bj be the lower bound in the support of Bj . Because this bid is preferred to
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staying out of the auction: bj ≥ cj + xj . Let i be the bidder with the second lowest ci + xi. For at

least n− 1 bidders, bj ≥ ci +xi. The remaining bidder would not bid below ci +xi because bidding

higher results in the same winning probability and higher profits. Therefore, b∗ ≥ cj + xj for all j

such that cj + xj > mink ck + xk.

Part (vii): Suppose b∗ − b∗ > maxj cj − cj . By Part (v), there are at least n − 1 bidders with

ci + xi −
(
maxj cj − cj

)
> b∗, which implies ci + xi > b∗, and contradicts Part (vi).

Lemma 5. Under restrictions FPA.1-FPA.6, equilibrium bid functions generate observables that

satisfy Condition C.1.

Proof: Let b = QBi|x (si) and b′ = QBi|x (si + δ) and s−i (b) =
[
HBj |x (b)

]
j 6=i

. By optimality

of b,

b′
(
1−HMi|Bi=b,x

(
b′
))
− φ

(
s−i
(
b′
)
, si, xi

)
≤ b

(
1−HMi|Bi=b,x (b)

)
− φ (s−i (b) , si, xi) .

Therefore,

(b′ − b)
(
1−HMi|Bi=b,x (b′)

)(
HMi|Bi=b,x (b′)−HMi|Bi=b,x (b)

) ≤ b− E (Ci|S−i ∈ Lb′−b (b, x) , si) ≤ Π̄

where Π̄ is the maximum profit conditional on winning in equilibrium. Boundedness of b∗, Xo
−i and

full-information costs ensure existence of a finite Π̄. Rearranging:(
HMi|Bi=b,x (b′)−HMi|Bi=b,x (b)

)(
1−HMi|Bi=b,x (b′)

) ≥ (b′ − b)
Π̄

.

If HMi|Bi=b,x (b′) = 1, Condition C.1 is satisfied. The rest of the proof consists in finding a lower

bound for (b′ − b) when HMi|Bi=b,x (b′) < 1.

If HMi|Bi=b,x (b′) < 1, b′ is in the support of bids of some competitor j 6= i. By optimality of b′,

b′
(

1−HMj |Bj=b′,x

(
b′
))
− φ

(
s−j

(
b′
)
, s′j , xj

)
≥ b

(
1−HMj |Bj=b′,x (b)

)
− φ

(
s−j (b) , s′j , xj

)
.

Solving for (b′ − b) and replacing φ:

b′ − b ≥

∫
s−j≤τ 6≥s′−j

(
b′ − cj

(
τ , s′j , xj

))
f
(
τ , s′j

)
dτ(

1−HMj |Bj=b′,x (b)
)

≥

∫ si+δ
si

∫
{τ≥s′−ij}

(
b′ − cj

(
[τ , δ] , s′j , xj

))
f
(
τ , s′j

)
dτdδ(

1−HMj |Bj=b′,x (b)
)

≥
P
(
S−ij ≥ s′−ij , Si ∈ [si, si + δ] |s′j

)
P
(
S−j ≥ s−j |s′j

) [∫ 1

si+δ
ψ (σ) g1 (σ) dσ −

∫ si+δ

si

ψ (σ) g2 (σ) dσ

]
.

The second line follows after writing the integration as a sum of integrals over sets
{
s−i ≤ S−i ≤ s′−i

}
and Ak =

{
S−ik ≥ s′−ik, Si ∈ [sk, s

′
k]
}

for all k 6= j, and noting that b′ is weakly greater than
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∫
Ak

(
b′ − cj

(
τ , s′j , xj

))
f
(
τ , s′j

)
dτ for all k. The third line obtains replacing b′ by the lesser mag-

nitude E
(
Cj |S−j ≥ s′−j , s′j , x

)
and defining g1 as the density of Si conditional on S−j ≥ s′−j and

Sj = s′j , g2 as the density of Si conditional on S−ij ≥ s′−ij , Si ∈ [si, si + δ] and Sj = s′j , and:

ψ (σ) := E
(
Cj |S−ij ≥ s′−ij , Si = σ, s′j , x

)
.

The first factor is bounded by
fδ

f(1−si)
. The second factor can be bounded adding and subtracting

ψ (si + δ) and using the following implication of Assumption FPA.3: |ψ (σ′)− ψ (σ)| ≥ κ |σ′ − σ|.
Therefore,

b′ − b ≥ δκ
f

f (1− si)

[∫ 1

si+δ
(σ − si − δ) g1 (σ) dσ −

∫ si+δ

si

(si + δ − σ) g2 (σ) dσ

]
.

The expression in square brackets is minimized when the densities g1 and g2 take large values

around si + δ and small values elsewhere. Minimizing it with respect to g1 and g2 subject to the

restrictions imposed by the bounds in f results in a lower bound of:
[√

f +
√
f
]−1√

f (1− si).
Therefore, (

HMi|Bi=b,x (b′)−HMi|Bi=b,x (b)
)(

1−HMi|Bi=b,x (b′)
) ≥ κ

Π̄

f

f

√
f√

f +
√
f
δ.

.

Condition C.2

Equilibrium payments are bounded below by zero. Lemma C.1 shows that for a given x ∈ Xo
−i,

the maximum payment in equilibrium, b∗, is bounded above by maxj cj + xj . Because Xo
−i is

bounded, the maximum equilibrium payment over all x ∈ Xo
−i is also bounded above. Boundedness

of equilibrium payments over all x ∈ Xo
−i sufficies for Condition C.2.

Condition C.3

The following Lemma shows that in first-price auctions variation in cost shifters generate sufficient

variation in equilibrium bids. Moreover, it shows that if n = 2, there are equilibrium strategies

that generate bids satisfying Condition C.3.

Lemma 6. Under restrictions FPA.1-FPA.6, for all ŝ such that ŝ−i ≥ s−i and ŝi = si, there is a

bid t, cost shifters x ∈ xi ×Xo
−i and equilibrium strategies

{
βj (·, x)

}n
j=1

such that βj (τ , x) ≤ t if

and only if τ ≤ ŝj. Moreover, if n = 2, this selection of equilibrium strategies generate a distribution

of bids that satisfies Condition C.3.

The proof uses the discrete bid model in Athey (2001) and Reny and Zamir (2004) to show that

there exist an equilibrium in monotone pure strategies and a vector of cost shifters where every

bidder j, bids below t if and only if it receives a signal lower than ŝj . This result follows from the

Kakutani’s fixed point theorem. As the grid of permissible bids becomes dense, the sequence of
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fixed points converges to a vector of cost shifters and a set of monotone strategies that constitute

an equilibrium of the continuous bid auction where βj (τ , x) ≤ t if and only if τ ≤ ŝj . The rest

of this section describes the discrete bid model, constructs the fixed point argument, and shows

existence of the equilibrium of the continuous bid auction. The section concludes with the proof of

the Lemma.

A discrete bid model. Let Ai= {a0 < a1 < ... < aM} be the sets of available bids

to bidder i. Let [si, si] ⊂ [0, 1] be a subset of i’s signals. A monotone pure strategy βi :

[si, si] → Ai can be represented a step function (See Athey, 2001) that describes the points

in [si, si] at which βi jumps. The behavior of i at the jump points is inconsequential. Let

Σi =
{
t ∈ [si, si]

M |si ≤ t1 ≤ t2 ≤ ... ≤ tM ≤ si
}

; t ∈ Σi represents βi if tm = inf {σ|βi (σ) ≥ am}.
When competitors are restricted to select bids from a discrete set and employ monotone strate-

gies
{
βj
}
j 6=i, their strategies can be represented by T−i ∈ Σ−i =

∏
j 6=i Σj , where T−i = {tj}j 6=i and

tj ∈ Σj . Similarly, T ∈ Σ =
∏n
i=1 Σi represents the strategies of all bidders. The event where i wins

with bid b given competitors strategies represented by T−i will be denoted by: ηi (b|T−i). The utility

of bidder i when competitors use strategies represented by T−i will be denoted by Ui (bi, si, xi|T−i).
This notation stresses that competitors are bidding from a discrete set of bids. Define bidder i’s

best response correspondence when restricted to choose from the set of bids A as:

b∗i (si, xi, T−i,A) = arg max
b∈A

Ui (b, si, xi|T−i) .

Define the subset of Σi that represents monotone best response b∗i (si, xi, T−i,A) as:

TBRi (xi, T−i,A, [si, si]) = {t ∈ Σi : ∀si ∈ [si, si] , tm < si < tm+1 =⇒ am ∈ b∗i (si, xi, T−i,A)} .

The following results are used in the proof:

Lemma 7. If E (Ci|s, xi) is nondecreasing in xi then b∗i (si, xi, T−i,A) is nondecreasing in the

strong set order in xi.

Proof: Consider b′ > b and x′i > xi. Let π = P (S−i ≥ ηi (b|T−i) |si) denote the probability

of the event where i wins with bid b given competitors strategies represented by T−i. Define π′

analogously for bid b′

Ui
(
b′, si, x

′
i|T−i

)
− Ui

(
b, si, x

′
i|T−i

)
= b′π′ − bπ +

∫
1(ηi(b|T−i)≤τ�ηi(b′|T−i))

E
(
Ci|si, Si = τ , x′i

)
fS−i|si (τ) dτ

≥ b′π′ − bπ +

∫
1(ηi(b|T−i)≤τ�ηi(b′|T−i))

E (Ci|si, Si = τ , xi) fS−i|si (τ) dτ

≥ Ui
(
b′, si, xi|T−i

)
− Ui (b, si, xi|T−i)

The function Ui (b, si, xi|T−i) exhibits increasing differences in (b, xi); therefore b∗i (si, xi, T−i,A) is

nondecreasing in the strong set order in xi (by Topkis Theorem).

42



Lemma 8. Because Ui (b, si, xi|T−i) is continuous in (si, xi, T−i), the graph of b∗i (si, xi, T−i,A) as

a function of (si, xi, T−i)
16 is closed for any A.

Proof: Consider a sequence
(
bk, sk, xki , T

k
−i
)

that converges to (b, si, xi, T−i) such that bk ∈
b∗i
(
sk, xki , T

k,A
)
. There is a K, such that for all k > K, bk = b and Ui

(
b, sk, xki |T k−i

)
≥

Ui
(
a, sk, xki |T k−i

)
for all a ∈ A. By continuity, it follows that Ui (b, si, xi|T−i) ≥ Ui (a, si, xi|T−i);

thus, b ∈ b∗i (si, xi, T−i,A).

Lemma 9. If the graph of b∗i (si, xi, T−i,A) as a function of (si, xi, T−i) is closed for all si ∈ [si, si],

then the graph TBRi (xi, T−i,A, [s′i, s′i]) as a function of (xi, T−i, s
′
i, s
′
i) is also closed for all [s′i, s

′
i]

strictly included in [si, si].

Proof: Consider a sequence
(
ski , s

k
i , x

k
i , T

k
−i, t

k
)

that converges to (si, si, xi, T−i, t) such that

tk ∈ TBRi
(
xki |T k−i,A,

[
ski , s

k
i

])
for all k. Consider signal si ∈ [si, si] such that tm < si < tm+1

for some m ∈ {0, ...,M}. Because tkm and tkm+1 converge to tm and tm+1, there is a K such that

∀k > K, tkm < si < tkm+1, and thus am ∈ b∗i
(
si, x

k
i , T

k
−i,A

)
. Because b∗i has a closed graph,

am ∈ b∗i (si, xi, T−i,A). This argument is very similar to that in the proof of Lemma 3 in Athey

(2001).

Lemma 10. If signals are affiliated; E (Ci|s, xi) is bounded, nondecreasing in s−i and strictly

increasing in si; and ties are precluded: Ui (b′, si, xi|T−i) ≥ 0, Ui (b′, si, xi|T−i) ≥ Ui (b, si, xi, T−i),

(s′i − si) (b′ − b) > 0 imply Ui (b′, s′i, xi|T−i) ≥ Ui (b, s′i, xi|T−i).

Proof: Consider Assumptions A.1 in Reny and Zamir (2004). A.1.i is satisfied by bounded-

ness and continuity conditions on E (Ci|s, x), A.1.ii by boundedness and risk neutrality, A.1.iii by

monotonicity assumptions on the effect of s on E (Ci|s, xi) and A.1.iv by risk neutrality. Affiliation

and assumptions on the joint density functions ensure that Assumption A.2 also holds. The result

holds by Proposition 2.3 in that paper.

Lemma 11. Suppose that signals are affiliated and that E (Ci|s, xi) is bounded, nondecreasing in

s−i and strictly increasing in si. If ∀si ∈ [si, si], ∃a ∈ A such that Ui (a, si, xi|T−i) ≥ 0 then

b∗i (si, xi, T−i,A) is nondecreasing in the strong set order with respect to si ∈ [si, si].

Proof: Let si ≤ si < s′i ≤ si, b ∈ b∗i (si, xi, T−i,A) and b′ ∈ b∗i (s′i, xi, T−i,A). Let a, a′ ∈ A
such that Ui (a′, si, xi|T−i) ≥ 0 and Ui (a′, s′i, xi|T−i) ≥ 0. Suppose that b > b′. Notice that

(s′i − si) (b′ − b) < 0. Because b ∈ b∗i (si, xi, T−i,A)

Ui (b, si, xi|T−i) ≥ Ui
(
b′, si, xi|T−i

)
, and Ui (b, si, xi|T−i) ≥ Ui (a, si, xi|T−i) ≥ 0.

Lemma 10 implies that Ui (b, s′i, xi|T−i) ≥ Ui (b′, s′i, xi|T−i) (b in this proof takes the place of b′

in the lemma statement and vice versa). Thus b ∈ b∗i (s′i, xi, T−i,A). Similarly, because b′ ∈
b∗i (s′i, xi, T−i,A)

Ui
(
b′, s′i, xi, T−i

)
≥ Ui

(
b, s′i, xi, T−i

)
and Ui

(
b′, s′i, xi, T−i

)
≥ Ui

(
a′, s′i, xi, T−i

)
≥ 0

16For economy of notation, I will refer to the graph {si, xi, T−i, b ∈ [0, 1]×Xi × Σ−i × R : b ∈ b∗i (si, xi, T−i,A)} as

the graph of b∗i (si, xi, T−i,A) as a function of (si, xi, T−i).
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Lemma 10 implies that Ui (b′, si, xi|T−i) ≥ Ui (b, si, xi|T−i) (si in this proof takes the place of s′i
in the lemma statement and vice versa). Thus b′ ∈ b∗i (si, xi, T−i,A). It has been shown that for

any si < s′i in [si, si], b ∈ b∗i (si, xi, T−i,A) and b′ ∈ b∗i (s′i, xi, T−i,A) implies that max {b, b′} ∈
b∗i (s′i, xi, T−i,A), min {b, b′} ∈ b∗i (si, xi, T−i,A). b∗i (si, xi, T−i,A) is nondecreasing in si in the

strong set order for si ∈ [si, si].

Fixed Point Assume that A = Ai = {a0 < a1 < ... < aM} for all i and that ties are broken

using a priority rule. aM = ∞ is equivalent to nonparticipation and Ui (aM , si, xi, T−i) = 0 for all

(si, xi, T−i). Fix s ∈ [0, 1]n and ε ∈ [0, 1−max s]. Bidders must bid aM when they receive a signal

above 1 − ε. (Athey (2001) and Reny and Zamir (2004) use the same device). A will be omitted

from the notation in b∗i and TBRi . Similarly, when the set of signals [si, si] is [0, 1− ε] it will be

omitted from the notation in TBRi . Subsets B ⊂ A and [si, si] ⊂ [0, 1] will not be omitted.

Define the following correspondence:

b+i (si, xi, T−i) = b∗i (si, xi, T−i) for all xi ∈ (xi, xi)

= b∗i (si, xi, T−i) ∪ {b ∈ A : b ≤ min b∗i (si, xi, T−i)} for xi = xi

= b∗i (si, xi, T−i) ∪ {b ∈ A : b ≥ max b∗i (si, xi, T−i)} for xi = xi

b+i is an extension of the best response correspondence that includes all high bids when xi = xi

and all low bids when xi = xi. b
+
i inherits the properties of b∗i . If the graph of b∗i (si, xi, T−i) as

a function of (xi, Ti) is closed, the graph of b+i (si, xi, T−i) is also closed. If b∗i (si, xi, T−i) is non

decreasing in the strong set order in si, b
+
i (si, xi, T−i) is also nondecreasing.

The goal is to find a set of monotone strategies T ∈ Σ and vector x ∈ X, such that T represents

a set of strategies that constitute an equilibrium of the game and ti,m̃ ≤ si ≤ ti,m̃+1 for all i. If

S = s is realized under conditions x, all bidders bid am̃.17 Let B−m̃= {a0, a1, ..., am̃} ∪ {aM}, and

B+
m̃= {am̃, am̃+1, ..., aM}.

Γi (xi, T−i) =


(wi, yi) ∈ [xi, xi]× Σi :

∃q : {yi,1, .., yi,m̃, q} ∈ TBRi
(
xi, T−i,B−m̃, [0, si]

)
,

{yi,m̃+1, .., yi,M} ∈ TBRi
(
xi, T−i,B+

m̃, [si, 1− ε]
)

, and

min b+i (si, wi, T−i) ≤ am̃ ≤ max b+i (si, wi, T−i)

 . (29)

Γi is a correspondence that maps elements of [xi, xi]× Σ−i to subsets of [xi, xi]× Σi. Let

Γ = {Γ1, ...,Γn} . (30)

Γ is a correspondence that maps elements of X ×Σ onto subsets of the same set. The following set

of Lemmas shows that the conditions to apply the Kakutani Fixed point theorem hold. Lemma 15

states the properties of a fixed point of Γ.

Lemma 12. Γ is not empty.

17The only exception is when ti,m̃ = ti,m̃+1. In this case, bidder i bids strictly below (above) am̃ for all signals

below (above) si.
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Proof: By Assumption FPA.1 and Lemma 11, b∗i
(
σi, xi, T−i,B−m̃

)
is nondecreasing in the strong

set order with respect to σi ∈ [0, si]. It follows that TBRi
(
xi, T−i,B−m̃, [0, si]

)
is not empty. By the

same argument TBRi
(
xi, T−i,B+

m̃, [si, 1− ε]
)

is not empty either. Let yi = {y1, .., yM} ∈ Σi, where

{y1, .., ym̃, q} ∈ TBRi
(
xi, T−i,B−m̃, [0, si]

)
and {ym̃+1, .., yM} ∈ TBRi

(
xi, T−i,B+

m̃, [si, 1]
)
. Now the

focus is on finding an appropriate wi. b
+
i (si, xi, T−i) is nondecreasing in the strong set order with

respect to xi; moreover, it is not empty and has a closed graph. If am̃ ≤ max b∗i (si, xi, T−i), then

(xi, yi) ∈ Γi (xi, T−i). If am̃ ≥ min b∗i (si, xi, T−i), then (xi, yi) ∈ Γi (xi, T−i). If max b∗i (si, xi, T−i) <

am̃ < min b∗i (si, xi, T−i), consider w1
i = 0.5 (xi + xi). If min b∗i

(
si, w

1
i , T−i

)
≤ am̃ ≤ max b∗i

(
si, w

1
i , T−i

)
,

then
(
w1
i , yi

)
∈ Γi (xi, T−i). Instead, if am̃ < min b∗i

(
si, w

1
i , T−i

)
, let w2

i = 0.5
(
xi + w1

i

)
while if

max b∗i
(
si, w

1
i , T−i

)
< am̃, w2

i = 0.5
(
w1
i + xi

)
. Repeat this procedure for w2

i . Either this pro-

cedure eventually reaches some k such that min b∗i
(
si, w

k
i , T−i

)
≤ am̃ ≤ max b∗i

(
si, w

k
i , T−i

)
and(

wki , yi
)
∈ Γi (xi, T−i) or wki converges to wi. For all k such that wi < wki , am̃ < min b∗i

(
si, w

k
i , T−i

)
whereas for all wki < wi, max b∗i

(
si, w

k
i , T−i

)
< am̃. Let

{
w
kq
i

}
q

denote the subsequence such that

wi < w
kq
i for all q and

{
wkri

}
r

denote the subsequence where wkri < wi for all r. By monotonicity

in the strong set order max b∗i

(
si, w

kq
i , T−i

)
converges to b+ and min b∗i

(
si, w

kr
i , T−i

)
converges

to b−, where b− < am̃ < b+. Because b∗i has a closed graph, then b+ ∈ b∗i (si, wi, T−i) and

b− ∈ b∗i (si, wi, T−i). It follows that (wi, yi) ∈ Γi (xi, T−i). Let w = {wi}ni=1, and Y = {yi}ni=1

such that (wi, yi) ∈ Γi (xi, T−i), then (w, Y ) ∈ Γ (x, T ).

Lemma 13. Γ has a closed graph.

Proof: Consider a sequence
(
xk, T k, wk, Y k

)
that converges to (x, T, w, Y ) such that

(
wk, Y k

)
∈

Γ
(
xk, T k

)
for all k. Consider bidder i. For all k,

(
wki , y

k
i

)
∈ Γi

(
xki , T

k
−i
)
, and there is a qk such

that
{
yki1, ..., y

k
im̃, q

k
}
∈ TBRi

(
xki |T k−i,B

−
m̃, [0, si]

)
. Take a subsequence of qk that converges to q.

Ui (b, si, xi|T−i) is continuous in (xi, T−i). By Lemmas 8 and 9, {yi1, ..., yim̃, q} ∈ TBRi
(
xi, T−i,B−m̃, [0, si]

)
.

By the same argument, {yim̃+1, .., yiM} ∈ TBRi
(
xi, T−i,B+

m̃, [si, 1− ε]
)
. For all k, min b+i

(
si, w

k
i , T

k
−i
)
≤

am̃ ≤ max b+i
(
si, w

k
i , T

k
−i
)
. A subsequence of min b+i

(
si, w

k
i , T

k
−i
)

converges to b− and a subsequence

of max b+i
(
si, w

k
i , T

k
−i
)

converges to b+, where b− ≤ am̃ ≤ b+. Because b+i (si, wi, T−i) has a closed

graph, b−, b+ ∈ b+i (si, wi, T−i), which implies that min b+i (si, wi, T−i) ≤ am ≤ max b+i (si, wi, T−i).

It follows that (wi, yi) ∈ Γ (xi, T−i) for each i, which implies that (w, Y ) ∈ Γ (x, T ).

Lemma 14. Γ is convex.

Proof: Take (wi, yi),(w
′
i, y
′
i) ∈ Γi (xi, T−i). Let y′′i = λyi + (1− λ) y′i and w′′i = λwi + (1− λ)w′i

for some λ ∈ [0, 1].

{yi1, ..., yim̃, q} ,
{
y′i1, ..., y

′
im̃, q

′} ∈ TBRi
(
xi|T−i,B−m̃, [0, si]

)
{yim̃, .., yiM} ,

{
y′im̃, .., y

′
iM

}
∈ TBRi

(
xi, T−i,B+

m̃, [si, 1− ε]
)

By Lemma 11, b∗i
(
σi, xi, T−i,B−m̃

)
and b∗i

(
σi, xi, T−i,B+

m̃

)
are nondecreasing in the strong set order

with respect to σi ∈ [0, si] and σi ∈ [si, 1], respectively. Lemma 2 in Athey (2001) ensures that
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both TBRi
(
xi, T−i,B−m̃, [0, si]

)
and TBRi

(
xi, T−i,B+

m̃, [si, 1− ε]
)

are convex. Let q′′ = λq+(1− λ) q′,

it follows that {
y′′i1, ..., y

′′
im̃, q

′′} ∈ TBRi
(
xi, T−i,B−m̃, [0, si]

){
y′′im̃+1, .., y

′′
iM

}
∈ TBRi

(
xi, T−i,B+

m̃, [si, 1− ε]
)

Without loss, assume that wi < w′′i < w′i. It is known that

min b+i (si, wi, T−i) ≤ am̃ ≤ max b+i (si, wi, T−i)

min b+i
(
si, w

′
i, T−i

)
≤ am̃ ≤ max b+i

(
si, w

′
i, T−i

)
.

By Lemma 7, b∗i (si, wi, T−i) ≤s b∗i (si, w
′′
i , T−i) ≤s b∗i (si, w

′
i, T−i). It follows that b+i (si, wi, T−i) ≤s

b+i (si, w
′′
i , T−i) ≤s b

+
i (si, w

′
i, T−i), which implies:

min b+i
(
si, w

′′
i , T−i

)
≤ min b+i

(
si, w

′
i, T−i

)
≤ am̃

am̃ ≤ max b+i (si, wi, T−i) ≤ max b+i
(
si, w

′′
i , T−i

)
Therefore, (w′′i , y

′′
i ) ∈ Γi (xi, T−i). Repeating the argument for all i, it follows that Γ is convex.

Lemma 15. Γ has a fixed point. If (x, T ) is a fixed point of Γ then tim̃ ≤ si ≤ tim̃+1 for all

i. Moreover, (i) if xi = xi then am̃ ≤ max b∗i (si, xi, T−i); (ii) am̃ ≤ max b∗i (si, xi, T−i) implies

that for any σi > si such that tim < σi < tim+1, am ∈ b∗i (σi, xi, T−i); (iii) if xi = xi then

min b∗i (si, xi, T−i) ≤ am̃; (iv) min b∗i (si, xi, T−i) ≤ am̃ implies that for any σi < si such that

tim < σi < tim+1, am ∈ b∗i (σi, xi, T−i); (v) if xi /∈ {xi, xi} then min b∗i (si, xi, T−i) ≤ am̃ ≤
max b∗i (si, xi, T−i) and ti ∈ TBRi (xi|T−i).

Proof: Existence follows from Kakutani’s Fixed Point Theorem. tim̃ ≤ si ≤ tim̃+1 because

{ti1, .., tim̃, q} ∈ TBRi
(
xi, T−i,B−m̃, [0, si]

)
and {tim̃+1, .., tiM} ∈ TBRi

(
xi, T−i,B+

m̃, [si, 1]
)
. (i) If xi =

xi, then am̃ ≤ max b∗i (si, xi, T−i). (ii) Notice the implications of am̃ ≤ max b∗i (si, xi, T−i). Because

b∗i is monotone in the strong order in the signal, m > m̃, σ > si and am ∈ b∗i
(
σ, xi, T−i,B+

m̃

)
imply

am ∈ b∗i (σ, xi, T−i). Therefore, for any σ > si such that tim < σ < tim+1, am ∈ b∗i (σ, xi, T−i). (iii) If

xi = xi, min b∗i (si, xi, T−i) ≤ am̃. (iv) Notice the implications of min b∗i (si, xi, T−i) ≤ am̃. Because

b∗i is monotone in the strong order in the signal, m < m̃, σ < si and am ∈ b∗i
(
σ, xi, T−i,B−m̃

)
imply am ∈ b∗i (σ, xi, T−i). Therefore, for any σ < si and m < q such that tim < σ < tim+1,

am ∈ b∗i (σ, xi, T−i). It remains to show that if q < σ < si then am̃ ∈ b∗i (σ, xi, T−i). Suppose

that am̃ /∈ b∗i (σ, xi, T−i). This implies that there is a m′ < m̃, such that am′ ∈ b∗i (σ, xi, T−i)

and that aM ∈ b∗i
(
σ, xi, T−i,B−m̃

)
. It follows that Ui (am′ , σ, xi, T−i) = 0. Because all bids have

positive probability of winning, am′−E (Ci|si, S−i ≥ S−i ≥ ηi (am′ |T−i) , xi) = 0 which implies that

Ui (am′ , σ + ε, xi, T−i) < 0 and that am′ /∈ b∗i (σ + ε, xi, T−i). There is no m′ < m̃ such that am′ ∈
b∗i (σ, xi, T−i) for all σ in any subset of [q, si]. It follows that either q = si or that am̃ ∈ b∗i (σ, xi, T−i)

for all q < σ < si. (v) If xi /∈ {xi, xi}: min b∗i (si, xi, T−i) ≤ am̃ ≤ max b∗i (si, xi, T−i). The results

in (ii) and (iv) apply. Therefore, ti ∈ TBRi (xi, T−i).
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Lemma 16. Γ has a closed graph with respect to s and ε. The fixed point also has a closed graph.

Proof: Consider a sequence
(
xk, T k, wk, Y k, sk, εk

)
→ (x, T, w, Y, s, ε) where

(
xk, T k

)
= Γ

(
wk, Y k|sk, εk

)
for all k. Consider bidder i. For all k,

(
xki , t

k
i

)
∈ Γi

(
wki , Y

k
−i|sk, εk

)
and there is a qk such that{

yki1, ..., y
k
im̃, q

k
}
∈ TBRi

(
xki |T k−i,B

−
m̃,
[
0, ski

])
. Take a subsequence of qk that converges to q. By Lem-

mas 8 and 9, {yi1, ..., yim̃, q} ∈ TBRi
(
xi, T−i,B−m̃, [0, si]

)
. By the same argument, {yim̃+1, .., yiM} ∈

TBRi
(
xi, T−i,B+

m̃, [si, 1− ε]
)
. For all k, min b+i

(
ski , w

k
i , T

k
−i
)
≤ am̃ ≤ max b+i

(
ski , w

k
i , T

k
−i
)
. A subse-

quence of min b+i
(
ski , w

k
i , T

k
−i
)

converges to b− and a subsequence of max b+i
(
ski , w

k
i , T

k
−i
)

converges

to b+, where b− ≤ am̃ ≤ b+. Because b+i (si, wi, T−i) has a closed graph, b−, b+ ∈ b+i (si, wi, T−i),

which implies that min b+i (si, wi, T−i) ≤ am ≤ max b+i (si, wi, T−i). It follows that (wi, yi) ∈
Γ (xi, T−i|si, ε) for each i, which implies that (w, Y ) ∈ Γ (x, T |s, ε). This proves the first part.

Consider a sequence (xn, Tn, sn, εn) → (x, T, s, ε) where (xn, Tn) ∈ Γ (xn, Tn|sn, εn) for all n.

Because Γ has a closed graph in (s, ε), then (x, T ) ∈ Γ (x, T |s, ε). This proves the second part.

Equilibrium Strategies Let Γε be the mapping defined in (29) and (30) some ε > 0, sε

such that sεi = min (si, 1− 2ε), and A = {a0, a1, ..., aM−1, aM} such that am̃ ∈ A. Let (xε, T ε) be

a fixed point of Γε and (x, T ) be the limit of some subsequence of {(xε, T ε)}ε as ε → 0. Denote

πi = Pr (S−i ≥ s−i|Si = 1). The following Lemma shows that T is an equilibrium of the discrete

auction game.

Lemma 17. If there is a ∆ > 0 such that for every i: (i) x̄i ≥ am̃ + ∆ − ci and xi ≤ am̃ −
maxj 6=i

(
c̄j − cj + 3∆

)
(1− πi)−1 − c̄i, (ii) a0 ≤ mini (ci + xi), and maxi (ci + xi) ≤ aM−1 < aM =

∞, (iii) am − am−1 < ∆ for all m ∈ {1, 2, ...,M − 1}, and (iv) am̃ < aM−n; then ti ∈ TBRi (xi|T−i)
and tiaM = 1 for all i.

Proof: By Lemma 16, (x, T ) ∈ Γ0 (x, T ). For all ε > 0, every type of bidder makes strictly

positive profits bidding aM−1 ≥ maxi (ci + xi). Bidding aM is suboptimal: tεiM = tiM = 1 for all i.

Suppose that xi /∈ {xi, xi}. Lemma 15 implies that min b∗i (si, xi, T−i) ≤ am̃ ≤ max b∗i (si, xi, T−i),

and ti ∈ TBRi (xi|T−i).
Suppose that xi = xi. Take any m < m̃.

Ui (am, si, x̄i|T−i) = [am − E (ci (S) |si, S−i ∈ S−i ≥ ηi (am|T−i))− x̄i]P (S−i ≥ ηi (am|T−i) |si) ≤ 0

Therefore, min b∗i (si, x̄i, T−i) ≥ am̃. Lemma 15 ensures that min b∗i (si, x̄i, T−i) = am̃, and ti ∈
TBRi (xi|T−i).

Suppose that xi = xi. By Lemma 15, am̃ ≤ max b∗i (si, x̄i, T−i). Suppose that ti 6∈ TBRi (xi|T−i),
and therefore, am̃ < min b∗i (si, x̄i, T−i).

A similar argument to that used to prove Part (v) in Lemma C.1 shows that there is at most

one bidder i with c̄i + xi < am̃ − ∆. Following that proof, let ak be the maximum bid with a

strictly positive probability of winning and sj = tj(k+1). Note that m̃ ≤ k ≤ M + 1. If ak −
E (Ci|si, S−i ≥ η (ak|T−i) , x) > 0 then si = 1. Otherwise, there has to be a bidder j such that

sj = 1 which implies that bidder i should bid strictly below ak+1 when it receives signal si + ε for
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some ε > 0 contradicting the definition of si. Suppose that there are two or more bidders with

ak − E (Ci|si, S−i ≥ η (ak|T−i) , x) > ∆; therefore, si = 1 and tik < 1. One of these bidders has a

profitable deviation towards ak−1 which ensures positive probability of winning and positive profits.

Therefore, for all but one bidder:

am̃ ≤ ak ≤ E (Ci|si, S−i ≥ η (ak|T−i) , x) + ∆ ≤ ci + xi + ∆.

By the definition of xi, xi + c̄i < am̃ − ∆ ≤ ak − ∆. For all j 6= i: xj > xj and c̄j + xj ≥
ak − ∆ > am̃ − ∆. Consider two bids, b and b ∈ A, such that: b wins with probability one and

b̄ ∈ b∗i (si, x̄i, T−i). Because xi + c̄i + ∆ < am̃ < min b∗i (si, x̄i, T−i) ≤ b, i makes positive profits

when bidding b and has to win with positive probability. Otherwise, it has a profitable deviation

to am̃−1. By optimality of b,

b ≤ b̄Pr
(
S−i ≥ η

(
b̄
)
|si
)

+
(
1− Pr

(
S−i ≥ η

(
b̄
)
|si
))
E
(
Ci|si, S−i � η

(
b̄
)
, x|si

)
.

Using πi ≥ Pr
(
S−i ≥ η

(
b̄
)
|si
)
> 0 and xi + c̄i < am̃ < min b∗i (si, x̄i, T−i) ≤ b,

b ≤ b̄πi + (1− πi) (c̄i + xi) .

Replacing xi:

b+ max
j 6=i

(
c̄j − cj

)
+ 3∆ ≤ b̄πi + (1− πi) am̃ ≤ b̄.

Bidders j 6= i are best-responding so they never bid below cj + xj . Because b is any bid in A
that wins with probability one it is possible to pick it so that b+ ∆ ≥ minj cj + xj :

min
j 6=i

(cj + xj) + 2∆ ≤ b̄

Because for all j 6= i: xj > xj and c̄j + xj ≥ ak −∆ ≥ b−∆. Replacing b in the expression above

leads to a contradiction. Therefore, ti ∈ TBRi (xi|T−i).
The following Lemma shows existence of equilibria in the continuous bid auction.

Lemma 18. If for every i, x̄i > t − ci and xi < t − maxj 6=i
(
c̄j − cj

)
(1− πi)−1 − c̄i, there exist

a vector of cost shifters x ∈ [x1, x1]× ...× [xn, xn] and an equilibrium in monotone pure strategies

where σ < sj < σ′ implies β̂j (σ) < t and β̂j (σ′) > t.

Proof: Let ∆̄ = min
{
x̄i − t+ ci, (t− xi − c̄i) (1− πi) /3−maxj 6=i

(
c̄j − cj

)
/3
}

. For all ∆ < ∆̄,

construct a grid {a0, a1, ..., aM−1, aM}, with a0 = mini (ci + xi), aM−1 = maxi (ci + xi) , aM = ∞,

and am − am−1 = ∆/2 for all m ∈ {0, 1, ...m̃− 1, m̃+ 2, ...,M} and am̃ = t, am̃+1 − am̃−1 = ∆/2.

This grid satisfies the conditions of Lemma 16. Let
(
x∆, T∆

)
be a the limit of some subsequence of

fixed points with ε→ 0 corresponding to this grid. x∆ ∈ [x1, x1]× ...× [xn, xn], t∆jm̃ ≤ sj ≤ t∆jm̃+1

and T∆ is an equilibrium of the discrete game that represents strategies β∆. By Helley’s Selection

Theorem and by compactness of X, there exist a subsequence of
{(
x∆, β∆

)}
∆

that converges to(
x̂, β̂

)
as ∆→ 0, where x̂ ∈ X and β̂ is a set of n monotone functions.
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I need to show that β̂ is an equilibrium of the unrestricted game when cost shifters are x̂.

The proof of the second part of Theorem 2.1 in Reny and Zamir (2004) would apply without

modifications were it not for the different treatment of the restriction that bidders with signals

above 1− ε must bid ∞. They assume that ε→ 0 as ∆→ 0, I assume that for each ∆,
(
x∆, T∆

)
is the limit of

(
x∆,ε, T∆,ε

)
as ε → 0. This technical detail only changes the proof of (A.4) in that

paper.

Take any j, pick any σj such that β̂j (σj + v) <∞ for some v > 0. For all ∆ < ∆̄, Lemma 17

shows that β∆
j

(
σj , x

∆
)
< ∞. Because β∆

j

(
σj , x

∆
)

is a limit of strategies where all bids win with

positive probability:

0 ≤ β∆
j

(
σj , x

∆
)
− E

(
Cj |σj , S−j ≥ ηj

(
β∆
j

(
σj , x

∆
)
|T∆
−j
)
, x∆

)
≤ β∆

j

(
σj , x

∆
)
− E

(
Cj |σj , S−j ≥ ηj

(
β̂j (σj , x̂)− δ|T∆

−j

)
, x∆

)
→ β̂ (σj , x̂)− E

(
Cj |σjn, S−j ≥ ηj

(
β̂j (σj , x̂) |β̂−j

)
, x̂
)

.

The second inequality follows for any δ > 0 for a sufficiently low ∆ because the marginal cost is

lower than the inframarginal. Take the limit as ∆ → 0 for each δ such that β̂j (σj) − δ is not

an atom in the distribution of Mj = mink 6=j β̂k (Sj , x̂). Take the limit as δ goes to zero to obtain

last line. This is (A.4) in Reny and Zamir (2004). The rest of the proof there shows that β̂ is an

equilibrium of the first-price auction game when cost shifters are x̂ and bidders are allowed to bid

any value between mini (ci + xi) and maxi (ci + xi).

It remains to show that in equilibrium the tie-curve passes through the vector of signals s. For

each q, t∆jm̃ ≤ sj ≤ t∆jm̃+1. Take any σ < sj , β
∆
j

(
σ, x∆

)
≤ t; take any σ′ > sj , β

∆
j

(
σ′, x∆

)
≥ t. It

follows that β̂j (σ, x̂) ≤ t and β̂j (σ′, x̂) ≥ t.

Proof of Lemma 6 Take any ŝ ∈ (0, 1)n such that ŝi = si and ŝ−i ≥ s−i. Let Xε =
∏
j

[
xj , xj

]
where

xj = ci − cj + ε

xj = ci −
maxk 6=j (ck − ck)

1− Pr (S−j ≥ ŝ−j |Sj = 1)
− cj − ε.

There is an ε > 0 such that x̃ ∈ Xε implies that x̃−i − x̃i + xi ∈ Xo
−i:

x̃j − x̃i + xi ≥ xi − (cj − ci)−
maxk 6=j (ck − ck)

1− Pr (S−j ≥ ŝ−j |Sj = 1)
− 2ε,

x̃j − x̃i + xi ≤ xi + ci − cj +
maxk 6=j (ck − ck)

1− Pr (S−j ≥ ŝ−j |Sj = 1)
+ 2ε.

Lemma 18 shows that there exist a vector of cost shifters x̃ ∈ Xε and an equilibrium in monotone

pure strategies where for all j, σ < sj < σ′ implies β̂j (σ, x̃) < ci and β̂j (σ′, x̃) > ci. Cost shifters

x−i = x̃−i − x̃i + xi ∈ Xo
−i are such that strategies β defined as βj (·, [xi, x−i]) := β̂j (·, x̃) − x̃i +

xi constitute an equilibrium in monotone pure strategies for the continuous auction game with

market conditions [xi, x−i]. Moreover, σ < ŝj < σ′ implies βj (σ, [xi, x−i]) ≤ ci − x̃i + xi and
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βj (σ′, [xi, x−i]) ≥ ci − x̃i + xi for all j. Letting t = ci − x̃i + xi and noting that equilibrium

strategies are strictly increasing and whenever there is a jump discontinuity, bidders are indifferent

between the two limiting bids implies that βj (τ , x) ≤ t if and only if τ ≤ ŝj .
If n = 2, the equilibrium bid strategies are continuous, βi (·, x) = QBj |x (·), and Condition C.3

holds.

C.2 Computation of an Equilibrium in Monotone Pure Strategies

The equilibrium inverse bid functions are calculated using a numerical algorithm that is similar

to that in Gayle and Richard (2008). The main difference with their approach is that I allow for

interdependent costs and correlated signals. Although the computation time grows fast with the

number of bidders, auctions with less than 10 bidders are solved within 5 hours. The algorithm

solves the system of differential equations implied by bidders’ first-order conditions. Following

Gayle and Richard (2008), I guess the initial conditions and, after the system is solved forward, I

verify if the terminal conditions are consistent with equilibrium bidding behavior.

C.2.1 Technology and information

Each bidder full information cost is:

ci (s−i, si, x0, xi) = α̂′i0x0 + α̂i1xi + α̂i2
∑
j 6=i

µ̂ijΦ
−1 (sj) + α̂i3Φ−1 (si) (31)

where α̂ denote the estimated parameters. The distribution of signals is truncated to avoid nu-

merical problems: instead of using Φ−1 (Si), I use Φ−1 ((Si − 0.5) 0.999 + 0.5). The joint copula

of signals is still assumed to be Gaussian with correlation matrix equal to L̂L̂′ + Λ̂, where L̂ is

the estimated loading matrix and Λ̂ is a diagonal with i-th element equal to 1 − L̂2
i1 − L̂2

i2. The

(rescaled) signals Φ−1 (S) are assumed to be jointly multivariate normal with covariance matrix Σ̂.

C.2.2 System of differential equations

Bidder i’s problem is

max
b
bP (S ≥ s−i (b) |si)− φ (s−i (b) |si, xi) , (32)

where s−i (b) is equal to
[
HBj |x (b)

]
j 6=i

. The first-order condition is

Pi + b∇Pis′−i (b)−∇φis′−i (b) = 0, (33)

where ∇Pi and ∇φi are the gradients of Pi = P (S−i ≥ s−i(b)|si) and φ (s−i (b) |si, xi) with respect

to s−i. s
′
−i is the vector of derivatives of each element of s−i with respect to b. Pi and b are scalars,

∇Pi and ∇φi are 1× (n− 1) vectors, and s′−i (b) is an (n− 1)× 1 vector.

If all bidders’ first-order conditions are considered together:

P = Ms′, (34)

where P is an n× 1 vector with typical element: Pi, M is an n× n matrix with zeros in the main

diagonal and typical row: ∇φi − b∇Pi, and s′ is an n× 1 vector.
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C.2.3 Algorithm

The algorithm makes an initial guess on the lowest bid that firms are willing to submit when they

receive signal s = 0. So the following variables are initialized: b(0), and s(0) = [0, 0, ..., 0]′. The

state variables are the scalar b(t) and the vector s(t).

At step t, each bidder’s perceived probability of winning P
(t)
i = P

(
S−i ≥ s(t)

−i|s
(t)
i

)
, expected

cost φ
(
s

(t)
−i|s

(t)
i , xi

)
and the gradients ∇Pi and ∇φi are calculated by numerical integration . A

bidder is “active” if it finds it profitable to win at the current state— if b(t)P
(t)
i − φ

(
s

(t)
i , s

(t)
−i

)
≥ 0.

Bidders that do not satisfy this condition are “inactive” and their signal state in the next step

is: s
(t+1)
j = s

(t)
j . Construct vector P (t) and matrix M (t) with all “active” bidders and compute

s′ =
(
M (t)

)−1
P (t). If all s′ are positive, set s

(t+1)
i = s

(t)
i + s′i∆b and b(t+1) = b(t) + ∆b, where ∆b is

a predetermined bid step. Some elements of the resulting s′ may be negative. It means that some

firms would prefer to bid higher even if their profits are positive at the current bid. I discuss how

to obtain a subset of “active and willing” bidders from the set of “active” bidders below. For the

moment assumethat s′ > 0.

The simulation stops when all but one bidders have nonpositive expected profits, when a bidder

reaches si = 1, or when the system diverges. For low initial b(0), all but one bidders reach their

zero profit conditions at low signals, the resulting bidding strategies are consistent with a reserve

price equal to b(T ), where T is the terminal step. As the initial b(0) increases, the terminal b(T )

and signals s(t) also increase. Eventually, the terminal s(t) is such that si = 1 for some bidder.

The resulting bidding strategies are consistent with a nonbinding reserve price. If b(0) is slightly

higher, the system diverges and the resulting strategies are not consistent with any equilibrium

bidding behavior. The system diverges when all bidders expected profits increase with t. To obtain

the results in Section 4.5, I find the initial b(0) consistent with an equilibrium with the highest

non-binding reserve price, i.e., the highest reserve price for which the project is procured with

probability one.

C.2.4 “Active and willing” bidders

In a general interdependent asymmetric model the equilibrium bidding strategies may be such that

the support of bids is different across bidders. For example, suppose that there are three bidders

A, B and C such that A’s and B’s costs are distributed on [c, c] while C’s costs are distributed on

[c∗, c], for c < c∗. The equilibrium bids can be such that A and B bid b< c∗ when their costs are c,

but C never bids b. The optimal bid of C when his costs are c∗ are above c∗; as a result, there is

a range of bids for which bidder C has positive profits, but finds it unprofitable to submit such a

bid—he is “active but unwilling”. The first-order condition of “active and unwilling” bidders have

to be positive, i.e. they would increase their expected profit by bidding higher. It follows that if ki

is a slack variable,

Pi − ki + b∇Ps′−i (b)−∇φs′−i (b) = 0, (35)
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where ki = 0 if i is willing to submit bid b, and ki > 0 otherwise. The system of equations for all

bidders can be written as:

P − k = Ms′. (36)

where ki = 0 and s′i > 0 for willing bidders, and ki > 0 and s′i = 0 for unwilling bidders. Therefore,

the problem of finding all “willing” bidders is the problem of choosing a set of indices J such that:[
Ms 0

Msn I

]−1

P =

[
sj∈J

kj /∈J

]
≥ 0, (37)

where Ms is a square matrix #J ×#J that contains element mij only if i, j ∈ J , while Msn is a

(n−#J)×#J matrix that contains element mij only if i /∈ J but j ∈ J . This is a combinatorial

problem that can be solved by a brute force approach if there are only a few bidders. Instead, I

consider the following algorithm: denote Dp = diag(P ) and let k̃ = Dpk and M̃ = D−1
p . Equation

(36) becomes:

1− k̃ = M̃s. (38)

I find the Perron–Frobenius eigenvector of M̃ and try J equal to the indices of its largest elements.

I try first with the first two, then the first three largest elements and so on. This algorithm guides

the brute force approach and finds the right set of “willing” bidders faster.
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Figure 1: This figure shows the pair of competitors’ signals that make them both bid exactly b1 along
with Lε (b1, x), an L-shaped set containing all competitors’ signals such that their minimum bid is
in [b1, b1 + ε]. The bidder’s first-order optimality condition identifies the expected cost conditional
on this set.
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Figure 2: Variation in [x2, x3] is used to find a different L-shaped set that stacks on top of Lε (b1, x)
holding s1 and x1 constant. This set is Lε (t, x′) with x′ = [x1, x2, x3]. The expected cost over the
union of Lε (b1, x) and Lε (t, x′) is equal to a probability-weighted average of the expected cost over
each L-shaped set. These weights are identified from the joint distribution of signals. This process
can be repeated to obtain a probability-weighted average over the whole rectangle {Sj ≥ sj}j=2,3.
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Figure 3: The Effects of Competition on Procurement Costs

Procurement costs relative to the duopoly case in the Independent Private Costs (IPC),
Affiliated Private Costs (APC), and Common Costs (CC) models. Average over 250
randomly selected auctions and 100,000 random realization of signals.
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Figure 4: The Effects of Competition on Bidding Behavior

Median Bid relative to the duopoly case in the Independent Private Costs (IPC), Af-
filiated Private Costs (APC), and Common Costs (CC) models. Average over 250
randomly selected auctions.
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Table 1: Descriptive Statistics. Engineer’s estimate, bids and distances.

Variable N Mean Sd P5 Median P95

Engineer's estimate ($000) 1,925 1,145 1,783 119 633 3,899

Lowest bid ($000) 1,925 1,090 1,771 111 586 3,737

Participants 1,925 3.04 1.3 2 3 6

(2nd Lowest/Lowest bid-1) x 100 1,852 8.2 8.7 0.5 5.9 23.4

(Lowest/engineer-1) x 100 1,925 -6 12.5 -25.9 -6.8 15.2

Distance of Winner (km) 1,816 32 40 2 22 91

Distance of Bidder (km) 18,778 51 50 4 38 138

P stands for percentile. 2nd Lowest: the second lowest bid. engineer: engineer’s estimate. There
were 73 auctions with only one bid and 109 won by a firm for which I did not find any verifiable
location.

Table 2: Number of Participants and Normalized Bids

Participants Auctions

mean s.e.m mean s.e.m

1 73 1.2 1.0 1.2 1.0

2 658 -5.0 0.5 0.0 0.6

3 727 -6.1 0.4 2.1 0.5

4 247 -6.5 0.8 3.3 0.9

5 116 -9.9 1.0 -0.9 1.0

6 54 -10.6 1.9 0.3 2.2

7 28 -9.4 2.3 1.5 2.3

8 14 -11.1 3.6 0.0 4.1

9 6 -15.2 5.1 -5.0 4.9

10 2 -17.9 3.8 -3.3 8.4

Winning Bid Average Bid

Bids were normalized by the engineer’s estimate: (Bid/engineer’s estimate-1)×100. The average
winning bid and average submitted bid are tabulated by the number of participants in the auction.
For example, there were 742 auctions with only two participants. In these auctions the normalized
winning bid was on average 4.1% below the engineer’s estimate, while the average submitted bid
was 1.1% above. While the average winning bid decreases with the number of participants, the
average submitted bid does not. s.e.m stands for standard error of the mean.

56



Table 3: Correlation of Signals

Coef. s.e. Coef. s.e. Factor 1 Factor 2 Individual

Bidder 1 0.410 *** 0.032 0.173 *** 0.065 0.17 0.03 0.80

Bidder 2 0.449 *** 0.044 0.125 0.092 0.20 0.02 0.78

Bidder 3 0.434 *** 0.057 0.218 *** 0.071 0.19 0.05 0.76

Bidder 4 ‐0.356 *** 0.056 0.322 *** 0.086 0.13 0.10 0.77

Bidder 5 0.346 *** 0.043 0.291 *** 0.050 0.12 0.08 0.80

Bidder 6 0.221 0.14 0.428 * 0.223 0.05 0.18 0.77

Bidder 7 0.140 0.16 0.458 ** 0.203 0.02 0.21 0.77

Bidder 8 0.071 0.134 ‐0.328 *** 0.120 0.01 0.11 0.89

Bidder 9 0.370 * 0.209 ‐0.021 0.261 0.14 0.00 0.86

Bidder 10 0.022 0.097 0.455 *** 0.033 0.00 0.21 0.79

Bidder 11 0.382 *** 0.065 0.215 0.138 0.15 0.05 0.81

Bidder 12 0.037 0.205 0.099 0.153 0.00 0.01 0.99

Bidder 13 0.351 *** 0.09 0.107 0.145 0.12 0.01 0.87

Bidder 14 0.298 *** 0.077 0.173 0.108 0.09 0.03 0.88

Bidder 15 0.363 *** 0.087 0.204 ** 0.103 0.13 0.04 0.83

Bidder 16 0.126 0.24 0.294 0.231 0.02 0.09 0.90

Bidder 17 0.225 *** 0.078 0.026 0.110 0.05 0.00 0.95

Bidder 18 ‐0.444 0.271 0.279 0.437 0.20 0.08 0.73

Bidder 19 ‐0.075 0.258 0.475 ** 0.198 0.01 0.23 0.77

Bidder 20 0.504 *** 0.023 0.25 0.75

Factor  1 Factor  2 Signal Decomposition

Loading matrix estimates obtained by Simulated Maximum Likelihood following Ka-
makura and Wedel (2001). Standard Errors obtained from 200 bootstrap samples. Each
bidder’s signal can be written as Zi = L̂i1Factor1 + L̂i2Factor2 + Individuali, where
Factorj , j = 1, 2 and Individuali are a jointly independent normal random variables
with variances 1, 1 and 1 − L̂2

i1 − L̂2
i2, respectively. The total variance of Zi can be

decomposed in three terms: L̂2
i1, L̂2

i2 and 1− L̂2
i1 − L̂2

i2.
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Table 4: Correlation of Signals

 Bidder 1  Bidder 2  Bidder 3  Bidder 4  Bidder 5  Bidder 6  Bidder 7  Bidder 8  Bidder 9  Bidder 10  Bidder 11  Bidder 12  Bidder 13  Bidder 14  Bidder 15  Bidder 16  Bidder 17  Bidder 18  Bidder 19

Bidder 2   0.259***                  

Bidder 3   0.275***   0.287***                

Bidder 4  ‐0.115**  ‐0.154***  ‐0.110**              

Bidder 5   0.240***   0.243***   0.274*** ‐0.038            

Bidder 6   0.210***   0.197***   0.247*** 0.077   0.257***          

Bidder 7   0.174***   0.155**   0.209*** 0.126   0.232***   0.295***        

Bidder 8 ‐0.033 ‐0.011 ‐0.05  ‐0.158* ‐0.084 ‐0.151 ‐0.17      

Bidder 9   0.178***   0.199***   0.192*** ‐0.17   0.147** 0.089 0.052 0.038      

Bidder 10   0.110** 0.085   0.140***   0.178***   0.176*** 0.256   0.271* ‐0.177** ‐0.002      

Bidder 11   0.241***   0.250***   0.271*** ‐0.085   0.243***   0.224***   0.193*** ‐0.052  0.164* 0.133      

Bidder 12 0.036 0.033 0.043 0.021 0.047 0.058 0.058 ‐0.032 0.013 0.052 0.04      

Bidder 13   0.195***   0.208***   0.216*** ‐0.111   0.184***   0.151** 0.12 ‐0.012  0.148*** 0.068  0.188*** 0.026      

Bidder 14   0.181***   0.187***   0.204*** ‐0.061   0.183***   0.170***   0.147*** ‐0.041  0.122* 0.102  0.179*** 0.03  0.141***      

Bidder 15   0.226***   0.235***   0.255*** ‐0.08   0.228***   0.210***   0.181*** ‐0.048  0.154***  0.125*  0.224*** 0.037  0.177***  0.169***      

Bidder 16 0.121 0.112 0.144 0.06 0.153 0.185 0.183 ‐0.098 0.046 0.162 0.131 0.036 0.086 0.1 0.123    

Bidder 17   0.111***   0.121***   0.122*** ‐0.084   0.099** 0.072 0.051 0.008  0.092** 0.02  0.105** 0.011  0.091**  0.079**   0.099** 0.039  

Bidder 18  ‐0.175**  ‐0.218**  ‐0.177** 0.332 ‐0.095 0.029 0.088 ‐0.153 ‐0.215*** 0.155 ‐0.143 0.013 ‐0.159 ‐0.105  ‐0.135* 0.032 ‐0.112

Bidder 19 0.065 0.033 0.092 0.233   0.143*   0.243*   0.269** ‐0.195 ‐0.047  0.275* 0.093 0.051 0.03 0.073 0.087 0.157 ‐0.005 0.222

Bidder 20   0.113** 0.083   0.145***   0.214***   0.190***   0.285*   0.304** ‐0.203** ‐0.013  0.298*** 0.14 0.058 0.067 0.108   0.131* 0.181 0.016 0.191  0.316**

Correlation Matrix derived from the factor structure shown in Table 3. Diagonal ele-
ments are all equal to one.
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Table 5: Full Information Cost EstimatesFull Information Cost Estimates

Variable

Coeff Std‐Err Coeff Std‐Err Coeff Std‐Err Coeff Std‐Err

Const p25 0.730 *** 0.031 0.782 *** 0.020 0.860 *** 0.025 0.537 * 0.324

Dist > 10 0.025 ** 0.011 0.038 ** 0.019 0.068 *** 0.023 0.162 0.150

Dist > 50 0.157 *** 0.024 0.105 *** 0.021 0.399 *** 0.112 0.111 0.176

Dist > 100 0.363 ** 0.168 0.240 *** 0.067 ‐0.021 0.132 ‐0.110 0.175

Road Density ‐0.008 0.016 0.010 0.031 ‐0.032 *** 0.007 0.101 0.321

Const p50‐p25 0.082 *** 0.020 0.054 *** 0.017 0.101 *** 0.031 0.205 0.137

Const p75‐p25 0.181 *** 0.053 0.126 *** 0.032 0.238 *** 0.068 0.910 * 0.498

Common Costs 0.500 *** 0.173 0.350 *** 0.113 ‐0.025 0.096 0.000 0.232

N 1096 936 411 72

Variable

Coeff Std‐Err Coeff Std‐Err Coeff Std‐Err Coeff Std‐Err

Const p25 0.957 *** 0.021 0.927 *** 0.122 0.836 *** 0.133 0.763 *** 0.136

Dist > 10 0.016 0.017 0.085 ** 0.039 0.020 0.042 0.051 0.052

Dist > 50 ‐0.045 0.159 0.127 *** 0.032 0.034 0.037 0.067 0.091

Dist > 100 0.422 0.302 0.056 0.052

Road Density ‐0.021 ** 0.009 0.265 0.169 ‐0.042 0.159 0.022 0.061

Const p50‐p25 0.082 *** 0.018 0.101 0.076 0.051 * 0.027 0.169 * 0.095

Const p75‐p25 0.186 *** 0.034 0.243 0.152 0.155 *** 0.045 0.422 * 0.253

Common Costs 0.175 *** 0.050 0.800 * 0.471 0.525 *** 0.189 0.950 0.676

N 399 374 249 280

Variable

Coeff Std‐Err Coeff Std‐Err Coeff Std‐Err Coeff Std‐Err

Const p25 0.919 *** 0.045 0.940 *** 0.068 0.799 *** 0.083 0.833 *** 0.039

Dist > 10 0.096 ** 0.045 0.114 * 0.059 ‐0.013 0.029 ‐0.003 0.036

Dist > 50 0.207 *** 0.045 ‐0.001 0.048 0.061 0.054 0.052 0.110

Dist > 100 0.142 0.121 0.421 * 0.221 ‐0.012 0.182

Road Density 0.288 *** 0.083 ‐0.034 ** 0.016 ‐0.229 * 0.139 ‐0.008 0.089

Const p50‐p25 0.111 *** 0.026 0.047 ** 0.020 0.070 *** 0.024 0.054 0.043

Const p75‐p25 0.278 *** 0.063 0.145 0.099 0.134 *** 0.044 0.154 0.106

Common Costs 0.050 0.077 0.325 * 0.180 0.500 *** 0.175 0.525 0.330

N 273 122 148 162

Bidder 1 Bidder 2 Bidder 3 Bidder 4

Bidder 5 Bidder 6 Bidder 7 Bidder 8

Bidder 9 Bidder 10 Bidder 11 Bidder 12

Estimates of the full information cost parameters for each bidder. The estimates were
obtained by IVQR using three different quantiles and restricting all coefficients except
the constant from varying across quantiles. The chosen quantiles where 0.25, 0.50 and
0.75. For bidders 4, 8 and 10, I used quantiles 0.25Q, 0.5Q and 0.75Q where Q is the
maximum estimated probability of participation in any given auction (0.26,0.69 and
0.41, respectively). Standard errors were obtained by bootstrap.
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Table 6: Full Information Cost Estimates

Variable

Coeff Std‐Err Coeff Std‐Err Coeff Std‐Err Coeff Std‐Err

Const p25 1.146 *** 0.158 0.971 *** 0.093 0.903 *** 0.045 0.981 *** 0.104

Dist > 10 0.010 0.046 0.022 0.065 0.004 0.054 ‐0.055 0.066

Dist > 50 ‐0.033 0.051 0.013 0.105 0.393 *** 0.085 0.035 0.071

Dist > 100 0.068 0.229 0.176 0.207 0.192 0.317

Road Density 0.617 ** 0.240 ‐0.022 0.035 ‐0.130 *** 0.038 ‐0.066 0.079

Const p50‐p25 0.063 0.043 0.126 ** 0.051 0.094 *** 0.028 0.036 0.043

Const p75‐p25 0.127 0.094 0.279 0.172 0.237 *** 0.059 0.101 0.205

Common Costs 0.250 * 0.133 0.075 0.109 0.025 0.114 0.450 0.327

Q 1.00 0.60 0.64 0.44

N 151 85 129 60

Variable

Coeff Std‐Err Coeff Std‐Err Coeff Std‐Err

Const p25 0.759 *** 0.075 0.356 0.488 0.885 *** 0.074

Dist > 10 0.055 0.036 0.025 0.140 0.078 0.066

Dist > 50 0.052 0.082 0.049 0.132 0.218 ** 0.097

Dist > 100 ‐0.080 0.174 ‐0.123 0.105

Road Density 0.028 0.140 ‐0.513 0.578 0.019 0.101

Const p50‐p25 0.077 *** 0.025 0.091 0.057 0.060 0.043

Const p75‐p25 0.137 ** 0.066 0.197 * 0.119 0.225 0.148

Common Costs 0.400 ** 0.164 0.150 0.219 0.300 * 0.155

Q 0.96 0.37 0.34

N 106 61 62

Bidder 17 Bidder 18 Bidder 19

Bidder 13 Bidder 14 Bidder 15 Bidder 16

Estimates of the full information cost parameters for each bidder. The estimates were
obtained by IVQR using three different quantiles and restricting all coefficients except
the constant from varying across quantiles. The chosen quantiles where 0.25,0.50 and
0.75. For bidders 14-19, I used quantiles 0.25Q, 0.5Q and 0.75Q where Q is the maxi-
mum estimated probability of participation in any given auction. Standard errors were
obtained by bootstrap.
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Table 7: Private and Common Cost Components
Full Information Cost Estimates ‐ Private and Common Costs

Coeff Std‐Err Coeff Std‐Err Coeff Std‐Err

Bidder 1 0.10 *** 0.02 0.04 *** 0.01 0.07 *** 0.03

Bidder 2 0.10 *** 0.02 0.03 *** 0.01 0.06 *** 0.02

Bidder 3 0.13 *** 0.05 0.00 0.01 0.00 0.01

Bidder 4 0.60 * 0.33 0.00 0.11 0.00 0.35

Bidder 5 0.13 *** 0.02 0.01 *** 0.00 0.02 *** 0.01

Bidder 6 0.16 0.11 0.04 * 0.02 0.09 ** 0.04

Bidder 7 0.12 *** 0.03 0.03 *** 0.01 0.07 *** 0.02

Bidder 8 0.23 0.15 0.05 0.07 0.15 0.20

Bidder 9 0.18 *** 0.04 0.01 0.03 0.02 0.10

Bidder 10 0.10 ** 0.04 0.02 *** 0.01 0.05 *** 0.02

Bidder 11 0.10 *** 0.03 0.03 *** 0.01 0.06 *** 0.02

Bidder 12 0.07 0.06 0.03 0.04 0.06 0.09

Bidder 13 0.09 0.06 0.02 ** 0.01 0.04 * 0.02

Bidder 14 0.25 *** 0.10 0.01 0.01 0.01 0.02

Bidder 15 0.20 *** 0.05 0.00 0.01 0.00 0.02

Bidder 16 0.07 0.09 0.03 0.02 0.05 0.05

Bidder 17 0.12 *** 0.04 0.04 0.11 0.09 0.32

Bidder 18 0.23 * 0.12 0.07 0.08 0.20 0.21

Bidder 19 0.15 0.10 0.02 ** 0.01 0.06 ** 0.03

Own Signal Competitor (mean) Competitor (max)

Effect of a one standard deviation increase of own and competitors’ Gaussian costs on
each bidder’s full information cost. The effect of an increase in competitor’s signal
depends on its identity. I report the mean and maximum effects over competitors.
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Table 8: The Effects of Competition on Bidding Behavior

Effects 3 vs 2 4 vs 2  5 vs 2  6 vs 2  7 vs 2  8 vs 2  9 vs 2  10 vs 2 

Competitive 2.24 2.86 3.20 3.42 3.47 3.48 3.49 3.49

Affiliation ‐0.54 ‐0.55 ‐0.60 ‐0.65 ‐0.69 ‐0.68 ‐0.68 ‐0.69

Winner's Curse ‐1.07 ‐2.03 ‐2.85 ‐3.14 ‐3.41 ‐3.54 ‐3.61 ‐3.63

Sampling 2.31 3.39 4.24 4.66 5.00 5.14 5.23 5.25

Total 2.94 3.67 3.99 4.30 4.37 4.41 4.42 4.42

Incremental Effects 3 vs 2 4 vs 3  5 vs 4  6 vs 5  7 vs 6  8 vs 7  9 vs 8  10 vs 9 

Competitive 2.24 0.64 0.36 0.23 0.05 0.01 0.01 0.00

Affiliation ‐0.54 ‐0.01 ‐0.06 ‐0.04 ‐0.05 0.02 0.00 ‐0.01

Winner's Curse ‐1.07 ‐0.99 ‐0.86 ‐0.30 ‐0.28 ‐0.14 ‐0.08 ‐0.02

Sampling 2.31 1.11 0.88 0.44 0.35 0.15 0.08 0.02

Total 2.94 0.75 0.33 0.33 0.08 0.04 0.01 0.00

Previous CC Level 97.06 96.33 96.01 95.70 95.63 95.59 95.58 95.58

Decomposition of the cost-saving effect of inviting more bidders. The top panel com-
pares inviting N = 3, ..., 10 relative to inviting only 2 bidders. The bottom panel
compares inviting N = 3, ..., 10 relative to inviting N − 1 bidder. All units are normal-
ized so that 100 equals the average procurement costs in the baseline case (2 and N − 1
bidders in the top and bottom panels, respectively).
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