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Abstract
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if the distribution of consumer types satisfies a set of simple inequalities,
which involve the relative fractions of consumers who like different products
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1 Introduction

Consider a consumer who has a certain need and looks for a product that will

satisfy it. When confronted with a particular product, the consumer can identify

whether he wants it. However, when he first embarks on the search process, he is

unable to provide an exact description of his need, and can only submit an imprecise

“query”that fits several product types. How should a benevolent planner react to

the consumer’s query? If he gives the consumer a single item, he risks ending up

with a poor match. Instead, the planner may provide the consumer with a set of

options to browse. If search is time-consuming, the planner should design the set in

order to balance two considerations: maximizing the probability that the consumer

will find what he is looking for, and minimizing the amount of time it will take him

to find it. In other words, the planner’s problem is to design the consumer’s “search

environment”.

The consumer’s predicament is prevalent in other environments. When an em-

ployer approaches a Human Resource agency with an intention to hire a new worker,

the most he can usually do is list a few characteristics that vaguely describe the kind

of worker he is looking for. Likewise, when we look for a rental apartment through

a real-estate agent, we typically describe only broad characteristics (location, size,

amenities). A more modern example is online search, where users submit queries

that often contain general and imprecise keywords. Imagine that you look for a

specific piece of instrumental music on YouTube, but you forgot its name. You

would recognize it instantaneously if you heard it, but the only information you

can supply to YouTube is the piece’s genre. Finally, there are cases in which the

consumer passively conveys information. For instance, in contemporary online plat-

forms, the “cookies”on users’computers describe their navigation history, which

may be correlated with their current needs.

We attempt to capture situations of this kind with a simple model, in which

every consumer is interested in only one type of product and can provide only one

particular description or “query” concerning this product. Each product type is

supplied by a continuum of firms; and when the consumer is given a subset of firms,

he browses it using the most basic search technology in the literature: random

sequential search. In our model, a central planner aims to associate with each

query a “search pool”(an infinite and typically heterogeneous collection of firms)

so as to maximize expected social welfare, defined by the gross surplus created when

consumers and suppliers transact minus the search costs that consumers incur. An

effi cient search pool is one in which it takes consumers little time on average to find

what they want.

If consumers could provide a perfectly informative query, there would be no
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design issue: when a consumer says he is interested in product type x, the planner

will respond with a homogenous search pool consisting of many suppliers of x. The

design problem arises when the consumer’s query is a noisy signal of his need. The

planner could still reach his objective if he could directly identify the type of product

offered by each supplier: the optimal composition of product types in the search

pool associated with each query is determined by a simple first-order condition that

reflects the preference distribution among consumers who submitted the query.

The problem becomes economically interesting when the planner wishes to de-

centralize the allocation of suppliers into search pools (because it is too costly for

him to directly verify product types, or because he wants to automatize the alloca-

tion procedure). In this case the planner needs to make sure that suppliers’assign-

ment into search pools is aligned with their incentives. This is an object-allocation

problem, where the allocated objects are unusual: entitlements to enter consumers’

search pools. A supplier’s ultimate evaluation of this allocation is a function of

the joint distribution of consumers’needs and queries (as well as the assignment of

other suppliers). The incentive problem arises because consumers’queries are noisy

signals of their needs, which encourages suppliers to present themselves as relevant

to many queries. In the absence of appropriate design, consumers’search pools will

be ineffi ciently composed, resulting in excessively prolonged search.

Our first result is that as long as the planner has no budget constraints, there is

a direct (anonymous) mechanism that Nash implements the effi cient search pools

for any underlying joint distribution over consumers’ needs and queries. Next,

we ask whether the planner can design a direct mechanism that maximizes social

surplus and fully extracts it. If the planner were a perfect monopolist trying to

maximize profits, this would be his first-best outcome. This objective turns out to be

implementable if and only if every pair of product types satisfies a simple inequality,

which incorporates two quantities: the product types’ relative popularity, and a

conventional measure (known as the Bhattacharyya Coeffi cient) of the similarity

between the query distributions that characterize consumers who look for these two

product types. As consumer preferences become more uniformly distributed and

queries become more Blackwell-informative of consumers’preferences, the perfect

monopolist’s objective is more easily implementable. When it is implemented, the

“price per impression” that firms of any given type pay obeys a simple formula.

These prices decrease with the Blackwell informativeness of consumers’queries.

Can the optimal mechanism be mimicked by an indirect mechanism in which

suppliers engage in competitive bidding for the right to be included in search pools?

In other words, can some form of a competitive market implement effi cient search

environments? We propose an auction format in which each firm submits a “bid-per-

impression”for one query of its choice, and where the highest bidder for one query
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can enter with some probability into search pools associated with other queries that

it did not bid for. We refer to this last feature as “broad matching”, hijacking search-

engine jargon. Thus, when a consumer submits a query, he receives a potentially

mixed search pool that includes firms that bid for other queries. We show that

when the perfect monopolist’s objective is implementable, our broad-match auction

has an essentially unique symmetric pure-strategy Nash equilibrium, in which social

surplus is maximized and fully extracted. Furthermore, the optimal auction has a

simple specification of the “broad match function”that determines the probability

with which the highest bidders for a query enter the search pool associated with

any given query.

Our notion of broad matching captures an intuitive function of real-life insti-

tutions that match agents in two-sided markets. This function can be described

as “vocabulary expansion”. When a prospective buyer looks up “road bikes” in a

classified directory, he may see items listed by sellers under “racing bikes”, “hybrid

bikes”or “fixed gear bikes”. Although the buyer and seller used different terms, the

directory bridges the gap between their vocabularies in the interest of a potentially

good match. Likewise, “organic”online search engines respond to keyword-based

queries by taking into account typos and semantically related terms. The broad-

match function plays a similar role in our indirect mechanism.

The main contributions of this paper are thus threefold: formulating the problem

of decentralized implementation of effi cient search environments, elucidating the

forces that shape the relevant incentive constraints, and the novel broad-matching

auction format. Although this project has been inspired by modern online search

engines, the model obviously abstracts from some of their key features and therefore

cannot be viewed as a faithful model of this real-life institution. We do hope,

however, that our abstraction will help researchers conceptualize the problem of

“search design”in various economic settings, which include search engines, but - as

we demonstrate in the concluding section - are not restricted to them.

2 The Environment

Let X be a finite set of product types, |X| ≥ 2. Let W be a finite set of signals,

where |W | ≥ |X|. For every x ∈ X, there is a measure one of firms that offer only
this product type (as many units as required, at zero cost). We sometimes refer to

them as x firms. Each firm is informed of its own type only. A firm gets a fixed

payoff of 1 from any unit it sells (we abstract from product prices).1

On the other side of the market, there is a measure one of consumers. A con-

1We assume this symmetry purely for notational simplicity; it is easy to adapt our analysis to
the case of profit margins that vary across firm types.
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sumer type is defined by the pair (x,w), where x is the (only) type of product

he is interested in, and w is the signal he can convey about what he is look-

ing for. In line with some of the potential applications we have in mind, we of-

ten refer to w as a “query”, a “keyword” or “the consumer’s vocabulary”. Let

µ ∈ ∆(X ×W ) be the distribution of consumer types in the population. The mar-

ginals of µ on X andW have full support. As usual, denote µ(x) =
∑

w µ(x,w) and

µ(· | x) = (µ(w | x))w∈W . The latter is referred to as the conditional signal/query

distribution that characterizes the preference type x.

When a consumer of type (x,w) consumes a product of type y 6= x, he gets a

sure payoff of 0. When he consumes a particular product of type x, he gets a payoff

of π > 0 with independent probability θ and a payoff of zero with probability 1− θ.
The parameter θ captures idiosyncratic heterogeneity among consumers and firms

of a given type. Products are “inspection goods”: when a consumer encounters a

particular product, he immediately recognizes the payoff it generates. However, all

he can communicate ex-ante about what he is looking for is encapsulated in the

signal w. Note that w does not represent the consumer’s information about his

own preferences, but the information he can provide to others. Thus, when the

consumer inspects a particular product, this does not cause him to revise his beliefs

about other products.

Consumers decide ex-ante, before their type is realized, whether to engage in

search. If a consumer opts out, he gets a payoff of zero. If a consumer decides to

search, his type (x,w) is subsequently realized and he automatically submits the

signal/query w. He does not get to revise his search decision in this interim stage.

In response to his query, the consumer is given access to an infinite collection of

products. We refer to this collection as the search pool associated with w, and

define it formally as a probability distribution (λ(x | w))x∈X , where λ(x | w) is the

fraction of products of type x in the pool. Denote λ = (λ(· | w))w∈W . The consumer

repeatedly draws independent random samples from this pool (with replacement),

where each draw carries a fixed cost c ∈ (0, θ). As soon as the consumer finds a

product that satisfies his need, he transacts with its seller and terminates his search.

If λ(x | w) > 0, a consumer of type (x,w) will find what he wants in finite time

with probability one (because the pool contains infinitely many products).

The consumer’s ex-ante participation decision maximizes his expected utility

according to "rational expectations". In fact, all we need to assume is that the

consumer’s decision is based on a correct estimate of: (1) the probability he will

find a product that satisfies his (yet to be realized) need; and (2) the expected

duration of his search. These are broad features of the overall quality of a search

platform, and consumers can plausibly learn them in the long run.
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An example: Mozart vs. Stravinsky

The following specification illustrates the primitives of our model and serves as a

running example. Our consumer population consists of people who had a previous

chance encounter with some piece of classical music - while listening to the radio,

watching a film or attending a public ceremony - and are now trying to retrieve

it (different consumers are looking for different pieces). Suppose that all relevant

pieces have been composed by either Mozart or Stravinsky. Accordingly, let X =

{moz, str}. The set of signals consists of three keywords, “Mozart”, “Stravinsky”
and “Classical Music”, denotedMOZ, STR and CL respectively. A consumer type

(moz,MOZ) ((str, STR)) is interpreted as someone who recognizes that the piece

he once heard was by Mozart (Stravinsky). In contrast, the types (moz,CL) and

(str, CL) are unable to describe the composer of the piece they are looking for,

and all they can say ex-ante is that they are looking for some piece of classical

music. Each consumer can recognize whether a particular music file he listens to is

a rendition of the piece he is looking for. However, the inspection never reveals the

piece’s composer, and consequently the consumer is never able to revise his query.

Assume µ(moz, STR) = µ(str,MOZ) = 0 - that is, when a consumer can name

the composer, he never makes an error.

Optimal search pools

Consider a central planner who aims to allocate firms into search pools in order to

maximize total surplus. Since consumers make their participation decisions before

their types are realized, we can assume that they either all participate or all opt

out. Conditional on participation, social surplus is given by the following function

of the collection of search pools λ:

U(λ) ≡
∑

(x,w)|λ(x|w)>0

µ(x,w) · (1 + π)−
∑
(x,w)

µ(x,w) · c

θ · λ(x | w)

It is clear from this expression that the planner will set λ(x | w) > 0 whenever

µ(x,w) > 0, to prevent a positive mass of consumers from incurring infinite search

costs. Thus, conditional on participating, all consumers eventually find what they

want, such that firms earn a total payoff of 1, consumers earn a total gross payoff

of π, and the expected search cost of a consumer of type (x,w) is c/θλ(x | w).

Define λ∗ = arg maxλ U(λ). This means that λ∗ minimizes consumers’expected

search duration. First-order conditions imply

λ∗(x | w)

λ∗(y | w)
=

√
µ(x,w)

µ(y, w)
(1)
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whenever µ(x,w)µ(y, w) > 0. Since
∑

x∈X λ
∗(x | w) = 1, we obtain

λ∗(x | w) =

√
µ(x,w)∑

y∈X
√
µ(y, w)

(2)

In the “Mozart vs. Stravinsky”example, λ∗(str, STR) = λ∗(moz,MOZ) = 1,

because the signals MOZ and STR are perfectly informative of the consumer’s

preferences. The fraction of moz products in the search pool associated with the

query CL is

λ∗(moz,CL) =

√
µ(moz,CL)√

µ(moz,CL) +
√
µ(str, CL)

(3)

From now on, we will assume that c is suffi ciently small, such that U(λ∗) > 0 -

i.e., it is socially optimal for consumers to participate.

Discussion

Before turning to the analysis, we comment on the way we model consumer search.

Since this paper is the first to formulate the “search design”problem, we were guided

by simplicity, and opted for the simplest (and arguably most common) search pro-

tocol in the literature: random sequential sampling from an infinitely large pool of

items. Important applications of this protocol to consumer-market settings include

Wolinsky (1986) and Armstrong et al. (2009). Thanks to this simplification, we

can afford not to sacrifice generality in modeling the novel friction at the heart of

our paper, namely consumers’limited ability to describe their needs. Modifications

of the search protocol that assume large finite pools or introduce a small exogenous

stopping probability (capturing “search fatigue”) would lead to very similar, but

less elegant characterizations.

The random-sampling assumption means that the planner is unable to control

the order by which consumers inspect products in their search pool. This is a

reasonable assumption for search environments in which inspection is done “offl ine”.

For instance, when a consumer obtains a list of specialists from a “Yellow Pages”

directory, he can verify whether a specialist is a good match only by physically

contacting him. The order in which he will examine the specialists will depend on

their availability, which lies beyond the control of the directory’s planner. Even in

the case of online search - where search results are ordered - the platform’s ability to

control the order of inspection is imperfect. Athey and Ellison (2011) list a number

of reasons why web users may disobey the order in which links appear on their

computer screen: advertisers attract their attention away from prominent links;

some links are slow or broken; and they may distrust the motives behind the search

engine’s suggested order. From this point of view, our random-search assumption

fits a worst-case analysis for the design of search environments. We further discuss
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ordered search in Section 5.

Taking the random-sampling assumption as given, the social value of having

infinitely many firms in search pools arises from our twin assumptions that θ < 1

and that the sampling process is with replacement. If we assumed that θ = 1,

there would be no need for search pools to include more than one firm of each

type. Likewise, if the random sampling procedure were without replacement (an

admittedly more realistic assumption), one could at least construct examples in

which a one-of-a-type pool dominates an infinite pool.2 However, an infinite pool

is socially optimal when sampling is with replacement.

Finally, consider our restriction that consumers make a single, ex-ante partici-

pation decision. As long as π is suffi ciently large, it is easy to extend our analysis

to the case in which the consumer can revise his search decision after his type is

realized (in particular, he can choose to stop searching at any point); the results

are essentially the same (the difference is that effi cient search pools may now ex-

clude consumer and firm types). A deeper challenge is that in reality, query-based

search typically proceeds via successive alterations of the initial query. The reason

is that after encountering several items in the search pool, consumers get a better

sense of how they ought to describe their need, and consequently revise their query.

Constructing richer models of query-based search that incorporate this idea is an

important project for future research, even outside the context of “search design”.

3 Mechanism Design

We are interested in situations where only the consumer can verify whether a partic-

ular product satisfies his need. Moreover, the only means of verification is personal

inspection via sequential search. In these situations, the planner cannot monitor

the composition of search pools. In order to design search pools with a particular

composition, firms need to be incentivized to enter the appropriate search pools.

A mechanism requires each firm to choose an element from some message space

(the firm can also opt out, in which case it earns 0). For every profile of messages,

the mechanism allocates firms probabilistically to the search pools associated with

each w ∈ W , and specifies a (possibly negative) transfer that the firm pays to

the planner. In addition, the mechanism specifies a (possibly negative) transfer to

consumers conditional on participation. The mechanism induces a simultaneous-

move game, in which consumers choose (before their types are realized) whether to

participate, and each firm submits its message or opts out. Following this game,

consumers’types are realized and they automatically submit their queries (if they

2We thank Larry Samuelson for this observation.
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chose to participate), and the search pool associated with each query is induced

by the mechanism and firms’strategies. The solution concept we use is symmetric

Nash equilibrium - i.e., all consumers play the same strategy, and all firms of a given

type play the same strategy.

In this section, we focus on direct mechanisms - i.e. the firms’message space is

X. We also restrict attention to anonymous mechanisms: the outcome for each firm

is purely a function of its own report and the overall distribution of firms’reports.

What can the planner monitor?

Our definition of direct mechanisms specifies lump-sum transfers that are indepen-

dent of events that unfold inside each search pool. Taken literally, this fits situations

in which the planner can only monitor whether firms access search pools. This is

the case of a “Yellow Pages” directory, for example. However, our specification

is also consistent with the case in which the planner can monitor “impressions”-

i.e., he can condition the firm’s transfer on the number of draws it receives in each

search pool (online search engines fall into this category). To see why, note that in

our model firms are risk-neutral, hence all they care about is the total number of

transactions minus the total payment induced by any message they submit. There-

fore, our reduction to lump-sum transfers is a mere simplification that carries no

loss of generality.

Things are different when the planner can monitor transactions. This assump-

tion is sensible in environments like real-estate intermediation, where transactions

are verifiable and subjected to exclusive-dealership arrangements. In our model, it

would completely trivialize the planner’s problem. By assumption, all firms earn a

payoff of 1 conditional on a transaction, regardless of the transacting parties’types.

Therefore, the planner could simply set a uniform price-per-transaction of 1, and

thus implement any outcome he wishes. It follows that the interest in our problem

arises only when the planner is unable to monitor transactions.

3.1 Implementing Effi cient Search Pools

In this sub-section we assume that the planner’s sole objective is to maximize social

surplus. He has an unlimited budget and can therefore satisfy the participation

constraints of consumers and firms. By the Revelation Principle, we assume w.l.o.g

that conditional on participating, each firm truthfully reports its type in equilib-

rium. In addition, we restrict attention to equilibria in which all firms choose to

participate with probability one (we show in the Appendix why this restriction is

w.l.o.g). We are now able to reduce any anonymous direct mechanism to the pair

〈q, T 〉 = 〈(q(x,w))x∈X,w∈W , (Tx)x∈X〉, such that an individual firm that reports x̂

enters the search pool associated with w with probability q(x̂, w), and pays the
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transfer T (x̂) to the planner.3 Because consumers have no private information at

the time they make their decision, we omit their transfer from the description and

take it for granted that it ensures their participation.

The planner’s problem is to find an anonymous direct mechanism that sustains

the optimal collection of search pools λ∗ in symmetric Nash equilibrium. By the

assumption that all firms participate and report truthfully, the allocation rule q

must satisfy

λ∗(x | w) =
q(x,w)∑
y q(y, w)

(4)

for every (x,w) in the support of µ. It follows that the planner’s problem is to

find a pair 〈q, T 〉 that induces λ∗ according to (4), subject to the firms’incentive
compatibility constraint: for every x, y ∈ X,

∑
w∈W

q(x,w) · µ(x,w)

q(x,w)
− Tx ≥

∑
w∈W

q(y, w) · µ(x,w)

q(x,w)
− Ty (5)

To understand this inequality, recall that when a firm of type x submits the

report x̂, it enters the search pool associated with any query w with probability

q(x̂, w). Let us calculate the number of transactions the firm expects in the pool.

The total measure of consumers at the pool who are interested in the firm’s type

of product is µ(x,w). All of these consumers eventually find a desirable product;

hence, they are equally shared by the x firms in the pool. The total measure of these

firms is q(x,w), by the assumption that all firms participate and report truthfully.

The number of transactions that the firm expects to get in the pool associated with

w is thus µ(x,w)/q(x,w). The firm’s total number of transactions is then calculated

by summing over all consumer queries. To get the firm’s payoff, we subtract the

transfer Tx̂ induced by the firm’s report. Note that the firm’s net equilibrium payoff

is the L.H.S of (5), which is equal to µ(x)− Tx.
Plugging (1) and (4) into (5) and rearranging, we obtain the following lemma.

Lemma 1 An anonymous direct mechanism defined by 〈q, T 〉 implements λ∗ in a
symmetric Nash equilibrium if and only if

µ(x)−
∑
w∈W

√
µ(x,w)µ(y, w) ≥ Tx − Ty (6)

for every x, y ∈ X.

We are now ready for our first main result.

3More generally, each firm is assigned a probability distribution over subsets of search pools.
However, because firms’payoff is separable across search pools, it is w.l.o.g. to associate with each
report a probability distribution over individual search pools.
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Proposition 1 There is an anonymous direct mechanism that implements λ∗ in

symmetric Nash equilibrium.

Proof. We prove a stronger result: the first-best is implementable by independent
mechanisms for each w, as if W consisted of w alone. This result is stronger be-

cause we continue to assume the same equilibrium behavior by firms (participation

and truthful revelation) and the same implemented outcome, but there are more

constraints to satisfy (separate participation and IC constraints for each signal,

compared with single participation and IC constraints in the grand mechanism).

Consider some w ∈ W and some pair of product types x, y ∈ X. When the

relevant set of signals is a singleton, {w}, the constraint that prevents type x from
pretending to be y, denoted IC(x, y), is given by the following inequality (derived

from (6)):

µ(x,w)−
√
µ(x,w)µ(y, w) ≥ Tx − Ty (7)

Let φ(x, y) denote the L.H.S. of (7), and rewrite IC(x, y) as φ(x, y) ≥ Tx− Ty. For
any cycle of products (x1, x2, . . . xm, x1),

φ(x1, x2) + · · ·+ φ(xm, x1) =
m∑
i=1

(
µ(xi, w)−

√
µ(xi, w)µ(x(i+1)modm, w)

)
≥

m∑
i=1

(
µ(xi, w)−

µ(xi, w) + µ(x(i+1)modm, w)

2

)
= 0

Then, by Rochet (1987), there is a collection of transfers (Tx)x∈X that satisfies

IC(x, y) for all x, y ∈ X.

To illustrate the argument underlying the proof, let X = {x, y}, W = {w}.
Suppose the function q is designed to induce an effi cient search pool under truthful

reports. If type x reports truthfully, he gets µ(x) transactions. If he misreports,

then by Lemma 1, the number of transactions he will get is the geometric average

of µ(x) and µ(y). The mutual incentive compatibility constraints are then reduced

to the requirement that the arithmetic average of µ(x) and µ(y) is weakly greater

than their geometric average, which is always true. In the Appendix, we explicitly

derive transfers that implement λ∗, using Vohra’s (2011) flow-network technique.

3.2 Full Surplus Extraction and Bhattacharyya Similarity

In this sub-section we assume that the planner does not settle for maximizing social

surplus, but also wants to fully extract it. If the planner were a monopolistic, profit-

maximizing search platform, that would be its ideal outcome. Accordingly, we refer
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to the planner’s goal in this sub-section as the “perfect monopolist’s objective”. We

focus on the firms’behavior and take it for granted that the planner sets consumers’

transfer such that their participation constraint holds bindingly.

Before characterizing the implementability of this more stringent objective, we

need to introduce a new concept. When a firm contemplates misreporting its type,

it realizes that it may be allocated to search pools associated with different queries.

However, since consumers’queries are noisy signals of their needs, the firm may still

get a fair number of transactions despite its misallocation. Thus, the firm’s potential

gain from misreporting depends on the distinctiveness of the signal distributions

that characterize consumer preference groups. It is therefore useful to measure the

similarity between the conditional query distributions µ(· | x) and µ(· | y), for any

given x and y. Of course, there are multiple ways to measure similarity between

probability distributions. However, one particular measure turns out to be relevant

for our exercise. For any pair of products x, y ∈ X, define

S(x, y) ≡
(∑
w∈W

√
µ(w | x)µ(w|y)

)2

In the statistics literature,
√
S(x, y) is known as the Bhattacharyya Coeffi cient

that characterizes the distributions µ(· | x) and µ(· | y).4 From a geometric point

of view, this is an appropriate similarity measure, because
√
S(x, y) is the direction

cosine between two unit vectors (
√
µ(w | x))w∈W and (

√
µ(w | y))w∈W . The value

of S(x, y) increases as the angle between these two vectors shrinks; S(x, y) = 1

(0) if the two vectors are identical (orthogonal). More importantly, the following

observation establishes that S(x, y) is an appropriate similarity measure given our

interpretation of µ(· | x) and µ(· | y) as conditional signal functions.

Remark 1 Regard the stochastic matrix (µ(· | x))x∈X as an information system in

Blackwell’s sense. When (µ(· | x))x∈X is subjected to Blackwell garbling, S(x, y)

weakly increases for all x, y.

Thus, Bhattacharyya Coeffi cients decrease with the Blackwell-informativeness of

consumers’queries. This is consistent with the intuition that the distance between

conditional query distributions captures consumers’ability to describe their needs.

In our “Mozart vs. Stravinsky”example, S(moz, str) = µ(CL | moz)µ(CL | str).
Our next result establishes a necessary and suffi cient condition for the imple-

mentability of the perfect monopolist’s objective.

4See Basu, Shioya and Park (2011) and Theodoris and Koutroumbas (2008). A related concept
is the Hellinger distance between distributions, given by H2(x, y) = 1−

√
S(x, y).
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Proposition 2 There exists an anonymous direct mechanism that implements the

perfect monopolist’s objective if and only if

µ(x)

µ(y)
S(x, y) ≤ 1 (8)

for every x, y ∈ X.

Proof. As pointed out in the discussion below (5), the net payoff of a firm of type

x when all firms report truthfully is µ(x)−Tx. Consider any x, y ∈ X. Full surplus
extraction means that µ(x)− Tx = µ(y)− Ty = 0. Thus, IC(x, y), as given by (6),

is reduced to µ(y) ≥
√
µ(x)µ(y)S(x, y), which is equivalent to (8).

Thus, the forces that obstruct the perfect monopolist’s objective are large pop-

ularity gaps between products and uninformative signals. Consider two consumer

preference types, x and y. If x is significantly more common than y in the consumer

population, and the conditional signal distributions that characterize x and y are

relatively similar, then IC(x, y) will fail to hold. In the “Mozart vs. Stravinsky”

example, IC(moz, str) is violated when µ(moz)/µ(str) is far from 1 and µ(CL) is

large. At the other extreme, the perfect monopolist’s objective is implementable

when the marginal of µ over X is uniform (because S(x, y) ≤ 1 for every x, y), or

when consumers’signals are fully informative (because in this case, S(x, y) = 0 for

all x 6= y).

To get an intuition for condition (8), let X = {x, y} and µ(x) > µ(y), and let

firms play an equilibrium that sustains the first-best. Now suppose that a firm of

type x deviates by pretending to be y. On one hand, the firm’s transfer to the

planner drops from µ(x) to µ(y). On the other hand, the firm’s probability of

entering the search pool associated with any w drops less in relative terms, because

by (1) and (4), the ratio q(y, w)/q(x,w) is equal to the square root of the ratio

µ(y, w)/µ(x,w). Thus, there is a sense in which, relative to the transfer rule, the

allocation rule is biased in favor of the minority preference group, and this boosts the

x firm’s incentive to deviate. If consumers’signals are suffi ciently noisy, there will be

many consumers who want x in the search pools to which the firm is misallocated,

and IC(x, y) will be violated.

We saw that when the planner only cares about effi ciency, signal-by-signal im-

plementation of his objective is possible. In contrast, for generic µ, signal-by-signal

implementation of the perfect monopolist’s objective is impossible. The reason is

that in a single-query environment, S(x, y) = 1 for all x, y. Hence, Inequality (8) is

violated by product types x, y for which µ(x) > µ(y).
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Prices per impression

The price-per-impression that a firm pays is the total transfer the firm pays to the

planner, divided by the total number of times it is drawn by consumers in search

pools. In any equilibrium that implements the perfect monopolist’s objective, the

price-per-impression of a firm is equal to its average “conversion rate” - i.e., the

ratio of the total number of transactions the firm makes to the total number of

draws it gets. The next result characterizes this quantity.

Proposition 3 A direct anonymous mechanism that implements the perfect mo-

nopolist’s objective induces the following price-per-impression for every product type

x:

p∗(x) =
θ
√
µ(x)∑

y

√
µ(y)S(x, y)

(9)

Bhattacharyya Coeffi cients play an important role in this price function: p∗(x)

increases as the conditional query distribution that characterizes consumers who

look for x becomes more distinctive. The price-per-impression of all x is weakly

increasing in the Blackwell informativeness of consumers’queries.

To illustrate the comparative statics, suppose thatX = W and that the marginal

of µ over X is uniform. Consider two extreme cases. First, let µ(x | x) = 1 for all

x - i.e., consumers can perfectly describe their needs. Then, p∗(x) = θ for every

x. Second, suppose µ is uniform over X ×X. In this case, consumers’signals are
entirely uninformative, and we have p∗(x) = θ/ |X| for every x.
Finally, in the “Mozart vs. Stravinsky”example,

p∗(str) =
θ

1 +
√
µ(moz,CL)/µ(str, CL)

p∗(moz) =
θ

1 +
√
µ(str, CL)/µ(moz,CL)

Note that p∗(moz) (p∗(str)) is an increasing (decreasing) function of the fraction of

moz fans among consumers who submit the query CL.

3.3 Uniform-Price Mechanisms

Suppose that the planner is not interested in extracting surplus. Instead, he wishes

to implement λ∗ using a mechanism in which transfers are independent of the firms’

reports - i.e., Tx = Ty for all x, y ∈ X∗. In particular, the mechanism may be

required to involve no transfers at all. We refer to anonymous direct mechanisms

that satisfy this additional requirement as uniform-price mechanisms.
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Proposition 4 There exists a uniform-price mechanism that implements λ∗ in

symmetric Nash equilibrium, if and only if (8) holds for every x, y ∈ X.

Proof. Let x, y ∈ X. Impose the uniform-price requirement Tx = Ty. Then,

IC(y, x), as given by (6), is reduced to µ(y) ≥
√
µ(x)µ(y)S(x, y), which is equiva-

lent to (8). (Note that the result follows from examining IC(y, x), whereas in the

proof of Proposition (2) it followed from examining IC(x, y).)

Thus, the condition for implementability of effi cient search pools by a uniform-

price mechanism is the same as the condition for implementability of the perfect

monopolist’s objective. To appreciate this coincidence, consider an abstract single-

agent mechanism-design setting with two agent types, 1 and 2, and two possible

outcomes, O1 and O2. Suppose that the planner’s objective is to assign the outcome

Ok to type k. The gross payoff of type i from outcome Oj is denoted dij. Let

tk denote the transfer the agent pays when he reports his type to be k. The IC

constraints that ensure truthful reporting are d11−t1 ≥ d12−t2 and d22−t2 ≥ d21−t1.
Full surplus extraction implies tk = dkk, and the IC constraints are reduced to

d22 ≥ d12 and d11 ≥ d21. Alternatively, uniform prices mean t1 = t2, and the IC

constraints are reduced to d11 ≥ d12 and d22 ≥ d21. Obviously, these systems of

inequalities need not coincide. And indeed, in general settings, the conditions for

implementing an outcome with full surplus extraction and with a uniform-price

mechanism are different. However, if d12 and d21 happen to be the same, the two

systems do coincide. This is precisely what happens in our setting: we saw that

under λ∗, the number of transactions that a firm of any type x expects when it

pretends to be any other type y is
∑

w∈W
√
µ(x,w)µ(y, w).

4 Competitive Bidding and Broad Matching

Is there a plausible indirect mechanism that implements the perfect monopolist’s

objective when condition (8) holds for every x, y ∈ X? We are particularly in-

terested in mechanisms based on competitive bidding, because they are natural

benchmarks for object-allocation mechanisms and commonly used by online search

engines. Moreover, they shed light on a key question: can “competitive forces”

generate effi cient search environments?

We propose a mechanism referred to as a “broad-match auction”. Each firm

simultaneously chooses exactly one signal in W to bid for. Bids are “per impres-

sion”, according to a rule we explain below. We introduce a broad-match function

b : W ×W → [0, 1] that assigns to each signal v ∈ W a measure b(w | v) of “(w, v)

tickets”for every w ∈ W . Each of these (w, v) tickets is uniformly assigned to the

firms that submitted the highest bid for v. When a consumer submits the query w,
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he gets access to a search pool consisting of a measure
∑

v∈W b(w | v) of (w, ·) tick-
ets, originating from all signals v via the broad-match function. The consumer then

sequentially samples random tickets from this pool. Each time a consumer draws

a (w, v) ticket, he incurs a search cost c and inspects the firm holding the ticket,

and the firm pays to the planner the (winning) bid-per-impression it submitted for

v. As to the consumer’s transfer, assume it makes him indifferent to participation

under the effi cient allocation of firms to search pools.

From consumers’point of view, the broad-match function plays the role of “vo-

cabulary expansion”. When a consumer submits the query w, he receives a search

pool consisting of “tickets” that originate from various signals v. Therefore, the

broad-match function mimics an environment in which the consumer has a richer

vocabulary. Real-life intermediaries regularly fulfill this role, in order to generate

matches that otherwise would not occur due to the different language that parties

on the two sides of the market use to describe themselves or what they are looking

for. Our innovation will be to show that when this role is explicitly integrated into

the design of the search platform, it can augment a conventional competitive-bidding

mechanism and go beyond its limitations.

The search process under the broad-match auction is slightly different from the

description in Section 2, because here consumers repeatedly sample tickets rather

than suppliers. The conversion rate that a (w, v) ticket generates for the individual

firm that holds it is the probability that a consumer who draws the ticket will

transact with that firm. The average conversion rate that the signal v generates

for an individual firm that submitted the highest bid for v is the probability that a

consumer who draws any of the (·, v) tickets the firm holds will transact with it.

The broad-match auction admits the possibility that all tickets in a search pool

will be held by a single firm. This possibility will not be realized in the equilibria

we will analyze, but it can occur off the equilibrium path - e.g. when a single firm

outbids all others for some signal. The firm’s payoff in this case is ill-defined because

it receives infinitely many draws. All we need to assume in this case is that if the

conversion rate that the signal generates for that firm is above (below) the firm’s

bid, the firm’s payoff is arbitrarily high (low).

As a benchmark for our analysis, let us consider two extreme specifications of b.

Exact matching

Suppose that b(w | w) = 1 and b(w | v) = 0 for all w 6= v. In this case, we have an

“exact-match auction”: consumers who submit the query w are brought into contact

only with firms that submitted a winning bid forw. This reduces our mechanism to a

signal-by-signal first-price auction. If consumers’signals were perfectly informative,

it could implement the perfect monopolist’s objective in symmetric pure-strategy

Nash equilibrium. The diffi culty with exact matching arises when signals are noisy,
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such that optimal search pools are required to be diverse. Consider the “Mozart vs.

Stravinsky”example. If we restrict attention to symmetric pure-strategy profiles,

exact matching only allows λ(· | CL) to take the values 0, 1
2
, 1, and therefore it is

mechanically unable to generate λ∗(· | CL) for generic µ.

However, the diffi culty with exact matching extends to mixed-strategy equilibria.

Let m(x) denote the measure of x firms in the CL search pool that is induced by

some symmetric (and possibly mixed) Nash equilibrium. Then,

m(moz)

m(str)
=
λ(moz | CL)

λ(str | CL)
(10)

In order for λ to coincide with λ∗, it must be the case thatm(moz) > 0 andm(str) >

0 - i.e., both moz and str firms must submit the winning bid for CL. In order for

the firms’ surplus to be fully extracted, the winning bid must be equal to the

conversion rate they expect at CL. Therefore, they must expect the same number

of transactions in the pool. This number for an individual x firm is µ(x,CL)/m(x),

because all consumers of type (x,CL) search and eventually find a product they

like, and all x firms in the pool equally share this clientele. Plugging (10), we obtain

λ(moz | CL)

λ(str | CL)
=
µ(moz,CL)

µ(str, CL)

which contradicts the effi ciency condition (3).

Fully broad matching

Suppose that b(w | v) = 1 for all w, v. This reduces our mechanism to exact

matching, defined for a fictitious environment that consists of one signal w∗, such

that the fraction of (x,w∗) consumers is µ(x). Therefore, fully broad matching is

weakly dominated by exact matching. In particular, there are distributions µ for

which the former fails to implement the perfect monopolist’s objective while the

latter succeeds. The reason is that fully broad matching effectively eliminates all

the information contained in consumers’signals.

We now construct a broad-match function b∗ that lies somewhere between the

two extremes of exact and fully broad matching. It will be convenient to present X

as a subset of W .5 For every w, v ∈ W ,

b∗(w | v) =

{ √
µ(v, w) if v ∈ X

0 if v /∈ X

This broad-match function has a natural interpretation. The signals in W −X
5This is more than a notational convenience: as in the “Mozart vs. Stravinsky”example, it is

natural to assume that the name of a product type is itself a possible query.
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are “dummy keywords”with no value for bidders, because they grant no tickets to

any search pool. The signals in X are “working keywords”worth bidding for. The

strength of the broad match from v = x to w increases with the fraction of (x,w)

types among consumers.

Unlike the analysis in Section 3, here we are interested in characterizing the

entire class of symmetric pure-strategy Nash equilibria in the game that is induced

by the mechanism. Note that there are trivial equilibria in which consumers choose

not to participate. The following result neglects these equilibria.

Proposition 5 Suppose condition (8) holds for every x, y ∈ X. Then, the game

induced by the broad-match auction defined by b∗ has a Nash equilibrium, in which

all firms of type x bid p∗(x) for the signal x, where p∗ is given by (9). Moreover,

for generic µ, this is the unique symmetric pure-strategy equilibrium in which all

consumers participate. In this equilibrium, firms surrender their entire surplus to

the planner, and the induced collection of search pools is λ∗.

Thus, b∗ addresses the incentive problem due to broad matching, to the extent

possible given Proposition 2. On one hand, allocation of keywords to firms is based

on competitive bidding. In equilibrium, x firms’bid-per-impression for the “working

keyword”x is equal to their average conversion rate, such that their surplus is fully

extracted. On the other hand, b∗ ensures that the consumers’ search pools are

effi ciently diversified, given firms’equilibrium behavior. For this, it is crucial that

b(w | x) is proportional to
√
µ(x,w). The relation between the broad-match auction

and the direct mechanism is quite transparent: when a firm bids for x, it effectively

reports that this is its type, and the broad-match function executes the role of the

function q in the direct mechanism. As usual, however, the indirect mechanism

generates more potential deviations, and therefore verifying equilibrium - let alone

its essential uniqueness - is more intricate.

A rather restrictive feature of the broad-match auction is that firms are not

allowed to bid for more than one keyword. When we relax this restriction and allow

firms to bid for as many keywords as they wish, a weaker version of Proposition

5 holds: under the same conditions, the modified mechanism admits a symmetric

pure-strategy Nash equilibrium that implements the perfect monopolist’s objective.

However, there is potentially a continuum of other equilibria, in which some firms

earn positive profits.

Comment: Broad matching in sponsored ad auctions

Although our model borrows the term “broad matching”from online search, it does

not mean quite the same thing, and we believe that the differences are instructive.
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Historically, broad matching was introduced in pursuit of two goals:6 (1) simplifying

advertisers’bidding task, because under exact matching they need to bid for many

keywords (involving typos and semantically related terms); (2) thickening markets

in order to raise auction revenues. Both goals are supply-side oriented - broad

matching was not designed with the vocabulary-expansion role in mind. In practice,

vocabulary expansion relies on explicit attempts by the “organic” search engine

(which coexists with sponsored search) to help users refine and correct their queries.

In our model, goals (1) and (2) are irrelevant: if the mechanism allowed firms

to bid for multiple keywords, it would be costless for them to do so; and since

there are infinitely many firms of each type, markets are already thick under exact

matching. Finally, in our model the design of consumers’ search environment is

entirely decentralized, hence no “organic”search engines can help consumers refine

their queries. Thus, broad matching in our model is exclusively a vocabulary-

expansion instrument.

As to the way broad matching interacts with the auction design, our “tickets”

mechanism differs from real-life practice in two important qualitative dimensions.

First, broad matching is optional in practice: bidders can choose to stick with exact

matching. Second, in our model the winners in the auction for v are broad-matched

with other queries w, whereas in practice, broad matching means that whenever a

firm bids for v and selects broad matching, its bid enters auctions for other queries

w. Despite these differences, the idea that broad matching mimics the vocabulary-

expansion role of search intermediaries may be relevant to future work on sponsored

ad auctions.

In our broad-match auction, a firm of one type does not want to kick firms of

another type out of the market (by topping their bid), because this would flood the

firm with “unwanted traffi c”of consumers that do not generate any transactions.

The possibility of receiving many impressions with infrequent conversions is a real

concern in online search markets. As the following quote from Even Dar et al.

(2009) shows, this concern is most profound when relying on a search engine’s

broad match: “While giving more expressiveness to advertisers, this feature makes

it challenging to optimize bids to maximize their returns: choosing to bid on a query

as a broad match because it provides high profit results in one bidding for related

queries which may yield low or even negative profits.”7 Of course, in our stylized

model the “irrelevant traffi c”takes an extreme form (infinitely many impressions),

6This historical account is informed by discussions with David Pennock (a pioneer of sponsored-
link auction formats, which employed broad matching) and Justin Rao. We are grateful to them
for sharing their knowledge and insights, and apologize for any imprecision in this rendering.

7In a similar spirit, an account manager at Bing Ads writes in a blog post titled “The People vs.
Bing Broad Match”that one of the most common complaints levied against Bing broad match is
that "it drives irrelevant traffi c". See http://www.ppchero.com/the-people-vs-bing-broad-match/
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but this motive would be present in some form in a more realistic model that allows

for “search fatigue”or consumer learning.

5 Concluding Remarks

This paper addressed the following general question: under what conditions can a

decentralized mechanism be effi cient in helping individuals find what they want? In

most of our discussion, we interpreted consumers’signals as keyword-based queries,

and this linked our model to the problem of search-engine design. In this context,

our question could be rephrased as follows: would a search intermediary’s perfor-

mance (measured in terms of profits or social welfare) deteriorate if it switched from

a centralized matching algorithm to a decentralized mechanism?

However, our framework accommodates a wider range of environments, including

ones which have yet to establish an organized marketplace for allocating firms to

search pools. For example, online recommender systems give users access to search

pools according to their navigation history, which serves as an imperfect signal of

their current needs. In contrast to search engines, recommender systems do not

purely rely on queries initiated by the web user.8

To see how the broad-match auction of Section 4 fits the recommendation-system

interpretation, suppose that W represents a set of possible past purchase profiles

of the consumer. In particular, we can set W = XK , where K is the number of

past purchase opportunities the consumer had. An element in W is a platform

for “personalized advertising”, augmented by broad matching: when an advertiser

pays for a particular profile of past purchases, he potentially gets access to other

profiles. In this context, our question can be rephrased as follows: suppose that a

recommender system abandons its centralized recommendation algorithm in favor of

a “market for sponsored recommendations”; will its performance deteriorate as a

result? Propositions 1 and 2 can be viewed as partial answers to this question.9

Ordered search pools

Suppose that the planner can perfectly control the order in which consumers inspect

search results. Thus, he can choose which type of firm the consumer will encounter

at each draw, as a function of his search history. The effi cient ordering of items

in a search pool follows simple maximum likelihood: the product type displayed in

the k-th position of a w consumer’s list, denoted xk(w), is the most likely to be

8Netflix automatically displays movie recommendations for its subscribers on its homepage;
when a consumer buys a particular product on Amazon, the checkout screen displays recommended
products, even though the consumer was not actively searching for these products; and when
a researcher views a scholarly article on ScienceDirect, the side panel displays links to other
recommended articles.

9For a model of pricing of targeted ads, see Bergemann and Bonatti (2013).
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preferred by the consumer, given that he rejected all the k − 1 firms whose types

are x1(w), . . . , xk−1(w). This ordering can be easily implemented because the firm

type with the highest willingness to pay for the k-th position is the one that is most

likely to transact with the consumer, which is by definition xk(w). The feature that

trivializes the problem is the lack of substitutability between product types: if a

consumer wants x, he will never transact with y 6= x. Relaxing this assumption is

necessary for an interesting model with ordered search pools.

Related literature

We are not aware of precedents for our formulation of the “search design”prob-

lem. One related body of work studies mechanisms for allocating sponsored links

by online search engines (e.g. Edelman et al. (2007)). Typically, the literature

assumes that links have exogenous values to advertisers. Athey and Ellison (2011)

explicitly model how these values are determined by consumers’endogenous search

decisions. Chen and He (2011) and Eliaz and Spiegler (2011) model explicitly the

interaction between keyword and product prices (ignoring auction-theoretic consid-

erations). This literature almost invariably assumes exact matching; two exceptions

are Dhangwatnotai (2011) and Chen et al. (2014). The first study uses the “price

of anarchy” framework to analyze the performance of a mechanism in which ad-

vertisers can submit a bid to multiple generalized second-price auctions at once.

The second paper analyzes the worst equilibrium of a mechanism that randomly

samples a keyword according to a predefined probability distribution and only runs

the generalized second-price auction for this sampled keyword.

This paper is also related to the literature on intermediation in two-sided markets

(see Caillaud and Jullien (2001,2003), Rochet and Tirole (2003) and Armstrong

(2006)). Some works within this tradition (e.g. Hagiu and Jullien (2011)) explicitly

address search platforms. One can view the consumer’s signal in our model as a

(sole) platform to which he has access. In this context, broad matching can be

viewed as a “directed network of platforms”: a consumer who is attached to one

platform is able to interact with firms that attach themselves to another platform.

The papers we are aware of implicitly assume exact matching: interaction between

a consumer and a firm requires that they are both attached to the same platform.10

Finally, in the last decade there has been much writing, both academic and pop-

ular, about the “long tail”phenomenon (see Brynjolfsson et al. (2006) or Anderson

(2007)). In many industries, a large segment of the consumer population consists

of numerous small taste niches. Online commerce facilitates the flourishing of the

10Some papers in the literature on two-sided markets have taken a mechanism-design approach.
Spiegler (2000) examines contract design by an intermediary who aims to match agents who could
interact elsewhere, and extract their joint surplus. Gomes and Pavan (2014) study mechanisms for
implementing effi cient many-to-many matching when agents are privately informed about their
"vertical" characteristics.
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“long tail”, because it lowers barriers to entry that characterize brick-and-mortar

commerce. The key friction that remains (indeed, becomes magnified) is consumers’

limited awareness of products that fit their peculiar tastes, and their limited abil-

ity to describe these tastes in order to locate relevant products on the internet.

The “long tail”phenomenon means that search design can have substantial welfare

implications.
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Appendix: Proofs
An explicit direct mechanism for Proposition 1
We construct a mechanism for each signal w (independently of all other signals),

using Vohra’s (2011) graphical representation of IC constraints. Consider a weighted

directed graph, whose set of nodes is X, and the weight on the link x → y is

φ(x, y) = µ(x,w)−
√
µ(x,w)µ(y, w). Add a link from any x to itself, whose weight

is φ(x, x) = 0. A path from x to y is a sequence of nodes that begins with x and

ends with y. Define the length of a path to be the sum of the weights on the directed

links along the path. Let δ(x, y) be the distance from x to y, namely the length

of the shortest path from x to y. Since the sum of weights along any cycle is non-

negative, the distance is always well-defined and non-negative, and by definition it

satisfies the triangle inequality: for any x, y, z, δ(x, z) ≤ δ(x, y) + δ(y, z). Fix some

x∗ ∈ X. For any x ∈ X, define Tx = δ(x, x∗) − L, where L > 0 is large enough

to ensure that firms’ participation constraints hold. By the triangle inequality,

φ(x, y) + δ(y, x∗) ≥ δ(x, x∗) for any x, y ∈ X. This implies that for any pair of

distinct products x, y in X, φ(x, y) ≥ Tx − Ty, hence IC(x, y) is satisfied.

Let us illustrate these transfers in the “Mozart vs. Stravinsky”example. The

problem for the signalMOZ is trivial, because all consumers who submit this signal

want moz. Thus, the planner can prescribe Tmoz = ε > 0 = Tstr, and if ε is small

enough, no firm would have an incentive to opt out or misreport. An analogous

argument holds for STR. Let us turn to the mechanism associated with CL. Note

that

φ(moz, str) = µ(moz,CL)−
√
µ(moz,CL)µ(str, CL)

φ(str,moz) = µ(str, CL)−
√
µ(moz,CL)µ(str, CL)

Set Tstr = 0 and Tmoz = φ(moz, str), and all participation and IC constraints will

hold. �

Remark 1
Denote µ(k | i) = βik, such that (βik) is a stochastic matrix with Σkβik = 1 for

every i. Let

δik =
∑
h

βihmhk

where (mhk) is a |W | × |W | bi-stochastic matrix. That it, (δik) is a Blackwell

garbling of (βik). Fix i, j. Then,

∑
k

√
δikδjk =

∑
k

√√√√(∑
h

βihmhk

)(∑
h

βjhmhk

)
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By the Cauchy-Schwarz inequality, this expression is weakly greater than∑
k

∑
h

√
βihmhkβjhmhk =

∑
h

√
βihβjh

∑
k

mhk =
∑
k

√
βikβjk

Since this inequality holds for every i, j, it follows that∑
i

∑
k

√
δikδjk ≥

∑
i

∑
k

√
βikβjk

which completes the proof. �

Proof that Proposition 2 extends to mixed participation decisions
When the mechanism fully extracts firms’surplus, they are indifferent to partic-

ipation. In our analysis, we restricted attention to equilibria in which all firms

participate and report truthfully. The latter is w.l.o.g by the Revelation Princi-

ple. However, it is not obvious that insisting on full participation is w.l.o.g. Put

differently, can we relax condition (8) by allowing firms to play a mixed participa-

tion strategy? Let α(x) be the probability that a firm of type x participates. A

participating x firm has no incentive to report that its type is y if and only if

∑
w∈W

q(x,w) · µ(x,w)

α(x)q(x,w)
− Tx ≥

∑
w∈W

q(y, w) · µ(x,w)

α(x)q(x,w)
− Ty

which reduces to

µ(x)

α(x)
− Tx ≥

∑
w∈W

q(y, w)

α(x)q(x,w)
· µ(x,w)− Ty (11)

Because firms earn zero profits, Tx = µ(x)/α(x) and Ty = µ(y)/α(y). The

ratio between the measures of y and x firms in the pool associated with w is

α(y)q(y, w)/α(x)q(x,w). Since the equilibrium is required to induce effi cient search

pools, this ratio equals λ∗(y | w)/λ∗(x | w) =
√
µ(y, w)/µ(x,w). It follows that

inequality (11) can be written as

1

α(y)

∑
w∈W

√
µ(y, w)√
µ(x,w)

· µ(x,w) ≤ µ(y)

α(y)

which is equivalent to condition (8). �

Proof of Proposition 3
In the first-best outcome, all consumers who look for x eventually find a product

they like, and they are equally shared by a measure one of x firms. Therefore,

the number of transactions that an individual firm of type x expects is µ(x). The
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number of draws it obtains is equal to

∑
w

q(x,w)
∑
y

µ(y, w)

θ · λ∗(y | w)
· 1∑

y q(y, w)

After we plug (2) and (4) into λ∗ and q, this expression becomes

1

θ

∑
y

√
µ(x)µ(y)S(x, y)

The ratio between the number of transactions and the number of draws is the

average conversion rate experienced by x firms. Note that it is equal to p∗(x).

Because firms earn zero profits in the first-best outcome, the average conversion

rate is equal to the amount that x firms pay on average per draw. �

Proof of Proposition 5
We break the proof into three parts.

Part 1: The strategy profile induces λ∗.
Recall there is a measure one of every firm type x ∈ X. Since all x firms bid for x,
the measure of tickets held by x firms in the search pool associated with any w is

b∗(w | x). Therefore, for every w ∈ W ,

λ(x | w) =
b∗(w | x)∑
y b
∗(w | y)

=

√
µ(x,w)∑

y

√
µ(y, w)

= λ∗(x | w)

Part 2: The strategy profile constitutes a Nash equilibrium.
We make two preliminary observations. First, by the definition of p∗, firms earn

zero profits under the assumed strategy profile. Second, the strategy profile implies

that if a consumer who submits the query w draws a ticket held by an x firm, it

must be a (w, x) ticket. In other words, all the tickets held by x firms in the search

pool associated with w originate from the signal x. This means that if a firm of

type y 6= x deviates by bidding p > p∗(x) for x, it will hold all the (w, x) tickets in

some search pool w for which µ(x,w) > 0. As a result, consumers of type (x,w)

will search indefinitely without finding a product they want, and therefore the y

firm will get infinitely many draws in the search pool associated with w; the average

conversion rate that the y firm will experience thanks to winning the signal x will

drop to zero, and the firm’s deviation will be unprofitable.

In addition, no firm has a strict incentive not to participate or to bid for a

dummy signal. The former gives a payoff of zero, while the latter gives a payoff of

at most zero (when the bid is zero).

It follows that the only deviations we need to examine are of two types: (I)
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a firm of some type y submits p∗(x) for some signal x 6= y; (II) a firm of some

type x changes its bid for x to p > p∗(x). Consider type-I deviations. Because the

deviation is by a non-atomic firm that joins a measure-one set of highest bidders for

x, there is a measure one of firms that hold all (w, x) tickets both before and after

the deviation. Therefore, all we need to do is verify that submitting the winning

bid for x generates fewer transactions for the deviating y firm than it does for the

x firms that bid for x. The number of transactions for the deviating y firm is

∑
w

b∗(w | x)

1
· µ(y, w)

b∗(w | y)
(12)

because the firm gets b∗(w | x)/1 tickets to any pool associated with w. In every

such pool, there is a measure µ(y, w) of consumers who are interested in y. Every

such consumer eventually finds a product he wants, and this clientele is shared

equally by all y firms in the pool, the measure of which is b∗(w | y). By a similar

calculation, the number of transactions for an x firm is

∑
w

b∗(w | x)

1
· µ(x,w)

b∗(w | x)
= µ(x)

We need this to be weakly greater than (12). Plugging the definition of b∗, we

obtain

µ(x) ≥
∑
w

√
µ(x,w)µ(y, w)

which is equivalent to the inequality (8). Thus, the condition that prevents type-I

deviations coincides with the condition for general implementability of the planner’s

objective, which was assumed to hold at the outset.

Let us turn to type II deviations. Suppose that an x firm deviates by submitting

a bid p > p∗(x) for the signal x. The firm receives all the (w, x) tickets. However,

both before and after the deviation, all (w, x) tickets are held by x firms. Therefore,

the composition of all search pools remains intact, and the number of transactions

and draws per every (w, x) ticket remains unchanged. It follows that the average

conversion rate associated with the signal x remains p∗(x), which is below the

price-per-impression that the deviating firm pays. Therefore, the firm’s deviation

is unprofitable.
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Part 3: There are no other equilibria with full consumer participation.
We restrict attention to the generic case in which µ has full support.11 Let us first

rule out two cases.

Case 1 : The firms of at least one type x do not submit a winning bid for a working

signal. This means that consumers who look for x will never be serviced. As a

result, their net payoff conditional on participation is negative due to the infinite

search costs, and they can profitably deviate by opting out.

Case 2 : All firms submit a winning bid for some working signal, but there are

two firm types x and y that bid for the same signal v. Therefore, there must be a

“vacant”working signal v′ that no firm bids for. Suppose that an individual x firm

deviates by submitting a bid of zero for v′. Because µ has full support, b∗(w | v′) > 0

for every w. Prior to the deviation, the signal v granted b∗(w | v) tickets for every

w, and these tickets were allocated uniformly to a population of firms of measure

2 at least. After the deviation, the deviating x firm holds all the b∗(w | v′) tickets
granted by v′. The deviating firm thus holds infinitely many more (w, ·) tickets
than prior to the deviation, for every w. As a result, it generates infinitely more

transactions. Both before and after the deviation, all consumers eventually find

a product they want, hence the number of draws that each consumer contributes

is finite. Finally, thanks to the deviation, the firm pays nothing per impression.

Therefore, its deviation must be profitable.

It follows that any symmetric pure-strategy equilibrium in which all consumers

participate is characterized by a permutation f : X → X, such that all x firms

bid for the working signal f(x). Then, all firms must earn zero profits. Assume

the contrary - i.e., firms of some type x submit a bid for f(x) which lies strictly

below the conversion rate they experience at f(x). Then, a standard “Bertrand”

argument applies: an individual x firm can deviate to a slightly higher bid for f(x),

thus acquiring an infinite number of tickets, at a slightly lower net profit per ticket

than prior to the deviation. It follows that in equilibrium, the winning bid for each

y ∈ W ∗ = X must be equal to the conversion rate experienced by the firms that

submit this bid.

Our objective is to show that the permutation f must be the identity function.

Assume the contrary. Then, there is a collection of firm types, x1, ..., xm, m ≤ |X|,
such that f(xk) = xk+1modm. To sustain the equilibrium, it must be the case that

no firm of type k ∈ {1, ...,m} would want to deviate by mimicking the winning bid
for xk - i.e., mimicking the equilibrium behavior of firms of type k − 1 modm. If

the firm did so, it would experience the same number of draws as each of the firms

11This genericity requirement can be weakened, at the cost of having a considerably longer
proof.
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whose behavior it mimics. Because all firms earn zero profits prior to the deviation,

this means that all we need to check is that the deviating firm receives weakly fewer

transactions.

In the putative equilibrium, each firm type x receives µ(x) transactions. The

reason is that all firms of a given type x submit a winning bid for f(x), and the full-

support assumption implies that all consumers who look for x eventually transact

with one of these firms. Let us calculate the number of transactions that a firm

type y = f(x) would obtain if it deviated by mimicking the behavior of x firms (i.e.,

mimicking their winning bid for y):

∑
w

b∗(w | y)

1
· µ(y, w)

b∗(w | f(y))
=
∑
w

µ(y, w)
√
µ(y, w)√

µ(f(y), w)

Thus, the condition that will prevent firms of type k = 1, ...,m from deviating

by mimicking the behavior of k − 1 modm firms is

µ(xk−1modm) ≥
∑
w

µ(xk, w)
√
µ(xk, w)√

µ(xk+1modm, w)
(13)

By assumption, the necessary condition for the implementability of the perfect

monopolist’s objective is satisfied. In particular, for every k, j,

µ(xk) ≥
∑
w

√
µ(xk, w)µ(xj, w)

Adding up a suitable selection of these inequalities, together with the inequalities

(13), we obtain the following condition:

2
m∑
k=1

µ(xk) ≥
m∑
k=1

∑
w

µ(xk, w)

[√
µ(xk, w)

µ(xk+1modm, w)
+

√
µ(xk+1modm, w)

µ(xk, w)

]

For generic µ, the expression in the square brackets is strictly above 2, hence the

inequality is violated. �
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