
What do Exporters Know?

⇤

Michael J. Dickstein

Stanford University and NBER

Eduardo Morales

Princeton University and NBER

June 23, 2015

Abstract

Much of the variation in international trade volume is driven by firms’ extensive margin deci-
sion to participate in export markets. To understand this decision and predict the sensitivity
of export flows to changes in trade costs, we estimate a standard model of firms’ export par-
ticipation. In choosing whether to export, firms weigh the fixed costs of exporting against
the forecasted profits from serving a foreign market. We show that the estimated parameters
and counterfactual predictions from the model depend heavily on how the researcher speci-
fies firms’ expectations over these profits. We therefore develop a novel moment inequality
approach with weaker assumptions on firms’ expectations. Our approach introduces a new
set of moment inequalities—odds-based inequalities—and applies the revealed preference in-
equalities introduced in Pakes (2010) to a new setting. We use data from Chilean exporters to
show that, relative to methods that require specifying firms’ information sets, our approach
generates estimates of fixed export costs that are 65-85% smaller. Counterfactual reductions
in fixed costs generate gains in export participation that are 30% smaller, on average, than
those predicted by existing approaches.

Keywords: export participation, demand under uncertainty, discrete choice methods, mo-
ment inequalities

⇤We thank Tim Bresnahan, Lorenzo Caliendo, Jan De Loecker, Dave Donaldson, Liran Einav, Alon Eizen-
berg, Guido Imbens, Ariel Pakes, Esteban Rossi-Hansberg, James Tybout and seminar participants at the
CEPR-JIE conference on Applied Industrial Organization, Dartmouth College, LMU, the NBER ITI meet-
ing, Pennsylvania State University, Princeton University, the Stanford/Berkeley IO Fest, Stanford University,
UCLA, University of Virginia, and Wharton School for helpful suggestions. All errors are our own. Email:
mjd@stanford.edu, ecmorale@princeton.edu.



1 Introduction

In 2013, approximately 300,000 US firms chose to export to foreign markets.1 The decision of

these firms to sell abroad drives much of the variation in trade volume from the US.2 Thus, to

predict how aggregate exports may change with lower trade costs, exchange rate movements,

or other policy or market fluctuations, researchers need to understand firms’ extensive margin

decisions to participate in export markets.

A large literature in international trade focuses on modeling firms’ export decisions.3 Em-

pirical analyses of these decisions, however, face a serious data obstacle: the decision to export

depends on a firm’s expectations of the profits it will earn when serving a foreign market, which

the researcher rarely observes. Absent direct data on firms’ expectations, researchers must

impose assumptions on how firms form these expectations. For example, researchers com-

monly assume firms’ expectations are rational and depend on a set of variables observed in

the data. The precise specification of agents’ information, however, can importantly influence

the overall measurement, as Manski (1993, 2004), and Cunha and Heckman (2007) show in

the context of evaluating the returns to schooling. In the export setting, the assumptions

on expectations may a↵ect both the estimates of the costs firms incur when exporting and

predictions of how firms will respond to counterfactual changes in these trade costs.

In this paper, we first document that estimates of the parameters underlying firms’ export

decisions depend heavily on how researchers specify the firm’s expectations. We compare the

predictions of a standard model in the international trade literature (Melitz, 2003; Helpman

et al., 2008) under two di↵erent sets of assumptions on how exporters form their expectations:

the “perfect foresight” case, under which firms perfectly predict their profits when exporting,

and a limited information specification in which firms only use a specific observed set of

variables to predict their own export profits. Under each assumption on firms’ information,

we recover values for the fixed costs of exporting and predict changes in exports across markets

in reaction to a policy that reduces these fixed costs by 40%. Finding important di↵erences

in the predictions from the two models, we then develop a new empirical model of export

participation that places fewer restrictions on firms’ expectations.

Under our new approach, firms may gather di↵erent signals about their productivity rela-

tive to competitors, or about the evolution of exchange rates, trade policy, political stability

abroad, and foreign demand; we do not require the researcher to have full knowledge of each

exporter’s information set. Instead, the researcher need only specify a subset of the variables

that agents use to form their expectations about their profits conditional on exporting. The

1Department of Commerce (2015)
2According to Bernard et al. (2010), approximately 70% of the cross-sectional variation in exports comes

from firms entering a market rather than changing their export volume
3See for example Das et al. (2007), Arkolakis (2010), Moxnes (2010), Eaton et al. (2011), Ruhl and Willis

(2014), Arkolakis et al. (2014a), and Cherkashin et al. (2015). A recent literature also focuses on the decisions
of importers; e.g. Antràs et al. (2014).
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researcher must observe this subset, but need not observe any remaining variables that a↵ect

the firm’s expectations. The set of unobserved variables may vary flexibly across firms, mar-

kets, and years. In contrast, standard estimation approaches require the researcher to fully

specify and observe all variables in exporters’ information sets. The trade-o↵ from specifying

only a subset of the firm’s information is that we can only partially identify the true param-

eters of interest. To do so, we develop a new type of moment inequality, which we label the

odds-based inequality, and combine it with inequalities based on revealed preference.4 Using

these inequalities, our empirical burden is twofold. First, we must show that placing fewer as-

sumptions on expectations matters both for the estimates of the parameters of the exporter’s

problem and for the predictions of export flows under counterfactual trade policy. Second, our

robust approach must generate bounds on the model’s parameters and on predicted exports

that are small enough to be informative.

We perform our empirical analysis in the context of a standard partial equilibrium, two

period model of export participation.5 We estimate this model using data on Chilean exporters

in two industrial sectors, the manufacture of chemicals and food products.

We proceed in three steps. First, we demonstrate the sensitivity of both the estimated

fixed costs of exporting and the predictions of firms’ export participation to assumptions the

researcher imposes on firms’ profit forecasts. Specifically, using maximum likelihood methods,

we estimate a perfect foresight model under which firms predict perfectly the revenues they

will earn upon entry. Under this assumption, for example, we find export costs in the chemicals

sector from Chile to Argentina, Japan, and United States to equal $894,000, $2.8 million, and

$1.7 million, respectively. We compare these estimates to an alternative approach, developed

in Willis and Rosen (1979), Manski (1991) and Ahn and Manski (1993), in which we assume

that firms’ expectations are rational and specify that firms form their expectations using only

three variables: distance to the export market, aggregate exports from Chile to that market in

the prior year, and the firm’s own productivity from the prior year. The estimated fixed costs

of exporting under this limited information approach are approximately 20-30% lower than

those found under the perfect foresight assumption, in both the chemicals and food sector.

That the fixed cost estimates di↵er under perfect foresight and the limited information

approach reflects a possible bias in the estimation. Both the limited information procedure

and the perfect foresight approach require the researcher to specify precisely the content

of the agent’s information set. If firms actually employ a di↵erent set of variables—either

4A growing empirical literature employs moment inequalities derived from revealed preference arguments,
including Ho (2009), Crawford and Yurukoglu (2012), Ho and Pakes (2014), Eizenberg (2014), Wollman (2014),
and Morales et al. (2015). This work generally follows the methodology developed in Pakes (2010) and Pakes
et al. (2015); our revealed preference inequalities apply this methodology in a new setting with a distinct error
structure.

5By combining the insights in this paper with the Euler’s perturbation method introduced in Morales et al.
(2015), we could similarly perform our analysis in the context of a fully dynamic export participation model à
la Das et al. (2007).
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more information or less— to predict their potential export profits, the estimates of the

model parameters will generally be biased. Thus, our second key step is to employ our new

types of moments inequalities to partially identify the exporter’s fixed costs under weaker

assumptions. Here, we again assume that firms know the distance to the export market, the

aggregate exports to that market in the prior year, and their own productivity from the prior

year. However, unlike the limited information approach described earlier, the inequalities we

define do not restrict firms to use only these three variables when forecasting their potential

export profits. We require only that firms know at least these variables. We chose this set

of three variables in our specification because they are contained either in firms’ own balance

sheets or in o�cial government statistics. It seems reasonable, therefore, to assume all firms

might know at least these variables. We can, however, go further and test the null hypothesis

that the potential exporters’ information sets satisfy this minimal requirement. Specifically,

conditional on the model, we use the specification test suggested in Andrews and Soares (2010)

to test our assumption that these three variables are in the firm’s information set.6

Under the traditional maximum likelihood methods, we estimate the fixed costs for exports

from Chile to Argentina, for example, to equal $594,000 or $894,000 in the chemicals sector,

depending on the specification of the information set. Using our inequalities approach, we find

much lower fixed costs, between approximately $270,000 and $298,000 in the chemicals sector.

This range is small enough to be informative for policy. In addition, in model specification

tests using data from both the chemicals and food sectors, we cannot reject the null hypothesis

that exporters know at least distance, lagged productivity, and lagged aggregate exports when

making their export decisions. To address further the question of “what do exporters know?”,

we repeat this test under the same model and data, but placing one additional variable in the

firm’s information set. In this alternative, we assume the firm also knows the productivity of

other firms that export to each destination country. Repeating the test, we now reject the

null that firms knew this information when making their export decision at the 4% level in

the chemicals sector and the 1% level in the food sector. Similarly, we can also reject the

assumption of perfect foresight at any generally used significance level.

Finally, as a third key step, we conduct counterfactuals using our inequalities, imposing

the same minimal requirements on firms’ information sets as we imposed in estimation. Our

counterfactual predictions are also set-identified. We provide bounds that indicate how firms

would respond to a counterfactual policy that reduces the fixed costs of exporting by 40%.

Starting with the approaches that require explicit assumptions on the exact content of each

firm’s information set, we find that the results di↵er substantially with these assumptions. For

example, compared to predictions under perfect foresight, the predicted export participation

under the alternative procedure that assumes firms know only distance, lagged aggregate

6Alternative specification tests for partially identified models defined by moment inequalities have been
provided in Romano and Shaikh (2008), Andrews and Guggenberger (2009), and Bugni et al. (2015).
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exports and lagged productivity is 3% and 20% higher for Argentina and Japan and 12%

lower for the United States, in the chemicals sector. Comparing the predictions from these

two models to those computed using our moment inequalities, in the latter we predict gains

in export participation from counterfactual reductions in fixed costs that are 30% smaller on

average, depending upon the destination market and manufacturing sector.

We illustrate our contribution using the exporter’s problem. Our approach, however,

provides a robust methodology to estimate the parameters of many decisions in economics

that depend on agents’ forecasts of key variables. For example, when a firm develops a new

product, it must form expectations of the likely future demand (Bernard et al., 2010; Bilbiie et

al., 2012; Arkolakis et al., 2014b). To determine whether to invest in research and development

projects, the firm must form expectations about the success of the research activity (Aw et al.,

2011). On the consumer side, Greenstone et al. (2014) examine the enlistment of soldiers in

the US Army; the decision to reenlist depends on the soldiers’ expectations about the riskiness

of the task assigned. Similarly, a retiree’s decision to purchase a private annuity (Ameriks

et al., 2015) depends on her expectations about life expectancy. In education, the decision

to attend college crucially depends on potential students’ expectations about the di↵erence

in lifetime earnings with and without a college education (Freeman, 1971; Willis and Rosen,

1979; Manski and Wise, 1983). In these settings, even without direct elicitation of agent’s

preferences (Manski, 2004), our approach can recover bounds on the economic primitives of

the agent’s problem without imposing strong assumptions on agents’ expectations.

We proceed in this paper by first describing our model of firm exports in Section 2, building

up to an expression for firms’ export participation decisions. In Sections 3 and 4 we describe

our data, empirical setting, and three alternative empirical models. We first outline the

maximum likelihood procedures that require the researcher to have full knowledge of agents’

information sets. We then introduce our moment inequality estimator and discuss how to build

these inequalities as well as conduct counterfactuals with possibly set-identified parameters

and with only partial knowledge of agents’ information sets. In Section 5, we compare the

parameter estimates resulting from the alternative empirical models. In Section 6, we use our

inequality approach to predict the e↵ect on export participation and export volume from a

reduction in fixed export costs. Section 8 concludes.

2 Export Model

We begin with a model of a firm’s export decisions. All firms located in country h may choose

to sell in every export market j. We index the firms located in h and active at period t by

i = 1, . . . , Nt.7 We index the potential destination countries by j = 1, . . . , J .

We model firms’ export decisions using a two-period model. In the first period, firms choose

7For ease of notation, we will eliminate the subindex for the country of origin h.
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the set of countries to which they wish to export. To participate in a market, firms must pay

a fixed export cost. When choosing to export, firms may di↵er in their degree of uncertainty

about the profits they will obtain upon exporting. In the second period, conditional on

entering a foreign market, all firms observe supply and demand conditions and set their prices

optimally.

2.1 Demand

Every firm i faces an isoelastic demand in country j in year t:

xijt =
p

�⌘
ijtYjt

P

1�⌘
jt

, (1)

where p is the price firm i sets in destination country j at time t, Y is the total expenditure

in country j at time t in the sector in which firm i operates, and P is the ideal price index:

Pjt =

"Z

i2A
jt

p

1�⌘
ijt di

# 1
1�⌘

,

where Ajt denotes the set of all firms in the world selling in j. This specification implies that

every firm faces a constant demand elasticity equal to ⌘ in every destination country.

2.2 Supply

Firm i produces one unit of output with a cost-minimizing combination of inputs that costs

aitct, where c represents the cost of this bundle in country h and ait is the number of bundles

of inputs that firm i uses to produce one unit of output. Thus, the inverse of ait denotes firm

i’s productivity level in t. A cumulative distribution function Gt(a) describes the distribution

of a across firms located in h in year t. This distribution function may vary freely across time

periods. We also allow firms’ productivity to be correlated over time.

When i wants to sell in a foreign market j, it must pay production costs and two additional

costs: a transport cost, ⌧jt, and a fixed cost, fijt. We adopt the “iceberg” specification of

transport costs and assume that firm i must ship ⌧jt units of a product from country h for

one unit to arrive to j. The fixed export costs are

fijt = �

0

+ �

1

distj + ⌫ijt, (2)

where distj denotes the distance from country h to country j, and ⌫ijt is an aggregate of all
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remaining determinants of fijt that the researcher does not observe.8 We assume that

⌫ijt ⇠ (0,�2

⌫), (3)

where �

2

⌫ measures the unobserved heterogeneity in fixed export costs across firms, countries

and time periods.9

2.3 Profits conditional on exporting

Conditional on entering a destination market j, every seller behaves as a monopolistically

competitive firm. When setting the optimal price in each destination market in which a firm

enters, firms know their demand function, transport costs and own marginal production costs.

Therefore, the demand and supply assumptions above imply that the optimal price firm i sets

in j is

pijt =
⌘

⌘ � 1
⌧jtaitct. (4)

As a result, the total revenue that i will obtain in country j is

rijt =


⌘

⌘ � 1

⌧jtaitct

Pjt

�
1�⌘

Yjt, (5)

and the export profit (gross of fixed costs) is ⌘

�1

rijt. Therefore, export profits conditional

on entry are a function of (a) market size in the destination market, Yjt; (b) competition by

other suppliers, as captured by the price index, Pjt; (c) production costs, cit; (d) exporters’

productivity, ait; and, (e) transport costs, ⌧jt. These variables are rarely observed in standard

datasets. However, Appendix A.1 shows that, given the assumptions in Sections 2.1 and 2.2,

we can rewrite the potential export revenue of i in j, rijt, as a function of variables that are

typically observed in standard trade datasets: (a) the domestic revenues of every active firm i,

riht; (b) the aggregate export flows from the home country h to any destination country j, Rjt;

and, (c) an indicator for whether each of the active firms exports to j at t, dijt. Specifically,

8We assume that the fixed export costs, f
ijt

, are independent of the previous export experience of firm i

in country j. However, given that the time process of the term a

it

is unrestricted, our model can match any
observed persistence in export status. One can also allow fixed exports costs to depend on previous export
experience and apply the moment inequalities introduced in Section 4.2 to the corresponding dynamic export
problem.

9None of the results presented in this paper depends on the assumption that ⌫ is normally distributed.
The only restriction necessary for the moment inequalities introduced in Section 4.2 to be valid is that the
distribution of ⌫ is known to the researcher up to a scale parameter and is log-concave.
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the revenue that firm i would obtain in country j at period t conditional on entering is

rijt =
RjtPN

t

s=1

dsjt(rsht/riht)
, (6)

where Nt denotes the set of active firms in country h at period t. This expression allows us

to obtain a measure of the revenues that each firm i would obtain in each destination j in

period t conditional on entry. We can compute this measure both for firms that we observe

exporting to j in t and for those that choose not to export.

2.4 Decision to export

Once we account for the fixed costs of exporting, the remaining export profits that i will

obtain in j are

⇡ijt = ⌘

�1

rijt � fijt. (7)

Firm i will decide to export to j if and only if [⇡ijt|Jijt] � 0, where the vector Jijt contains

all of the information firm i knows about the determinants of ⇡ijt and fijt at the time it

decides whether to export to j in year t.

Let dijt = { [⇡ijt|Jijt] � 0}, where {·} denotes the indicator function. We assume

firms’ expectations are rational, and thus [·] denotes the expectation with respect to the

data generating process. Assuming further that all determinants of fixed export costs are

known to firms when they decide whether to export—i.e. (distj , ⌫ijt) 2 Jijt—we can rewrite

dijt as

dijt = {⌘�1 [rijt|Jijt]� fijt � 0}, (8)

where again rijt is export revenue conditional on entry and fijt is the fixed export cost.10

We define an agent’s expectational error as "ijt, where "ijt = rijt � [rijt|Jijt]. Under our

assumptions, it holds that

["ijt|Jijt] = 0. (9)

That is, assuming that firms’ expectations are rational implies that their expectational error

in predicting export revenues is mean independent of any variable used to form this prediction.

Among all the variables contained in firms’ information sets, only a subset of them will

10Equation (8) assumes that all firms know the demand elasticity ⌘ when deciding whether to export to j at
t. This assumption is not crucial. The moment inequalities introduced in Section 4.2 are also valid in the case
in which firms have imperfect information about the demand parameter ⌘. The key restriction is that all firms
must face the same elasticity of demand in every country and time period.
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generally be used to predict export revenues conditional on entry. We denote this subset as

Wijt. Therefore,

Wijt ⇢ Jijt and [rijt|Wijt] = [rijt|Jijt]. (10)

For example, Wijt will include any variable that firms might use to forecast either the demand

level in j at t, Yjt, or their own productivity, ait. Specifically, if, for example, firm i knows

the exact demand level it will face in a country j, then Yjt 2 Wijt.11

We introduce Wijt to highlight a key assumption needed for the moment inequality ap-

proach we introduce in Section 4.2. Recall, ⌫ijt is the component of fixed export costs that

firms know but researchers do not observe. In the inequality approach, ⌫ijt must be indepen-

dent of all other determinants of the export choice, dijt:

⌫ijt ? (Wijt, distj). (11)

Thus, although ⌫ijt 2 Jijt, it is independent of the elements of the information set used to

form expectations. As Section 4.1 shows, this independence assumption is also imposed in

standard discrete choice models (e.g. probit or logit).

For simplicity of notation going forward and without loss of generality, we will assume

that distj 2 Wijt. Given equations (3), (10), and (11), we can write the probability that i

exports to j conditional on Wijt as

P(dijt = 1|Wijt) =

Z

⌫
{⌘�1 [rijt|Wijt]� �

0

� �

1

distj � ⌫ � 0}�(⌫)d⌫ (12)

= �
�
�

�1

�
⌘

�1 [rijt|Wijt]� �

0

� �

1

distj
��
, (13)

where �(·) and �(·) are, respectively, the standard normal probability density function and

cumulative distribution function. Equation (13) indicates that, after integrating over the

unobserved heterogeneity ⌫ijt, we can write the probability that a firm i exports to a country

j at period t as a probit model whose index depends on firm i’s expectations of the gross

profits it will earn in j at t upon entry. Equations (6) and (13) capture all implications of the

export model that will be important both for estimation and computing counterfactuals.

As is clear from equation (13), even if we were to observe firms’ actual expectations,

[rijt|Wijt], data on export choices alone do not allow us to identify the scale of the parameter

vector (�, ⌘,�
0

,�

1

). That is, if we multiply these four parameters by the same positive number,

the probability Pijt remains constant. To normalize by scale the parameter vector in export

entry models, researchers typically use additional data to estimate or calibrate the demand

11For now, we impose no restriction on the content of W
ijt

. In Section 4, we describe the requirements
alternative empirical models impose on W

ijt

.
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elasticity ⌘. In our estimation, we set ⌘ = 5.12 For simplicity of notation going forward, we

use ✓ to denote the remaining parameter vector (�,�
0

,�

1

).13

2.5 E↵ect of change in export fixed costs

We study the e↵ect of a policy that, for the firms located in country h, reduces the systematic

part of export fixed costs by 40%. We denote the counterfactual value of �
0

as �

1

0

= 0.6�
0

and the counterfactual value of �
1

as �1

1

= 0.6�
1

. We assume that h is a small country and,

therefore, for all possible destination countries j, the price index Pjt and the potential export

revenues of every firm rijt are invariant to the change in (�
0

,�

1

). Therefore, the only vari-

ables the policy a↵ects are the set of export participation dummies, {dijt, i = 1, . . . , Nt} and,

through them, the total exports from h to j, Rjt. We show in Section 6 how di↵erent assump-

tions on the information firms use to form expectations, Wijt, lead to di↵erent predictions of

the number of exporters and total exports under the counterfactual policy.

With our counterfactual policy, we capture in a stylized way the e↵ect of export promo-

tion programs on the fixed costs of exporting and ultimately on export participation. Such

programs are common. Van Biesebroeck et al. (2015) discuss Canadian Trade Commissioner

Service measures that lower entry barriers to increase export participation. Volpe Martincus

and Carballo (2008) and Volpe Martincus et al. (2010) document similar measures in Peru and

Uruguay targeting the extensive margin decision of firms to export. According to Lederman et

al. (2009), typical programs include country image building (advertising, promotional events,

advocacy), export support services (exporter training, technical assistance on logistics, cus-

toms, and packaging), and marketing (trade fairs, follow-up services o↵ered by representatives

abroad). It is hard to quantify the precise savings in fixed export costs that these services

imply; our choice of a 40% reduction in fixed costs in the counterfactual is meant to illustrate

one possible level. We then emphasize how the assumptions that researchers impose on the

content of the information set Wijt will a↵ect the policy predictions.

3 Data

Our data come from two separate sources. The first is an extract of the Chilean customs

database, which covers the universe of exports of Chilean firms from 1995 to 2005. The second

is the Chilean Annual Industrial Survey (Encuesta Nacional Industrial Anual, or ENIA), which

12This elasticity of substitution is within the range of values estimated in the literature. See, for example,
Simonovska and Waugh (2014) and Head and Mayer (2014) and the references cited therein.

13The choice of ⌘ will a↵ect the magnitude of the parameter vector ✓ and, therefore, the value estimated
for the fixed export costs in each destination country. However, in this paper we emphasize the sensitivity
of our estimates to di↵erent assumptions on the content of firms’ information sets, W

ijt

; the choice of ⌘ does
not a↵ect the ratio of the fixed export costs estimated under these di↵erent assumptions nor does it a↵ect the
comparison across counterfactuals.
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surveys all manufacturing plants with at least 10 workers. We collect the annual survey data

for the same years observed in the customs data. We merge these two datasets using firm

identifiers, allowing us to examine the export participation and export volume of each firm

along with their domestic activity.14

The firms in our dataset operate in one of two sectors: the manufacture of chemicals and

food products.15 These are the two largest Chilean export manufacturing sectors by volume.

In Table 1, we report summary statistics, by year and sector, on the share of domestic firms

exporting, the mean and median exports per exporting firm, the mean domestic revenues per

firm and per exporting firm, and the mean and median number of markets the exporting

firms enter. We focus our analysis on countries which saw at least five firms exporting to that

destination in all years of our data. Across the time period used in our empirical analysis,

this restriction leaves 22 countries in the chemicals sector and 34 countries in the food sector.

We use this set of destinations in our estimation in Section 5.

We observe 266 unique firms across all years in the chemicals sector; on average, 38% of

these firms participate in at least one export market in a given year. In Table 1, we report the

mean firm-level exports in this sector, which are on average $2.18 million in 1996 and grow

to $3.58 million in 2005, with a dip in 2001 and 2002.16 The median level of exports is much

lower, at around $120,000 to $200,000. In the food sector, we observe 372 unique firms, 30%

of which export in a typical year. The mean exporter in this sector is much larger, with an

average across years of $7.7 million per exporter. The median exporter across all years exports

approximately $2.24 million. Relative to the chemicals sector, firms also typically export to a

greater number of destination markets. The median exporting firm exports to 5-6 markets in

the food sector. In the chemicals sector, the median exporting firm chooses to export to 3-4

countries.

In our empirical exercises, we illustrate our findings using three destination countries—

Argentina, Japan, and the United States. For the three countries, the total volume of exports

across all years of the data in the chemicals sector equals $205 million, $112 million, and $475

million and the total number of firms that export at least once during the sample period is

105, 13 and 61, respectively. The mean annual volume per exporter equals $412,000, $1.86

million, and $2.48 million, respectively, for Argentina, Japan, and the United States. In the

14We aggregate the information from ENIA across plants in order to obtain firm-level information that
matches the customs data. There are some cases in which firms are identified as exporters in ENIA but do not
have any exports listed with customs. In these cases, we assume that the customs database is more accurate
and thus identify these firms as non-exporters. We lose a number of small firms in the merging process because,
as indicated in the main text, ENIA only covers plants with more than 10 workers. Nevertheless, the remaining
firms account for around 80 percent of total export flows.

15The chemicals sector (sector 24 of the ISIC rev. 3.1) includes firms involved in the manufacture of chemicals
and chemical products, including basic chemicals, fertilizers and nitrogen compounds, plastics, synthetic rubber,
pesticides, paints, soap and detergents, and manmade fibers. The food sector (sector 151 of the ISIC rev. 3.1)
includes the production, processing, and preservation of meat, fish, fruit, vegetables, oils, and fats.

16The dollar values we report in this paper are US dollars in year 2000 terms.
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Table 1: Summary Statistics

Year Share of Exports per Exports per Domestic sales Domestic sales per Destinations per
exporters exporter (mean) exporter (med) per firm (mean) exporter (mean) exporter (mean)

Chemical Products

1996 35.7% 2.18 0.15 13.23 23.10 4.24
1997 36.1% 2.40 0.19 13.29 22.99 4.54
1998 42.5% 2.41 0.17 14.31 22.25 4.35
1999 38.7% 2.60 0.19 14.43 23.95 4.53
2000 37.6% 2.55 0.21 14.41 25.93 4.94
2001 39.8% 2.35 0.12 12.89 21.92 4.68
2002 38.7% 2.37 0.15 13.25 23.73 4.95
2003 38.0% 3.08 0.17 10.41 19.54 5.11
2004 37.6% 3.27 0.15 10.05 18.70 5.17
2005 38.0% 3.58 0.11 12.50 21.65 5.19

Food

1996 30.1% 7.47 2.59 9.86 13.68 5.93
1997 33.1% 6.97 2.82 10.56 15.32 6.23
1998 33.3% 7.49 2.86 10.05 14.80 6.34
1999 32.3% 6.71 2.37 9.67 14.88 6.74
2000 30.6% 6.49 2.21 8.44 13.33 5.93
2001 28.0% 6.48 1.74 8.70 14.08 6.09
2002 27.2% 7.82 2.01 7.83 13.59 6.86
2003 29.8% 7.60 1.68 7.15 12.79 6.15
2004 28.5% 9.25 1.68 8.05 13.85 6.69
2005 25.8% 10.72 2.43 9.88 16.27 7.05

Notes: All variables (except “share of exporters”) are reported in millions of USD in year 2000 terms.

food sector, the total volume of exports and number of exporting firms is lower for Argentina

($184 million and 85 unique exporters) but much larger for the United States ($1,931 million

and 122 unique exporters) and Japan ($2,656 million and 126 unique exporters). The average

per firm export volume in the food sector to these three countries equals $484,000, $4.09

million, and $3.25 million, respectively.

Our data set includes both exporters and non-exporters. Furthermore, to minimize the

possibility of selection bias in our estimates, we use an unbalanced panel that includes not

only those firms that appear in ENIA in every year between 1995 and 2005 but also those

that were created or disappeared during this period. Finally, we obtain information on the

distance from Chile to each destination market from CEPII.17

4 Empirical Approach

In the model we describe in Section 2, firm i’s export revenue to destination market j at time

t, rijt, is a function of market size Yjt; the degree of competition, as captured by the price

17Available at http://www.cepii.fr/anglaisgraph/bdd/distances.htm. Mayer and Zignago (2006) provide a
detailed explanation of the content of this database.
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index Pjt; firm i’s productivity ait; production costs at home ct; transport costs ⌧jt; and the

elasticity of demand ⌘. Firms may know only some of these variables when deciding whether

to export to j at t. They therefore form expectations of potential export revenues using

only their information set, Wijt. In the theoretical model, we did not impose assumptions

on the content of the information set. In estimation, however, we need to place restrictions

on Wijt to identify the parameter vector ✓ and perform counterfactuals, as Manski (1993)

demonstrates.18

We discuss three alternative empirical approaches to recover the parameters of the firm’s

export decision when these decisions depend on unobserved expectations. First, we specify

a model with perfect foresight. Under perfect foresight, exporters face no uncertainty; when

deciding whether to export, firms have all the information they need to predict perfectly the

gross profits they’ll earn upon entry.19 We denote the information set imposed under this

approach as Z

1

ijt. Here, Wijt = Z

1

ijt = rijt, where rijt is the export revenue the firm would

earn upon entry.

For most firms and in most destination countries, the set Z1

ijt is likely to be strictly larger

than firms’ true information sets. That is, at the time firms decide whether to serve a foreign

market, they often lack perfect knowledge of the revenue they’ll earn upon entry. Thus, we

specify a second empirical model in which potential exporters forecast their export revenues in

every foreign market using only information on three variables: (1) their own lagged domestic

sales, which serves as a proxy for productivity; (2) lagged aggregate exports to the destination

country j; and (3) distance from the home country to j. We denote this information set

with a superscript 2, Wijt = Z

2

ijt = (riht�1

, Rit�1

, distj). This information set is likely to

be strictly smaller than the actual information set firms possess when deciding to export. In

addition, this model assumes all potential exporters base their entry decision on the same set

of covariates. It does not permit firms to vary in the types of information they use.

Under both of these approaches, the researcher assumes that exporters’ true information

sets Wijt correspond exactly to a vector of covariates Zijt that the researcher observes. Section

4.1 shows how to estimate the parameter vector ✓ under these assumptions. Ideally, one would

like to estimate ✓ and perform counterfactuals without imposing such strong assumptions on

firms’ information sets. Thus, in our third approach, described in Section 4.2, we propose a

moment inequality estimator that can handle settings in which the econometrician observes

only a subset of the elements contained in firms’ true information sets. That is, instead of

18Specifically, Manski (1993) shows that di↵erent assumptions onW
ijt

might still generate identical likelihood
functions for a given set of covariates. Under these di↵erent assumptions, each reduced form parameter has
a di↵erent structural interpretation. Thus, one cannot use common goodness-of-fit measures to discriminate
among models that impose di↵erent assumptions on agents’ information sets.

19The assumption of perfect foresight is common in static general equilibrium models of export and import
participation. E.g. Arkolakis (2010), Eaton et al. (2011), Arkolakis et al. (2014b), Antràs et al. (2014). The
model described in Section 2 is partial equilibrium. Whether we can extend our flexible treatment of firms’
information sets to general equilibrium models is left for future research.
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assuming Wijt = Z

2

ijt, as in the second model above, we require only that Z

2

ijt ⇢ Wijt. The

remaining elements in Wijt need not be observed by the researcher. Those unobservable

elements of firms’ information sets can vary flexibly by firm and by export market.

Finally, before proceeding to estimation, we comment on the availability of data on export

revenue. To carry out any of the three procedures above, the researcher needs a direct measure

of rijt, the potential export revenue for firm i in country j and year t. We observe revenue

for periods and markets in which i chooses to export. We have no direct measure of rijt when

the firm chooses not to export.

We rely on the assumptions of the model described in Section 2 to define a perfect proxy

for rijt using the following information: (a) the domestic revenues of firm i in year t, riht; (b)

the aggregate export flows from the home country h to the destination country j in year t,

Rjt; (c) a vector of indicators for whether each of the active firms in year t exports to j at t,

{dijt; i = 1, . . . , Nt}. We observe these variables both for firms that choose to export and for

those that do not. In Sections 4.1 and 4.2, we use the expression in equation (6) to generate

an observed measure of rijt for every firm i, country j and year t.

As an alternative to the theoretical model, one can instead use the observed data on

export revenue, rijt, observed for those firms that choose to export in market j and time

t. This procedure would involve estimating a new equation for revenue as a function of

observable covariates, such as the firm’s domestic sales. One could then predict the potential

revenue for firms that choose not to export as a function of the estimated parameters and

the observables of the non-exporting firms. However, this approach will generate a selection

problem: those firms that choose to export likely have a larger unobserved determinant of

export revenue. How to fix this problem depends on the researcher’s assumptions about the

firm’s information. When the researcher assumes she observes all variables that enter the firm’s

information set—i.e. Wijt is equal to a vector Zijt—Heckman (1979) provides a procedure to

recover the parameters of both the revenue equation and the equation for the entry decision.

If the researcher instead assumes only that the vector of observed covariates Zijt is a subset of

exporters’ true information sets Wijt, we show in Appendix A.7 how to extend the estimation

procedure in Section 4.2 to obtain bounds for the parameters in both equations.

4.1 Perfect Knowledge of Exporters’ Information Sets

Under the assumption that the econometrician’s observed vector of covariates Zijt equals the

firm’s information set, [rijt|Zijt] is a perfect proxy for [rijt|Wijt] and one can identify ✓ as

13



the value of the unknown parameter � that maximizes a standard log-likelihood function

L(�|d, Z, dist) =
hX

j,t

dijt log
�
P(djt = 1|Zijt, distj)

�
+ (1� dijt) log

�
P(djt = 0|Zijt, distj)

�i
, (14)

where the expectation is taken over individuals in the population, Zijt is the assumed infor-

mation set of firm i when it decides whether to export to j at t, and

P(djt = 1|Zijt, distj) = �
�
�

�1

2

�
⌘

�1 [rijt|Zijt]� �

0

� �

1

distj
��

(15)

The vector � = (�
0

, �

1

, �

2

) denotes an unknown parameter vector whose true value is ✓ =

(�
0

,�

1

,�).20

The key assumption underlying this procedure is that the researcher correctly specifies the

agent’s information set. When the researcher’s choice of information set, Zijt, is incorrect—

that is, when [rijt|Wijt] 6= [rijt|Zijt]—then the estimator of ✓ under this procedure will be

biased. We denote the di↵erence between the two revenue projections as ⇠ijt: [rijt|Zijt] =

[rijt|Wijt] + ⇠ijt. In this case, one can identify ✓ as the parameter that maximizes the

likelihood function in equation (14) but with

P(dijt = 1|Zijt, distj) =Z

⌫̃
{⌘�1 [rijt|Zijt]� �

0

� �

1

distj � ⌫̃ � 0}f(⌫̃|Zijt, distj)d⌫̃, (16)

where ⌫̃ = ⌘

�1

⇠ + ⌫ and f(⌫̃|Z, dist) denotes the density of ⌘�1

⇠ + ⌫ conditional on Z and

dist. When comparing equation (15) to equation (16), it is clear that wrongly assuming that

[rijt|Wijt] = [rijt|Zijt] will generate biased estimates of ✓ unless f(⌫̃|Z, dist) is normal with

mean zero and variance �

2

⌫ . This is true only when ⇠ijt = 0 for every firm i, destination j

and period t. The direction of the bias for each element of ✓ depends on the shape of the

distribution of ⌘�1

⇠ + ⌫ conditional on Z and dist.

Biased estimates of the structural parameter of interest ✓ will translate into biased esti-

mates of fixed export costs and into incorrect predictions of the e↵ect of the counterfactual

changes in the environment. We show in Section 5 that wrongly assuming a specific infor-

mation sets generates an upward bias in the estimated fixed export costs. We provide some

intuition for the direction of the bias here.

Take, for example, the case in which researchers assume perfect foresight. Under per-

fect foresight, rijt = [rijt|Wijt]. Yatchew and Griliches (1985) provide an analytical form

20In order to use the expressions in equations (14) and (15) to estimate the ✓, one first needs to estimate
the function [r

ijt

|Z
ijt

]. See Manski (1991) and Ahn and Manski (1993) for additional details on this two-step
estimation approach.
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for the bias under a particular distribution for the error between the true expectations

and the researcher’s assumption. Specifically, if firms’ true expectations are normally dis-

tributed, [rijt|Wijt] ⇠ (0,�2

e), and the expectational error is also normally distributed,

⇠ijt|(Wijt, ⌫ij) ⇠ (0,�2

⇠ ), there is an upward bias in the estimates of the fixed costs pa-

rameters �

0

, �
1

and �. The upward bias increases in the variance of the expectational error

�

2

⇠ relative to the variance of the true unobserved expectations �

2

e . That is, the worse the

researcher’s proxy for the true expectations, the greater the bias.

When either firms’ true expectations or the expectational error are not normally dis-

tributed, there is no analytic expression for the bias of the maximum likelihood estimator of

✓. However, we present simulations in Appendix A.2 to show that the upward bias appears

fairly general. Assuming perfect foresight when firms’ expectations are actually imperfect

generates an upward bias in the estimates of �
0

and �

1

under many di↵erent distributions of

firms’ true expectations and expectational error. This upward bias in �

0

and �

1

translates

into an upward bias in the estimates of fixed export costs.21

4.2 Partial Knowledge of Exporters’ Information Sets

Finding a set of observed covariates that exactly correspond to agents’ unknown information

sets is, in most empirical applications, di�cult. Conversely, it is usually quite simple to define

a smaller vector of observed covariates that is contained in such information sets. For example,

in each year, exporters will likely know past values of both their domestic sales, riht�1

, and

the aggregate exports from their home country to each destination market, Rjt�1

. The former

is a variable reported in firms’ accounting statements, and the latter is included in publicly

available trade data. Similarly, firms can also easily obtain information on the distance to

each destination country, distj , which might potentially a↵ect both fixed and transport costs.

Therefore, while it may be unrealistic to assume that the agent’s information set is exactly

identical to the vector of observed covariates Z

2

ijt = (riht�1

, Rit�1

, distj), for example, the

assumption that Z

2

ijt is contained in every potential exporters’ information set may well be

21The intuition for upward bias in the maximum likelihood estimates of �0, �1, and � caused by wrongly
assuming perfect foresight shares the same basis as the well-known attenuation bias a↵ecting OLS estimates in
linear models when a covariate is a↵ected by classical measurement error (see page 73 in Wooldridge (2002)).
Rational expectations implies that firms’ expectational errors are mean independent of their unobserved true
expectation and, therefore, correlated with the ex-post realization of the variable whose expectation a↵ects
firms’ decisions. In our setting, this implies that the expectational error is correlated with the realized export
revenues. Thus, if we were in a linear regression setting, wrongly assuming perfect foresight and using the ex-
post realized revenue, r

ijt

, as a regressor instead of the unobserved expectation, [r
ijt

|W
ijt

], would generate
a downward bias on the coe�cient on r

ijt

. The probit model in equation (15) di↵ers from this linear setting
in two dimensions. First, we normalize the scale by setting the coe�cient on the covariate measured with
error, [r

ijt

|W
ijt

], to a given value. This implies that the bias generated by the correlation between the
expectational error, "

ijt

, and the realized export revenue, r

ijt

, will be reflected in an upward bias in the
estimates of the remaining parameters �0, �1 and �. Second, the direction of the bias depends not only on the
correlation between "

ijt

and r

ijt

but also on the functional form of the distribution of unobserved expectations
and expectational error.
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accurate. In this section, we show that, given a vector of observed covariates Zijt that is

contained in the information set that every firm uses to forecast its gross export profits, i.e.

Zijt ⇢ Wijt, we can form moment inequalities that partially identify the parameters of the

firm’s entry decision. In the model described in Section 2, these parameters compose the

firm’s fixed costs of exporting.

As we show in Appendix A.3, given the model described in Section 2, the assumption that

the researcher observes a subset of a firm’s true information set, i.e. Zijt ⇢ Wijt, is not strong

enough to point-identify the parameter vector ✓. However, the assumption that researchers

partially observe firms’ information sets has enough power to identify a set that contains the

true value of the parameter, ✓. We describe below two new types of moment inequalities that

define such a set.22

In Section 5, we further show how one can use specification tests for partially identified

models (e.g. Andrews and Soares (2010)) to test the null hypothesis that the model defined in

Section 2, combined with di↵erent assumptions on the content of exporters’ information sets,

Wijt, is consistent with the data available to us. We test our main specification that presumes

Z

2

ijt 2 Wijt. We also test two models that impose di↵erent informational assumptions. In the

first, we add the productivity of other exporters to Zijt, and then test whether firms in fact

know their competitors’ productivities when deciding whether to export. In the second, we

test the perfect foresight assumption, under which rijt 2 Wijt.

4.2.1 Odds-based moment inequalities

For any Zijt ⇢ Wijt, we define the conditional odds-based moment inequalities as

M(Zijt; �) =

"
ml(dijt, rijt, distj ; �)

mu(dijt, rijt, distj ; �)

�����Zijt

#
� 0, (17)

where the two moment functions are defined as

ml(·) = dijt
1� �

�
�

�1

2

�
⌘

�1

rijt � �

0

� �

1

distj
��

�
�
�

�1

2

�
⌘

�1

rijt � �

0

� �

1

distj
�� � (1� dijt), (18a)

mu(·) = (1� dijt)
�
�
�

�1

2

�
⌘

�1

rijt � �

0

� �

1

distj
��

1� �
�
�

�1

2

�
⌘

�1

rijt � �

0

� �

1

distj
�� � dijt. (18b)

We denote the set of all possible values of the parameter vector � as �. As in earlier sections,

we denote the true parameter vector as ✓ =
�
�

0

,�

1

,�

�
. The following theorem contains the

22Whether the bounds defined by the moment inequalities in Sections 4.2.1 and 4.2.2 are sharp is left for
future research. However, as the results in Section 5 show, in our empirical application, they generate bounds
that are small enough to be informative on two dimensions. We can learn both about biases in the parameter
estimates that arise when misspecifying the agent’s information set and about the e↵ect on export participation
and trade volume from counterfactual changes in the economic environment.
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main property of the inequalities defined in equations (17), (18a) and (18b):

Theorem 1 For all ✓ 2 �, M(Zijt; ✓) � 0.

Theorem 1 indicates that the odds-based inequalities are consistent with the true value of the

parameter vector. A formal proof of Theorem 1 is in Appendix A.4. Briefly, the inequalities

arise because we do not observe the true expectation, [rijt|Wijt]. If we did, we could simply

take the first order condition of the likelihood function conditional on Wijt. Its expectation

should be equal to zero at the true value of the parameter vector:

2

4 dijt
1��(��1

(⌘�1r
ijt

��0��1dist
j

�⌘�1"
ijt

))

�(��1
(⌘�1r

ijt

��0��1dist
j

�⌘�1"
ijt

))

� (1� dijt)
Zijt

(1� dijt)
�(��1

(⌘�1r
ijt

��0��1dist
j

�⌘�1"
ijt

))

1��(��1
(⌘�1r

ijt

��0��1dist
j

�⌘�1"
ijt

))

� dijt

3

5 = 0, (19)

where here we replace [rijt|Wijt] in the score function with the equivalent expression, rijt �
"ijt. The score function looks identical to the inequalities in (18a) and (18b), but with the

"ijt term included, where "ijt is the expectational error firm i makes when forecasting the

potential revenue from exporting to j at t. In the proof in Appendix A.4, we show that

equation (17) is weakly larger than equation (19) and thus would be weakly larger than zero

when evaluated at the true value of the parameter vector. This result is a direct application

of Jensen’s inequality. We rely on two properties of the distributions of the errors to apply

Jensen’s inequality. First, the expectational error "ijt has a mean equal to zero conditional on

the vector Zijt. This follows from the assumptions that firms have rational expectations and

Zijt ⇢ Wijt. Second, both 1� �(·)/�(·) and �(·)/(1� �(·)) are globally convex.23

Even though both moment functions in equations (18a) and (18b) are derived from the

score function, they are not redundant. In order to gain intuition about the identifying power

of each of these moments, we can focus on identification of the parameter �
0

. Given observed

values of dijt, rijt, and distj , and given any arbitrary value of the parameters �
1

and �

2

, the

moment function ml(·) in equation (18a) is increasing in �

0

and, therefore, will identify a

lower bound on �

0

. With the same observed values, mu(·) in equation (18b) is decreasing in

�

0

and will identify an upper bound on �

0

. Therefore, both moments are necessary to bound

�

0

. The same intuition applies for identifying parameters �
1

and �

2

.

In the particular case in which agents’ expectations are perfect (i.e. "ijt = 0) and the

vector of instruments Zijt includes all variables that agents use to predict either the ex post

profits or the fixed export costs, i.e. Zijt = Wijt, the set ⇥ is a singleton and identical to the

true value of the parameter vector, ✓. The size of the set ⇥ increases monotonically in the

23The assumption of normality of the structural error term is not necessary for the existence of odds-based
inequalities. As long as the distribution of the structural error ⌫ is log-concave, inequalities analogous to those
in equation (18), with the correct cumulative distribution function F

⌫

(·) instead of the normal cumulative
distribution function �(·), will also satisfy Theorem 1. The explanation of this result is that, for any log-
concave distribution, both F

⌫

(·)/(1� F

⌫

(·)) and (1� F

⌫

(·))/F
⌫

(·) are globally convex.
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variance of the expectational error. That is, as the variance of the di↵erence between firms’

expected revenues [rijt|Wijt] and the ex post realization of such revenues rijt grows, so does

the size of ⇥ .

4.2.2 Revealed preference moment inequalities

For any Zijt ⇢ Wijt, we define the conditional revealed preference moment inequality as

Mr(Zijt; �) =

"
m

r
l (dijt, rijt, distj ; �)

m

r
u(dijt, rijt, distj ; �)

�����Zijt

#
� 0, (20)

where the two moment functions are defined as

m

r
l (·) = �(1� dijt)

�
⌘

�1

rijt � �

0

� �

1

distj
�
+ dijt�2

�

�
�

�1

2

(⌘�1

rijt � �

0

� �

1

distj)
�

�
�
�

�1

2

(⌘�1

rijt � �

0

� �

1

distj)
�
, (21a)

m

r
u(·) = dijt

�
⌘

�1

rijt � �

0

� �

1

distj
�
+ (1� dijt)�2

�

�
�

�1

2

(⌘�1

rijt � �

0

� �

1

distj)
�

1� �
�
�

�1

2

(⌘�1

rijt � �

0

� �

1

distj)
�
.

(21b)

We again denote the set of all possible values of the unknown parameter vector � as �, and the

true parameter vector as ✓ =
�
�

0

,�

1

,�

�
. The following theorem contains the main property

of the inequalities defined in equations (20), (21a) and (21b):

Theorem 2 For all ✓ 2 �, Mr(Zijt; ✓) � 0.

We provide a formal proof of Theorem 2 in Appendix A.5. Theorem 2 indicates that the

revealed preference inequalities are consistent with the true value of the parameter vector, ✓.24

In general, the set of parameter values that satisfies both the revealed preference inequalities

and the odds-based inequalities will contain values of the parameter vector � other than the

true parameter, ✓. However, as we show in our empirical application in Section 5, the set

of parameter values that are consistent both with the odds-based and revealed preference

inequalities is small enough to allow us to draw economically meaningful conclusions.

Heuristically, the two moment functions in equations (21a) and (21b) are derived using

standard revealed preference arguments. We focus our discussion on moment function (21b);

the intuition behind the derivation of moment (21a) is analogous. If firm i decides to export

to j in period t, so that dijt = 1, then by revealed preference, it must expect to earn positive

returns; i.e. dijt
�
⌘

�1 [rijt|Wijt] � �

0

� �

1

distj � ⌫ijt
�
� 0. Taking the expectation of this

24The assumption of normality of the structural error term is su�cient but not necessary for the existence
of revealed preference inequalities analogous to those in equations (20), (21a) and (21b) that correctly bound
the true parameter vector. As long as the distribution of the structural error ⌫ is such that both f

⌫

(·)/F
⌫

(·)
and f

⌫

(·)/(1� F

⌫

(·)) are globally convex, we may write inequalities that also satisfy Theorem 2. For example,
in addition to the normal distribution, the type I extreme value distribution also satisfies this property.
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inequality conditional on (dijt,Wijt), we obtain

dijt
�
⌘

�1 [rijt|Wijt]� �

0

� �

1

distj
�
+ Sijt � 0, (22)

where Sijt = [�dijt⌫ijt|dijt,Wijt]. The term Sijt is a selection correction and accounts for

the fact that firms might decide whether to export to j at t based partly on determinants of

profits that are not observed by the researcher, including the term ⌫ijt in the model described

in Section 2.25 We cannot directly use the inequality in equation (22) because it depends on

the unobserved agents’ expectations, [rijt|Wijt], both directly and through the term Sijt.

However, the inequality in equation (22) becomes weaker if we introduce the observed ex-post

profits, rijt, in the place of the unobserved expectations [rijt|Wijt] and take the expectation

of the resulting expression. Similar to the odds-based inequalities, we then apply Jensen’s

inequality and conclude that the inequalities in equations (20) and (21b) hold at the true

value of the parameter vector. Again, to apply Jensen’s inequality, we rely on two conditions.

First, the di↵erence between the unobserved true firms’ expectations and the realized revenues

has mean equal to zero conditional on the vector Wijt. Second, �(·)/�(·) and �(·)/(1� �(·))
are globally convex .

The moment functions in equations (21a) and (21b) follow the revealed preference inequal-

ities introduced in Pakes (2010) and Pakes et al. (2015), and previously applied in Eizenberg

(2014) and Morales et al. (2015). We apply the inequalities to a setting with a specific error

structure not present in previous empirical examples. The novelty of the revealed preference

moment inequalities introduced in equations (20) and (21) is that they allow for structural

errors ⌫ijt that may vary across i, j and t and that might have unbounded support. The cost

of allowing for this flexibility is that we need to assume the distribution of ⌫ijt, up to a scale

parameter. In addition, the inequalities we define only apply to binary choice problems.26

The distribution of ⌫ijt a↵ects the functional form of the selection correction term, Sijt.

In our empirical application, we find � > 0. Therefore, accounting for the selection correction

term Sijt in our empirical application is important. Given that Sijt � 0 whenever � > 0, if we

had generated revealed preference inequalities without the term Sijt, we would have obtained

weakly smaller identified sets than those found using the revealed preference inequalities in

equations (20) and (21).

25Appendix A.5 shows that, under the assumptions in Section 2,
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26It is an open question whether the odds-based and revealed preference inequalities introduced in Sections
4.2.1 and 4.2.2 could be extended to discrete choice problems in which the choice set contains three or more
elements. We leave this for future research.
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4.2.3 Combining inequalities for estimation

For our estimation approach, we combine the odds-based and revealed preference moment

inequalities described in equations (17) and (20). As indicated in Section 4.2.1, the set de-

fined by the odds-based inequalities is a singleton only when firms make no expectational

errors and the vector of instruments Zijt is identical to the set of variables firms’ use to form

their expectations. In this very specific case, the revealed preference inequalities do not have

any additional identification power beyond that of the odds-based inequalities. However, in

all other settings, the revealed preference moments can provide additional identifying power

beyond that provided by the odds-based inequalities.27

The set of inequalities we define in equations (17) and (20) condition on particular values of

the instrument vector, Z. In empirical applications in which at least one of the variables in the

vector Z is continuous, the sample analogue of these moment inequalities will likely involve

an average over very few observations (if any). Therefore, for estimation, it is necessary

to work with unconditional moment inequalities. Andrews and Shi (2013) and Armstrong

(2015) define unconditional moments that imply no loss of information with respect to their

conditional counterpart. We describe in Appendix A.6 the exact unconditional moments that

we use to compute the estimates presented in Section 5.

4.3 Deriving bounds on choice probabilities

As Sections 4.2.1 and 4.2.2 show, we can set identify and estimate the structural parameter

vector, ✓, without the need to fully specify and observe agents’ information sets. However, in

addition to measuring export fixed costs, another key motivation for estimating export entry

models is to predict export participation and trade volume in counterfactual environments.

In this section, we show that one can perform these counterfactual exercises without imposing

additional assumptions beyond those needed to define the odds-based and revealed preference

inequalities.

We derive bounds on the probability that a firm exports to each market. Choice proba-

bilities are not point identified in our setting for two reasons. First, even if we were to know

the true value of the parameter vector, ✓, we only observe a subset Zijt of the variables in the

true information set firms use to predict export revenues. Thus, we cannot compute firms’

unobserved expectations, [rijt|Wijt], exactly and therefore cannot compute the export prob-

abilities in equation (13). Second, we do not recover the true value of the parameter vector ✓

in our estimation, but only a set that includes it. As the following theorem shows, under these

circumstances we may still derive bounds on the expected probability that firm i exports to

27How the identified sets defined by each type of inequality compare in size is di�cult to characterize gen-
erally. We show in simulations—available upon request—that there are cases in which the revealed preference
inequalities have additional identification power beyond that of the odds-based inequalities.
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country j at period t, conditional on Zijt. Here, ⇥all represents the set of parameter vectors

that satisfy all of the inequalities—both the revealed preference and odds-based inequalities.

Theorem 3 Suppose Zijt 2 Wijt and define P(Zijt) = [Pijt|Zijt], with Pijt defined in

equation (13). Then,

Pl(Zijt)  P(Zijt)  Pu(Zijt), (23)

where

Pl(Zijt) = min
�2⇥

all

1

1 +Bl(Zijt; �)
, (24)

Pu(Zijt) = max
�2⇥

all

Bu(Zijt; �)

1 +Bu(Zijt; �)
. (25)

and
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The proof of Theorem 3 is in the Appendix A.8. We highlight two features of these bounds.

First, as described above, even if we were to know the true value of the parameter vector, ✓,

then would still find bounds on the probability of exporting, P(Zijt):

1

1 +Bl(Zijt; ✓)
 P(Zijt) 

Bu(Zijt; ✓)

1 +Bu(Zijt; ✓)
.

Second, equation (23) defines bounds on export probabilities conditional on a particular value

of the instrument vector Zijt. However, using equation (23) we may also define bounds on the

expected export probability for any subset of firms defined by a particular set Z of values of

the instrument vector Zijt as

X

ijt

Pl(Zijt) {Zijt 2 Z} 
X

ijt

P(Zijt) {Zijt 2 Z} 
X

ijt

Pu(Zijt) {Zijt 2 Z}. (28)

For example, if we define the Z to be a dummy variable selecting a particular country j

⇤ and

year t

⇤, Z = {j = j

⇤
, t = t

⇤} equation (28) will yield bounds on the expected number of

exporters to country j

⇤ in year t⇤. In Section 5.1, we use the bounds in equation (28) to test

the fit of the model for di↵erent countries and years. We show in Appendix A.9 how to use

equation (28) to compute bounds for the counterfactual scenario described in Sections 2.5.
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5 Results

We estimate the parameters of exporters’ participation decisions using the three di↵erent

empirical approaches discussed in Section 4.1 and 4.2. First, we use maximum likelihood

to estimate the components of the exporter’s fixed costs of serving a foreign market under

perfect foresight: we assume the firm perfectly predicts the level of revenue it will earn upon

entry. Second, we again use maximum likelihood methods, but under the two-step procedure

described in Willis and Rosen (1979), Manski (1991) and Ahn and Manski (1993) in which

we project realized revenues on the set of observable covariates that we assume compose a

firm’s information set. In practice, we include the three variables described as the vector Z2

ijt

in Section 4.1: (a) the total aggregate exports from Chile to the destination country in the

prior year, (b) the distance from Chile to the destination country, j, and (c) the firm’s own

domestic sales from the previous year. Finally, third, we carry out our moment inequality

approach. For comparison purposes, we assume the firm knows the same three variables

as in the two-step approach. However, unlike the two-step approach, the inequalities allow

additional unobserved variables to enter the firm’s true information set, and these variables

may vary idiosyncratically by firm, market, and time period.

We first discuss the parameter estimates and illustrate the baseline predictions of the

models in comparison to the data. We then explore the robustness of our moment inequality

estimator.

5.1 Estimates and predicted exports

In Table 2, we report the estimates and the confidence regions for the parameters of our entry

model. The first coe�cient, �, represents the variance of the probit structural error a↵ecting

the fixed export costs. The remaining coe�cients represent a constant component and the

contribution of distance to the level of the fixed costs. We normalize the demand elasticity

of substitution, ⌘, to equal five. From the raw coe�cients, it is clear that the estimates from

models that require full knowledge of the exporter’s information sets produce much larger fixed

export costs than does our moment inequality approach. For example, consider the coe�cient

on the distance variable in models estimated using data from the chemicals sector. Under the

moment inequality approach, the set of parameter values that satisfy the moments imply an

added cost of $428,000 to $479,000 when the export destination is 10,000 kilometers farther

in distance. Under the two maximum likelihood procedures, the estimates of the added cost

equal $1,180,000 and $812,000 for the same added distance.

We translate these coe�cients into an estimate of the fixed costs of exporting by country

and, for clarity of exposition, report the results in Table 3 for three countries out of the 22

destinations in the chemicals sector and 34 countries in the food sector used in our estimation.

We focus on Argentina, Japan, and the United States. Total exports to these countries account
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Table 2: Parameter estimates

Chemicals Food
Estimator � �0 �1 � �0 �1

Perfect Foresight 1074.0 760.9 1180.1 2039.2 2675.4 266.4
(MLE) (46.7) (36.7) (53.2) (71.6) (96.1) (23.6)

Limited Info. 701.9 502.2 812.3 1567.8 2087.2 198.1
(MLE) (24.3) (20.2) (30.0) (48.4) (65.7) (18.1)

Moment Inequality
[311.7, 341.0] [218.3, 245.8] [428.3, 479.0] [247.7, 264.9] [332.9, 380.1] [143.7, 173.4]
(178.6, 465.1) (121.1, 316.3) (237.1, 651.2) (219.2, 307.7) (283.8, 473.8) (108.6, 191.9)

Notes: All variables are reported in thousands of year 2000 USD. For the two ML estimators, standard errors are

reported in parentheses. For the moment inequality estimates, extreme points of the identified set are reported in

square brackets and extreme points of the confidence set are reported in parentheses. Confidence sets are computed

using Andrews and Soares (2010).

for 29% of total exports of the Chilean chemicals sector and 56% of the food sector in the

sample period. In addition, these three nations span a wide range of possible distances to

Chile and thus provide a good illustration of how export participation and volume relate to

di↵erent fixed export costs.

Under perfect foresight, we estimate the fixed costs in these three countries in the chem-

icals sector to equal $894,000, $2.80 million, and $1.74 million respectively. Comparing the

estimates under perfect foresight to the estimates from the two-step procedure, the latter

produces entry cost estimates that are about 1/3 smaller in the chemicals sector. In the food

sector, the fixed cost estimates under perfect foresight equal $2.71 million, $3.13 million, and

$2.90 million when exporting to Argentina, Japan, and the United States, respectively. The

two-step procedure finds entry costs in the three countries that are about 20% smaller than

the estimates under perfect foresight.

Under our moment inequality estimator, we find estimates of the fixed costs of exporting

in the chemicals sector between $270,000 and $298,000 for Argentina, $978,000 and $1.06

million for Japan, and $592,000 and $632,000 for the United States. Across Argentina, Japan,

and the US, the estimated bounds we find from the inequalities equal only a fraction of

the perfect foresight estimates, with a level between 60% and 70% smaller than the perfect

foresight values. The results are similar in the food sector: the fixed cost estimates from

the moment inequality models are 80-85% smaller than the fixed cost estimates from perfect

foresight. Comparing the bounds of the fixed costs from the inequalities to the estimates from

the two-step approach, reported in Table 3, again the bounds are much smaller; the estimates

of the fixed costs from the inequality approach are 50% smaller than those estimated under

the two-step approach in the chemicals sector and about 75% smaller in the food sector. The

results are in line with the discussion in Section 4.1 of the bias that arises if the researcher

incorrectly assumes firms have perfect foresight. Here, we observe that specifying a specific

and limited information set also appears to generate an upward bias in the estimates of the
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fixed costs.

Table 3: Export fixed costs

Chemicals Food
Estimator Argentina Japan United States Argentina Japan United States

Perfect Foresight 894.0 2796.2 1736.9 2705.4 3134.9 2895.7
(MLE) (242.3) (708.6) (438.7) (543.5) (612.1) (566.6)

Limited Info. 593.8 1903.1 1174.0 2109.5 2428.8 2251.0
(MLE) (109.2) (315.9) (190.9) (328.6) (363.7) (336.9)

Moment Inequality
[270.0, 298.2] [977.6, 1062.0] [592.6, 632.0] [352.0, 397.5] [606.9, 645.1] [472.7, 507.2]
(163.0, 385.8) (627.5, 1420.8) (408.8, 836.3) (304.2, 489.7) (552.2, 730.7) (430.0, 590.3)

Notes: All variables are reported in thousands of year 2000 USD. For the two ML estimators, standard errors are

reported in parentheses. For the moment inequality estimates, extreme points of the identified set are reported in

square brackets and extreme points of the confidence set are reported in parentheses. Confidence sets are computed

using the procedure described in Andrews and Soares (2010).

Finally, in Table 4, we report the observed level of export participation in our three com-

parison countries in the final year of our data, 2005. Along with these observed values, we

report the predictions from the export model under perfect foresight, the two-step approach,

and from our inequalities. In part due to their high estimated levels of fixed costs and their

high coe�cient on distance, both the perfect foresight model and the two-step approach under-

estimate the number of entrants per country in 2005 in both the food and chemicals sectors.

Interestingly, the predictions from these two approaches di↵er by country in the chemicals

sector. For the United States, the two-step approach predicts a larger number of exporters

than does the model that assumes perfect foresight. For Japan and Argentina, the perfect

foresight model predicts greater entry than does the two-step approach.

For our inequality approach, the 95% confidence sets for the predicted number of exporters

in both the chemicals and food sectors for Argentina, Japan, and the United States generally

contain the observed number of exporters. The identified sets themselves also appear very close

to the observed number of exporters. In Table 4, the one exception is the predicted number

of exporters to the United States in the food sector. 48 firms chose to export, whereas the

model predicts that at least 78 would do so.

6 Counterfactuals

Beyond estimating the level of the fixed costs of exporting, we can use our estimates to conduct

counterfactual analyses. As introduced in Section 2.5, we simulate the e↵ect of lowering the

fixed costs of exporting by 40%. We conduct the counterfactuals using only data from the

year 2005, and compare the predictions from both our moment inequality approach and from

the models that require the researcher to specify the exact set of covariates included in firms’

information sets. We report our counterfactual predictions in Table 5.
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Table 4: Goodness of fit

Chemicals Food
Estimator Argentina Japan United States Argentina Japan United States

Observed 46 5 24 22 52 48

Perfect Foresight 41.00 2.41 15.69 21.96 25.99 39.13
(MLE) (0.44) (0.60) (1.52) (0.20) (2.29) (2.73)

Limited Info. 40.13 1.84 19.04 21.65 34.00 40.53
(MLE) (0.40) (0.52) (1.88) (0.23) (2.92) (2.92)

Moment Inequality
[43.47, 45.53] [5.89, 5.99] [22.16, 22.64] [24.30, 29.41] [47.15, 49.35] [78.13, 81.30]
(31.44, 52.27) (3.84, 11.99) (15.00, 30.86) (19.43, 32.70) (42.79, 52.94) (72.74, 84.69)

Notes: All variables are reported in thousands of year 2000 USD. For the two ML estimators, standard errors are

reported in parentheses. For the moment inequality estimates, all points in the identified set and confidence sets are

used to compute the counterfactual changes. The corresponding minimum and maximum predicted values obtained

using all parameter values contained in the identified set are reported in square brackets; the minimum and maximum

values obtained using all parameter values contained in the confidence set are reported in parentheses.

We focus first on the predicted change in export participation and export volume under the

perfect foresight model and under the model that requires the researcher to specify the firm’s

complete information set. Relative to the predictions from perfect foresight, the predicted

export participation and volume under the two-step approach are lower for Argentina and

Japan, but higher for the United States. That is, even when comparing the two approaches

that assume researchers observe firms’ information sets, the predictions for how a policy

will a↵ect exports di↵ers depending on the assumptions imposed on the content of these

information sets. Specifically, in the chemicals sector, we find the predicted change in export

participation to be 3% and 19.6% higher under the two-step approach in Argentina and Japan,

but is 11.8% lower under the two-step approach in the United States.28

The moment inequality approach, which imposes weaker assumptions on the content of

firms’ information sets, produces smaller predictions of the e↵ect of the policy relative to

either maximum likelihood approach. Specifically, the moment inequality estimator predicts

growth in export participation in the United States that is between 23.9 and 25.2% lower than

the perfect foresight prediction in the chemicals sector and between 51.7 and 53.7% lower in

the food sector. Relative to the estimate from the two-step approach, the predicted number

of exporters to the United States is between 13.8 and 15.3% lower in the chemicals sector and

between 50.6 and 52.7% lower in the food sector. These di↵erences are large and likely to be

important for the evaluation of any export promotion policy.

The di↵erences across the predictions generated by the three alternative models are much

larger for countries that are far away from Chile (e.g. Japan and the United States) than

for countries that are close to Chile (e.g. Argentina). This distinction across countries in the

28Even though these di↵erences are sizable, the counterfactual predictions in Table 5 appear more robust to
alternative specifications of the exporters’ information sets than do the parameter estimates in Table 3. The
parameter estimates generated under the two di↵erent ML estimation approaches di↵ered by approximately
30%.
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Table 5: Impact of 40% Reduction in Fixed Costs

Chemicals Food
Estimator Argentina Japan United States Argentina Japan United States

% Change in Number of Exporters

Perfect Foresight 50.3 578.7 157.5 127.9 118.4 80.7
(MLE) (0.4) (129.9) (14.0) (0.6) (9.8) (6.0)

Limited Info. 51.9 692.3 139.0 130.8 94.3 79.0
(MLE) (0.4) (184.9) (13.4) (0.8) (8.5) (6.2)

Moment Inequality
[47.1, 50.5] [239.2, 239.5] [117.8, 119.8] [104.4, 124.1] [57.5, 60.1] [37.3, 39.0]
(42.5, 76.3) (146.4, 298.4) (93.3, 139.3) (94.6, 150.6) (54.5, 66.3) (35.9, 41.9)

% Change in Volume of Exports

Perfect Foresight 40.5 163.4 53.1 114.3 35.2 18.8
(MLE) (2.8) (90.8) (26.3) (4.0) (9.6) (5.0)

Limited Info. 42.9 192.3 40.5 112.4 22.9 18.9
(MLE) (2.9) (172.3) (17.3) (5.5) (6.3) (5.3)

Moment Inequality
[22.0, 23.4] [50.9, 51.1] [26.9, 27.3] [36.6, 43.7] [8.5, 9.2] [3.8, 4.1]
(16.3, 27.0) (36.8, 56.2) (18.4, 34.0) (31.1, 57.0) (7.6, 10.8) (3.5, 4.6)

Notes: All variables are reported in percentages. For the two ML estimators, standard errors are reported in parenthe-

ses. For the moment inequality estimates, all points in the identified set and confidence sets are used to compute the

counterfactual changes. The corresponding minimum and maximum predicted values obtained using all parameter

values contained in the identified set are reported in square brackets; the minimum and maximum values obtained

using all parameter values contained in the confidence set are reported in parentheses.

sensitivity of the predictions reflects two factors: (a) biases in the estimated contribution of

distance to total fixed costs matter less for predictions in countries close to Chile, and (b) both

the level of uncertainty in export revenues and the heterogeneity in this uncertainty across

exporters are likely to be smaller in countries that are very similar to the exporter’s domestic

markets.

The estimates reveal substantive economic e↵ects from a hypothetical export promotion

measure that reduces fixed export costs.29 Decreasing export costs by 40% leads to a large

increase in export participation in all three countries, particular in markets far from Chile. As

a percentage of the baseline level, the policy that causes fixed costs to fall 40% leads to a 22 to

23% increase in export volume to Argentina in the chemicals sector. The 95% confidence set

for this prediction suggests the increase may lie between 16 and 27%. In the food sector, the

e↵ect on trade flows between Chile and Argentina is somewhat larger: the reduction in fixed

costs produces an increase in volume of between 37 and 44%, with a confidence set ranging

from 31 to 57%. We report the e↵ects of the counterfactual policy on trade flows from Chile

to Japan and the United States in both the food and chemicals sectors in Table 5.

Of course, the counterfactual predictions from our model do not account for the e↵ect

that a reduction in the fixed export costs could have on factor prices in Chile, in the demand

level abroad, or in the degree of competition in destination markets. In this respect, they

29See the references in Section 2.5 for examples of this kind of policy.
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represent partial equilibrium e↵ects, and might not capture the total e↵ect of such changes in

the economic environment on the number of exporters or aggregate exports. Our predicted

changes, however, do illustrate the importance of a firm’s fixed costs of exporting on the

extensive margin of trade, which in turn a↵ects the volume of trade. Our results also illustrate

how researchers’ assumptions on exporters’ expectations translate into distinct measurement

in policy counterfactuals. The relative precision in the moment inequality estimates also

illustrates that researchers can rely on weaker assumptions on firms’ information sets and

nonetheless provide policymakers meaningful counterfactual predictions.

7 What do Exporters Know?

In addition to estimating the fixed costs of exporting and conducting counterfactuals, we use

the moment inequalities introduced in Sections 4.2.1 and 4.2.2 to test the content of potential

exporters’ information sets. Specifically, conditional on the structure imposed by equations

(6) and (13), we can use the specification test suggested in Andrews and Soares (2010) to test

the assumption that a set of observed covariates is contained in the firm’s information set.30

The intuition behind these specification tests is the following: given the structure imposed

by equations (6) and (13), if the vector of observed covariates Zijt we use to define the

odds-based and revealed preference inequalities are in the exporter’s information set, Wijt,

Theorems 1 and 2 imply that the set of parameter values consistent with these inequalities

must be non-empty. If, in our finite sample, we find an empty set during estimation, there

may be two reasons: (a) the population moment inequalities also yield an empty identified set

and, consequently, at least one of the set of assumptions under which they are derived does

not hold in the population, or, (b) the set defined by the population moment inequalities is

non-empty but, due to sampling noise, its sample analogue is empty. The test suggested in

Andrews and Soares (2010) allows us to compute a p-value for the null hypothesis that the

identified set is nonempty.

We run three tests of the information set. In the first, we test our main specification

of the moment inequalities that includes three covariates in the vector of instruments: the

aggregate exports from Chile to each destination market in the previous year, the distance to

each market, and the firm’s own domestic sales in the previous year. We fail to reject the null

that the model is correctly specified at conventional significance levels. Thus, we fail to reject

the null hypothesis that potential exporters know at least the three covariates when forming

expectations over export profits.

In a second test, we re-run the same inequality model as in our main specification, but

we add an additional variable to the vector of instruments. In this specification we assume

30Alternative specification tests for partially identified models defined by moment inequalities have been
provided in Romano and Shaikh (2008), Andrews and Guggenberger (2009), and Bugni et al. (2015).
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firms also know the average productivity of other exporters to a market in the prior year.

When we include the four variables in the specification, we reject the model and the choice

of information set in both the food and chemicals sector. We find a p-value of 0.04 and 0.01

in the food and chemicals sectors, respectively. Restating, the specification test rejects the

model that includes the average productivity of other exporters to a country as an element of

the firms’ information set.31

Finally, we run our moment inequality procedure under the assumption of perfect foresight.

We presume the firm knows precisely the revenue it will earn upon exporting to a particular

destination. We can reject, at conventional significance levels, that firms know their exact

future revenue when deciding whether to export. We find a p-value of 0.05 and 0.01 in the

chemicals and food sectors, respectively.

8 Conclusion

We study the extensive margin decision of firms to enter foreign export markets. This decision

to participate in export markets drives much of the variation in trade volume. Thus, to predict

how trade volume will adjust to changes in the economic environment, policymakers first need

a measure of the determinants of firms’ decisions to engage in exporting.

In developing an empirical model of firms’ export decisions, however, researchers face

a data obstacle. The decision to export depends on firms’ expectations about the profits

they will earn from exporting, which researchers rarely observe. In the standard approach,

researchers specify a set of observable covariates that enter the exporters’ information sets.

We show that the precise specification of the information set matters both for the estimates

of structural parameters as well as for the model’s predictions of how firms will respond to

changes in trade costs. Specifically, we prove formally that the assumption that firms have

perfect foresight will bias fixed export costs upwards, and the size of this bias increases with

the degree of uncertainty that firms face at the time they decide whether to export.

To handle firm’s unobserved expectations, we develop a new moment inequality approach

to estimate structural models of binary choice when the decision maker’s information set

is unknown. We recover the parameters of the firm’s export decision requiring only that

researchers specify a subset of variables included in exporters’ information sets. Our inequality

31Many recent papers have put forward di↵erent micro-foundations for exporters’ information sets. As an
example, Dasgupta and Mondria (2014) introduce rationally inattentive importers that endogenously process
di↵erent amounts of information across di↵erent countries; Allen (2014) models the search process that exporters
follow to acquire information about prices in di↵erent markets; Albornoz et al. (2010) show evidence consistent
with exporters learning from their previous export experience; and Fernandes and Tang (2014) develop a model
in which firms update their beliefs about demand in foreign markets based on the number of neighbors exporting
to these destinations. These papers have implications for the relationship between exporters’ information sets
and variables beyond those studied in this paper. In ongoing research, we conduct a broader examination of
the set of variables di↵erent types of firms use in their decision to enter foreign markets.
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estimator is consistent with exporters knowing more than what the researcher specifies. The

estimated fixed costs from our inequalities are between one third and one half the size of the

costs found using the approaches common in the earlier international trade literature. The

predictions in a counterfactual economic environment in which export fixed costs fall 40%

also di↵er substantially across alternative methods. The bounds we estimate for the e↵ect of

this counterfactual on export participation and export volume are su�ciently tight to inform

policy.

Finally, we show how to use a specification test of our inequality model to test alternative

assumptions on the content of the information sets firms use in their export decision—that is,

to test what exporters know. We reject a model that presumes firms possess perfect foresight.

We can also reject a model that presumes firms know their competitors’ past productivity

when deciding whether to export today.
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Appendix

A.1 Proxy for export revenue: Details

We describe here how we can combine the structure introduced in Sections 2.1 and 2.2 with data on (i) aggregate
exports from h to j in t, R

jt

; (ii) domestic sales for every active firm, {r
iht

; i = 1, . . . , N
t

}; and, (iii) the set of
exporting firms, {d

ijt

; i = 1, . . . , N
t

}, to define a perfect proxy for the export revenue that firm i would obtain
in country j if it were to export to it in year t.

Given the expression for firm i’s potential export revenue in j in equation (5), aggregating r

ijt

across all
firms located in country h that export to country j, we can write the aggregate exports from h to j in t as

R

jt

=
NtX

i=1

d

ijt

r

ijt

di =


⌘

⌘ � 1
⌧

jt

c

t

P

jt

�1�⌘

Y

jt

V

jt

, (29)

where V

jt

is defined as

V

jt

=
NtX

i=1

d

ijt

a

(1�⌘)
it

di. (30)

Note that V

jt

is the sum of the inverse physical productivity terms a

it

(to the power of an exponent that
depends on the demand elasticity ⌘) across all firms that export to the destination country j in year t. We can
therefore proxy for all the country-specific covariates in equation (5) by (R

jt

/V

jt

) and rewrite r

ijt

as

r

ijt

=
a

(1�⌘)
it

V

jt

R

jt

. (31)

The term a

(1�⌘)
it

/V

jt

is the unobserved firm-specific inverse physical productivity of firm i, a
it

, relative to the
sum of these physical productivities for all firms exporting to country j, V

jt

. In order to proxy for this term,
we use information on the domestic revenue of every firm i = 1, . . . , N

t

.
From equation (5), in the case in which j = h and under the assumption that there are no domestic

transport costs, ⌧
iht

= 1 for every firm i, it holds that:

r

iht

=


⌘

⌘ � 1
a

it

c

t

P

ht

�1�⌘

Y

ht

, (32)

and, therefore, for any two firms i and i

0, we can write

a

1�⌘

it

a

1�⌘

i

0
t

=
r

iht

r

i

0
ht

. (33)

Using this expression, we can rewrite the first term in equation (31) as

a

(1�⌘)
it

V

jt

=
1

Vjt

a

(1�⌘)
it

=
1

P
Nt
s=1 dsjt

⇣
ast
ait

⌘(1�⌘)
ds

=
1

P
Nt
s=1 dsjt(rsht/riht)ds

. (34)

Plugging back this expression into equation (31), we obtain the expression for r

ijt

in terms of observable
covariates in equation (6).

A.2 Bias in ML Estimates Under Perfect Foresight Assumption

In this section, we consider the bias generated by wrongly assuming perfect foresight in cases in which exporters
are uncertain about export profits upon entry. In order to do so, we consider a simplified version of the export
model described in Section 2. Specifically, assume that firm i decides whether to export to country j according
to the model

d

ijt

= {⌘�1 [r
ijt

|W
ijt

]� �0 � ⌫

ijt

},
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where ⌘

�1 = �0 = 0.5, and ⌫

ijt

⇠ (0, 2) and independent of any other covariate. This export participation
condition is identical to that in equation (8) except that we do not include distance as a covariate (i.e. we
assume �1 equals 0). Mimicking the estimation problem described in Section 4.1, we assume that the researcher
does not observe [r

ij

|W
ij

] but only r

ij

such that

r

ij

= [r
ij

|W
ij

] + "

ij

.

In Table A.1 below, for di↵erent distributions of the true unobserved expectations, [r
ijt

|W
ijt

], and expecta-
tional error, "

ijt

, we show the point estimates and standard errors that researchers would obtain if they were
to estimate ⌘

�1 and �0 under the assumption of perfect foresight. Under this assumption, we can estimate ⌘

�1

and �0 as the values of the unknown parameter vector (�0, �1) that maximize a likelihood function that relies
on the individual likelihood

P(d
ij

= 1|r
ij

) = �((
p
2)�1(�1rij � �2)).

Note that this individual likelihood is normalized by scale using the correct variance of ⌫
ijt

. In the main text,
we normalize by scale by fixing ⌘ to a known value. The reason is that, when using actual data, the true value
of � is unknown and external estimates of ⌘ are more reliable than those of �. In this simulation, we decide to
normalize by � purely for simplicity.

Table A.1: Bias under Perfect Foresight

Model Distribution of Distribution of ⌘̂

�1
�̂0

[r
ij

|W
ij

] "

ij

1 (0, 1) (0, 0.25) 0.4706 0.4994
(0.0014) (0.0014)

2 (0, 1) (0, 0.5) 0.3960 0.4951
(0.0013) (0.0014)

3 (0, 1) (0, 1) 0.2426 0.4865
(0.0010) (0.0013)

4 t2 t2 0.1573 0.4584
(0.0006) (0.0014)

5 t5 t5 0.2274 0.4773
(0.0008) (0.0014)

6 t20 t20 0.2394 0.4865
(0.0009) (0.0013)

7 t50 t50 0.2436 0.4872
(0.0010) (0.0013)

8 log-normal(0, 1) log-normal(0, 1) 0.1705 0.5436
(0.0006) (0.0014)

9 �log-normal(0, 1) �log-normal(0, 1) 0.1435 0.4767
(0.0006) (0.0013)

Notes: All estimates in this table are normalized by scale by setting var(⌫
ijt

) =

2. In order to estimate each of the models, we generate 1,000,000 observations

from the distribution ⌫
ijt

⇠ (0, 2) and from the distributions of [r
ijt

|W
ijt

],

and "
ijt

described in columns 2 and 3. Whenever draws are generated from

the log-normal distribution, we re-center them at zero. The true parameter

values are ⌘�1
= �0 = 0.5.

The first three rows in Table A.1 are specific examples of the general model studied in Yatchew and Griliches
(1985). The results in columns 4 and 5 of Table A.1 show that there is downward bias in the estimate of ⌘�1

and that the bias is larger as the variance of the expectational error, "
ijt

, increases. This is consistent with the
analytical formula for the bias term in Yatchew and Griliches (1985). In rows 4 to 10, we explore departures
from the setting studied in Yatchew and Griliches (1985). Specifically, we depart from the assumption that
both the unobserved firms’ expectations and the expectational errors are normally distributed. In rows 4 to 7,
we depart from the normal distribution by choosing a distribution both for the unobserved expectations and
expectational errors that has fatter tails than the normal distribution. The downward bias in the estimate
of ⌘�1 persists and it is larger the higher the dispersion in the distribution of unobserved expectations and
expectational errors. In rows 8 and 9, we depart from the normal distribution by choosing distributions
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both for unobserved expectations and expectational errors that are asymmetric. Specifically, model 8 assumes
distributions that are positively skewed, and model 9 distributions that are negatively skewed. In all cases, the
estimate of ⌘�1 is biased downwards.

The estimates shown in Table A.1 condition on the normalization var(⌫
ij

) = 2. In practice, we never know
what the variance of the structural error is. However, standard models of international trade as that described
in Section 2 imply that the coe�cient on the expected export revenues is equal to the inverse of the price
elasticity of demand, 1/⌘. Furthermore, the literature in international trade provides multiple estimates of this
price elasticity of demand (Feenstra, 1994; Broda and Weinstein, 2006), Accordingly, in Section 5 we choose ⌘

as the normalizing constant. Given the choice of a particular constant k as the value of ⌘�1, we obtain rescaled
estimates of the entry cost coe�cient by multiplying our estimates of the fixed cost parameter, �0, by k/⌘̂

�1
1 .

Given that the true value of k in our simulations is 0.5, the upward bias in the fixed costs parameters is given
by the ratio

(0.5/⌘̂�1
1 )�̂0 � 0.5

0.5
.

Table B.1 reports this number for the nine models described in Table A.1. The results show that assuming
perfect foresight implies that we over estimate export fixed costs in a magnitude that varies between 6% (for
the model in which the variance of the expectational error is minimal) and 219% (for a model in which the
distribution of the expectational error is not symmetric).

Table B.1: Bias in Fixed Costs Estimates

Model 1 2 3 4 5 6 7 8 9

Bias 6% 25% 100% 191% 110% 103% 100% 219% 167%

A.3 Partial Identification: Example

The data are informative about the joint distribution of (d
ijt

, Z

ijt

, r

ijt

) across i, j, and t. Consistent with the
alternative vectors of instruments discussed in Section 4, we define Z

ijt

such that dist

j

2 Z

ijt

. We denote
the joint distribution of the vector (d

ijt

, Z

ijt

, r

ijt

) as (d
ijt

, Z

ijt

, r

ijt

). In this section, we use (·) to denote
distributions that may be directly estimated given the available data on (d

ijt

, Z

ijt

, r

ijt

). For the sake of
simplicity in the notation, we use r

e

ijt

to denote [r
ijt

|W
ijt

]. Without loss of generality, we can write

(d
ijt

, Z

ijt

, r

ijt

) =

Z
f(d

ijt

, Z

ijt

, r

ijt

, r

e

ijt

)dre
ijt

,

where, for any vector (x1, . . . , xK

), we use f(x1, . . . , xK

) to denote the joint distribution of (x1, . . . , xK

). Here,
we use f(·) to denote distributions that involve some variable that is not directly observable in the data, such
as re

ijt

. Using rules of conditional distributions, we can further write

(d
ijt

, Z

ijt

, r

ijt

) =

Z
f

y(d
ijt

|re
ijt

, r

ijt

, Z

ijt

)fy(r
ijt

|re
ijt

, Z

ijt

)fy(re
ijt

|Z
ijt

) (Z
ijt

)dre
ijt

, (35)

where we use (Z
ijt

) to denote that the marginal distribution of Z
ijt

is directly observable in the data. Any
structure S

y ⌘ {fy(d
ijt

|re
ijt

, r

ijt

, Z

ijt

), fy(r
ijt

|re
ijt

, Z

ijt

), fy(re
ijt

|Z
ijt

)} is admissible as long as it verifies the
restrictions imposed in Section 2 and equation (35). The model in Section 2 imposes the following restriction
on the elements of equation (35):

f

y(d
ijt

|re
ijt

, r

ijt

, Z

ijt

) = f(d
ijt

|re
ijt

, Z

ijt

; �y) =
⇣
�
�
(�y

2 )
�1�

⌘

�1
r

e

ijt

� �

y

0 � �

y

1distj

��⌘dijt
⇣
1� �

�
(�y

2 )
�1�

⌘

�1
r

e

ijt

� �

y

0 � �

y

1distj

��⌘1�dijt
. (36)

Here, we show that � is partially identified in a model that imposes restrictions that are stronger than
those in Section 2. This means that there exists at least two structures Sy that imply di↵erent values of � and
that verify equation (35) even after we impose additional restrictions to those implied by the model in Section
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2. Specifically, we impose the following additional restrictions on the elements of equation (35)

�1 is known and equal to 0, (37a)

r

ijt

= r

e

ijt

+ "

ijt

, "

ijt

|(re
ijt

, ⇠

ijt

) ⇠ (0,�2
"

) (37b)

Z

ijt

= r

e

ijt

+ ⇠

ijt

⇠

ijt

|re
ijt

⇠ ((�
⇠

/�

r

e)⇢
⇠r

e(re
ijt

� µ

r

e), (1� ⇢

2
⇠r

e)�2
⇠

) (37c)

r

e

ijt

⇠ (µ
r

e
,�

2
r

e). (37d)

Equation (37a) restricts the model in Section 2 by assuming that distance does not a↵ect fixed export costs.
Equation (37b) assumes that firms’ expectational error is normally distributed and independent of both firms’
unobserved expectations and the di↵erence between the instrument and the unobserved expectations, ⇠

ijt

.
By contrast, the model in Section 2 only imposes mean independence between "

ijt

and r

e

ijt

. Equation (37c)
imposes a particular assumption on the joint distribution of firms’ unobserved true expectations r

e

ijt

and the
subset of the variables used by firms to form those expectations that are observed to the researcher, Z

ijt

. The
model in Section 2 does not impose any assumption on this relationship. Finally, equation (37d) imposes that
firms’ unobserved expectations are normally distributed; a distributional assumption that is not imposed in
the model in the main text. Therefore, it is clear that equation (37) defines a model that is more restrictive
than that defined in Section 2. However, as we show below, even after imposing the assumptions in equation
(37), we can still find at least two structures

S

y1 ⌘ {(�y1
0 , �

y1
2 ), fy1(r

ijt

|re
ijt

, Z

ijt

), fy1(re
ijt

|Z
ijt

)},
S

y2 ⌘ {(�y2
0 , �

y2
2 ), fy2(r

ijt

|re
ijt

, Z

ijt

), fy2(re
ijt

|Z
ijt

)},

that: (1) verify the restrictions in equations (36) and (37); (2) verify equation (35); and (3) �y1 6= �

y2 . If � is
partially identified in this stricter model, it will also be partially identified in the more general model described
in Section 2.

Equation (37a) simplifies the identification exercise discussed here because the only parameters that are left
to identify are (�0, �2); i.e. we can set �1 = 0 in equation (36). Equation (37b) assumes that the expectational
error not only has mean zero and finite variance but is also normally distributed. This implies that the
conditional density f(r

ijt

|re
ijt

, Z

ijt

) is normal:

f(r
ijt

|re
ijt

, Z

ijt

) =
1

�

"

p
2⇡

exp
h
� 1

2

⇣
r
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� r

e

ijt

�

"

⌘2i
.

By applying Bayes’ rule, both equations (37c) and (37d) jointly determine the conditional density f(re
ijt

|Z
ijt

)
entering equation (35).

Result A.3.1 There exists empirical distributions of the vector of observable variables (d, Z,X), (d, Z,X),
such that there are at least two structures S

y1
and S

y2
for which

1. both S

y1
and S

y2
verify equations (35), (36), and (37);

2. �

y1 6= �

y2
.

This result can be proved by combining the following two lemmas.

Lemma A.3.1 The parameter vector (�0, �2) is point-identified only if the parameter �

r

e = var(re
ijt

) is point-

identified.

Proof: Define r

e

ijt

= �

r

e
r̃

e

ijt

, such that var(r̃e
ijt

) = 1. We can then rewrite equation (36) as

⇣
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e
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.

The parameter �2 only enters likelihood function in equation (35) either dividing �

r

e or dividing �0. Therefore,
we can only separately identify �0 and �2 if we know �

r

e . ⌅

Lemma A.3.2 The parameter vector �

r

e
is point-identified if and only if the parameter ⇢

⇠r

e
is assumed to be

equal to zero.
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Proof: From equations (37b), (37c) and (37d), we can conclude that r
ijt

and Z

ijt

are jointly normal. Therefore,
all the information arising from observing their joint distribution is summarized in three moments:
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The left hand side of these three equations is directly observed in the data. If we impose the assumption that
⇢

⇠r

e = 0, then �

rz

= �

2
r

e and, therefore, from Lemma A.3.1, the vector � is point identified. If we allow ⇢

⇠r

e

to be di↵erent from zero, the system of equations in equation (39) only allows us to define bounds on �

2
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e . We
can rewrite the system of equations in equation (39) as
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This is a linear system with 3 equations and 4 unknowns, (�2
r

e
,�

2
"

,�

2
w

,�
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e). Therefore, the system is underi-
dentified and does not have a unique solution for �2
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e .

A.4 Proof of Theorem 1

For the sake of simplicity in the notation and consistent with the definition of potential exporters’ information
sets used earlier, in this section we assume that dist

j

2 W
ijt

.
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; ✓) denote the log-likelihood conditional on W
ijt
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Proof: It follows from the model in Section 2 that the log-likelihood conditional on W
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can be written as
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The score function is given by
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Given that
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Equation (40) follows by symmetry of the function �(·). ⌅

Lemma 2 Suppose the assumptions in equations (9), (10), and (13) hold. Then
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Proof: It follows from the definition of "
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Proof: The result follow from Lemmas 1 and 2 and the application of the Law of Iterated Expectations. ⌅
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Proof: From equation (41), reordering terms
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Equation (46) follows by symmetry of the function �(·). ⌅
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Proof: The results follow from Lemmas 3 and 4 and the application of the Law of Iterated Expectations. ⌅

Proof of Theorem 1 Combining equations (44) and (45), we obtain the inequality defined by equations
(17) and (18a). Combining equations (48) and (49), we obtain the inequality defined by equations (17) and
(18b). ⌅

A.5 Proof of Theorem 2

For the sake of simplicity in the notation and consistent with the definition of potential exporters’ information
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Proof: From equation (50),
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Applying the Law of Iterated Expectations, it follows that
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Proof: From the definition of "
ijt

as "
ijt

= r

ijt

� [r
ijt

|W
ijt

],
h
d

ijt

�
⌘

�1
r

ijt

� �0 � �1distj

����W
ijt

i
=

h
d

ijt

�
⌘

�1 [r
ijt

|W
ijt

]� �0 � �1distj

����W
ijt

i
+

h
⌘

�1
d

ijt

"

ijt

���W
ijt

i
. (56)

From equations (3) and (9), ["
ijt

|W
ijt

, ⌫

ijt

] = 0. From equations (2), (8) and the assumption that dist
j

2 J
ijt

it follows that d
ijt

is a function of the vector (W
ijt

, ⌫

ijt

); i.e. d
ijt

= d(W
ijt

, ⌫

ijt

). Therefore, ["
ijt

|W
ijt

, d

ijt

] =
0 and, applying the Law of Iterated Expectations,

⇥
⌘

�1
d

ijt

"

ijt

��W
ijt

⇤
=

⇥
⌘

�1
d

ijt

⇥
"

ijt

��W
ijt

, d

ijt

⇤��W
ijt

⇤
=

⇥
⌘

�1
d

ijt

⇥ 0
��W

ijt

⇤
= 0.

Applying this result to equation (56) yields equation (55).

Lemma 8 Suppose the assumptions in equation (9) and (3) hold. Then

h
(1� d

ijt

)�
�

�
�

�1(⌘�1
r

ijt

� �0 � �1distj)
�

1� �
�
�

�1(⌘�1
r

ijt

� �0 � �1distj)
�
���W

ijt

i

�
h
(1� d

ijt

)�
�

�
�

�1(⌘�1 [r
ijt

|W
ijt

]� �0 � �1distj)
�

1� �
�
�

�1(⌘�1 [r
ijt

|W
ijt

]� �0 � �1distj)
�
���W

ijt

i
(57)
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is convex for any value of y and ["
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Proof: The results follow from Lemmas 6, 7 and 8 and the application of the Law of Iterated Expectations.
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This inequality holds for every firm i, country j, and year t. Therefore, it will also hold in expectation
conditional on W
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Proof: From equation (61),
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Since the assumption in equation (3) implies that [⌫
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Using the definition of d
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Equation (62) follows by applying this equality to equation (65). ⌅
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Applying this result to equation (67) yields equation (66).
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Proof: It follows from the definition of "
ijt

as "

ijt

= r

ijt

� [r
ijt

|W
ijt

] and the assumptions in equations (9)
and (3) that ["

ijt

|W
ijt

, ⌫

ijt

] = 0. From equations (2), (8) and the assumption that dist

j

2 W
ijt

it follows

44



that d
ijt

is a function of the vector (W
ijt

, ⌫

ijt

); i.e. d
ijt

= d(W
ijt

, ⌫

ijt

). Therefore, ["
ijt

|W
ijt

, d

ijt

] = 0. Since

�(y)
�(y)

is convex for any value of y and ["
ijt

|J
ijt

, d

ijt

] = 0, by Jensen’s Inequality

h
d

ijt

�

�

�
�

�1(⌘�1 [r
ijt

|W
ijt

]� �0 � �1distj + ⌘

�1
"

ijt

)
�

�
�
�

�1(⌘�1 [r
ijt

|W
ijt

]� �0 � �1distj + ⌘

�1
"

ijt

)
�
���W

ijt

i
�

h
d

ijt

�

�

�
�

�1(⌘�1 [r
ijt

|W
ijt

]� �0 � �1distj)
�

�
�
�

�1(⌘�1 [r
ijt

|W
ijt

]� �0 � �1distj)
�
���W

ijt

i

Equation (68) follows from the equality ⌘
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Proof of Theorem 2 Combining equations (58), (59), and (60) we obtain the inequality defined by
equations (20) and (21a). Combining equations (69), (70), and (71) we obtain the inequality defined by
equations (20) and (21b). ⌅

A.6 Deriving unconditional moments

The moment inequalities described in equations (17) and (20) condition on particular values of the instrument
vector, Z. From these conditional moments, we can derive unconditional moment inequalities. Each of these
unconditional moments is defined by an instrument function. Specifically, given an instrument function g(·),
we derive unconditional moments that are consistent with our conditional moments:
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where m
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(·), m
u

(·), mr

l

(·), and m
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u

(·) are defined in equations (18) and (21), and Z

ijt

is the same vector of
observed covariates employed in defining the conditional moments in equations (17) and (20).

In Section 5, we present results based on a set of instrument functions g
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(·) such that, for each scalar
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included in the instrument vector Z
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,

. . . , Z
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), the function g

a

(·) builds two moments by splitting the observations into two groups depending on
whether the value of the instrument variable for that observation is above or below its median. Within each
moment, each observation is weighted di↵erently depending on the value of a and on the distance between the
value of the instrument Z

kijt

and the median value of this instrument. Specifically, in Section 5, we assume
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Given that each particular instrument function g

a

(Z
ijt

) contains six instruments and there are four basic odds-
based and revealed preference inequalities (in equations (18) and (21)), the total number of moments used in
the estimation is equal to twenty-four for a given value of a, in addition to a constant vector. In the benchmark
case we simultaneously use two di↵erent instrument functions, g

a

(Z
ijt

), for a = {0, 1.5}, to define both an
estimated set ⇥

all

and a confidence set ⇥↵

all

at significance level ↵.32

A.7 Sample selection in the estimation of determinants of export revenues

Assume a setting characterized by the the following three equations
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In this model, we need to keep track of three di↵erent information sets: (a) J
ijt

is the true information set of
potential exporter i at period t about potential determinants of profits in country j; (b) W

ijt

is the subset of
J

ijt

that is useful to predict r
ijt

; (c) Wx

ijt

is the subset of W
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that is useful to predict the vector X
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.
As in Section 2, we do not fully specify the content of the information set Wx

ijt

. Specifically, we do not
assume anything on whether X

ijt

is included in the information set of the exporter, Wx

ijt

. Therefore, this
model allows for a very flexible relationship between the information set that exporters have at the time they
decide whether to export and the set of determinants of export revenue observed by the researcher, X

ijt

.
The model described by equations (72), (73), (74), and (75) corresponds to that in Section 2 if we assume

that u

ijt

= e

ijt

= 0 and � is known. In this case, equation (6) is simply a specific case of equation (72), and
equation (74) collapses to equation (3).

The model described by equations (72), (73), (74), and (75) also nests the censored regression model in
Heckman (1979). Specifically, the two-step estimator for (�,�0,�1,�
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) in Heckman (1979) would apply to
the model in equations (72), (73), (74), and (75) if we were to assume that e
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= 0 and X

ijt

is measurable in
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.

32We have recomputed the tables presented in Section 5 using alternative definitions of the instrument
function g

a

(Z
ijt

). Even though the boundaries of both identified and confidence sets depend on the instrument
functions, the main conclusions are robust. The exact results are available upon request.
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where the first equality comes from equation (72); the second equality comes from equation (75) and [e
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0; the third equality simply rearranges terms; the fourth equality uses symmetry in the distribution of ⌫
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the fifth equality computes the inverse Mills ratio. We cannot directly use this moment for estimation purposes
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Given that �(·)/�(·) is globally convex and that ["
ijt

|W
ijt

] = 0, we can conclude that

[r
ijt

|d
ijt

= 1,W
ijt

]  � [X
ijt

|d
ijt

= 1,W
ijt

] + ⇢12�u

h
�(⌘�1

r

ijt

� �0 � �1distj)
�(⌘�1

r

ijt

� �0 � �1distj)

���W
ijt

i
,

or, equivalently,

[r
it

|d
it

= 1,W
it

] 
h
�X

ijt

+ ⇢12�u

�(⌘�1
r

ijt

� �0 � �1distj)
�(⌘�1

r

ijt

� �0 � �1distj)

���d
ijt

= 1,W
ijt

i
,

and

h
r

it

� �X

ijt

� ⇢12�u

�(⌘�1
r

ijt

� �0 � �1distj)
�(⌘�1

r

ijt

� �0 � �1distj)

���d
ijt

= 1,W
ijt

i
 0.

Given a vector Z
ijt

2 W
ijt

, we can further write

h
r

it

� �X

ijt

� ⇢12�u

�(⌘�1
r

ijt

� �0 � �1distj)
�(⌘�1

r

ijt

� �0 � �1distj)

���d
ijt

= 1, Z
ijt

i
 0. (76)

Besides the moment inequality in equation (76), we can also derive revealed preference and odds-based
inequalities analogous to those introduced in Sections 4.2.1 and 4.2.2. When deriving these inequalities, we
must take into account that, contrary to the case described in the main text, in the model considered here, r

ijt

is not observed for every firm i and period t. However, we can rely on the fact that X
ijt

is observed for every
firm i, country j and time period t, independently of the value of d
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.

Specifically, we know that

[r
ijt

|W
ijt

] = [�X
ijt

+ u

ijt

+ e

ijt

|W
ijt

] = � [X
ijt

|W
ijt

] + u

ijt

,

and, using equation (73), we can write
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Imposing this equality into equation (75), we can write
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Analogously, we can write
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with (v
ijt

/�

v

) ⇠ (0, 1). Using equation (78) and following the steps in Sections 4.2.1 we can derive the
odds-based inequalities
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Similarly, using equation (78) and following the steps in Sections 4.2.2 we can derive the revealed preference
inequalities
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The parameters to identify are (�, ⌘,�0,�1, ⇢12,�u

) and, for each observed covariate Z
it

such that Z
it

2 J
it

,
the set of moment inequalities identifying these parameters are those given in equations (76), (79), (80), (81),
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(82), plus the bounds
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0  �

u

,

with �

v

defined in equation (77).

A.8 Proof of Theorem 3
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Equation (83) follows from the equality ⌘
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Proof: It follows from lemmas 13 and 14 and the Law of Iterated Expectations. ⌅

Lemma 16 Suppose Y is a variable with support in (0, 1), then
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Proof: We can rewrite the left hand side of equation (87) as

h1� Y

Y

i
=

h 1
Y

� 1
i
=

h 1
Y

i
� 1, (89)

and the right hand side of equation (87) as
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As Y takes values in the interval (0, 1), Jensen’s inequality implies
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Equations (89), (90), and (91) imply that equation (87) holds.

Define a random variable X = 1� Y and rewrite the left hand side of equation (88) as

h1�X

X

i
.

As the support of Y is (0, 1), the support of X is also (0, 1). Equations (89), (90), and (91) only depend on
the property that the support of Y is (0, 1). Therefore, from these equations, it must also be true that
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,

and, applying the inequality X = 1� Y , we can conclude that equation (88) holds. ⌅
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Proof: Equation (13) implies that the support of P
ijt

is the interval (0, 1). Therefore, Lemma 16 implies that
equations (92) and (93) hold. ⌅
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where
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Proof: Combining equations (85) and (92),
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Combining equations (86) and (93),
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Combining the inequalities in equations (97) and (98) we obtain equation (94). ⌅

A.9 Bounds on counterfactual choice probabilities

We may use equations (23), (24) and (25) to define bounds on expected export probabilities in the counterfac-
tual scenarios described in Section 2.5.
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Using expressions analogous to equations (23), (24) and (25), we may define bounds the expectation of
Pc

ijt

conditional on any particular value or set of values of Z
ijt

as follows

Pc(Z
ijt

)  Pc(Z
ijt

)  Pc

(Z
ijt

), (99)
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with
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In addition to computing the expected probability of exporting in actual and counterfactual scenarios, we may
also define bounds on the ratio of expected export probabilities in these di↵erent scenarios. Specifically, for
the counterfactual scenario described in Sections 2.5, we can compute bounds for the percentage growth of the
expected export probability for the subset of observations with a given value of Z

ijt

due to a 40% reduction in
the fixed costs �0 and �1:
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