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Abstract

We examine the hypothesis that the slowdown in productivity following the Great

Recession was in significant part an endogenous response to the contraction in demand

that induced the downturn. We first present some descriptive evidence in support of

our approach. We then augment a workhorse New Keynesian DSGE model with an

endogenous TFP mechanism that allows for both costly development and adoption of

new technologies. We then estimate the model and use it to assess the sources of

the productivity slowdown. We find that the post-Great Recession fall in productivity

was a largely endogenous phenomenon. The endogenous productiivity mechanism also

helps account for the slowdown in productivity prior to the Great Recession. Overall,

the results are consistent with the view that demand factors have played a role in the

slowdown of capacity growth. More generally, they provide insight into why recoveries

from financial crises may be so slow.
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1 Introduction

One of the great challenges for macroeconomists is explaining the slow recovery from major

financial crises (see, e.g. Reinhart and Rogoff (2009)). This phenomenon is only partly

accounted for by existing theories. The deleveraging process was likely an important cause

of persistent reduced spending by borrowers as they saved to lower debt. Constraints on

macroeconomic policy likely also contributed to sluggish demand: the zero lower bound on

the nominal interest rate limited the ability of monetary policy to stimulate the economy

and the political fight over the national debt ceiling effectively removed fiscal policy as

source of stimulus.

While these demand side factors have undoubtedly played a central role, it is unlikely

that they alone can account for the extraordinarily sluggish movement of the economy back

to the pre-crisis trend. This had led a number of authors to explore the contribution of

supply-side factors. Both Hall (2014) and Reifschneider et al. (2015) have argued that

the huge contraction in economic activity induced by the financial crisis in turn led to

an endogenous decline in capacity growth. Hall (2014) emphasizes how the collapse in

business investment during the recession brought about a non-trivial drop in the capital

stock. Reifschneider et al. (2015) emphasize not only this factor but also the sustained drop

in productivity. They make the case that the drop in productivity may be result of a decline

in productivity-enhancing investments, and thus an endogenous response to the recession.

Indeed, sustained drops in productivity appear to be a feature of major financial crises.

This has been the case for the U.S. in the wake of the Great Recession. A similar phe-

nomenon has occurred recently in Europe. The same phenomenon holds broadly for fi-

nancial crises in emerging markets: in a sample of East Asian countries that experienced a

financial crisis during the 1990s, Queralto (2015) finds a sustained drop in labor productivity

in each case to go along with the sustained decline in output.

What accounts for the reduced productivity growth following financial crises? There are

two candidate hypotheses: bad luck versus an endogenous response. Fernald (2014) makes

a compelling case for the bad luck hypothesis. As he emphasizes, the productivity slowdown

began prior to the Great Recession, raising questions on whether it could be a causal factor.

Figure 1 illustrates the argument. The figure plots both detrended total factor productivity,

specifically Fernald’s utilization corrected measure, along with labor productivity. Both

measures show a sustained decline relative to trend in the years after the Great Recession.

But the decline appears to begin around 2004-05, prior to the downturn.

There are several different theories of how the productivity slowdown could reflect an
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Figure 1:
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All series are log-linearly detrended. Labor productivity is GDP divided by hours worked (see Ap-

pendix A.1 for data sources). TFP is Utilization-Adjusted Total Factor Productivity (available at

http://www.frbsf.org/economic-research/total-factor-productivity-tfp/; see Fernald (2012) for details).

3



endogenous response to the crisis. The one on which we focus, because we think it has

the most empirical promise, involves endogenous growth considerations. Specifically, to the

extent that the crisis induced a large drop in expenditures on research and development as

well as technology adoption, the subsequent decline in productivity could be an endogenous

outcome. Indeed as we document in section 2, during the Great Recession, there was a

sharp decline in private R&D activity as well as in one specific type of new technology

adoption: corporate expenditures in software adoption. There was also a sharp decline in

these measures of endogenous technology upgrading activities during and after the 2001-

2002 recession which raises the possibility that the productivity slowdown prior to the Great

Recession was also in part a response to cyclical factors. Overall, this evidence plus some

other descriptive evidence on technology diffusion that we present is potentially consistent

with endogenous growth factors contributing to the productivity slowdown.

Given this background motivation, we develop and estimate a monetary DSGE model

modified to allow for endogenous technology via R&D and adoption. We then use the

model to address the following three issues: (i) how much of the recent productivity decline

reflects an endogenous response to the Great Recession; (ii) whether the mechanism can

also account for the productivity slowdown prior to the Great Recession; and (iii) more

generally the extent to which endogenous productivity can help account for business cycle

persistence.

The endogenous productivity mechanism we develop is based on Comin and Gertler

(2006), which uses the approach to connect business cycles to growth. The Comin/Gertler

framework, in turn, is a variant of Romer (1990)’s expanding variety model of technolog-

ical change, modified to include an endogenous pace of technology adoption. We include

adoption to allow for a realistic period of diffusion of new technologies, but we allow for

endogenous adoption intensity to capture cyclical movements in productivity that may be

the product of cyclical adoption rates. Evidence from Comin (2009) based on 20 manufac-

turing processes in the U.K. suggests that the speed of technology diffusion strongly varies

over the cycle.

In addition to the literature cited above, there are several other papers related to our

analysis. Queralto (2015), Guerron-Quintana and Jinnai (2014) and Garcia-Macia (2013)

have applied variants of the Comin/Gertler approach to explain the persistence of finan-

cial crises. We differ by estimating as opposed to calibrating a model,1 by introducing

endogenous adoption (which we find to be the critical channel to explain productivity), by

allowing for monetary policy (which also turns out the be important), and by investigating

1Guerron-Quintana and Jinnai (2014) also estimate their model.
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quantitatively the ability of the model to explain not only the post- but also the pre-crisis

slowdown in U.S. productivity.

The paper most closely related to ours is Bianchi and Kung (2014), who first estimated

a monetary DSGE model with endogenous growth using R&D data. In addition to focusing

on somewhat different issues, we differ in the following ways: first, we develop an explicit

model of R&D and adoption with realistic lags which aids in both the empirical identi-

fication and the interpretation of the mechanism; second, we use data on business R&D

as opposed to the NIPA measure. The former measure corresponds more closely to the

model counterpart of R&D since unlike the latter it excludes public expenditures on R&D

and includes expenditures on software development. As a consequence, it exhibits cyclical

properties more in keeping with the predictions of the theory. Third, we impose the zero

lower bound on monetary policy, which turns out to be an important factor propagating

the endogenous decline in productivity in the wake of the Great Recession.

The rest of the paper is organized as follows. Section 2presents some evidence on the

cyclical behavior R&D and technology adoption. In addition, we present some new panel

data evidence on the speed of technology diffusion that suggests strong cyclical effects,

consistent with the approach we take in our model. Section 3 presents the model. Section

4 describes the econometric implementation and present the estimates. Section 5 analyzes

the extent to which the endogenous growth mechanism can account for the evolution of

productivity both before and after the Great Recession.

2 Evidence on R&D and the speed of technology diffusion

In this section, we present some evidence on the cylcical behavior of R&D and some various

measures of technology adoption. We are interested in exploring not only the general cyclical

patterns, but also behavior during the last fifteen years, which is the main focus of our study.

While reasonably broad measures are available for R&D, the same is not true for adoption.

Accordingly, for the latter we consider several different specific measures.

We begin with figure 2 which plots expenses on R&D conducted by US corporations

and one specific measure of adopton: business expenses in own-account software.2 Own-

account software consists of in-house expenditures for new or significantly-enhanced software

created by business enterprises for their own use.3 According to the BEA, the expenditures

are made for analysis, design, programming, and testing of software and may be made by

2All series are linearly detrended. Data on expenditures in R&D and own account software are deflated
by the GDP deflator and divided by the civilian population older than 16.

3See http://www.bea.gov/papers/pdf/software.pdf

5



Figure 2:

All series are log-linearly detrended data. Sources: R&D Expenditure by US corporations (National Science

Foundation); Business Expenses in Own-Account Software (Bureau of Economic Analysis); Data are deflated

by the GDP deflator and divided by the civilian population older than 16 (see Appendix A.1 for data sources).

any industry. Because these expenditures are directed at new or enhanced software used by

a company, they provide a reasonable proxy for some of the costs a company needs to incur

to upgrade its technologies, which is what we have in mind by adoption expenditures.

During the Great Recession, there is a sharp decline in R&D and own account software,

potentially consistent with endogenous growth factors contributing to the productivity slow-

down.4 Note also that there was a sharp decline in R&D and our measure for software

adoption expenditures following the 2001-2002 recession. Even though this recession over-

all was mild, the IT producing industries were particularly hard hit. The significance of

these R&D and adoption contractions raise the possibility that the productivity slowdown

prior to the Great Recession was also in part a response to cyclical factors.

4There is a long literature documenting teh cyclicality of R&D expenditures (see Barlevy, 2007, for a
summary). Barlevy (2007) presents evidence based on firm-level data on the importance of both sectoral
demand as well as firms’ financial conditions for the pro-cyclicality of R&D expenditures.
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The evidence on R&D is consistent with the general procylical behavior found in other

studies (see e.g. Comin and Gertler, 2006). Less however is known about the behavior

of adoption. Accordingly, to explore further the cyclicality of the speed of diffusion of

new technologies, we resort to datasets that contain traditional measures of diffusion from

the productivity literature.5 The data we have available is a sample of 26 production

technologies that diffused at various times over the period 1947-2003 in the US (5) and the

UK (21).6 We use the data to estimate the the effect of the business cycle on the speed of

diffusion, after controlling for the normal diffusion process.

Specifically, we denote by mit the fraction of potential adopters that have adopted a

specific technology i in t. The ratio of adopters to non-adopters rit is

rit = mit/(1−mit). (1)

The speed of diffusion is then the percentage change in rit :

Speedit = 4 ln(rit) (2)

If the diffusion process follows a logistic curve, the speed of diffusion (2) is equal to a

constant αi. In reality, however, the speed of diffusion is not contant, it tends to be faster

in the early stages. Therefore, rit declines with the age of the technology. Additionally,

we want to explore whether the speed of technology diffusion varies over the cycle. To this

end, we consider the following specification

Speedit = αi +G(lagit) + β ∗ y2200t + εit, (3)

where G(.) is a polynominal in the years since the technology was first introduced, and

y2200t is a measure of the business cycle (in year t) that captures both high and medium

term fluctuations in GDP per person over 16 years old.

Table 1 presents the estimates of equation (3). The main finding is that the estimates

of the elasticity of the speed of diffusion with respect to the cycle, β, are robustly positive

5See for example, Griliches (1957) and Mansfield (1961).
6The data on the UK technologies comes from (Davies, 1974) and covers special presses, foils, wet suc-

tion boxes, gibberellic acid, automatic size boxes, accelerated drying hoods, basic oxygen process, vacuum
degassing, vacuum melting, continuous casting, tunnel kilns, process control by computer, tufted carpets,
computer typesetting, photo-electrically controlled cutting, shuttleless looms, numerical control printing
presses, numerical control turning machines and numerical control turbines. The data for the five tech-
nologies in the US comes from Trajtenberg (1990), and Bartel et al. (2009) and covers the diffusion of
CT scanners, Computerized numerical controlled machines, automated inspection sensors, 3-D CAD, and
flexible manufacturing systems.
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Table 1: Cyclicality of the Speed of Technology Diffusion

I II III IV

y2200 3.73 3.7 3.64 4.12
(3.59) (2.81) (3.94) (3.17)

y2200 * US 0.07 -0.74
(0.04) (0.53)

lag -0.057 -0.057
(5.22) (4.76)

lag2 0.001 0.001
(2.52) (2.12)

ln(lag) -0.29 -0.29
(6.68) (6.65)

R2 (within) 0.11 0.11 0.13 0.13
N technologies 26 26 26 26
N observations 327 327 327 327

Notes: (1) dependent variable is the Speed of diffusion of 26 technologies, (2) all regressions include

technology specific fixed effects. (3) t-statistics in parenthesis, (4) y2200 denotes the cycle of GDP per

capita in the country and represents the high and medium term components of output fluctuations,

(5)y2200*US denotes the medium term cycle of GDP per capita times a US dummy, (6) lag denotes the

years since the technology first started to diffuse.

and significant. In particular, the point estimate is between 3.6 and 4.1 depending on the

specification. The effect of the years since the technology started diffusing is negative and

convex (i.e. it vanishes over time). The results are robust to specifying the function G

as a second order polynomial or in logarithms. Finally, we do not observe any significant

differential effect of the cycle in the US technologies vs. the UK technologies.

To further illustrate the cyclicality of the speed of technology diffusion, Figure 3 plots

the the speed of diffusion for the balanced panel of four US technologies for which we

have data from 1981 to 2003. Specifically, for each of the technologies we remove the

acyclical component of the diffusion rate (αi + G(lagit)). When then average the residual

(β ∗ y2200t + εit) over the four technologies. The dashed line is a plot of this average, while

the solid line is a three year centered moving average. The Figure clearly shows a positive

correlation between the speed of diffusion and the cycle. The speed of diffusion was lowest

in the deep 1981-82 recession. Then it recovered during the 80s and declined again after

the 1990 recession. increased notably during the expansion in the second half of the 90s

and declined again with the 2001 recession.

Finally, Andrews, Criscuolo and Gal (2015) have recently provided evidence that tech-
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Figure 3:

nology diffusion may have slowdowed down during the Great Recession in the OECD. In

their study, they show that the gap in productivity between the most productive firms in

a sector (leaders) and the rest (followers) has increased significantly during the Great Re-

cession.7 Andrews et al. show that the most productive firms have much greater stocks of

patents which suggests that they engage in more R&D activity. They interpret the increase

in the productivity gap as evidence that followers have slowed down the rate at which they

incorporate frontier technology, developed by the leaders.

These co-movement patterns between the business cycle and measures of investments in

technology as well as their outcomes provides, in our view, sufficiently suggestive evidence

to motivate the quatitative exploration we conduct with the help of our model.

3 Model

Our starting point is a New Keynesian DSGE model similar to Christiano et al. (2005)

and Smets and Wouters (2007). We include the standard features useful for capturing the

data, including: habit formation in consumption, flow investment adjustment costs, variable

7In manufacturing the productivity gap increased by 12% from 2007 and 2009, and in services by ap-
proximately 20%.
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capital utilization and ”Calvo” price and wage rigidities. In addition, monetary policy obeys

a Taylor rule with a binding zero lower bound constraint.

The key non-standard feature is that total factor productivity depends two endogenous

variables: the creation of new technologies via R&D and the speed of adoption of these new

technologies. Skilled labor is used as an input for the R&D and adoption processes.

We do not model financial frictions explicitly; however, we allow for a shock that trans-

mits through the economy like a financial shock, as we discuss below.

We begin with the non-standard features of the model before briefly describing the

standard ones.

3.1 Production Sector and Endogenous TFP: Preliminaries

In this section we describe the production sector and sketch how endogenous productivity

enters the model. In a subsequent section we present the firm optimization problems.

There are two types of firms: (i) final goods producers and (ii) intermediate goods

producers. There are a continuum, measure unity, of monopolistically competitive final

goods producers. Each final goods firm i produces a differentiated output Y i
t . A final good

composite is then the following CES aggregate of the differentiated final goods:

Yt =

(ˆ 1

0
(Y i
t )

1
µt di

)µt
(4)

where µt > 1 is given exogenously.

Each final good firm i uses Y i
mt units of intermediate goods composite as input to produce

output, according to the following simple linear technology

Y i
t = Y i

mt (5)

Each final good firm i sets nominal price P it on a staggered basis, as we describe later.

There exists a continuum of measure At of monopolistically competitive intermediate

goods firms that each make a differentiated product. The endogenous predetermined vari-

able At is the stock of types of intermediate goods adopted in production, i.e., the stock

of adopted technologies. Intermediate goods firm j produces output Y j
mt. The intermediate

goods composite is the following CES aggregate of individual intermediate goods:

Ymt =

(ˆ At

0
(Y j
mt)

1
ϑdj

)ϑ
(6)
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with ϑ > 1.

LetKj
t be the stock of capital firm j employs, U jt be how intensely this capital is used, and

Ljt the stock of labor employed. Then firm j uses capital services U jtK
j
t and unskilled labor

Ljt as inputs to produce output Y j
mt according to the following Cobb-Douglas technology:

Y j
mt = θt

(
U jtK

j
t

)α
(Ljt )

1−α (7)

where θt is an exogenous random disturbance. As we will make clear shortly, θt is the

exogenous component of total productivity. Finally, we suppose that intermediate goods

firms set prices each period. That is, intermediate goods prices are perfectly flexible, in

contrast to final good prices.

Let Y
i
t be average output across final goods producers. Then the production function

(4) implies the following expression for the final good composite Yt

Yt = Ωt · Y
i
t (8)

where Ωt is the following measure of output dispersion

Ωt =

(ˆ 1

0
(Y i
t /Y

i
t)

1
µt di

)µt
(9)

= 1 to a 1st order

In a first order approximation, Ωt equals unity, implying that we can express Yt simply as

Y
i
t.

Next, given the total number of final goods firms is unity, given the production function

for each final goods producer (5), and given that Yt equals Y
i
t, it follows that to a first order

Yt = Ymt (10)

Finally, given a symmetric equilibrium for intermediate goods (recall prices are flexible

in this sector) it follows from equation (6) that we can express the aggregate production

function for the finally good composite Yt

Yt = [Aϑ−1t θt] · (UtKt)
α(Lt)

1−α (11)

where the term in brackets is total factor productivity, which is the product of a term that

reflects endogenous variation, Aϑ−1t , and one that reflects exogenous variation θt. Note that

equation (11) holds to a first order since we impose Ωt equals unity.
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In sum, endogenous productivity effects enter through through the expansion in the

variety of adopted intermediate goods, measured by At. We next describe the mechanisms

through which new intermediate goods are created and adopted.

3.2 R&D and Adoption

The processes for creating and adopting new technologies are based on Comin and Gertler

(2006). Let Zt denote the stock of technologies, while as before At is the stock of adopted

technologies (intermediate goods). In turn, the difference Zt−At is the stock of unadopted

technologies. R&D expenditures increase Zt while adoption expenditure increase At. We

distinguish between creation and adoption because we wish to allow for realistic lags in

the adoption of new technologies. We first characterize the R&D process and then turn to

adoption.

3.2.1 R&D: Creation of Zt

There are a continuum (measure unity) of innovators that use skilled labor to create new

intermediate goods. Let Lpsrt be skilled labor employed in R&D by innovator p and let ϕt

be the number of new technologies at time t + 1 that each unit of skilled labor at t can

create. We assume ϕt is given by

ϕt = χtZtL
ρz−1
srt (12)

where χt is an exogenous disturbance to the R&D technology and Lsrt is the aggregate

amount of skilled labor working on R&D, which an individual innovator takes as given.

Following Romer (1990), the presence of Zt, which the innovator also takes as given, re-

flects public learning-by-doing in the R&D process. We assume ρz < 1 which implies that

increased R&D in the aggregate reduces the efficiency of R&D at the individual level. We

introduce this congestion externality so that we can have constant returns to scale in the

creation of new technologies at the individual innovator level, which simplifies aggregation,

but diminishing returns at the aggregate level. The advantage of diminishing returns in

the aggregate is that the elasticity of the creation of new technologies with respect to R&D

becomes a parameter we can estimate, as we make clear shortly.

Let Jt be the value of an unadopted technology, Λt,t+1 the representative household’s

stochastic discount factor and wst the real wage for a unit of skilled labor. We can then

express innovator p’s decision problem as choosing Lpsrt to solve

12



max
Lpsrt

Et{Λt,t+1Jt+1ϕtL
p
srt} − wstL

p
srt (13)

The optimality condition for R&D is then given by

Et{Λt,t+1Jt+1ϕt} − wst = 0

which implies

Et{Λt,t+1Jt+1χtZtL
ρz−1
srt } = wst (14)

The left side of equation (14) is the discounted marginal benefit from an additional unit of

skilled labor, while the right side is the marginal cost.

Given that profits from intermediate goods are pro-cyclical, the value of an unadopted

technology, which depends on expected future profits, will be also be pro-cyclical. This

consideration, in conjunction with some stickiness in the wages of skilled labor, which we

introduce later, will give rise to pro-cyclical movements in Lsrt.
8

Finally, we allow for obsolescence of technologies. Let φ be the survival rate for any

given technology. Then, we can express the evolution of technologies as:

Zt+1 = ϕtLsrt + φZt (15)

where the term ϕtLsrt reflects the creation of new technologies. Combining equations (15)

and (12) yields the following expression for the growth of new technologies:

Zt+1

Zt
= χtL

ρz
srt + φ (16)

where ρz is the elasticity of the growth rate of technologies with respect to R&D, a parameter

that we estimate.

3.2.2 Adoption: From Zt to At

We next describe how newly created intermediate goods are adopted, i.e. the process of

converting Zt to At. Here we capture the fact that technology adoption takes time on

average, but the adoption rate can vary pro-cyclically, consistent with evidence in Comin

(2009). In addition, we would like to characterize the diffusion process in a way that

8To the best of our knowledge, this model is the first that combines a labor intensive R&D technology
with wage rigidities to ensure the pro-cyclicality of R&D investments. Other approaches include introducing
financial frictions (Aghion, Angeletos, Benarjee, Manova, 2010) or to short term biases of innovators (Barlevy,
2008).
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minimizes the complications from aggregation. In particular, we would like to avoid having

to keep track, for every available technology, the fraction of firms that have and have not

adopted it.

Accordingly, we proceed as follows. We suppose there are a competitive group of

”adopters” who convert unadopted technologies into ones that can be used in production.

They buy the rights to the technology from the innovator, at the competitive price Jt, which

is the value of an adopted technology. They then convert the technology into use by using

skilled labor as input. This process takes time on average, and the conversion rate may

vary endogenously.

In particular, the pace of adoption depends positively on the level of adoption expendi-

tures in the following simple way: an adopter succeeds in making a product usable in any

given period with probability λt, which is an increasing and concave function of the amount

of skilled labor employed, Lsat:

λt = λ(ZtLsat) (17)

with λ′ > 0, λ′′ < 0.9 We augment Lsat by a spillover effect from the total stock of tech-

nologies Zt - think of the adoption process as becoming more efficient as the technological

state of the economy improves. The practical need for this spillover is that it ensures a

balanced growth path: as technologies grow, the number of new goods requiring adoption

increases, but the supply of labor remains unchanged. Hence, the adoption process must

become more efficient as the number of technologies expands.

Our adoption process implies that technology diffusion takes time on average, consistent

with the evidence. If λ is the steady state value of λt, then the average time it takes for a

new technology be adopted is 1/λ. Away from the steady state, the pace of adoption will

vary with skilled input Lsat. We turn next to how Lsat is determined.

Once in usable form, the adopter sells the rights to the technology to a monopolistically

competitive intermediate goods producer that makes the new product using the production

function described by equation (11). Let Πmt be the profits that the intermediate goods firm

makes from producing the good, which arise from monopolistically competitive pricing. The

adopter sells the new technology at the competitive price Vt, which is the present discounted

value of profits from producing the good, given by

Vt = Πmt + φEt{Λt,t+1Vt+1} (18)

9In the estimation, we assume that
λ(•) = λ̄ ∗ (•)ρλ .
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Then we may express the adopter’s maximization problem as choosing Lsat to maximize

the value Jt of an unadopted technology, given by

Jt = max
Lsat

Et{−wstLsat + φΛt,t+1[λtVt+1 + (1− λt)Jt+1} (19)

subject to equation (17).The first term in the Bellman equation reflects total adoption

expenditures, while the second is the discounted benefit: the probability weighted sum of

the values of adopted and unadopted technologies.

The first order condition for Lsat is

Ztλ
′ · φEt{Λt,t+1[Vt+1 − Jt+1]} = wst (20)

The term on the left is the marginal gain from adoption expenditures: the increase in

the adoption probability λt times the discounted difference between an adopted versus

unadopted technology. The right side is the marginal cost.

The term Vt − Jt is pro-cyclical, given the greater influence of near term profits on the

value of adopted technologies relative to unadopted ones. Given this consideration and the

stickiness in wst which we alluded to earlier, Lsat varies pro-cyclically. The net implication

is that the pace of adoption, given by λt, will also vary pro-cyclically.

Given that λt does not depend on adopter-specific characteristics, we can sum across

adopters to obtain the following relation for the evolution of adopted technologies

At+1 = λtφ[Zt −At] + φAt (21)

where Zt −At is the stock of unadopted technologies.

3.3 Households

The representative household consumes and saves in the form of capital and riskless bonds

which are in zero net supply. It rents capital to intermediate goods firms. As in the standard

DSGE model, there is habit formation in consumption. Also as is standard in DSGE models

with wage rigidity, the household is a monopolistically competitive supplier of differentiated

types of labor.

The household’s problem differs from the standard setup in two ways. First it supplies

two types of labor: unskilled labor Lht which is used in the production of intermediate goods

and skilled labor which is used either for R&D or adoption, Lhst.

Second, we suppose that the household has a preference for the safe asset, which we
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motivate loosely as a preference for liquidity and capture by incorporating bonds in the

utility function, following Krishnamurthy and Vissing-Jorgensen (2012). Further, following

Fisher (2015), we introduce a shock to liquidity demand %t > 0. As we show, the liquidity

demand shock transmits through the economy like a financial shock. It is mainly for this

reason that we make use of this shock, as opposed to a shock to the discount factor.10

Let Ct be consumption, Bt holdings of the riskless bond, Πt profits from ownership of

monopolistically competitive firms, Kt capital, Qt the price of capital, Rkt the rate of return,

and Dt the rental rate of capital. Then the households’ decision problem is given by

max
Ct,Bt,Lht ,L

h
st,Kt

Et

∞∑
τ=0

βτ
{

log(Ct+τ − bCt+τ−1) + %tBt − υ
[

(Lht )1+ϕ + (Lhst)
1+ϕ

1 + ϕ

]}
(22)

subject to

Ct = wht L
h
t + whstL

h
st + Πt +RktQt−1Kt −QtKt+1 +RtBt −Bt+1 (23)

with

Rkt =
Dt +Qt
Qt−1

(24)

Λt,t+1, the household’s stochastic discount factor, is given by

Λt,t+1 ≡ βu′(Ct+1)/u
′(Ct) (25)

where u′(Ct) = 1/(Ct−bCt−1)−b/(Ct+1−bCt). In addition, let ζt be the liquidity preference

shock in units of the consumption good:

ζt = %t/u
′(Ct) (26)

Then we can express the first order necessary conditions for capital and the riskless bond

as, respectively:

1 = Et{Λt,t+1Rkt+1} (27)

1 = Et{Λt,t+1Rt+1}+ ζt (28)

As equation (28) indicates, the liquidity demand shock distorts the first order condition

for the riskless bond. A rise in ζt acts like an increase in risk: given the riskless rate

Rt+1 the increase in ζt induces a precautionary saving effect, as households reduce current

10Another consideration is that the liquidity demand shock induces positive co-movement between con-
sumption and investment, while that is not always the case for a discount factor shock.
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consumption in order to satisfy the first order condition (which requires a drop in Λt,t+1).

It also leads to a drop in investment demand, as the decline in Λt,t+1 raises the required

return on capital, as equation (27) implies. The decline in the discount factor also induces

a drop in R&D and investment.

Overall, the shock to ζt generates positive co-movement between consumption and in-

vestment similar to that arising from a monetary shock. To see, combine equations (27)

and (28) to obtain

Et{Λt,t+1(Rkt+1 −Rt+1)} = ζt (29)

To a first order an increase in ζt has an effect on both Rkt+1 and Λt,t+1 that is qualitatively

similar to that arising from an increase in Rt+1. In addition, note that an increase in ζt

raises the credit spread Rkt+1−Rt+1. In this respect it transmits through the economy like

a financial shock. Indeed, we show later that our identified liquidity demand shock is highly

correlated with credit spreads.

Since it is fairly conventional, we defer until later a description of the household’s wage-

setting and labor supply behavior.

3.4 Firms

3.4.1 Intermediate goods firms: factor demands

Given the CES function for the intermediate good composite (6), in the symmetric equilib-

rium each of the monopolistically competitive intermediate goods firms charges the markup

ϑ. Let pmt be the relative price of the intermediate goods composite. Then from (6) and

the production function (7), cost minimization by each intermediate goods producer yields

the following standard first order conditions for capital, capital utilization, and unskilled

labor:

α
pmtYmt
Kt

= ϑ[Dt + δ(Ut)Qt] (30)

α
pmtYmt
Ut

= ϑδ′(U)QtKt (31)

(1− α)
pmtYmt
Lt

= ϑwt (32)
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3.4.2 Final goods producers: price setting

Let P it be the nominal price of final good i and Pt the nominal price level. Given the CES

relation for the final good composite, equation (4), the demand curve facing each final good

producer is:

Y i
t =

(
P it
Pt

)−µt/(µt−1)
Yt (33)

where the price index is given by:

Pt =

(ˆ 1

0
(P it )

−1/(µt−1)di

)−(µt−1)
, (34)

Following Smets and Wouters (2007), we assume Calvo pricing with flexible indexing. Let

1−ξp be the i.i.d probability that a firm is able to re-optimize its price and let πt = Pt/Pt−1

be the inflation rate. Firms that are unable to re-optimize during the period adjust their

price according to the following indexing rule:

P it = P it−1π
ιp
t−1π

1−ιp (35)

where π is the steady state inflation rate and ιp reflects the degree of indexing to lagged

inflation.

For firms able to re-optimize, the optimization problem is to choose a new reset price P ∗t

to maximize expected discounted profits until the next re-optimization, given by

Et

∞∑
τ=0

ξτpΛt,t+τ

(
P ∗t Γt,t+τ
Pt+τ

− pmt+τ
)
Y i
t+τ (36)

subject to the demand function (33) and where

Γt,t+τ ≡
τ∏
k=1

π
ιp
t+k−1π

1−ιp (37)

The first order condition for P ∗t and the price index that relates Pt to P ∗t , Pt−1 and πt−1

are then respectively:

0 = Et

∞∑
τ=0

ξτpΛt,t+τ

[
P ∗t Γt,t+τ
Pt+τ

− µt+τpmt+τ
]
Y i
t+τ (38)
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Pt =
[
(1− ξp) (P ∗t )−1/(µt−1) + ξp

(
π
ιp
t−1π

1−ιpPt−1
)−1/(µt−1)]−(µt−1)

(39)

Equations (38) and (39) jointly determine inflation. In the loglinear equilibrium, current

inflation is a function of current real marginal cost pmt, expected future inflation, and lagged

inflation.

3.4.3 Capital producers: investment

Competitive capital producers use final output to make new capital goods, which they sell

to households, who in turn rent the capital to firms. Let It be new capital produced and

pkt the relative price of converting a unit of investment expenditures into new capital (the

replacement price of capital), and γy the steady state growth in It. In addition, follow-

ing Christiano et al. (2005), we assume flow adjustment costs of investment. The capital

producers’ decision problem is to choose It to solve

max
It

Et

∞∑
τ=0

Λt,t+τ

{
Qt+τIt+τ − pkt+τ

[
1 + f

(
It+τ

(1 + γy)It+τ−1

)]
It+τ

}
(40)

where the adjustment cost function is increasing and concave, with f(1) = f ′(1) = 0 and

f ′′(1) > 0. We assume that pkt follows an exogenous stochastic process.

The first order condition for It the relates the ratio of the market value of capital to the

replacement price (i.e. ”Tobin’s Q”) to investment, as follows:

Qt
pkt

= 1+f

(
It

(1 + γy)It−1

)
+

It
(1 + γy)It−1

f ′(
It

(1 + γy)It−1
)−EtΛt,t+1(

It+1

(1 + γy)It
)2f ′(

It+1

(1 + γy)It
)

(41)

3.4.4 Employment agencies and wage adjustment

As we noted earlier, the household is a monopolistically competitive supplier of labor. Think

of the household as supplying its labor to form a labor composite. Firms then hire the labor

composite. The only difference from the standard DSGE model with wage rigidity, is that

households now supply two types of labor, skilled and unskilled.

Let Xt = {Lt, Lst} denote a labor composite. As is standard, we assume that Xt is the

following CES aggregate of the differentiated types of labor that households provide

Xt =

[ˆ 1

0
Xh
t

1
µwt dh

]µwt
. (42)

where µwt > 1 obeys an exogenous stochastic process.
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Let Wxt denote the wage of the labor composite and let W h
xt be the nominal wage for labor

supplied by household h. Then profit maximization by competitive employment agencies

yields the following demand for type x labor:

Xh
t =

(
W h
xt

Wxt

)−µwt/(µwt−1)
Xt, (43)

with

Wxt =

[ˆ 1

0
W h
xt
− 1
µwt−1dh

]−(µwt−1)
. (44)

As with price setting by final goods firms, we assume that households engage in Calvo

wage setting with indexation. Each period a fraction 1− ξw of households re-optimize their

wage. Households who are not able to re-optimize adjust according to the following indexing

rule:

Wxt = Wxt−1π
ιw
t−1π

1−ιwγ. (45)

where γ is the steady state growth rate of labor productivity.

The remaining fraction of households choose an optimal reset wage W ∗t by maximizing

Et

{ ∞∑
τ=0

ξτwβ
τ

[
−υ

Xh
t+τ

1+ϕ

1 + ϕ
+ u′(Ct+τ )

W ∗xtΓwt,t+τ
Pt+τ

Xh
t+τ

]}
(46)

subject to the demand for type h labor and where the indexing factor Γxt,t+τ is given by

Γwt,t+τ ≡
τ∏
k=1

πιwt+k−1π
1−ιwγ (47)

The first order condition for the re-set wage and the equation for the composite wage

index as a function of the reset wage, inflation and the lagged wage are given, respectively,

by

Et

{ ∞∑
τ=0

ξτwΛt,τ

[
W ∗xtΓwt,t+τ

Pt
− µwtυ

Xh
t+τ

ϕ

u′(Ct+τ )

]
Xh
t+τ

}
= 0 (48)

Wxt =
[
(1− ξw) (W ∗xt)

−1/(µwt−1)

+ ξp
(
γπιwt−1π

1−ιwWxt−1
)−1/(µwt−1)]−(µwt−1)

(49)
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3.4.5 Fiscal and monetary policy

We assume that government consumption Gt is financed by lump sum taxes Tt.

Gt = Tt (50)

Further, the (log) deviation of Gt from the deterministic trend of the economy follows an

AR(1) process. Formally,

log(Gt/(1 + γy)
t) = (1− ρg) ∗ ḡ + ρg ∗ log(Gt−1/(1 + γy)

t−1) + εgt , (51)

Next, we suppose that monetary policy obeys a Taylor rule. Let Rnt+1 denote the gross

nominal interest rate, Rn the steady state nominal rate, π0 the target rate of inflation, and

L the steady state employment level. The (nonlinear) Taylor rule for monetary policy that

we consider is given by

Rnt+1 =

[( πt
π0

)φπ (Lt
L

)φy
Rn

]1−ρ
·Rρnt (52)

where the relation between the nominal and real rate is given by the Fisher relation:

Rnt+1 = Rt+1 · πt+1 (53)

and where φπ and φy are the feedback coefficients on the inflation gap and capacity uti-

lization gap respectively. We use the employment gap to measure capacity utilization. In

addition, we impose the zero lower bound constraint on the net nominal interest rate, which

implies that the gross nominal rate cannot fall below unity.

Rnt+1 ≥ 1 (54)

We use the employment gap Lt/L to measure capacity utilization as opposed to an

output gap in part because estimates using the former predict that the zero lower bound

does not bind over the period when it has done so in the data.

3.5 Resource constraints and equilibrium

The resource constraint is given by
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Yt = Ct +

[
1 + pktf

(
It+τ

(1 + γy)It+τ−1

)]
It +Gt (55)

Capital evolves according to

Kt+1 = It + (1− δ(Ut))Kt (56)

The market for skilled labor must clear:

Lst = Lsat + Lsrt (57)

Finally, the market for risk-free bonds must clear, which implies that in equilibrium, risk-free

bonds are in zero net supply

Bt = 0

This completes the description of the model.

4 Estimation

We estimate our model using Bayesian methods (see for example An and Schorfheide

(2007)). As is common practice in the literature (for example Smets and Wouters (2007)

and Justiniano et al. (2010)), we calibrate a subset of the parameters of the model and

estimate the remainder.

4.1 Calibrated parameters

We calibrate standard real business cycle model parameters (i.e., the rates of time preference

and capital depreciation, and the capital share); the steady state share of government

spending in output; the trend growth rate; steady state markups for intermediate and

final goods and for wages (ϑ, µ and µw respectively); and three of the four endogenous

technological change parameters.

Of the four endogenous technological change parameters, we calibrate the expenditure

elasticity of the adoption probability, ρλ, the obsolescence rate (1−φ) and the steady state

adoption lag λ̄. The elasticity of λ with respect to adoption expenditures, ρλ is set to 0.9

to induce a ratio of private R&D to GDP consistent with the U.S. post-1970 experience (of

approximately 1.9% of GDP). λ̄ is set to produce an average adoption lag of 7 years which

is consistent with the estimates in Comin and Hobijn (2010) and Cox and Alm (1996).
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Finally, the obsolescence rate (1 − φ) is set to 8% which falls in the middle of the broad

range of estimates for the obsolescence rate in the literature (see Caballero and Jaffe (1993)

and Pakes and Schankerman (1984) for the two extremes).

Table 2 presents the calibrated parameters and their values.

Parameter Description Value

α Capital share 1/3
δ Capital depreciation 0.02
β Discount factor 0.998
G
Y SS government consumption/output 0.2
γy SS output growth 1.8%
µ SS final goods mark up 1.1
µw SS wage mark up 1
ϑ Intermediate goods mark up 1.35

1− φ Obsolescence rate 0.08/4
λ̄ SS adoption lag 0.15/4
ρλ Adoption elasticity 0.9

Table 2: Calibrated Parameters

4.2 Data, priors and posteriors

The model is estimated using quarterly data from 1984:I to 2008:III on eight US series:

real output, consumption, investment, hours worked, real wages, inflation (as measured

by the GDP deflator), nominal risk-free interest rates and expenditures on R&D by US

corporations. Unlike the other series, R&D expenditures are annual. We deal with the

mixed frequency of the data in estimation using a version of the Kalman filter adapted for

this purpose. The data are described in detail in Appendix A.1.

Data beyond 2008:III are not used in the estimation of the structural parameters because

the zero lower bound on the nominal interest may have been binding after that period,

rendering estimation using a log-linear approximation around the deterministic steady state

of our baseline model problematic. We modify the standard log-linear approximation of

the model with the technique introduced by Guerrieri and Iacoviello (2015) to deal with

occasionally binding constraints, and are able to use data until 2012:IV to identify shocks

and other latent variables of our model, as described in Appendix A.2.

Tables 3 and 4 below present the prior and posterior distributions for the parameters that

we estimate. We use similar priors to the literature for all parameters. For the elasticity of

R&D parameter we use a fairly loose beta prior centered around a mean of 0.6, which is at

the lower end of estimates provided in Griliches (1990).
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Parameter Description Prior Posterior
Distr Mean St. Dev. Mode Mean St. Dev.

ρ Taylor rule smoothing Beta 0.7 0.15 0.774 0.767 0.034
φπ Taylor rule inflation Gamma 1.5 0.25 1.263 1.374 0.122
φy Taylor rule labor Gamma 0.3 0.1 0.336 0.407 0.046
ϕ Inverse Frisch elasticity Gamma 2 0.75 1.652 2.304 0.604
f ′′ Investment adjustment cost Gamma 4 1 1.902 1.948 0.294
δ′(U)U

δ Capital utilization elasticity Gamma 4 1 3.900 3.939 0.503
ξp Calvo prices Beta 0.5 0.1 0.944 0.944 0.010
ξw Calvo wages Beta 0.75 0.1 0.957 0.932 0.024
ιp Price indexation Beta 0.5 0.15 0.155 0.179 0.047
ιw Wage indexation Beta 0.5 0.15 0.279 0.306 0.065
h Consumption habit Beta 0.7 0.1 0.486 0.461 0.037
ρz R&D elasticity Beta 0.6 0.2 0.429 0.403 0.109

Table 3: Prior and Posterior Distributions of Estimated Parameters

Most of our estimates are similar to those in the literature. The price and wage rigidities

are higher, while the elasticity of R&D with respect to research labor is lower. This last

discrepancy may reflect the fact that (effectively) we use quarterly data while the literature

uses annual data, and one would expect greater diminishing returns to R&D at higher

frequencies due to the difficulty to adjust this type of labor.

With respect to the shocks, we find lower estimates of the persistence of exogenous TFP

than in the literature. This surely reflects the fact that our model produces significant

endogenous persistence in TFP. The estimate of the volatility of shocks to the productivity

of R&D are also significant suggesting that this is an important element to fit the data. On

the demand side, we obtain a high volatility of government shocks and a high estimate for

the autocorrelation of liquidity shocks.

4.3 Analysis of variance

Table 5 presents the model (theoretical) standard deviation of the observable variables and

compares them with their empirical volatility. Roughly speaking the model is in line with

the actual volatilities of the key variables.

To ascertain the relevance of each shock for business cycles, Table 6 presents the variance

decomposition. Liquidity shocks are the most significant drivers of fluctuations in output

growth, accounting for nearly 40% of its variance. Shocks to the Taylor rule, exogenous

TFP and government spending are also significant drivers of output growth, each accounting
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Parameter Description Prior Posterior
Distr Mean St. Dev. Mode Mean St. Dev.

ρθ TFP Beta 0.50 0.20 0.965 0.931 0.031
ρpk Investment Beta 0.50 0.20 0.869 0.840 0.034
ρ% Risk premium Beta 0.50 0.20 0.924 0.921 0.021
ρmp Monetary Beta 0.50 0.20 0.557 0.660 0.067
ρµ Mark up Beta 0.50 0.20 0.424 0.347 0.074
ρg Govt exp Beta 0.50 0.20 0.982 0.973 0.010
ρµw Wage mark up Beta 0.50 0.20 0.150 0.191 0.063
ρχ R&D Beta 0.50 0.20 0.816 0.809 0.042
σθ TFP IGamma 0.1 2 0.525 0.496 0.038
σpk Investment IGamma 0.1 2 1.238 1.335 0.171
σ% Risk premium IGamma 0.1 2 0.234 0.258 0.042
σmp Monetary IGamma 0.1 2 0.090 0.094 0.008
σµ Mark up IGamma 0.1 2 0.099 0.105 0.019
σg Govt exp IGamma 0.1 2 2.595 2.739 0.228
σµw Wage mark up IGamma 0.1 2 0.305 0.307 0.034
σχ R&D IGamma 0.1 2 1.593 2.105 0.644

Table 4: Prior and Posterior Distributions of Shock Processes

Variable Data Model

Consumption 0.39 0.60
Output 0.62 0.67
Labor 0.74 0.81

Investment 2.5 1.75
Nominal R 0.71 0.25
Inflation 0.25 0.20

Table 5: Comparison of Standard Deviations

for between 14% and 19%. Interestingly, shocks to the R&D productivity are irrelevant

for fluctuations in output growth despite their large volatility.11 This is consistent with

Griliches (1990) who surveys estimates of the productivity of R&D and concludes that the

consensus is that R&D productivity is a-cyclical.

Liquidity shocks are also important drivers of fluctuations in consumption growth (38%

of its variance), investment growth (15%), hours (37%), nominal interest rates (56%), the

adoption rate (43%) and endogenous TFP (35%). Other shocks that drive endogenous TFP

are the money shock (20%) and the wage markup shock (23%).

11This is the case because a shock to R&D productivity is similar to a news shock since it does not impact
current TFP but will affect future TFP. In our context, an increase in the productivity of R&D has a very
small positive contemporaneous effect on output, and a much larger effect in the medium and long run.
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Variables Liquidity Money Govt Price of TFP R&D Mark up Wage
Demand Exp Capital mark up

Output Growth 39.8 18.6 14.6 6.9 18.1 0.1 0.2 1.7
Consumption Growth 38.6 15.6 26.0 3.1 14.1 0.0 0.2 2.5
Investment Growth 15.1 9.6 1.9 61.5 11.3 0.4 0.1 0.1
Inflation 0.1 0.0 0.3 0.0 1.9 0.0 87.0 10.7
Nominal R 56.1 25.0 1.9 4.9 7.2 0.1 2.3 2.7
Hours 36.9 17.3 13.6 8.6 23.4 0.0 0.1 0.0
R&D Growth 18.7 7.5 5.0 2.6 7.1 48.2 0.3 10.7
Endogenous TFP 35.5 20.0 2.3 3.1 5.4 10.3 0.4 23.0
Speed of Diffusion 43.44 23.01 2.44 1.18 4.99 5.93 0.47 18.54

Theoretical variance decomposition (HP filter, λ = 1600). ZLB is not imposed..

Table 6: Variance Decomposition (%)

5 Analysis

In this section we present and discuss impulse response functions of our estimated model

and historical decompositions of the key drivers of endogenous growth in order to elucidate

our model’s implications for the evolution of productivity over our sample period. We also

discuss inflation dynamics during the Great Recession viewed through the lens of our model.

5.1 Impulse response functions

Figure 4 presents the response of some key variables to a one standard deviation shock to

liquidity (first column), money (second column) and exogenous TFP (third column). For

comparison, we plot the responses in our model and in a version where technology is purely

exogenous.

An increase in the demand for liquidity raises the rate of return required to hold “non-

liquid”assets in the economy. These include physical capital, the right to adopt intermediate

goods, and the right to commercialize adopted intermediate goods. As a result, investment

in physical capital and demand for skilled labor services decline lowering aggregate demand.

Since prices are rigid, this leads to an output contraction. Note that, because the liquidity

shock also affects the return to R&D and adoption activities, the output contraction is

larger in the model with endogenous technology.

The reduction in R&D and adoption activities triggers a reduction in the growth rate of

endogenous TFP which results in a gradual deterioration in the level of TFP. The decline

in TFP is permanent and also leads to permanent contractions in output and consumption.

The pro-cyclical dynamics of productivity growth in the model mute the response of in-
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flation to the liquidity shock. As in conventional New Keynesian models, inflation declines

when aggregate demand falls. However, once technology becomes endogenous, productivity

growth also co-moves with aggregate demand. This second force leads, other things equal,

to an increase in the marginal cost of production that partially counters the positive rela-

tionship between output growth and inflation that arises from the Philips curve. Hence,

there is a more muted response of inflation in the endogenous technology model. This

feature of the model can therefore offer at least part of the explanation for the surprising

failure of inflation to decline in line with the fall in output experienced during the Great

Recession.

Columns 2 and 3 of Figure 4 show that the impulse responses to money and TFP shocks

in our model. We note first that the money shock produces responses of the real economy

and inflation that are qualitatively similar to the effect of the liquidity demand shock. Both

shocks raise the cost of capital. The main difference is that the money shock does so by

raising the risk free rate, while the liqudity demand shock does so by increasing the spread

between the cost of capital and the risk free rate. Another point to note is that the effects

of the money and TFP shocks are qualitatively similar to the exogenous technology model.

The main differences are that the endogenous technology mechanisms increase the model’s

amplification of the shocks and also produce greater persistence. As discussed in Section 3,

this is the case because, in the presence of wage rigidities, expansionary shocks to exogenous

TFP, and money have positive effects on the skilled hours devoted to R&D and adoption

activities. In this way, we can reconcile the strong pro-cyclicality of these activities in the

data with the evidence that these activities are intensive in labor.12

A potentially important feature of the Great Recession is that nominal interest rates have

been very close to zero. This observation suggests that the constraint faced by banks and

monetary authorities to set nominal interest rates above zero may have been occasionally

binding. To understand the impact that a binding zero lower bound (ZLB) may have on

the model’s response to shocks, Figure 5 plots the impulse response functions with and

without a binding ZLB.13 When the ZLB is binding, monetary policy cannot accommodate

a recessionary shock. This results in higher interest rates than when the ZLB is not binding.

The higher real rates amplify the drops in investment, R&D and adoption intensity. In the

short term, this leads to lower aggregate demand and a larger output drop. It also leads to

larger declines in the growth rate of the number of adopted technologies and to lower levels

of TFP in the medium and long term.

12See Barlevy (2007).
13In particular, this is achieved with a five-standard deviation positive shock to the liquidity preference.
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5.2 Historical decomposition

To further explore the role of liquidity shocks and endogenous technology propagation in

business cycle dynamics, we conduct a historical analysis of business cycles through the lens

of our estimation. Figure 6 plots14 the historical evolution of per capita output growth,

together with the contributions of TFP and liquidity shocks. The main take away from the

figure is that liquidity shocks play a key role in driving output growth. This is especially

the case around recessions. In the three recessions over our sample period, liquidity shocks

have caused large drops in output growth which account for the overwhelming majority

of the actual contraction. In particular, the contribution of liquidity shocks is much more

significant than that of exogenous TFP shocks.

The relevance of liquidity shocks for business cycle fluctuations calls for some external

validation of the series of liquidity shocks we have estimated. To this end, Figure 7 compares

our estimated liquidity shocks with the measure of the liquidity premium calculated by

Gilchrist and Zakrajsek (2012).15 The figure shows that the two series are highly correlated

(0.69). In particular, both series show increases in liquidity premia around recessions with

an absolute peak in the sample around early 2009. The maximum premium we estimate is

slightly higher (2.3 vs. 2 in GZ), but in our series there is more persistence in the premium

after the Great Recession. This difference may capture the presence of constraints on

credit in the post-Great Recession period that are not reflected in the prevailing rates for

companies that have access to credit. We consider that the similarity between our estimated

liquidity shocks and the GZ series supports our identification strategy.

5.3 Productivity dynamics

We conclude our historical exploration by studying the evolution of productivity. In so

doing, we intend to shed light on a number of relevant debates recently opened in the

literature. The goal from our analysis is to ascertain why productivity has slowdown since

2005. One hypothesis advanced by Fernald (2014) is that the driver of the slowdown is an

exogenous decline in productivity: the bad luck hypothesis. An alternative consistent with

14The decomposition takes into account the ZLB (as described in Appendix A.2), which makes the model
nonlinear for the period 2008:I?2012:IV. Because of this nonlinearity, the sum of the contribution of each
shock does not equal the value of the smoothed variable being decomposed (output growth in this case) for
the mentioned period. This ?nonlinear residual? emerges because the interaction between shocks is relevant
in nonlinear models. However, our results indicate that the only shock that moves the economy to the ZLB
is the liquidity demand shock. We therefore assign the nonlinear residual to this shock. This comment also
applies to Figures 7-11.

15Gilchrist and Zakrajsek (2012) use Compustat to measure the excess interest rate paid on long-term
corporate bonds over the 10 year government bonds.
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our model is that the slowdown reflects a decline in the agents’ investments in activities

that enhance TFP such as adoption and R&D. A related debate posed by Gordon (2012)

concerns the potential for future productivity growth in the U.S. economy. Specifically,

Gordon argues that this potential has diminished over the last decades.

To start exploring these issues, we use equation (11) to derive the following expression

for labor productivity:16,17

Yt
Lt

= θt · (At)ϑ−1 · (UtKt/Lt)
α .

The first component is the exogenous TFP, the second is endogenous TFP and the

third is a capital deepening component that includes both capital per hour worked and the

utilization rate. Figure 8 plots the evolution of labor productivity together with these three

components.

Figure 1 showed that over our sample period, there are three regimes for both (linearly

detrended) labor productivity and TFP. Between 1984 and 1995 and between 2005 and

2012, they declined. Between 1995 and 2005, both productivity measures grew faster than

trend.

Exogenous TFP and capital deepening are equally important in the decline of labor

productivity between 1984 and 1995, with endogenous TFP playing no role (See Figure

8). All three components contributed to the acceleration in productivity from 1995 to

2000. The most important contributor was exogenous TFP which led to an increase by

three percentage points, while the other two components each added approximately one

percentage point. After 2000, capital deepening continued to grow and was the component

that drove the increase in labor productivity between 2000 and 2005. Exogenous TFP

first declined and then recovered, but by 2005 it had a level similar to that in 2000. The

endogenous component of TFP, instead, started to decline monotonically around 2001.

After 2005, the three components evolved in very different ways. Capital deepening

continued to increase until the end of the Great Recession, and only then, declined by two

percentage points. Exogenous TFP declined between 2005 and 2009 by four percentage

points. But, after mid 2009 it recovered, so that its contribution to the overall decline in

labor productivity between 2005 and 2012 is of only one percentage point.

16This expression holds to a first order approximation.
17We focus on labor productivity for two reasons. First, our measure of capital includes both residential

investment and consumer durables. Therefore, there is a discrepancy between our measure of TFP and that
from standard sources (e.g., BLS). Second, labor productivity also captures the effect of variation in capital
per hour. This is another channel by which, fluctuations in demand can affect the potential supply in the
economy.
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The endogenous component of TFP accounts for most of the decline in labor productivity

since 2005. Though the fall in endogenous TFP started in 2001, its rate of decline accelerated

during the Great Recession and continued after the 2009:II trough. Overall, the endogenous

component of TFP accounts for a decline in labor productivity between 2005 and 2012 of

five percentage points versus the overall decline of 7 percentage points. Therefore, the role

of bad luck in the form of a drop in exogenous TFP has been quite limited during the

2005-12 period.

This accounting exercise raises two important questions. First, what mechanisms chan-

neled the drop in endogenous TFP since 2001. Second, what shocks account for the evolution

of endogenous TFP and labor productivity.

We explore first the mechanisms that drove endogenous TFP. From equation (21), fluctu-

ations in the stock of adopted technologies may come from changes in the stock of unadopted

technologies and from changes in the adoption rate. To explore the relevance of these two

channels, Figure 9 plots the evolution of the total number of technologies (Zt) and the

adoption rate (λt) – measured on the right-hand side axis. The stock of technologies is also

a key determinant of the stock of unadopted technologies (Zt −At), and is driven by R&D

productivity (χt) and by R&D hours (Lsrt).

Figure 9 reveals a decline in Zt between 1992 and 2001 by four percentage points. Be-

tween 2002 and 2007, Zt also dropped by almost 5 percentage points and between 2007 and

2012 it remained roughly unchanged.

The evolution of the adoption rate is quite different from Zt. First, because λt is a control

variable, it fluctuates significantly at business cycle frequencies. In particular, Figure 9

shows sharp drops in the speed of adoption in 1991, 2001 and 2008. In addition to these

pro-cyclical movements, λt also fluctuates significantly at medium term frequencies. As a

result of these fluctuations, the adoption rate is lower during the 2002-2007 period than

over the period 1995-2000, and it is lower after the Great Recession than during the period

2002-2007.

Overall, Figure 9 reveals that the fluctuations in the adoption rate are more important

than fluctuations in the stock of developed technologies in accounting for fluctuations in

endogenous TFP. During the second half of the 1990s, both adoption and At speed up, while

Zt declined. During the 2001 recession, the decline in endogenous TFP is entirely driven

by a decline in adoption activity. Between 2002 and 2007, both the adoption and R&D

margins contributed to the decline in endogenous TFP. However, since the beginning of the

Great Recession the drop in endogenous TFP has entirely been the result of the slowdown

in adoption activity.
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The importance our estimation attributes to fluctuations in the speed of diffusion of new

technologies leads us to explore whether the fluctuations induced by our model in λt are

realistic. The estimates from section 2 on the elasticity of the speed of diffusion with respect

to output suggests that, indeed, it is reasonable. In particular, we found that the estimates

range from 3.6 to 4.1. Over our sample period, the standard deviation of λt is 3.8 times

the standard deviation of output. This statistic suggests that the volatility of the adoption

rate produced by our model is in the bracket of estimates available in the data. A similar

conclusion can be reached by inspecting Figure 9. After the Great Recession, output and

the adoption rate were, respectively, 8 percent and 30 percent below trend. This suggest an

elasticity of adoption with respect to output of approximately 3.75, also within the interval

of empirical estimates. Hence, we conclude that the volatility of the adoption rates implied

by our model is consistent with the evidence.

The final question we address in our historical account of business cycles concerns the

sources of fluctuations in productivity measures. By exploring this question, we can quantify

the decline in the innovation capacity of the U.S. economy and its consequences for TFP.

We start by studying the contributions of various shocks to the evolution of endogenous

TFP (see Figure 10). Liquidity shocks are the main driver of endogenous TFP during and

after the Great Recession. Before the Great Recession, both liquidity and money shocks

contributed to the slowdown in the number of adopted technologies between 2001 and 2003.

Consistent with Gordon (2012), we find that R&D productivity declined by 11 percentage

points between 2001:I until 2005:I. This decline in χt caused a decline in endogenous TFP

from 2005 to 2009 of approximately one and a half percentage points. This decline is not

irrelevant but it is half of the drop in endogenous TFP caused by liquidity shocks since the

beginning of the Great Recession.

Finally, we explore the effect that demand shocks have on the supply side. To this end,

Figure 11 plots the contribution of our two main demand side shocks (i.e., the liquidity

and money shocks) to the evolution of labor productivity. In particular, the key demand

shocks were important drivers of the acceleration in labor productivity between 1995 and

2001 through their effect on capital deepening. They also contributed to the slowdown in

productivity between 2001 and 2007 through both endogenous TFP and capital deepening

channels. During the Great Recession, the key demand shocks contributed to the decline in

productivity only through endogenous TFP. After the Great Recession, the main demand

shocks fully account for the decline in labor productivity. Both capital deepening and

endogenous technology are significant channels. In sum, we find very strong evidence on

the impact that demand shocks has had on the dynamics of productivity over our sample
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period and very especially over the last fifteen years.

6 Conclusions

We have estimated a monetary DSGE model with endogenous productivity via R&D and

adoption. We the used the model to assess the behavior of productivity, with particular

emphasis on the slowdown following the Great Recession. Our key result is that this slow-

down mainly reflected an endogenous decline in the speed at which new technologies are

incorporated in production. The endogenous decline in adoption, further, was a product of

the recession. We also find that our endogenous productivity mechanism can help account

for the productivity slowdown that preceded the Great Recession. Though here, shocks to

the productivity of the R&D process play a role along with demand shocks. Finaly, we

find a very limited role for an exogenous decline in TFP in the slowdown of productivity.

Overall, the results suggest that the post-Great Recession productivity slowdown was not

simply bad luck, but rather another unfortunate by-product of the downturn.

Our analysis sheds light on two open debates. First, it provides a time series for the

productivity of R&D activities that can be used to explore the hypothesis advanced by

Gordon (2012) that the U.S. economy is experiencing a secular deterioration in its innovation

capacity. Consistent with Gordon’s hypothesis we find a decline in the productivity of R&D

activities between 2001 and 2004 that contributed to the decline in TFP between 2005 and

2009. However, this episode is short-lived and the estimates suggests that the slowdown

in productivity reflects medium term cyclical factors rather than secular ones. The second

relevant debate concerns the stability of inflation during the Great Recession in spite of the

very significant decline in economic activity. Our model and estimates suggests that the

endogenous decline in TFP has increased production costs (relative to trend) counteracting

the traditional Phillips- curve effect of economic contractions on inflation.

Overall, our results emphasize the importance of the effects that demand shocks have on

the supply side over the medium term. This is an important take away that can be used to

explain productivity dynamics more generally.
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A Appendix

A.1 Data

The data used for estimation are available from the FRED (https://research.stlouisfed.org/fred2/)

and NSF (http://www.nsf.gov/statistics/) websites. Descriptions of the data and their cor-

respondence to model observables follow (the standard macro series used are as in Del Negro

et al. (2015)). To estimate the model we use data from 1984:I to 2008:III.

Real GDP (GDPC), the GDP deflator (GDPDEF), nominal personal consumption ex-

penditures (PCEC), and nominal fixed private investment (FPI) data are produced by

the BEA at quarterly frequency. Average weekly hours of production and nonsupervisory

employees for total private industries (AWHNONAG), civilian employment 16 and over

(CE16OV) and civilian noninstitutional population 16 and over (CNP16OVA) are released

at monthly frequency by the Bureau of Labor Statistics (BLS) (we take quarterly averages

of monthly data). Nonfarm business sector compensation (COMPNFB) is produced by the

BLS every quarter. For the effective federal funds rate (DFF) we take quarterly averages

of the annualized daily data (and divide by four to make the rates quarterly).

Letting ∆ denote the temporal difference operator, the correspondence between the

standard macro data described above and our model observables is as follows:

• Output growth = 100 ×∆LN((GDPC)/LNSINDEX)

• Consumption growth = 100 ×∆LN((PCEC/GDPDEF)/LNSINDEX)

• Investment growth = 100 ×∆LN((FPI/GDPDEF)/LNSINDEX)

• Real Wage growth = 100 ×∆LN(COMPNFB/GDPDEF)

• Hours worked = 100 × LN((AWHNONAG × CE16OV/100)/LNSINDEX)

• Inflation = 100 ×∆LN(GDPDEF)

• FFR = (1/4) × FEDERAL FUNDS RATE

The R&D data used in estimating the model is produced by the NSF and measures

R&D expenditure by US corporations. The data is annual, so in estimating the model

and extracting model-implied latent variables (see Appendix A.2) we use a version of the

Kalman filter adapted for use with mixed frequency data.
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A.2 Extracting Model-Implied Latent Variables during ZLB period

The piece-wise linear solution from the OccBin method developed by Guerrieri and Iacoviello

(2015) can be represented in state space form as

St = C(Nt, θ) +A(Nt, θ)St−1 +B(Nt, θ)εt

Yt = H(Nt, θ)St

Where θ is a vector of structural parameters, St denotes the endogenous variables at

time t, Yt are observables, and εt are normally and independently distributed shocks. Nt

is a vector that identifies whether the occasionally binding constraint binds at time t and

whether it is expected to do so in the future. In particular, Nt is a vector of zeros and

ones indicating when the constraint is or will be binding. For example, the vector Nt =

(0, 1, 1, 1, 0, 0, 0...) is a situation in which the constraint does not bind at time t (denoted by

the first zero in the vector), but is expected to bind in t+ 1, t+ 2 and t+ 3. Note that the

matrices A, B and C, which in a standard linear approximation depend only on parameters

are here also functions of Nt.
18

OccBin provides a way of computing the sequence of endogenous variables {St}Tt=1 and

regimes {Nt}Tt=1 for a given initial condition S0 and sequence of shocks {εt}Tt=1. The vector

Nt is computed by a shooting algorithm and its resulting value will depend on the initial

state and the shocks at time t. We refer the reader to Guerrieri and Iacoviello (2015) for a

detailed description of the method.

We construct the Kalman filter and smoother from the nonlinear state space represen-

tation presented above by taking advantage of the fact that a given sequence of regimes,

say {N̂t}Tt=1, uniquely defines a sequence of matrices {Ĉt, Ât, B̂t, Ĥt}Tt=1. It follows that for

that specific set of regimes the state space representation becomes linear:

St = Ĉt + ÂtSt−1 + B̂tεt

Yt = ĤtSt

For this linear state space representation it is straightforward to compute the Kalman

filter and smoother. We use this fact in our algorithm by running two blocks: (i) one in

18The matrix H might also be a function of Nt because some observables might become redundant when
the occasionally binding constraint binds. This is the case for the Taylor rule interest rate when the ZLB
binds.
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which we compute the Kalman filter and smoother for a given set of regimes {Nt}Tt=1; and

(ii) another where we use OccBin to compute the regimes given a sequence of shocks {εt}Tt=1.

The algorithm steps are the following.

1. Guess a sequence of regimes {N (0)
t }Tt=1;

2. Use the guess from the previous step and define the sequence of matrices {Ct, At, Bt, Ht}Tt=1

using OccBin;

3. With the matrices from the previous step, compute the Kalman Filter and Smoother

using the observables {Yt}Tt=1, and get the Smoothed shocks {ε̂t}Tt=1 and initial con-

ditions of endogenous variables;

4. Given the smoothed shocks and initial conditions from the previous step, use OccBin

to compute a new set of regimes {N (1)
t }Tt=1;

5. If {N (0)
t }Tt=1 and {N (1)

t }Tt=1 are the same, stop. If not, update {N (0)
t }Tt=1 and go to

step 2.

Once it converges, this algorithm yields a sequence of smoothed variables and shocks,

consistent with the observables, and taking into account the occasionally binding constraint.
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Figure 4:
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Figure 5:
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Figure 6:

Data sources are described in Appendix A.1. Smoothed shocks from model estimated using data as described

in Section 4.2 and Appendix A.1.
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Figure 7:

See Gilchrist and Zakrajsek (2012) for details on the construction of the G-Z spread (data are available at

http://people.bu.edu/sgilchri/Data/data.htm). Smoothed shocks from model estimated using data as described

in Section 4.2 and Appendix A.1.
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Figure 8:

Labor productivity is GDP divided by hours worked (see Appendix A.1 for data sources). Smoothed shocks

from model estimated using data as described in Section 4.2 and Appendix A.1.
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Figure 9:
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Figure 10:

Smoothed variables from model estimated using data as described in Section 4.2 and Appendix A.1.
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Figure 11:

Labor productivity is GDP divided by hours worked (see Appendix A.1 for data sources). Smoothed shocks

from model estimated using data as described in Section 4.2 and Appendix A.1.
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