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Abstract

Empirical papers in economics often describe heuristically how their estimates depend on in-

tuitive features of the data. We propose two quantitative measures of this relationship that can

be computed at negligible cost even for complex models. We show that our measures can be

informative about robustness to model misspecification, and can complement the discussions

of identification that have become common in applied work. We illustrate our measures with

applications to industrial organization, macroeconomics, public economics, and finance.
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1 Introduction

An estimator is a mapping from data to parameters of interest. In many cases, it is possible to show
analytically how the estimates change as the data vary along particular dimensions. In other cases,
the estimator is sufficiently complicated that interrogating the mapping through brute-force compu-
tation, or through direct inspection of the economic and econometric assumptions, is prohibitively
costly. In this paper, we suggest two measures of an estimator’s relationship to specific features of
the data that are easy to compute even for complex models. We then apply these measures to gain
new insight into structural empirical models in industrial organization, macroeconomics, public
economics, and finance.

Throughout the paper, we consider the following abstract setting. A researcher observes data
from an unknown distribution F (·), and computes an estimator θ̂ of a finite number of economic
parameters θ . The researcher also computes a vector of statistics γ̂ that summarize some data
features of interest. These may be the moments used in estimating θ̂ in a GMM or simulated
moments procedure, descriptive statistics such as means or variances, or estimates of the pa-
rameters of an auxiliary model. The statistics θ̂ and γ̂ are jointly asymptotically normal, with
√

n
(
θ̂ −θ0, γ̂− γ0

) d→
(
θ̃ , γ̃
)
∼ N (0,Σ), where θ0 is the true value of θ and γ0 is the population

value of γ̂ .
To take a concrete example, consider a life-cycle consumption model, where the parameters

in θ are the discount factor and coefficient of relative risk aversion, and γ̂ is a vector of moments
of the joint distribution of consumption and income from a cross-section of consumers. There are
two questions we might naturally ask about a specific estimator θ̂ . First, which features of the
data drive the estimates? Does the estimated discount factor, say, depend primarily on the mean
consumption and income of consumers at different ages? Or does it also depend on higher order
moments like the variance of consumption, or the covariance of consumption and income growth,
for those of a given age? Second, how do the estimates change as we vary these features? If
the discount factor depends only on mean consumption by age, for example, which consumption
profiles will the model interpret as evidence for relatively higher or lower discount factors?

Motivated by the first question, we define the asymptotic sufficiency of γ̂ for θ̂ to be the share
of the variance in θ̃ explained by γ̃ (i.e., Var

(
E
[
θ̃ |γ̃
])
/Var

(
θ̃
)
). When this is high, γ̂ captures

most of the information in the data that is relevant for θ̂ in large samples, and the relationship
between the two may provide useful intuition about the behavior of the estimator. When it is low,
the relationship between γ̂ and θ̂ may be less informative. When it is equal to one, γ̃ is a sufficient
statistic for θ̃ .1 This will be true, for example, when θ̂ is a moment estimator and γ̂ is the vector

1That is, for any statistic ŝ with
√

n(ŝ− s0)
d→ s̃, the distribution of s̃ conditional on γ̃ and θ̃ is equal to the

distribution conditional on γ̃ alone. Like Chetty (2009), we extend the usual definition of “sufficient statistic” slightly:
the standard case refers to sufficiency of a statistic for a parameter; we extend this in the natural way to encompass
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of estimation moments evaluated at the true parameter value.
Motivated by the second question, we define the asymptotic sensitivity of θ̂ to γ̂ to be the

coefficient from a regression of θ̃ on γ̃ . Sensitivity measures which values of γ̂ will be interpreted
as evidence for higher or lower θ . We expect sensitivity to be most informative when sufficiency is
close to one. When θ̂ is a deterministic function of γ̂ , sufficiency is one, and sensitivity corresponds
to the partial derivative of θ̂ with respect to γ̂ evaluated at the probability limit of γ̂ .

Both of our measures can be estimated at low cost even in computationally challenging mod-
els. In the common case where γ̂ is the vector of moments used in estimating θ̂ , sufficiency and
sensitivity can be estimated at essentially no computational cost by manipulating the objects used
to estimate asymptotic standard errors. In a large class of remaining cases, sufficiency and sensi-
tivity can be estimated using easily computed empirical influence statistics, without any simulation
or re-estimation of the model. The measures can also be trivially extended to the case where the
economic quantity of interest is not a parameter itself but a function of underlying parameters: an
elasticity, say, or a summary of a counterfactual policy simulation.

There are two related reasons why we think these measures may be useful additions to the
applied economist’s toolkit. First, knowing which data features drive a particular estimator is rel-
evant to assessing the sensitivity of estimates to particular forms of misspecification. Suppose, for
example, that our life-cycle consumption model assumes (i) the marginal utility of consumption
does not vary by age, and (ii) cross-sectional variation in income is uncorrelated with preference
shocks. If our sufficiency measure implies that θ̂1 depends primarily on the average growth in con-
sumption across ages (γ̂1), we might be relatively more concerned about violations of assumption
(i). If instead θ̂1 depends primarily on the covariance of income growth and consumption for those
of a given age (γ̂2), we might be more concerned about assumption (ii). Moreover, knowing the
sensitivity of θ̂1 to the relevant moments in each case can help us say something about the bias
we expect in θ̂1. If the most plausible violations of (i) imply relatively greater marginal utility of
consumption at older ages, for example, the resulting bias will have the same sign as the sensitivity
of θ̂1 to γ̂1.

We make these intuitions precise for forms of misspecification that are “local” in an appropriate
sense. In a linear IV model, when θ̂ is the IV coefficient and γ̂ is the product of instruments and
model residuals, our sensitivity measure is precisely the expression derived by Conley et al. (2012)
to adjust inference for local violations of the exogeneity assumption. Our characterization extends
Conley et al.’s (2012) analysis to a much larger class of models, including nonlinear IV models
such as Berry et al. (1995) and classical minimum distance. Our results also reproduce Gelman
and Imbens (2014)’s analysis of the dependence of regression discontinuity estimators on outcomes
at specific ranges of the forcing variable.

asymptotic sufficiency of one statistic for another statistic.
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The second reason our measures may be useful is that they complement the discussions of
identification that have become an increasingly important part of applied economics. Empirical
papers now frequently devote sections to formal or informal proofs of identification in the spirit of
Matzkin (2007; 2013) and Berry and Haile (2014). These proofs ideally do two things: they show
that the economic quantities of interest can be recovered in a way that does not rely on arbitrary
functional form or distributional assumptions, and they implicitly define an estimator that relates
these quantities to specific features of the data in a transparent way.2 Matzkin (2013), Angrist and
Pischke (2010), Heckman (2010), and Pakes (2003), all emphasize various ways in which such
transparency can enhance the credibility of empirical findings.

The problem is that the estimator implicitly defined by the discussion of identification is typ-
ically not the one researchers take to the data.3 Many papers that offer informal proofs of non-
parametric identification go on to use a parametric estimator that imposes strong functional form
restrictions, and many that show that their model is identified by a small set of moments go on to
use an estimator that depends on richer variation in the data. Knowing that the quantities of interest
could in principle have been estimated with weaker assumptions or in a more transparent way is
valuable for understanding the workings of the model. But it seems hard to see how this is relevant
to the credibility of the actual estimates, unless the estimator being taken to the data bears at least
some resemblance to the hypothetical one.

Sufficiency and sensitivity provide one low-cost way to evaluate whether the actual and hypo-
thetical estimators are taking information from the data in similar ways. Suppose we show that
θ is identified from a vector of data features γ through a function Φ(γ). For example, we might
prove that the discount factor θ1 in our life-cycle consumption model is identified from the average
growth of consumption γ1. If the estimator θ̂1 we take to the data were in fact the hypothetical
one defined by Φ(·), we would observe (i) that sufficiency of γ̂1 for θ̂1 is equal to one, and (ii)
sensitivity of θ̂1 to γ̂1 is equal to the partial derivative of Φ(·) with respect to γ1 evaluated at the
population value. If this is approximately true for the actual estimator, we may conclude that the
intuitions from the identification proof will be a good guide to the way the estimator takes infor-
mation from the data, and we may be more confident using the discussion of identification as a
guide to judging the credibility of the results. If sufficiency is very low or the sensitivities are very
different from what the proof would suggest, we may conclude the proof of identification is less
relevant to judging the credibility of the estimator.

2Matzkin (2013) writes: “Constructive identification methods indicate in a transparent way the connection be-
tween the [economic quantity] of interest and the distribution of observable variables. They provide a way to read off
the distribution of the observable variables the [economic quantity] of interest. Methods for constructive identification
directly lead to methods of estimation for the object of interest” (p. 461).

3For example, of the four structural papers published in the American Economic Review in 2013 that included
formal or informal proofs of nonparametric or semiparametric identification, all but one take models with additional
parametric restrictions to the data.
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In the final sections of the paper, we present estimates of sensitivity and sufficiency for a num-
ber of empirical papers. We begin with an application to two models of intertemporal choice.
Applying sensitivity to Gourinchas and Parker’s (2002) model of life-cycle consumption and sav-
ing, we show how information on consumption at different ages drives inference about time and
risk preference. In an application to De Nardi et al.’s (2010) model of post-retirement saving, we
show how a parameter not present in Gourinchas and Parker’s (2002) model is pinned down by
data on the asset holdings of rich and poor households.

We turn next to an analysis of Berry et al.’s (1995) empirical model of the automobile market.
We use sufficiency to quantify the importance of demand-side and supply-side estimation moments
in driving the estimated markup, and we use sensitivity to gauge which instruments’ exclusion
restrictions would matter most if they were violated. We also show that estimates of a much simpler
model—a logit with no unobserved heterogeneity—do a poor job of capturing the information in
the data that pins down Berry et al.’s (1995) estimated parameters.

After these detailed applications we present shorter applications to Goettler and Gordon’s
(2011) study of competition between AMD and Intel, DellaVigna et al.’s (2012) model of char-
itable giving, and Nikolov and Whited’s (2014) model of corporate investment. For each paper, we
let γ̂ be the vector of empirical moments used in estimation. In most cases, our analysis suggests
the actual estimators take information from the data similarly to what the authors’ identification ar-
gument would suggest, but we also find cases in which parameter estimates depend on information
in the data that the authors did not highlight as important.

Our final applications are to Mazzeo’s (2002) model of motel entry, Gentzkow’s (2007) model
of competition between print and online newspapers, and Hendren’s (2013) model of the market
for long-term care insurance. Because these papers use maximum likelihood estimators, we let γ̂

be various descriptive statistics, rather than estimation moments. We find that there is often a tight
link between the estimates of structural parameters and the corresponding descriptive statistics.
For example, in the case of Mazzeo’s (2002) model, we show that estimates of an analogous linear
regression model capture more than 80 percent of the information in the data that is used to estimate
key parameters. This finding suggests a way in which sensitivity and sufficiency can be used to
build up linear intuitions for the inner workings of nonlinear models.

An important limitation of our formal approach is that, because we focus on properties of the
asymptotic distribution, the notions of sufficiency and sensitivity that we consider are intrinsically
local. The approximations that we work with have the same mechanics and hence the same limita-
tions as those commonly used to compute asymptotic standard errors. Generalizing our approach
to more global exploration of model properties is conceptually straightforward but may be com-
putationally expensive. In our concluding section, we provide some guidance on how a researcher
might minimize computational costs in practice.
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A second limitation is that the units of sensitivity are contingent on the units of γ . We suggest
a normalization in section 4.3 below that serves as a useful default for many practical applications
but acknowledge that the appropriate scaling of sensitivity may be application-specific.

The main contributions of the paper are to suggest new tools for applied researchers, to note
their properties, and to demonstrate their applicability. All of the econometric statements we make
follow in a straightforward way from well-known results. As we focus on properties of the esti-
mator θ̂ rather than of the underlying model F , our approach is closely related to the study of the
robustness of estimators (Huber and Ronchetti 2009).

The recent methodological conversation about “structural” vs. “reduced-form” or “program
evaluation” methods centers on a perceived tradeoff between the realism of an empirical model’s
economic assumptions and the transparency of its mapping from data to parameters.4 Our mea-
sures make this tradeoff shallower by permitting a precise characterization of the dependence of a
structural estimate on intuitive features of the data.5 Our measures also facilitate the analysis of
sensitivity to misspecification (Leamer 1983), including misspecification of exclusion restrictions
(Rosenbaum and Rubin 1983; Conley et al. 2012; Nevo and Rosen 2012).6

Our work is also closely related to the large literature on sensitivity analysis for scientific
models (Sobol 1993; Saltelli et al. 2008).7 In a Bayesian context, our measures of sensitivity
and sufficiency may be thought of as analogous to the measures of prior sensitivity and prior
informativeness developed by Müller (2012) for studying the importance of the prior.

The remainder of the paper is organized as follows. Section 2 defines our measures, section 3
discusses their properties and interpretation, and section 4 shows how to estimate them. Sections
5 and 6 apply the measures to several empirical papers. Section 7 concludes. An appendix relates
our approach to some alternatives.

4Heckman (2010) writes that “The often complex computational methods that are required to implement [struc-
tural estimation] make it less transparent” (p. 358). Angrist and Pischke (2010) write that “in [Nevo’s (2000)] frame-
work, it’s hard to see precisely which features of the data drive the ultimate results” (p. 21).

5Because our sensitivity measure correctly identifies cases in which only a subset of empirical moments is needed
to answer a question of interest, sensitivity analysis may also be seen as a complement to the “sufficient statistics”
approach of Chetty (2009), Einav et al. (2010), and Jaffe and Weyl (2013). Our measure relates in a similar way to
indirect inference methods (Gourieroux et al. 1993; Smith 1993), which can be used to estimate structural parameters
from an intentionally limited set of descriptive statistics (see, e.g., Martin and Yurukoglu 2014). As we illustrate
below, our approach allows a researcher to relate estimated structural parameters to descriptive statistics even if those
statistics are not used directly in estimation.

6Vasnev (2006) defines a test statistic for the sensitivity of a focus parameter to the value of a nuisance parameter
which may be thought of a controlling a particular type of misspecification. Hansen (2008) discusses some approaches
to controlling the effects of misspecification in generalized method of moments estimation.

7Linear regression of model outputs on model inputs is a standard tool for model interrogation in the physical
sciences. We show that the asymptotic properties of common estimators used in economics make it possible to perform
such an analysis without repeatedly re-estimating or simulating the model, thus sparing substantial computational
expense.
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2 Measures of Sufficiency and Sensitivity

2.1 Definitions

A researcher observes a random sample of size n from a distribution F (·|θ) on sample space X ,
and computes (i) a (P×1) estimator θ̂ of θ ; and (ii) a (J×1) vector of auxiliary statistics γ̂ , both
of which depend on the data. The true value of θ is θ0, and the population value of γ is γ0.

We assume that under F (·|θ0),

(1)
√

n

(
θ̂ −θ0

γ̂− γ0

)
d
→

(
θ̃

γ̃

)
∼ N (0,Σ) ,

for some finite Σ, and that the submatrix Σγγ of Σ corresponding to the variance of γ̃ is nonsingular.
From equation (1) it follows that the conditional expectation of θ̃ given γ̃ is linear. Letting Σθγ

denote the submatrix of Σ corresponding to the covariance of θ̃ and γ̃ , we have:

(2) E
(
θ̃ |γ̃
)
= ΣθγΣ

−1
γγ γ̃.

Definition. The sufficiency of γ̂ for an element θ̂p of θ̂ is

∆p =
Var
(
E
(
θ̃p|γ̃

))
Var
(
θ̃p
) =

(
ΣθγΣ−1

γγ Σ′
θγ

)
pp

(Σθθ )pp
.

We let ∆ denote the column vector of ∆p. We say that γ̂ is sufficient for θ̂p if ∆p = 1 and that γ̂ is

sufficient for θ̂ if ∆ = 1.

Definition. The sensitivity of θ̂ to γ̂ is

Λ = ΣθγΣ
−1
γγ .

Sufficiency ∆p ∈ [0,1] is the probability limit of the R2 of a regression of realizations of θ̃p on
realizations of γ̃ , as the number of realizations grows large. It captures the extent to which, in large
samples, knowledge of γ̂ is sufficient to predict the value of the estimator.

Sensitivity Λ is the coefficient from a regression of θ̃ on γ̃ . An element Λp j of Λ is the effect of
changing the realization of a particular γ̃ j on the expected value of a particular θ̃p, holding constant
the other elements of γ̃ .8 We expect sensitivity to be of most interest when ∆ = 1 or ∆≈ 1.

8It follows from equation (2) that Λ2
p j is the partial derivative of the variance of E

(
θ̃p|γ̃

)
with respect to the

variance of γ̃ j. In this sense, Λ captures not only the impact of γ̃ on θ̃ , but also the impact of uncertainty about γ0 on
uncertainty about θ0.
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2.2 Useful Properties

θ̂ is a functional whose domain is typically the space of empirical distributions on X . Sufficiency
allows us to identify situations in which we can approximate θ̂ as a low-dimensional function that
depends on the data only via a vector of interpretable statistics γ̂ . When this is the case, we can use
sensitivity to interrogate the estimator’s local behavior. The following proposition makes this way
of thinking about our measures explicit.

Proposition 1. γ̂ is sufficient for θ̂p if and only if there exists a continuously differentiable function

h(·;θ0) with non-zero gradient at γ0 such that θ̂p = h(γ̂;θ0)+oP

(
1√
n

)
. If such an h(·) exists, its

partial derivative at γ0 is Λp·.

Proof. If γ̂ is sufficient for θ̂p, let h(γ̂;θ0) = θ0p +Λp· (γ̂− γ0). It follows from standard limit
results that

√
n
[
θ̂p−h(γ̂;θ0)

] p→ 0. Conversely, if there exists an h(·;θ0) satisfying the given
conditions, we know that

√
n(h(γ̂;θ0)−h(γ0;θ0) , γ̂− γ0) converges in distribution to

(
θ̃p, γ̃

)
. It

follows from the delta method that γ̂ is sufficient for θ̂p and the partial derivative of h at γ0 is equal
to Λp·.

Note that the function h(·;θ0) does not depend on the realized data except through γ̂ , but that
it does depend on the true value of θ .

The relationship h(·;θ0) between γ̂ and θ̂ remains valid for a class of local perturbations of
the data-generating process. Denote by Fn (·|θ) = ×nF (·|θ) the joint distribution of the data for
sample size n. This is a sequence of distribution functions with associated sample spaces X n.
Consider some alternative sequence of distributions F∗n (·|θ), also defined on X n. Then Fn (·|θ)
and F∗n (·|θ) are mutually contiguous if for any sequence of statistics Tn : X n→Rd (where d is an
arbitrary natural number), Tn

p→ 0 under Fn if and only if Tn
p→ 0 under F∗n .9 Then:

Proposition 2. Suppose that Fn (·|θ0) and F∗n (·|θ0) are mutually contiguous, and that
√

n
(
θ̂ −θ0, γ̂− γ0

)
converges in distribution to a random variable

(
θ̃ ′, γ̃ ′

)
under F∗n (·|θ0). Then if γ̂ is sufficient for θ̂

under Fn (·|θ0), we have θ̃ ′ = Λγ̃ ′ almost surely.

Proof. If γ̂ is sufficient for θ̂ , we know that
√

n
[(

θ̂ −θ0
)
−Λ(γ̂− γ0)

] p→ 0 under Fn (·|θ0) which
implies θ̃ = Λγ̃ almost surely. By contiguity,

√
n
[(

θ̂ −θ0
)
−Λ(γ̂− γ0)

] p→ 0 under F∗n (·|θ0) and
so θ̃

′
= Λγ̃

′
almost surely.

Contiguity is a standard way to define local perturbations of models in asymptotic statistics
(Van der Vaart 1998).10 Contiguity is equivalent to there being no sequence of tests which can

9There are several equivalent definitions of contiguity. The usual primitive definition is: for any sequence of
measurable sets An, Fn (An|θ)→ 0 if and only if F∗n (An|θ)→ 0. The equivalence to the definition in the text is given
by Le Cam’s first lemma (Van der Vaart 1998).

10Kitamura et al. (2013) discuss robust estimation under related forms of local model misspecification.
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perfectly distinguish the two models asymptotically. We show in section 3.1 below that the class
of mutually contiguous perturbations encompasses many intuitive cases, including small violations
of exogeneity assumptions as in Conley et al. (2012).

It is easy to extend our measures to cases in which the quantity of interest is a function of the
underlying parameters, such as a welfare calculation, an elasticity, or a counterfactual prediction
simulated from the model. It is also easy to consider sensitivity to a function of γ̂ , such as an
average of related moments.

Remark 1. If c
(
θ̂
)

is a continuously differentiable function, not dependent on the data and with
non-zero gradient C at θ0, the delta method implies that the sensitivity of c

(
θ̂
)

to γ̂ is equal to CΛ,
where Λ is the sensitivity of θ̂ to γ̂ . Similarly, if a(γ̂) is a continuously differentiable function,
not dependent on the data and with non-zero gradient A at γ0, the delta method implies that the
sensitivity of θ̂ to a(γ̂) is equal to ΣθγA′

(
AΣγγA′

)−1.

The applications we will discuss are all examples of minimum distance estimators (MDE),
a class that includes generalized method of moments (GMM), maximum likelihood (MLE), and
classical minimum distance (CMD), as well as simulated analogues such as simulated minimum
distance (SMD) and simulated method of moments (SMM). Formally:

Definition. θ̂ is a minimum distance estimator (MDE) if we can write

θ̂ = argmin
θ∈Θ

ĝ(θ)′Ŵgĝ(θ) ,(3)

where ĝ(θ) is a function of parameters and data,
√

nĝ(θ0)
d→ N (0,Ωgg), Ŵg

p→Wg, and Ŵg and

Wg are positive semi-definite. We assume standard regularity conditions such that θ̂ is consistent

and asymptotically normal with variance (G′WgG)−1 G′WgΩggWgG(G′WgG)−1, where G is the

Jacobian of an appropriate limit of ĝ evaluated at θ0.11

When θ̂ is an MDE and γ̂ = ĝ(θ0), we say that Λ is sensitivity to moments. In this case it is
straightforward to derive an expression for Λ.

Remark 2. If θ̂ is an MDE and Λ is sensitivity to moments, then Λ = −(G′WgG)−1 G′Wg and
∆ = 1.

11We allow some flexibility in the definition of G here so that our definition of MDE includes both cases where
ĝ(θ) is a smooth function of parameters (as in GMM or CMD), and cases where ĝ(θ) is not smooth (as in SMM). For
the precise regularity conditions and definition of G, see Newey and McFadden (1994) Theorem 3.2 for the smooth
case and Theorem 7.2 for the non-smooth case.
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2.3 Examples

In this section, we study two “pen and paper” examples that illustrate the intuitions our measures
deliver in well-understood cases.

Example 1. (OLS) θ̂ =
[

α̂ β̂

]′
is the constant term and coefficient from an OLS regression

of Y on a scalar X . We assume standard conditions for the consistency and asymptotic normality
of θ̂ . Define γ̂ =

[
µ̂y σ̂xy σ̂2

x µ̂x

]′
, where µ̂y is the sample mean of Y , σ̂xy is the sample

covariance of X and Y , σ̂2
x is the sample variance of X , and µ̂x is the sample mean of X . We

can write α̂ = µ̂y− β̂ µ̂x and β̂ = σ̂xy/σ̂2
x , so by proposition 1, ∆ = 1 and we can solve for Λ by

evaluating the partial derivatives of the estimates at the population values of γ̂ . Focusing on the
first two columns of Λ, which give sensitivity to µ̂y and σ̂xy respectively, we have:

Λ =

[
1 − µx

σ2
x

...

0 1
σ2

x
...

]
,

where µx and σ2
x are the population mean and variance of X . Consistent with intuition, we find

that when the mean of X is zero, the constant α̂ is sensitive to µ̂y but not σ̂xy, and β̂ is sensitive to
σ̂xy but not µ̂y. When the mean of X is not zero, α̂ is also sensitive to σ̂xy because this affects the
sample average of β̂X . It is straightforward to generalize the example to multivariate regression.12

Example 2. (Regression Discontinuity) Consider a regression discontinuity (RD) model estimated
using OLS regression of Y on K-th degree polynomials in the forcing variable X above and below
the discontinuity:

Yi = 1Xi<0

K

∑
k=0

Xk
i β
−
k +1Xi≥0

K

∑
k=0

Xk
i β

+
k + εi,

where we normalize X so the discontinuity is at X = 0 and we limit the sample to observations
within some fixed bandwidth of X = 0. The RD estimator of the treatment effect is τ̂ = β̂

+
0 − β̂

−
0 .

Gelman and Imbens (2014) analyze the weights that different estimators place on outcomes far
from the discontinuity.13 They use their analysis to criticize the common practice of combining

12Let independent variables be X = [X1, ...,XJ ] and let γ̂ = 1
n

[
Y ′X X ′1X1 X ′1X2 · · · X ′jXk · · · X ′JXJ

]′ with
j ∈ {1, ...,J} and k ∈ { j, ...,J} (so there are no redundant elements). Then ∆ = 1 and

Λ =
[

Ω
−1
XX · · ·

]
,

where ΩXX is the probability limit of 1
n X ′X . The submatrix of Λ equal to Ω

−1
XX gives the sensitivity of β̂ to 1

nY ′X .
13Gelman and Imbens (2014) suggest that similar analysis may be useful more broadly: “Most, if not all, estimators

for average treatment effects... can be written as the difference between two weighted averages... In those cases it is
useful to inspect the weights in the weighted average expression... to assess whether some units receive excessive
weight in the estimators” (p. 6). Using this example as a template, our sensitivity measure provides a low-cost way to
compute analogues of these weights for arbitrary models, including those where deriving them algebraically would be
difficult or infeasible.
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high-order polynomials with large bandwidths. Their analysis of weights is closely related to our
measure of sensitivity. To see this, let θ̂ =

[
β̂
−
0 β̂

+
0

]′
and suppose that X takes on discrete

values, so that Xi ∈ {x1, ...,xJ}. Finally, let γ̂ =
[

Y 1 ... Y J

]′
, where Y j is the mean of Y for

observations such that Xi = x j. Then the element of Λ corresponding to the sensitivity of β̂
+
0 to Y j

is

Λ
+
j = s jΩ

−1
XX+


1
x j
...

xK
j

 ,
where s j is a row vector with first element equal to the share of positive X values in bin j and other

elements equal to zero, ΩXX+ is the probability limit of 1
N+

∑i:Xi≥0

[
1 Xi ... XK

i

]′ [
1 Xi ... XK

i

]
,

and N+ is the number of observations with Xi ≥ 0. This is analogous to the expression for the
weights derived in section 2.1 of Gelman and Imbens (2014).14

3 Interpretation

3.1 Robustness to Model Misspecification

Empirical models in economics often depend on a large number of assumptions. Some may be
justified on economic grounds, while others are “whimsical assumptions” made purely for con-
venience or tractability (Leamer 1983). Knowing how estimates depend on specific data features
provides insight into the relative importance of these assumptions, and can guide a reader who
holds a prior over possible violations toward more accurate inference.

Conley et al. (2012) develop this logic for linear IV models where the assumed orthogonality
of the instruments and the error term may not hold. They index violations of orthogonality by a
vector that we will call m, and consider the generalized model given by:

(4) Y = Xβ +Zm+ ε,

where X are endogenous variables, Z are instruments, ε are unobservables, and ε is orthogonal
to Z. The standard setup corresponds to m = 0. They consider a decision maker whose beliefs
about m can be described by a proper prior distribution, which is “local to zero” in that it becomes
concentrated around zero at rate

√
n. They formalize this by letting m = η/

√
n, where η is drawn

by nature from a known prior distribution P in a first stage. Under these assumptions, they derive

14The differences are that (i) we have Ω
−1
XX+ in place of its sample analogue and (ii) we multiply by the scaling

factor s j (since Gelman and Imbens define weights for each observation).

11



an expression that relates the asymptotic distribution of the 2SLS estimator (integrating over the
uncertainty in η) to the prior distribution P.15

Our sensitivity measure allows us to extend this approach to a much larger class of models. The
key requirement is that the potential misspecification affects a sufficient vector of sample statistics
γ̂ in a known way. A natural class of applications will be those in which θ̂ is a moment estimator,
γ̂ is the vector of estimation moments, and small deviations from identifying assumptions translate
into small violations of the moment conditions. The linear IV model is in this class because it can
be expressed as a special case of GMM.

Towards a general analysis, let Fn (·|θ) = ×nF (·|θ) now be the model assumed by the re-
searcher. The data are in fact drawn from a distribution F∗n , which may be different from Fn.
We define the set of possible alternatives by a family {F∗ (·|θ ,m)}m∈Rd of distributions on X

with dominating measure µ and densities { f ∗ (·|θ ,m)}m∈Rd . We normalize the index m so that
F (·|θ) = F∗ (·|θ ,0), we let F∗n (·|θ ,mn) =×nF∗ (·|θ ,mn), and we assume that deviations are “lo-
cal to zero” in the sense that mn = η/

√
n for some η ∈ Rd . In all results and examples in this sec-

tion, we assume sufficient regularity conditions on the densities so that F∗n
(
·|θ0,

η√
n

)
and Fn (·|θ0)

are mutually contiguous for any η .16 We abbreviate F∗n
(
·|θ0,

η√
n

)
as F∗n from here on.

Suppose now that we have γ̂ sufficient for θ̂ under Fn. From proposition 1, we know that
the limiting distribution of

√
n
(
θ̂ −θ0

)
under F∗n will be the same as the limiting distribution of

√
nΛ(γ̂− γ0). Therefore, if we know how varying η affects the asymptotic distribution of the

moments γ̂ , we can use sensitivity Λ to translate this into effects on the asymptotic distribution of
θ̂ , and adjust inference accordingly.

A natural application is to the case where θ̂ is an MDE with γ̂ = ĝ(θ0). Suppose that for all η

in some open neighborhood of zero,
√

n
(
θ̂ −θ0, ĝ(θ0)

)
converges in distribution to a well-defined

random variable under F∗n . We then have the following result:

Proposition 3. Suppose that, under F∗n ,
√

nĝ(θ0)
d→ γ̃ +Lη , where L is a matrix of constants and

γ̃ ∼ N
(
0,Σγγ

)
is the limit under the assumed model Fn (·|θ0). If η is drawn independently from the

prior P = N (µη ,Ση), we have that under F∗n :

√
n
(
θ̂ −θ0

) d→ N
(
ΛLµη ,Σθθ +ΛLΣηL′Λ′

)
,

15Conley et al. (2012) describe this frequentist approach as a “large sample approximation” to inference under
model uncertainty. They also show how to do a full Bayesian analysis, which requires specifying priors not only over
m but also over all other parameters of the model. Guggenberger (2012) also analyzes misspecified linear IV models
under the assumption that violations of the orthogonality condition become small at rate

√
n.

16Abbreviate f ∗ (·|θ ,m) by fm and abbreviate its partial derivative with respect to m, if it exists, by ḟ m. Following
Van der Vaart (1998) theorem 7.2 and lemma 7.6, and Le Cam’s lemmas, a sufficient condition for mutual contiguity
is that (i)

√
fm is continuously differentiable in m at m = 0 for every X ∈X , and (ii) the elements of the information

matrix Im =
∫ (

ḟ m/ fm
)(

ḟ
′
m/ fm

)
fmdµ are well-defined and continuous in m.
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where Λ =−(G′WgG)−1 G′Wg is sensitivity as defined above.

Proof. From proposition 2, we know that the asymptotic distribution of
√

n
(
θ̂ −θ0

)
under F∗n

must be the same as the asymptotic distribution of
√

nΛĝ(θ0) . The result then follows because
ΛLη ∼ N (ΛLµη ,ΛLΣηL′Λ′), Λγ̃ ∼ N (0,Σθθ ), and γ̃ and η are independent.

According to this result, if we are willing to state a prior over misspecification that maps easily
into violations of moment conditions γ̂ = ĝ(θ0), we can use our sensitivity measure to adjust
inference for θ accordingly. We now illustrate several cases in which the hypothesis of proposition
3 is satisfied.

Example 3. (Linear IV) Under standard assumptions, we can represent 2SLS as an MDE with
ĝ(θ) = 1

nZ′ (Y −Xθ) and weight matrix Wg = (Z′Z)−1. Let F∗ (·|θ ,m) be the misspecified model

of equation (4). Then under F∗n we have
√

nĝ(θ0)
d→ γ̃ +Lη where γ̃ ∼ N

(
0,Σγγ

)
and L = ΩZZ ≡

plim
(1

nZ′Z
)
. Noting that Λ =

(
Ω′ZX Ω

−1
ZZ ΩZX

)−1
Ω′ZX Ω

−1
ZZ where ΩZX = plim

(1
nZ′X

)
, proposition

3 implies
√

n
(
θ̂ −θ0

) d→ N
(
Aµη ,V2SLS +AΣηA′

)
A =

(
Ω
′
ZX Ω

−1
ZZ ΩZX

)−1
Ω
′
ZX

which is the expression Conley et al. (2012) derive in section III.C.

Example 4. (General IV) Suppose that θ̂ is an MDE with moment conditions ĝ(θ) = 1
nZ′ξ (θ),

where ξ (θ) is a residual that can be computed from the data given θ , and under the assumed model
we have E(ξ (θ0) |Z) = 0. This includes nonlinear IV as well as simulated moment estimators such
as Berry et al. (1995). Suppose that we entertain small violations of the moment conditions, so that
under alternative model F∗ (·|θ ,m), we have ξ (θ) = ξ ∗ (θ)+Zm. (Since m = 0 in the assumed
model, we must have E(ξ ∗ (θ0) |Z) = 0.) Then under F∗n we again have

√
nĝ(θ0)

d→ γ̃ +Lη where
γ̃ ∼ N

(
0,Σγγ

)
and L = ΩZZ , and so proposition 3 implies

√
n
(
θ̂ −θ0

) d→ N
(
Aµη ,Σθθ +AΣηA′

)
A =−

(
G′WgG

)−1 G′WgΩZZ.

Conley et al. (2012) thus generalizes to general IV models, with the asymptotic variance Σθθ ,
Jacobian G, and weight matrix Wg replacing their linear model analogues.

Example 5. (Classical Minimum Distance) Suppose that θ̂ is a classical minimum distance estimator—
that is, an MDE with ĝ(θ) = s(θ)− ŝ, where ŝ is a vector of data moments independent of θ and
s(θ) is a vector of corresponding model analogues independent of the data. For example, in our
hypothetical life-cycle consumption model, ŝ might be the average growth of consumption and the
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covariance of consumption with income growth, and s(θ) the expected value of these moments un-
der the model. Suppose that utility shocks in the assumed model are independent of both income
and age, but that we entertain small violations of these assumptions such that under alternative
model F∗ (·|θ ,m), we have s(θ) = s∗ (θ)+m. Then under F∗n proposition 3 applies with L equal
to the identity matrix.

3.2 Identification

Figure 1 shows the dramatic increase in the number of articles published in top economic jour-
nals containing a claim that some estimator is “identified by” some feature of the data. In 2013,
the American Economic Review published 15 empirical papers that include structural models; of
these, 11 contain a section or subsection with “identification” in the title, while two others provide
similar discussion without breaking it out into a separate subsection.17 Consistent with figure 1,
these discussions typically relate specific variation or data features to the identification of specific
parameters.18

We can interpret these discussions as efforts to build a constructive argument for identification
in the sense defined by Matzkin (2007; 2013). Consider the general class of models F̃ (·|ζ ), where
ζ ∈ Z is a possibly infinite-dimensional vector of functions and/or distributions of unobservables.
Two primitives ζ and ζ ′ are observationally equivalent if F̃ (·|ζ ) = F̃ (·|ζ ′). An economic quantity

c (e.g., a vector of elasticities) is a functional of ζ ,19 and is identified if for any observationally
equivalent ζ and ζ ′, c(ζ ) = c(ζ ′). Because any feature γ ∈ RJ of the population distribution of
the data can be written as a functional γ (ζ ), it is natural to say that c is identified by γ if for any
primitives ζ and ζ ′ ∈ Z such that γ (ζ ) = γ (ζ ′), we have c(ζ ) = c(ζ ′).

If economic quantity c is identified by data features γ , there must be some function Φ such that
c = Φ(γ). A natural estimator for c is then ĉ = Φ(γ̂). As Matzkin (2013) stresses, providing a
constructive proof of identification and then estimating the quantities of interest from the mapping
Φ offers two key advantages: the estimates do not depend on arbitrary functional form or distri-
butional assumptions, and the transparent mapping from data to estimates makes it easier for the
reader to assess the credibility of the results.

17The online appendix lists these articles and shows how we classify them.
18For example, Barseghyan et al. (2013) write “given three or more deductible options, it is exogenous variation in

premiums for a fixed [claim probability] that allows us to pin down [the coefficient of absolute risk aversion] and [the
probability distortion function]” (p. 2511). Fan (2013) writes that “Identification of [the diminishing utility parameter]
comes from the variation in the number of newspapers in a county” (p. 1610). Kawai and Watanabe (2013) write “we
use the systematic difference between the predicted vote share and the actual vote share to partially identify the fraction
of strategic voters” (p. 643).

19Matzkin (2007; 2013) refers to such quantities as “features” of a model, and uses a definition that includes the
case where the object of interest is a distribution function or other high-dimensional object. We use different language
to avoid confusion with the term “features of the data” which we use as a synonym for sample statistics above.

14



We can think about the parametric model F (·|θ), θ ∈ RP defined in section 2 as a restriction
that ζ ∈ Z′ ⊂ Z for some subset Z′ that can be mapped one-to-one to the parameter space RP. We
can then write the quantity of interest as a function c(θ) of the model parameters, and write the
estimator defined in section 2 as c

(
θ̂
)
.

While it has become common for applied researchers to discuss identification, it is also com-
mon for researchers to use estimators other than Φ. For example, it is common for authors to
provide an argument for nonparametric identification of a general model F̃ (·|ζ ), then estimate a
parametric model F (·|θ) due to data limitations or other practical concerns.20

Sufficiency and sensitivity can help assess whether the actual estimator c
(
θ̂
)

resembles the hy-
pothetical estimator Φ(γ̂) defined by the proof. If c

(
θ̂
)

is equivalent to Φ(γ̂), then under suitable
regularity conditions proposition 1 implies that γ̂ is sufficient for c

(
θ̂
)
, and the sensitivity of c

(
θ̂
)

to γ̂ is equal to the partial derivative of Φ at γ0. If these properties are at least approximately satis-
fied, then we may have some confidence that the attractive properties of the hypothetical estimator
carry over to the actual one. If not, we might doubt the relevance of the discussion of identification
for the properties of the estimator.

The following toy example provides a concrete illustration.

Example 6. (Standard Deviation of a Random Variable) Suppose the economic quantity of interest
c is the population standard deviation σX of a scalar random variable X . A researcher shows that
c is nonparametrically identified, with the nonparametric estimator ĉ equal to the sample standard
deviation σ̂X . The model she actually takes to the data makes the additional assumption that X is
exponentially distributed. The actual estimator c

(
θ̂
)

is the MLE for this parametric model.
How similar is the behavior of this parametric estimator to the hypothetical nonparametric one?

Not very, as it turns out. The MLE of σX is in fact the sample mean of X , not the sample standard
deviation. This estimator is efficient when the true model is in fact exponential, in which case the
population mean and standard deviation are equal. The estimator is plainly very sensitive to model
misspecification.

Suppose that we could not interrogate the nature of the MLE analytically, but that we used
sufficiency and sensitivity to determine how it relates to the hypothetical nonparametric estimator.
We would see immediately that the sufficiency of σ̂X is not one as we would have expected, but
substantially less (for example, if X is exponential, sufficiency of σ̂X is 1

2 ; if X is normal, sufficiency
of σ̂X is 0). If we explored further and expanded γ̂ to include the sample mean, we would see that
sensitivity is one for the mean and zero for the standard deviation, making clear how the maximum
likelihood estimator actually takes information from the data.

20Einav et al. (2013) write, “Our actual data depart from the ideal data.... We thus make additional parametric
assumptions to aid us in identification” (p. 201). Kawai and Watanabe (2013) write, “While our identification argument
does not rely on the particular functional form [of preferences], our estimation does impose these functional forms”
(p. 639).
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Now suppose the researcher had instead assumed that X is normally distributed. The MLE
is now the sample standard deviation. Sufficiency and sensitivity will reveal that the estimator
corresponds to the nonparametric ideal.

This example is of course trivial, but it serves as a useful metaphor for issues that arise in
applied research. There are always many possible sources of identification, and seemingly innocu-
ous functional form assumptions can add additional sources that are not always apparent. Trying
to intuit how an estimator works based on contemplation of modeling assumptions may be diffi-
cult; sufficiency and sensitivity provide a way to lower this cost. In the applications in sections 5
and 6, we will show that authors’ discussions of identification line up closely with the patterns of
sufficiency and sensitivity in some cases, and diverge in others.

3.3 Descriptive Statistics

It is common for researchers to discuss the relationship between structural parameters and model-
free “descriptive statistics.”21 In principle, indirect inference makes it possible to base estimation
solely on such descriptive statistics (Gourieroux et al. 1993; Smith 1993). In practice, either for
econometric or computational reasons, researchers often choose not to base estimation directly on
descriptive statistics. In such cases the link between parameter estimates and descriptive statistics
is typically not made precise.

Sensitivity and sufficiency quantify the relationship between descriptive statistics and parame-
ter estimates. Suppose that θ̂p estimates a structural parameter of interest and that γ̂ j is a descriptive
statistic—say, a regression coefficient—that seems intuitively useful for estimating parameter p. If
sufficiency is high and sensitivity matches intuition, the descriptive analysis may be a good guide
to understanding how the full model takes information from the data. If sufficiency is low, or sen-
sitivity has an unexpected sign, this is less likely to be true. In the applications in sections 5 and
6, we will show cases where descriptive statistics successfully “emulate” structural estimates, and
others where they do not.

Whenever sufficiency is less than one, interpretation of sensitivity poses challenges analogous
to the problem of omitted variables bias in standard regression analysis. Because some features of
the data important for θ̂ are omitted from γ̂ , sensitivity values will be determined in part by the
correlation of the included features with the omitted ones. The interpretation of sensitivity must
then rely on priors about the importance of such correlation.

21Einav et al. (2013), for example, relate the identification of the moral hazard parameters in their model to a
preceding difference-in-difference analysis in a section called “Descriptive Evidence of Moral Hazard” (p. 192).
Lim (2013) relates the identification of key parameters in her model to evidence contained in a data plot that is “not
dependent on any particular modeling decision or estimated parameter values of the model” (p. 1378).
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4 Estimation of Sensitivity and Sufficiency

In this section we show that it is easy to estimate sufficiency and sensitivity even for computation-
ally difficult models. We focus on the case in which θ̂ is an MDE, an encompassing class that
includes GMM and MLE. We do not explicitly discuss the case in which the magnitude of interest
is a counterfactual or the statistics of interest are transformations of γ̂ , but we note that the results
below extend immediately to those cases following remark 1.

We generally assume that the researcher has in hand consistent estimators for objects such as
the weight matrix Wg and Jacobian G of an MDE. Note that if such an estimator is consistent under
the assumed model Fn, it will remain consistent under the contiguous perturbations F∗n considered
in section 3.1.

We focus here on computing point estimates of sensitivity and sufficiency. If one wishes to also
compute asymptotic confidence intervals for these measures, it is typically straightforward to do so
using a bootstrap. To illustrate, the online appendix reports confidence intervals for the sufficiency
values in our application to Berry et al. (1995) (section 5.2 below) and for the sufficiency and
sensitivity values in our application to Mazzeo (2002) (section 6.2 below).

4.1 Sensitivity to Moments

If Λ is sensitivity to moments, we know from remark 2 that ∆ = 1 and Λ = −
(

G
′
WgG

)−1
G
′
Wg.

By assumption the researcher possesses Ŵg, a consistent estimate of Wg. A consistent estimate Ĝ of
G is typically in hand to estimate the asymptotic variance of θ̂ .22 Therefore in typical applications
estimating Λ imposes no additional computational burden beyond the estimation of the asymptotic
variance.

Remark 3. If θ̂ is an MDE and Ĝ is a consistent estimate of G then Λ̂ = −
(

Ĝ
′
ŴgĜ

)−1
Ĝ
′
Ŵg is a

consistent estimate of sensitivity to moments. If the researcher has computed a plug-in estimator of
Var
(
θ̃
)
, then computing Λ̂ requires only matrix algebra and no additional simulation or estimation.

4.2 Sensitivity to Descriptive Statistics

If Λ is not sensitivity to moments, then the most convenient way to estimate Λ depends on how
γ̂ is defined. We assume throughout that γ̂ is also an MDE, which means it could include first
or second moments, smooth functions of estimation moments, regression coefficients, and many
other candidate statistics.

Let m̂(γ), M, and Wm denote the analogues of ĝ(θ), G, and Wg respectively that are used to
estimate γ̂ . We assume conditions so that ĝ(θ) and m̂(γ) can be “stacked” to form an MDE

(
θ̂ , γ̂
)
,

22In CMD or SMD where ĝ(θ) = π̂−h(θ), H =−G where H is the Jacobian of h() at the true value θ0.
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in particular that ĝ(θ0) and m̂(γ0) are jointly asymptotically normal with variance Ω. We let Ωgg,
Ωmm, and Ωgm denote the sub-matrices of Ω corresponding to the asymptotic variance of ĝ(θ0),
the asymptotic variance of m̂(γ0), and the asymptotic covariance of ĝ(θ0) and m̂(γ0) respectively.

Under these assumptions, it is straightforward to show that

Σθγ =
(
G′WgG

)−1 G′WgΩgmWmM
(
M′WmM

)−1
.

Standard plug-in estimators Σ̂θθ and Σ̂γγ are typically available for Σθθ and Σγγ . If we can
construct an estimator Σ̂θγ for Σθγ , we can form consistent estimators Λ̂ = Σ̂θγ Σ̂−1

γγ and ∆̂p =(
Λ̂Σ̂γγ Λ̂′

)
pp /
(
Σ̂θθ

)
pp for Λ and the elements of ∆.

Of the components of Σθγ , Wg and Wm are consistently estimated by Ŵg and Ŵm which are in
hand from estimation, and G and M are consistently estimated by the sample analogues Ĝ = G

(
θ̂
)

and M̂ =M (γ̂). All that remains is to estimate Ωgm. In cases such as CMD or SMD, it is common to
use a bootstrap to estimate Ωgg; in such cases the same bootstrap can typically be used to estimate
Ωgm.

Remark 4. If θ̂ and γ̂ are MDEs and the researcher has computed plug-in estimators of Var
(
θ̃
)

and Var(γ̃) then computing a consistent estimate Λ̂ requires only computing a consistent estimate
Ω̂gm of the asymptotic covariance of the moment conditions.

An important special case is when θ̂ and γ̂ are both estimated via GMM, a case that includes
MLE (Hansen 1982). Then ĝ(θ) = 1

n ∑
n
i=1 g(zi,θ) and m̂(γ) = 1

n ∑
n
i=1 m(zi,γ) for i.i.d. data zi and

functions g(z,θ) and m(z,γ) satisfying E(g(z,θ0)) = E(m(z,γ0)) = 0. In this case a consistent
estimator for Ωgm is Ω̂gm = 1

n ∑
n
i=1 g

(
zi, θ̂

)
m(zi, γ̂)

′.23

An alternative representation of the estimator for Λ̂ is useful for building intuition in this case.

Definition. Let g̃i = −
(
Ĝ′ŴgĜ

)−1
Ĝ′Ŵgg

(
zi, θ̂

)
and define m̃i analogously. These (P×1) and

(J×1) vectors are the influence of observation i on θ̂ and γ̂ respectively (Hampel et al. 1986;

Ronchetti and Trojani 2001).

Intuitively, through the first-order condition g̃i tells us how much (and in what direction) ob-
servation i affects θ̂ . The same property holds for m̃i. Then by regressing g̃i on m̃i we recover how
the influence of an observation on γ̂ relates to its influence on θ̂ , and hence how γ̂ and θ̂ are related
under the data-generating process:

Proposition 4. The transposed coefficient matrix Λ̂ = (g̃′m̃)(m̃′m̃)−1 from a regression of g̃′i on m̃′i
is a consistent estimator of the sensitivity Λ of θ̂ to γ̂ . The R2 associated with the regression of the

p-th element of g̃′i on m̃′i is a consistent estimator of ∆p.

23In the case of dependent data with a group structure, the estimator Ω̂gm could be replaced with an appropriate
group-level analogue.
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Proof. Let g̃ and m̃ denote the matrices whose rows are g̃′i and m̃′i, respectively. The first statement
follows from the continuous mapping theorem and the definition of sensitivity after noting that Λ̂=

(g̃′m̃)(m̃′m̃)−1, 1
n g̃′m̃

p→ Σθγ and 1
nm̃′m̃

p→ Σγγ . The second statement follows from the continuous
mapping theorem and definition of sufficiency after noting that:

R2 =

(
Λ̂ ·
(1

nm̃′m̃
)
· Λ̂′
)

pp(1
n g̃′g̃

)
pp

and that 1
n g̃′g̃

p→ Σθθ .

Example 7. (Sensitivity of MLE to Sample Mean) Suppose the data are zi ∈ RD, with elements
zdi, the parameter of interest θ is a scalar, and θ̂ is an MLE with likelihood function f (zi|θ):

θ̂ = argmax
θ

n

∑
i=1

ln f (zi|θ) .

Suppose we wish to assess sensitivity to the means of the elements of zi, so we define γ̂ ≡ z ≡
1
n ∑

n
i=1 zi.
We can interpret θ̂ as a GMM estimator with moment functions g(zi|θ) = ∂ ln f (zi|θ)/∂θ ,

weight matrix Wg = I, and Jacobian G(θ) = E
(
∂ 2 ln f (zi|θ)/∂θ 2). We can interpret γ̂ as a GMM

estimator with moment functions m(zi|γ)= zi−γ , weight matrix Wm = I, and Jacobian M (γ)=−I.
We can consistently estimate Λ with the coefficients from a regression of the (scaled) score of
observation i:

g̃i =−
1
Ĝ
· ∂ ln f (zi|θ)

∂θ

∣∣∣∣
θ=θ̂

on the deviation from the mean of observation i:

m̃i = (zi− z) .

Intuitively, θ̂ is more sensitive to the mean of a particular variable zdi when observations with
high values of zdi have high values of the score (holding the other elements of zi constant). This
approach is easily extended to look at the sensitivity of θ̂ to higher-order moments of the data.

4.3 Units of Measurement

We have noted that Λ has an interpretation as the probability limit of coefficients from a regression
of θ̂ on γ̂ . As with any regression coefficients, the elements of Λ depend on the units of mea-
surement of the regressors γ̂ . Determining which element of γ̂ is most “important” for a given
θ̂p therefore requires judgment. The problem of assessing the relative importance of regressors is
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age-old and no solution is satisfactory in all situations (Kim and Ferree 1981; Bring 1994; Gelman
2008). But it is helpful to have a default. For this we propose the analogue of the standardized
regression coefficient:

Definition. The standardized sensitivity of θ̂p to γ̂ j is

Λ̃p j = Λp j

√
Var
(
γ̃ j
)

Var
(
θ̃p
) .

Standardized sensitivity measures how much a one-standard-deviation change in the realization
of γ̃ j affects the expected value of θ̃p, fixing other elements of γ̃ , in units of the standard deviation
of θ̃p. If the elements of γ̂ are asymptotically independent (i.e., if Σγγ is diagonal) then the matrix
Λ̃ of standardized sensitivities is the correlation matrix of θ̃ with γ̃ .

An attractive property of standardized sensitivity is that it is invariant to changes in units.
Formally, for vectors a,c and strictly positive diagonal matrices B,D the standardized sensitivity
of a+Bθ̂ to c+Dγ̂ is equal to the standardized sensitivity of θ̂ to γ̂ . This means that, for example,
if we switched from measuring an element of γ̂ in dollars to measuring it in euros, our conclusions
about the relative importance of different moments would be unchanged.24

Comparisons in units of standard deviations will not always be appropriate or necessary. If two
statistics are in comparable economic units, it may be meaningful to compare their unstandardized
sensitivities directly. Nevertheless, abstracting from any particular context it seems attractive to
have a unitless measure as a default, and we will report estimates of standardized sensitivity in all
of our applications.

5 Main Applications

5.1 Life-cycle Consumption and Savings

Gourinchas and Parker (2002)

Our first application is to Gourinchas and Parker’s (2002) model of life-cycle consumption. Gour-
inchas and Parker (2002) model the behavior of a consumer with a time-separable constant-relative-
risk-aversion felicity function and a stochastic income process. The parameters of the income
process are estimated in a first step and are taken as given in a second step, in which preference
parameters are estimated from moments corresponding to mean consumption at different ages (ad-
justed for family size and business cycle shocks).

24There are other transformations of Λ, such as the matrix of partial correlations of θ̃p with γ̃ j (conditional on γ̃∼ j),
that would also exhibit this invariance property.
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Figure 2 presents sensitivity estimates for the second-step model’s two key preference param-
eters: the discount factor and the coefficient of relative risk aversion.25 The plot reveals three
periods of life with different implications for the parameter estimates. In the first period, roughly
ages 26-36, and in the third period, roughly ages 62-65, higher consumption implies a higher dis-
count factor and a lower coefficient of relative risk aversion. In the second period, roughly ages
37-61, higher consumption implies a lower discount factor and a higher coefficient of relative risk
aversion.

A stylized economic intuition is as follows. The consumer saves for retirement and for pre-
cautionary reasons. The strength of retirement saving motives is governed by the discount factor,
and the strength of precautionary motives by the coefficient of relative risk aversion. Both a higher
discount factor and a higher coefficient of relative risk aversion predict more delay of consumption,
i.e., lower consumption early in life and greater consumption later in life. The two parameters are
separately identified because of their different quantitative implications.

In the first period of life, saving is primarily precautionary, so risk aversion matters compara-
tively more than discounting, and higher consumption is interpreted as evidence of low risk aver-
sion. In the second period, saving is primarily for retirement, so discounting matters comparatively
more, and higher consumption is interpreted as evidence of impatience. In the third period, retire-
ment looms and income uncertainty has essentially vanished, so high consumption is evidence that
the household has already accumulated substantial retirement wealth, i.e., that the household is
patient.

The fact that the two plots are essentially inverse to one another arises because both a higher
discount factor and a higher coefficient of relative risk aversion imply the same qualitative change
in the consumption profile. Therefore a change in consumption at a given age that implies a high
discount factor must be offset by a lower coefficient of relative risk aversion in order to hold
consumption at other ages constant.

De Nardi et al. (2010)

De Nardi et al. (2010) model consumption and saving by retired, nonworking households with
uninsurable mortality and medical expense risk. Households have a time-separable constant-
relative-risk aversion felicity function and a consumption floor guaranteed by the government.
The parameters of the mortality and medical expense processes are estimated in a first step and are
taken as given in a second step, in which the discount factor, coefficient of relative risk aversion,

25The baseline specification in Gourinchas and Parker (2002) has two additional parameters, which govern a
reduced-form retirement consumption function. We fix these at their estimated values for the purposes of our analysis.
The online appendix reports the numerical values of standardized sensitivity of the discount factor and the coefficient
of relative risk aversion.
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and consumption floor are estimated using SMM from moments corresponding to median assets
for different cohorts, ages, and permanent income levels. We use the results in remark 1 to compute
the sensitivity of second-step parameters to the means of related groups of estimation moments.26

The first two plots in figure 3 present the sensitivity of the consumption floor and the coefficient
of relative risk aversion to the mean of the asset holdings by income quintile. The consumption
floor is sensitive primarily to the savings of households in the lowest income quintile: the less
these households save, the greater is the inferred consumption floor. The coefficient of relative
risk aversion rises with the savings of the rich and falls with the savings of the poor. This pattern
matches closely the intuition in De Nardi et al. (2010):

The coefficient of relative risk aversion is identified by differences in saving rates
across the income distribution, in combination with the consumption floor. Low-
income households are relatively more protected by the consumption floor and will
thus have lower [variance of consumption growth] and hence weaker precautionary
motives. The parameter helps the model explain why individuals with high permanent
income typically display less asset decumulation (p. 59).

The third plot in figure 3 presents the sensitivity of the discount factor to the mean of the asset
holding moments by age. As expected, the estimator interprets large asset holdings at younger
ages as evidence of patience.

5.2 Automobile Demand

Our second application is to Berry et al.’s (1995) model of automobile demand. We follow Berry
et al. (1995) closely, using their data and SMM procedure, with moments from both the demand
and supply sides of the model.27

The estimation moments are derived from two sets of identifying assumptions. On the demand
side, the model assumes that the expected unobserved quality ξ j of car j is zero conditional on
instruments zd

j . Berry et al. (1995) construct zd
j from a set of demand-side variables: a constant, a

dummy for whether car j has air conditioning, and car j’s horsepower-per-weight, miles-per-dollar
of gasoline, and size. For each variable, zd

j includes: (i) the value of the variable for car j; (ii) the
sum of the variable across other cars produced by the firm that produces car j; (iii) the sum of

26The online appendix reports the standardized sensitivity of second-step parameters to the full set of (untrans-
formed) estimation moments.

27We extract automobile data and guide our implementation using the GAUSS code for Berry et al. (1999), down-
loaded from the Internet Archive’s April 2005 web capture of James Levinsohn’s (now defunct) website at the Uni-
versity of Michigan. Table 1 from Berry et al. (1995) and table 2 from Berry et al. (1999) imply that the two use the
same dataset. We used code from Petrin (2002), Dubé et al. (2012), and Knittel and Metaxoglou (2014) as additional
references.
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the variable across cars produced by rival firms. The demand-side moments are the product of ξ j

(computed as a residual inverted from market shares) with each element of zd
j .

On the supply side, the model assumes that the expected unobserved cost component ω j of
car j is zero conditional on instruments zs

j. Berry et al. (1995) construct zs
j in the same way as

zd
j , but using instead a set of supply-side variables: a constant, a dummy for whether car j has air

conditioning, a time trend, and the logarithms of car j’s horsepower-per-weight, miles-per-gallon
of gasoline, and size. In addition, zs

j includes an excluded demand variable, miles-per-dollar of
gasoline for car j (but not the sums of this variable across other cars). The supply-side moments
are the product of ω j (computed as a residual inverted from estimated marginal costs) with each
element of zs

j.
We first assess the relative importance of the demand and supply moments. For each parame-

ter, we compute the sufficiency ∆p of all demand moments together (that is, we set γ̂ equal to the
vector of demand moments) and of all supply moments together.28 These results are presented in
figure 4. A natural hypothesis is that the cost side parameters of the model depend on the supply
moments while the utility parameters depend on the demand moments. This is partly true: the sup-
ply moments are indeed nearly sufficient for the cost parameters, but the utility parameters depend
on both demand and supply moments, and some key parameters such as the price coefficient are
primarily driven by the latter.29

We can also apply our method to analyze the relative importance of specific instruments in
driving a key economic outcome of the model: the estimated markups. We define the counter-
factual c

(
θ̂
)

of interest to be the average estimated markup across all cars.30 We define γ̂ to be
the complete set of estimation moments

(
zd′

j ξ j zs′
j ω j

)
, but plot sensitivity only for moments

involving the “excluded” instruments—i.e., those that do not enter the utility or cost j directly.31

These results are presented in figure 5. We find that markups are overall more sensitive to the
supply moments than to the demand moments. The supply-side instruments that play the largest
role are the number of other products produced by the same firm (i.e., the sum of the constant term
across other products produced by the same firm), the gas mileage of these cars, and the number of
products produced by rival firms. To build intuition, recall that the model is estimated using data
from 1971-1990, a period that saw the large-scale entry of Japanese cars and a shift toward greater

28The sufficiency of demand moments and the sufficiency of supply moments need not sum to one because the two
sets of moments are correlated.

29The online appendix reports the bootstrap confidence intervals of sufficiency ∆p of the demand and supply mo-
ments for each parameter, using the percentiles of 70 block bootstrap replicates. The bootstrap results suggest that the
relative importance of the supply moments for the marginal cost parameters is robust to sampling error.

30The markup is tightly related to the own-price elasticity, and, therefore, to the price coefficient. We show in the
online appendix that the pattern of sensitivities of the average own-price elasticity and the price coefficient are similar
to those we present here.

31The online appendix reports the complete standardized sensitivity matrix Λ̃, with values for all parameters and
moments.
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fuel economy. A possible interpretation, therefore, is that the model uses the changes in prices
induced by the increased competitiveness and product differentiation as a key source of exogenous
variation.

Finally, we apply our method to ask to what extent the relationship of moments to estimated
elasticities in the full BLP model is well approximated by the relationship of moments to estimated
elasticities in the aggregate logit version of the model. The latter model, which has no random
coefficients, can be estimated by two-stage least squares. Berry et al. (1995) present estimates from
this logit model as a point of departure. We define the counterfactuals c

(
θ̂
)

to be mean elasticities
of demand with respect to price and product attributes implied by the estimated parameters of the
full BLP model, and transformed statistics a(γ̂) to be the same mean elasticities implied instead
by the estimated parameters of the logit model. We compute sensitivity of each elasticity in the
full model to the elasticities implied by the logit model.

These results are presented in figure 6. We find that sufficiency ∆p is low for all elasticities,
ranging from 0.02 for the air conditioning dummy to 0.13 for miles-per-dollar. Moreover, there is
no systematic pattern in which the estimated demand elasticity to a particular attribute in the full
model is primarily related to the estimated demand elasticity for that same attribute in the logit
model. This suggests, consistent with the discussion in Berry et al. (1995), that carrying forward
simple intuitions from the logit model is not a useful way to understand the full model.

6 Other Applications

6.1 Sensitivity to Moments

In this subsection we apply our measure of the sensitivity to moments to several empirical pa-
pers that use MDEs. In each case we obtain plug-in estimators Ĝ, Ŵg, and Ω̂gg either directly
from the authors or from replication files posted by the authors. For papers that estimate multiple
specifications we use the baseline or main specification reported in the paper.

We present our findings as plots of standardized sensitivity of all moments for each of a set of
key parameters. In the online appendix we report the complete standardized sensitivity matrix Λ̃

for each paper. Each plot indicates the key moments that the authors highlight as important for the
identification of the given parameter.

Goettler and Gordon (2011)

Goettler and Gordon (2011) model innovation in the market for a durable good. In the model, each
of a set of firms maintains a position on a quality ladder. The chance of moving up the ladder
is greater the more the firm invests in R&D and the further the firm is from the technological
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frontier. Marginal costs are increasing in product quality. Consumers value quality and treat the
firms’ products as vertically and horizontally differentiated. Both firms and consumers are forward-
looking.

The model is estimated on data from the market for computer microprocessors. The main
research question is whether the market leader, Intel, innovates more or less than it would in a
counterfactual world without its main competitor, AMD. Seven parameters are estimated from 15
empirical moments using SMD.

Figure 7 presents results for three key parameters. We follow Goettler and Gordon (2011) in
dividing moments into “demand-side” and “supply-side” groups.

The first two parameters that we consider are demand parameters: the price coefficient, which
reflects the disutility of higher prices, and the quality coefficient, which reflects the utility from
higher quality. Regarding these parameters Goettler and Gordon (2011) write:

The demand-side parameters ([the price coefficient], [the quality coefficient], [the In-
tel fixed effect], and [the AMD fixed effect]) are primarily identified by the pricing
moments, the Intel share equation moments, and the mean ownership quality relative
to the frontier quality. The pricing moments respond sharply to changes in any of these
four parameters. The market share equation is primarily sensitive to [the quality coef-
ficient] and [the Intel fixed effect minus the AMD fixed effect]. The mean [upgrading
moment] decreases if consumers upgrade more quickly and is akin to an outside share
equation that identifies the levels of [the Intel fixed effect and the AMD fixed effect]
(p. 1161).

In figure 7, we find that the price coefficient is primarily sensitive to the average prices of Intel
and AMD. This is intuitive because Goettler and Gordon (2011) have a direct measure of marginal
cost. Given the assumption of dynamically optimal pricing, the higher is the observed price, the
less price-sensitive consumers are estimated to be. The quality coefficient is primarily sensitive
to the potential upgrade gains, a measure of the difference between the average CPU quality of
the computer stock and the frontier quality available. Again, this is intuitive: the more sensitive
consumers are to quality, the more often consumers will upgrade their PCs and the smaller will be
the gap between average and frontier quality.

The third parameter that we consider is the innovation spillover, a measure of the extent to
which innovation is easier the further the firm lies inside the technological frontier. Goettler and
Gordon (2011) write:

The supply-side parameters ([Intel’s innovation efficiency], [AMD’s innovation ef-
ficiency], and [the innovation spillover]), which govern the investment process, are
primarily identified by observed innovation rates, quality differences, and investment
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levels. The investment efficiencies are chosen such that the observed investment levels
(per unit revenue) yield innovation at the observed rates. The [innovation spillover
parameter] is chosen to match the mean difference in quality across firms: a high
spillover keeps the qualities similar (p. 1161).

We find that the innovation spillover is very responsive to the mean quality difference as expected.
However, it responds slightly more to the average Intel price, and in general is very responsive to
demand moments.

DellaVigna et al. (2012)

DellaVigna et al. (2012) model a household’s charitable giving. In the model, a household may
give to charity either out of altruism or because of social pressure. DellaVigna et al. (2012) conduct
a field experiment in which they solicit charitable donations door-to-door. In some treatments they
alert the household in advance that they will be coming to solicit. Households’ response to this
warning provides evidence on the motivations for giving and allows DellaVigna et al. (2012) to
assess the welfare effects of charitable solicitations.

The model is estimated using 70 moments corresponding to the empirical frequencies of open-
ing the door and giving different amounts of money in different treatment conditions. The model
has 15 parameters estimated via CMD, using quadrature to approximate the expected value of the
empirical moments as a function of the parameters.

Figure 8 presents results for two parameters. For each parameter, we show the standardized
sensitivity to all moments, indicating key moments highlighted by the authors in red.

The first parameter, the baseline probability of being home, has a very simple relationship to
the empirical moments. DellaVigna et al. (2012) explain that:

The baseline probabilities of answering the door ... are identified by the observed
probabilities of opening the door in treatments without flyer (p. 37).

Our plot bears out this discussion, showing that the empirical probabilities of being home in no-
flyer conditions are the most important drivers of this parameter.

The second parameter, the social cost of giving less than $10 to the East Carolina Hazard Center
(ECU), has a richer economic structure. DellaVigna et al. (2012) write:

Finally, the social pressure ... is identified from two main sources of variation: home
presence in the flyer treatment ... and the distribution of small giving (the higher
the social pressure, the more likely is small giving and in particular bunching at [the
threshold of $10]) (p. 38).
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The authors define the social cost of giving $X as S×max{10−X ,0}, where S is a parameter.
We report sensitivity values for the cost of giving $0, which is 10S. The sensitivity values closely
match the authors’ discussion: Giving at the $10 threshold increases the inferred level of social
pressure, as does failing to open the door when warned in advance by a flyer. (The only exception
is that giving less than $10 is found to decrease rather than increase the estimated level of social
pressure, perhaps because this level of giving does not allow the household to avoid feeling socially
pressured.)

Nikolov and Whited (2014)

Nikolov and Whited (2014) model an infinitely lived firm whose manager makes decisions in
discrete time about both the level of real investment and the extent of external financing. Capital is
subject to depreciation and a convex adjustment cost. External financing imposes a real cost on the
firm. The manager has an equity stake, a profit stake, and an ability to “tunnel” resources that are
held as cash. The profit stake and the ability to tunnel lead to a divergence between the manager’s
interests and those of the shareholders.

The model has eight estimated parameters, corresponding to features of the production and
investment technology, the external financial environment, and the manager’s incentives. These
parameters are estimated via SMM based on empirical moments that contain information on in-
vestment, financing, and compensation in a sample of firms.

Figure 9 presents standardized sensitivity of three select parameters. We follow Nikolov and
Whited (2014) in dividing the moments loosely into “real” moments related to the investment
decision, “financial” moments related to cash vs. external finance, and “incentives” moments
related to managerial compensation and incentives.

The first parameter we study is the rate of depreciation of capital. Nikolov and Whited (2014)
report that this parameter is identified by the mean rate of investment:

The first two non financial or “real” moments are the first and second central moments
of the rate of investment ... The first moment identifies the capital depreciation rate (p.
1899).

The economic logic here is that in a deterministic steady-state, the rate of investment is equal to
the rate of depreciation of capital. The sensitivity values for the depreciation parameter bear out
this intuition: the mean rate of investment is by far the most important moment in determining the
estimated depreciation rate.

The second parameter that we study is the profit-sharing parameter, which corresponds to the
fraction of after-tax operating earnings that accrue to the manager. Nikolov and Whited (2014)
report that this parameter is identified principally by the average bonus paid to the firm’s CEO:
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Finally, we discuss the identification of the profit-sharing parameter. ... First, without
our data on ownership and compensation, we would have to infer the value of this
parameter solely from firm decisions. In this case, a high value of [the profit-sharing
parameter] implies low average profitability because the manager acts as if the firm
is more profitable than it actually is and makes distorted investment decisions. How-
ever, many other parameters affect average profitability, so this moment alone cannot
help identify [the profit-sharing parameter]. Fortunately, this parameter corresponds
directly to one moment from our compensation data: the average bonus (p. 1900).

The authors also note that Tobin’s q is useful in identifying this parameter. The sensitivity measure
agrees with the authors’ discussion. By far the most important driver of the estimated profit-sharing
parameter is the average bonus. The average profit level is also relevant, and has the sign predicted
by the model.

The third and final parameter that we study is the tunneling parameter, which corresponds to
the fraction of the current stock and flow of cash that the manager consumes privately. Nikolov
and Whited (2014) write:

Not surprisingly, the moment that is most important for identifying resource diversion
is the mean of Tobin’s q: the greater resource diversion, the lower is q (p. 1900).

The sensitivity plot shows that greater Tobin’s q does correspond to a lower inferred tunneling.
Other moments also play an important role, however. Both lower investment and greater aver-
age profits imply greater tunneling. A possible explanation is that lower investment and greater
profits imply a greater flow of resources, so for a fixed distribution to shareholders, managerial
resource diversion must adjust to enforce the accounting identity that determines distributions to
shareholders.

6.2 Sensitivity to Descriptive Statistics

Our final applications are cases in which the economic model is estimated via MLE. Formally,
an MLE is an MDE in which the moments are first-order conditions. In the applications below
these first-order conditions do not have a clear economic interpretation. We therefore define γ̂ to
be a set of descriptive statistics, typically those presented by the authors to provide a summary of
key features of the data. We compute standardized sensitivity of key parameters or counterfactuals
using the empirical influence components as described in section 4. (Recall that these calculations
do not require re-estimation of the model.) Unlike in the case of sensitivity to moments, sufficiency
need not be equal to one here.
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Mazzeo (2002)

Mazzeo (2002) models entry into motel markets along US interstate highways. In the variant of
Mazzeo’s model that we consider, anonymous potential entrants to a local market make sequential
decisions either not to enter the market, to enter as low quality, or to enter as high quality. Fol-
lowing the entry decision, firms realize payoffs that depend on observable market characteristics,
the number of firms of each type, and a normally distributed profit shock that is specific to each
firm type and local market and is unknown to the econometrician. Mazzeo (2002) estimates the
model by MLE using data on the number and quality of motels along rural interstate highways in
the United States.

Figure 10 reports the sensitivity of Mazzeo’s (2002) estimates of the effect of market charac-
teristics on firm profits.32 Here we let γ̂ be the coefficients from regressions of the number of low-
and high-quality firms on observable market characteristics. Intuitively, we would expect the struc-
tural parameter governing the effect of a given characteristic on profitability to be tightly related
to that characteristic’s effect on the number of firms. We find that this is indeed the case, and that
the regression coefficients are almost sufficient for the structural parameters. In all cases, knowing
the regression coefficients would allow us to predict more than 80 percent of the variation in the
structural parameter under the asymptotic distribution.

Gentzkow (2007)

Gentzkow (2007) uses survey data from a cross-section of individuals to estimate demand for print
and online newspapers in Washington DC. A central goal of Gentzkow’s (2007) paper is to estimate
the extent to which online editions of papers crowd out readership of the associated print editions,
which in turn depends on a key parameter governing the extent of print-online substitutability. We
focus here on the substitutability of the print and online editions of the Washington Post.

Gentzkow (2007) exploits two features of the data to distinguish correlated tastes from true
substitutability: (i) a set of variables—such as a measure of Internet access at work—that plausibly
shift the utility of online papers but do not affect the utility of print papers; and (ii) a coarse form of
panel data—separate measures of consumption in the last day and last seven days—that identifies
stable individual preferences in a manner analogous to fixed or random effects in a linear model.

To capture these two features of the data, we define γ̂ to consist of two components: (i) the co-
efficient from a 2SLS regression of last-five-weekday print readership on last-five-weekday online
readership, instrumenting for the latter with the set of excluded variables such as Internet access at
work; and (ii) the coefficient from an OLS regression of last-one-day print readership on last-one-

32The online appendix presents the corresponding numerical estimates of standardized sensitivity Λ̃ and sufficiency
∆p, along with bootstrap-based confidence intervals and alternative point estimates computed from the bootstrap repli-
cates.
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day online readership controlling flexibly for readership of both editions in the last five weekdays.
Each of these auxiliary models includes the standard set of demographic controls from Gentzkow
(2007).

We define the counterfactual c
(
θ̂
)

to be the change in readership of the Post print edition that
would occur if the Post online edition were removed from the choice set (Gentzkow 2007, table
10).

The results are presented in figure 11. Sufficiency is 0.64, suggesting that these two features
of the data capture much but not all of the variation that drives the counterfactual. Sensitivity is
negative for both elements of γ̂ as expected, reflecting the fact that a more positive relationship
between print and online consumption implies less substitutability and thus a smaller gain of print
readership. Finally, the results show that sensitivity to the panel variation is much larger than
sensitivity to the IV variation, implying that the former is the more important driver of the estimated
counterfactual.

Hendren (2013)

Hendren (2013) uses data on insurance eligibility and self-reported beliefs about the likelihood of
different types of “loss” events (e.g., becoming disabled) to recover the distribution of underlying
beliefs and rationalize why some groups are routinely denied insurance coverage. We focus here
on Hendren’s (2013) model of the market for long-term care insurance.

In Hendren’s (2013) data, many respondents give “focal” responses of 0, 0.5, or 1 to survey
elicitations of probabilistic beliefs. To allow for the possibility that these focal responses are not
the respondents’ actual beliefs, Hendren’s (2013) model assumes that with some probability each
respondent is a “focal point respondent” whose response is 0, 0.5, or 1, depending on which of
three intervals her true beliefs falls into. The width of the intervals is controlled by a parameter
called the “focal point window.” For a given distribution of true beliefs, higher values of the focal
point window make responses of 0 or 1 more likely relative to responses of 0.5.

Figure 12 reports the standardized sensitivity of the fraction focal point respondents and the
focal point window. Here we let γ̂ be shares of different responses to the survey elicitation, which
together have sufficiency over 90 percent for the two parameters that we study. The results confirm
our expectations based on Hendren’s (2013) discussion.33 The fraction focal respondents is highly
sensitive to (and increasing in) the fraction of responses that are {0,1} or 0.5. Fixing the share of
responses equal to 0.5, increasing the share in {0,1} increases the estimated focal window.

We can also compute sensitivity of the minimum pooled price ratio, formally a counterfac-
tual c

(
θ̂
)

that determines, as a function of model parameters, the range of preferences for which

33Hendren (2013) writes that “the fraction of focal point respondents... and the focal point window... are identified
from the distribution of focal points and the loss probability at each focal point” (p. 1752).
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insurance markets cannot exist. To study this counterfactual we define γ̂ to be a vector of three
descriptive statistics: the fraction of respondents who report a high (at or above 0.5) probability
of needing long-term care and eventually need care, the fraction of respondents who report a high
(at or above 0.5) probability of needing long-term care but do not eventually need care, and the
fraction of respondents who report a low (below 0.5) probability of needing long-term care but do
eventually need care. We find that the minimum pooled price ratio is increasing in the first of these
and decreasing in the latter two, consistent with the intuition that insurance markets are more likely
to unravel when respondents have more private information.34

7 Conclusions

We develop measures of the relationship between a parameter estimate and a set of given features
of the data. The measures are easy to compute in common applications. Our measure of sensitivity
has an interpretation as a measure of sensitivity to model misspecification, and our measures can
be useful in complementing discussions of identification in empirical work.

An important limitation of our approach is that our measures are local, in the sense that they rely
on the same asymptotic mechanics as commonly used formulae for standard errors. Conceptually,
global exploration in a sample of a given size is straightforward. Consider the following exercise:
(i) simulate or otherwise obtain data with dispersed values of γ̂; (ii) estimate θ̂ on each dataset; and
(iii) regress θ̂ on γ̂ across these datasets. Such a procedure delivers global measures of sufficiency
and sensitivity analogous to the local ones that we work with in this paper.

We focus on the local measures precisely because repeated simulation and estimation is often
costly. We can, however, suggest approaches to minimizing this computational burden. First, for
estimators whose cost of execution scales well with the size of the dataset, a researcher might use
small-scale simulations to obtain the global measures and compare them to the local ones. If the
two are similar, this adds confidence to the use of the local measures for sensitivity analysis. This
is analogous to the common practice of using sampling experiments to validate inference from
asymptotic standard errors.

Second, for cases where simulation from the data-generating process is cheaper than estima-
tion, a researcher might simulate data from several possible values of θ and compute γ̂ on the
simulated data. Then, by regressing θ on γ̂ , one obtains a global analogue of sufficiency and sen-
sitivity that does not require repeated model estimation. Developing the formal properties of more

34We present additional details in the online appendix. Note that the three descriptive statistics we study have
low sufficiency (0.18) for the minimum pooled price ratio, indicating that these statistics do not capture most of the
information in the data used to estimate the minimum pooled price ratio, and that our estimates of sensitivity should
be interpreted with caution.

31



global approaches, and determining strategies for minimizing their computational costs, seem to
be interesting areas for future work.
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Figure 1: Share of top journal articles containing the phrase “identified by”
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Notes: The plot shows an annual index of the share of articles published in the American Economic Review,
the Journal of Political Economy, the Quarterly Journal of Economics, the Review of Economic Studies,
and Econometrica containing the phrase “is identified by” or “are identified by” along with the word “data,”
among all articles containing the word “data.” The index is constructed by dividing the share in each year
by the share in 1980. Cases where the word “identified” is not used in the econometric sense are manually
excluded.
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Figure 2: Standardized sensitivity of select parameters in Gourinchas and Parker (2002)
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Figure 3: Standardized sensitivity of select parameters in De Nardi et al. (2010)
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Figure 4: Sufficiencies for parameter estimates in Berry et al. (1995)
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Figure 6: Standardized sensitivity of elasticities of demand in Berry et al. (1995)
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Notes: The plot shows a heat map of the absolute value of standardized sensitivity of the average own-
price or own-characteristic elasticity of demand from the BLP model (in rows) with respect to the vector of
analogous elasticities from a logit model with the same excluded instruments as the BLP model (in columns).
The number in parentheses in each row is the sufficiency of the vector of logit model elasticities for the BLP
model elasticity.
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Figure 10: Standardized sensitivity of market characteristic parameters in Mazzeo (2002)
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Notes: The plot shows a heat map of the absolute value of the standardized sensitivity of a model parameters
(in rows) with respect to a vector of descriptive statistics (in columns). Each row also shows the sufficiency
of the vector of statistics for the given parameter. Parameter names ending in “(L)” refer to effects on low-
type payoffs, and parameter names ending in “(H)” refer to effects on high-type payoffs. The descriptive
statistics are the coefficients from regressions of the number of low- and high-type firms on observable
market characteristics. The model is the two-type Stackelberg model defined and estimated in Mazzeo
(2002).
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Figure 11: Standardized sensitivity of counterfactual estimate in Gentzkow (2007)
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Notes: The plot shows the absolute value of standardized sensitivity of the readership counterfactual with
respect to the two descriptive statistics listed on the x-axis, with the sign of sensitivity in parentheses and the
sufficiency of the vector of descriptive statistics for the given parameter listed above the plot. The readership
counterfactual is the change in readership of the print edition of the Washington Post when the post.com is
removed from the choice set (Gentzkow 2007, table 10). The IV coefficient is the estimated coefficient
from a two-stage least squares regression of last-five-weekday Washington Post print readership on last-
five-weekday post.com readership, with a set of excluded instruments including Internet access at work
(reported in Gentzkow 2007, table 4, IV specification (1)). The panel coefficient is the coefficient from
an OLS regression of last-one-day print readership on last-one-day online readership controlling flexibly
for readership of both editions in the last five weekdays. Each of these auxiliary regressions includes the
standard set of demographic controls from Gentzkow (2007).
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A Relationship to Alternatives

Here we relate our sensitivity measure to two alternative methods of developing intuition for the
mapping from data to parameter estimates.

A.1 Inverse Sensitivity

Our sensitivity measure asks how the expected values of the parameters change as we vary the data
features of interest. An alternative way to investigate what drives an estimator would be to ask how
the expected values of the data features change when we vary the parameters. Intuitively, we might
say that a particular θ̂p will depend heavily on a particular γ̂ j if varying θp in the model causes
large changes in the expected value of γ̂ j. This approach can easily be implemented by simulating
data from the model at alternative parameter values. Goettler and Gordon (2011), Kaplan (2012),
Morten (2013), and Berger and Vavra (2015) are examples of papers that refer to such simulations
in their discussions of identification.35

This approach can be thought of as the “inverse” of our proposed sensitivity measure. To
see why, suppose that θ̂ is a GMM estimator and Λ is sensitivity to moments. The alternative
approach would infer that the j-th moment γ̂ j =

1
n ∑

n
i=1 g j (zi,θ0) is an important driver of θ̂p if the

absolute value of ∂

∂θp
E
[
g j (zi,θ)

]∣∣∣
θ=θ0

is large. Notice that the matrix of these partial derivatives

is simply the Jacobian G. Since Λ = −
(

G
′
WgG

)−1
G
′
Wg, we have −ΛG = I, and so when Λ is

square G =−Λ−1.
The intuitions delivered by G agree with those delivered by Λ when the model has a single

parameter (P = 1) and Wg = I. In this case, (G′WgG)−1 is a constant, so |Λ| ∝ |G|. If γ̂ j changes
more than γ̂k when we vary the single parameter θ , θ̂ will be more sensitive to γ̂ j than to γ̂k.

Outside of this special case, the intuitions from Λ and G can be very different. While examin-
ing G can be a useful way to build economic intuition about a model, we argue that it can be very
misleading if interpreted as a guide to the sensitivity of an estimator to misspecification or to the
similarity of an estimator to the one defined in an identification proof.

The reason that G is not a good guide to the sensitivity properties of an estimator is that it is
not a property of an estimator; rather, it is a (local) property of a model. An easy way to see this is
to note that G does not depend on the weight matrix Wg. For an overidentified model, this means

35Goettler and Gordon (2011) describe specific parameters as “primarily identified by” particular moments if those
moments respond sharply to changes in those parameters (p. 1161). Kaplan (2012) writes: “I address the question of
identification in three ways ... Third, below I provide an informal argument that each of the parameters has influence
on a subset of the chosen moments and give some intuition for why this is the case” (p. 478). Morten (2013) writes:
“As a check on how well the identification arguments for the simple model apply ... I simulate the dynamic model for
a range of parameter values. I vary each parameter ... and then plot the responses of each of the... main moments as
the parameter changes” (p. 33).
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that G can’t tell us which features of the data drive a particular θ̂ . Consider our earlier example in
which θ0 is the population standard deviation of an exponential random variable. In this case, G

tells us that θ is equally related to the mean and the standard deviation, because under the model
both change by the same amount when we vary θ . By contrast, Λ reveals that the MLE puts weight
only on the sample mean.

The reason that G is not a good guide to identification is that the relationship discussed in
section 3.2 does not hold for G: it may be that θ̂ is in fact the hypothetical estimator Φ(·),
but that G assigns zero sensitivity to features that are needed for identification, and non-zero
sensitivity to features that are not needed for identification. Recall our OLS example in which
γ̂ =

[
µ̂y σ̂xy σ̂2

x µ̂x

]′
. The coefficient β is identified by σxy and σ2

x alone. Consistent with

this, the row of Λ corresponding to β̂ has non-zero entries for σ̂xy and σ̂2
x and zeros elsewhere.

The corresponding column of G, however, has non-zero entries only for µy and σxy (assuming
µx 6= 0).36 Changing β affects the mean of Y and its covariance with X , but leaves the mean and
variance of X unchanged; however, β is not identified by the mean of Y and its covariance with X

alone, and the mean of Y is not necessary for identification of β .

A.2 Dropping Moments

In the case of an overidentified MDE, an alternative way to check sensitivity to an empirical mo-
ment is to drop the moment and re-estimate the model. To fix ideas, assume that equation (3)
has a solution when the jth element of ĝ(θ) is excluded, and denote the resulting estimator by
θ̂∼ j. Comparing the parameters estimated with and without moment j amounts to calculating(
θ̂ − θ̂∼ j).

Suppose that the jth moment (and only the jth moment) is possibly misspecified. Then the fol-
lowing corollary of proposition 3 shows that the measure

(
θ̂ − θ̂∼ j) combines information about

sensitivity Λ with information about the degree of misspecification µη j:

Corollary 1. Suppose that the assumptions of proposition 3 are satisfied. Suppose that only the j-th

element of γ̂ is potentially misspecified, so θ̂∼ j is consistent and asymptotically normal satisfying

equation (1), and the prior P places probability one on ηk = 0∀k 6= j. Then the asymptotic mean

of θ̂ − θ̂∼ j is Λ· jµη j.

36To restate this example as an MDE, let θ =
[

α β σ2
x µx

]′ and ĝ(θ) = γ̂ − h(θ) where h(θ) =[
α +β µx βσ2

x σ2
x µx

]′. Then

G =


−1 −µx 0 −β

0 −σ2
x −β 0

0 0 −1 0
0 0 0 −1

 .
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