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Abstract. This paper develops a Bayesian approach to inference in an empirically
relevant class of partially identified econometric models. Models in this class are charac-
terized by a known mapping between a point identified reduced-form parameter µ, and
the identified set for a partially identified parameter θ. The approach maps posterior
inference about µ to various posterior inference statements concerning the identified
set for θ, without the specification of a prior for θ. Many posterior inference state-
ments are considered, including the posterior probability that a particular parameter
value (or a set of parameter values) is in the identified set. The approach applies also
to functions of θ. The paper develops general results on large sample approximations,
which illustrate how the posterior probabilities over the identified set are revised by the
data, and establishes conditions under which the credible sets also are valid frequentist
confidence sets. The approach is computationally attractive even in high-dimensional
models: the approach tends to avoid an exhaustive search over the parameter space.
The approach is illustrated via Monte Carlo experiments and an empirical application
to a binary entry game involving airlines.
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1. Introduction

This paper considers the problem of Bayesian inference in an empirically relevant
class of partially identified models. These models are characterized by a known mapping
between a point identified reduced-form parameter µ, and the identified set for a partially
identified parameter θ. The identified set for θ exhausts the information concerning θ
contained in the data. Often, µ can be viewed as directly observable characteristics of
the data and θ can be viewed as the parameter of an econometric model. The parameter
of interest is either θ, or some function of θ. For example, if θ is a parameter of an
econometric model and µ are statistics concerning the data, then the identified set
mapping is the set of θ∗ such that the econometric model evaluated at θ∗ generates µ.
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Since µ is point identified, there is a significant literature concerning the posterior
µ|X, where X is the data. This paper takes the existence of a posterior µ|X as given.
The main condition this paper requires about µ|X is that it is approximately normally
distributed in large samples, which is implied by “Bernstein-von Mises”-like results. In
particular, such results are available even in the absence of finite-dimensional distribu-
tional assumptions about X.

Then, given a posterior µ|X and the mapping from µ to the identified set for θ, it
is possible to construct various posterior probabilities concerning the identified set for
θ, without specifying a prior for θ. One possibility is the posterior probability that a
particular parameter value (or set of parameter values) is in the identified set, which
concerns the question of whether a particular parameter value (or set of parameter
values) could have generated the data. Another possibility is the posterior probability
that all of the parameter values in the identified set have some property, which concerns
the question of whether the parameter that generated the data necessarily has some
property. Yet another possibility is the posterior probability that at least one of the
parameter values in the identified set has some property, which concerns the question of
whether the parameter that generated the data could have some property. Further, by
checking the posterior probability that the identified set is non-empty, it is possible to
do “specification testing.” It is possible to make similar posterior probability statements
concerning essentially any function of the identified set, including subvector inference.

For example, in many structural econometric models θ characterizes the utility func-
tions of the decision makers and µ summarizes the observed behavior of the decision
makers. Particularly in the case of models involving multiple decision makers, often θ is
only partially identified, in which case it is not possible to uniquely recover the utility
functions from the data. The identified set for θ exhausts the information in the data
concerning the utility functions. In this setting, the posterior probabilities addressed in
this paper answer empirically relevant questions including: Is the data consistent with a
particular specification of the utility functions? Do all utility functions consistent with
the data possess a certain property (e.g., is it possible to conclude on the basis of the
data that a certain observed explanatory variable has a positive effect on utility)? Is the
data consistent with the utility function possessing a certain property (e.g., is it consis-
tent with the data for a certain observed explanatory variable to have a positive effect
on utility, or has the data ruled out that possibility)? See for example Manski (2007) or
Tamer (2010) for further motivation for the identified set as the object of interest.

Prior results on inference in partially identified models has tended to follow other
approaches. The frequentist approach (e.g., Imbens and Manski (2004), Rosen (2008),
Andrews and Guggenberger (2009), Stoye (2009), Andrews and Soares (2010), Bugni
(2010), Canay (2010), and Andrews and Barwick (2012)) generally requires working with
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discontinuous-in-parameters asymptotic (repeated sampling) approximations to test sta-
tistics. In contrast, the Bayesian approach is based only on the finite sample of data
observed by the econometrician, and thereby avoids repeated sampling distributions.

Moreover, existing frequentist approaches are often difficult to implement computa-
tionally, especially in high-dimensional models, and especially as concerns the need to
use a “exhaustive search” grid search (or “guess and verify” approach) to determine
the set of parameter values belonging to the confidence set. In contrast, the Bayesian
approach in this paper can use the developed literature on simulation of posterior dis-
tributions for point identified parameters, and also can use a variety of analytic and
computational simplifications concerning the identified set mapping, implying that it is
not necessary to use such an “exhaustive search” grid search. This is because there is
separation between the “inference” problem which concerns the posterior µ|X (not the
whole parameter space), and the remaining computational problem of determining the
identified set for θ evaluated at a particular value of µ.

The identified set for θ is the target of inference in this paper because, by construction,
the identified set for θ exhausts the information in the data concerning θ. This implies
that it is not possible to distinguish between values of θ within the identified set, on the
basis of the data, without additional prior information. Because the inference concerns
the identified set, the approach in this paper can be viewed as a sort of Bayesian ana-
logue to the frequentist “random sets” approach (e.g., Beresteanu and Molinari (2008),
Beresteanu et al. (2011) and Beresteanu et al. (2012)), in the sense that the posterior
concerns the random set that arises due to uncertainty about the identified set.1

However, from the Bayesian perspective, it is possible to further revise the posterior
inference concerning θ by introducing a prior over θ. Such prior information would in-
fluence “conventional” posterior inference statements concerning θ even asymptotically
(e.g., Poirier (1998)). In contrast, the typical situation with point identified parameters
is that prior information does not influence posterior inference statements asymptoti-
cally. This issue with Bayesian inference in partially identified models causes the typical
“asymptotic equivalence” between Bayesian and frequentist inference to fail to hold in
partially identified models. Moon and Schorfheide (2012) establish that the credible
set for a partially identified parameter will tend to be “contained in” the identified set,
1However, there are some differences beyond simply Bayesian versus frequentist inference. In one
formulation of the prior “random sets” approach, each observation in the data maps to a random set,
and the identified set is the “average” (or some other random set operation) of those random sets. In
other formulations, the econometric model evaluated at any specification of the parameters implies a
certain random set that the observables must be “contained in,” in a suitable sense. See also Beresteanu
et al. (2012). In contrast, the “random set” approach in this paper arises due to the mapping between
the uncertainty concerning µ and uncertainty concerning the identified set. Kaido and White (2014)
and Shi and Shum (2012) have addressed certain questions about improving frequentist inference in
similar model frameworks.
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whereas a frequentist confidence set for a partially identified parameter will tend to
“contain” the identified set.2

Recently, a few alternative approaches to Bayesian inference in partially identified
models have been proposed. The robust Bayes results of Kitagawa (2012) establish the
“bounds” on the posterior for a partially identified parameter due to considering a class
of priors, and shows a sense in which this robust Bayes approach reconciles Bayesian and
frequentist inference for a partially identified parameter, in the sense that a credible set
from the robust Bayes perspective also is a valid frequentist confidence set. Kitagawa
(2012) establishes those results in a different model framework based on a standard
likelihood with a partially identified parameter, with a standard prior specified only over
the “sufficient parameter,” and a class of priors specified over the remaining parameters.
Intuitively, the “sufficient parameter” is a point identified re-parametrization of the
likelihood.3 Norets and Tang (2014) study Bayesian inference in partially identified
dynamic binary choice models. Similar to the approach in this paper, Norets and Tang
(2014) relate the Bayesian inference on point identified quantities (i.e., conditional choice
probabilities and transition probabilities) to partially identified quantities, but due to
a different focus of the paper, do not address the same posterior inference questions
concerning the identified set, and do not formally derive the theoretical properties of
their proposed inference approach that would be analogous to the results derived in
this paper. Liao and Simoni (2012) study Bayesian inference on the support function
of a convex identified set, particularly in the context of an identified set characterized
by inequality constraints, and show that under appropriate conditions, the associated
credible sets are valid frequentist confidence sets. Convex sets are uniquely characterized
by their support functions, but it may not be straightforward how to map inference on
the support function to the posterior probability statements addressed in this paper.
Further comparison is elaborated in remark 4.

By focusing on posterior probability statements concerning the identified set rather
than the partially identified parameter, this paper establishes a method for Bayesian
inference that results in posterior inference statements that do not depend on the prior
asymptotically. Indeed, this approach does not even require the specification of any
prior for the partially identified parameter.4 See section 3 and particularly remark 2
2Woutersen and Ham (2014) study another non-standard inference problem (where delta method argu-
ments fail), and show that a certain proposed bootstrap method for constructing confidence intervals
has a Bayesian interpretation, and fails to provide valid frequentist inference. See also Freedman (1999).
3The sufficient parameter is the mapping of the parameter of the likelihood to the “sufficient parameter
space,” with two values of the parameter of the likelihood mapping to the same value of the sufficient
parameter if and only if the likelihood function is the same evaluated at those two values of the pa-
rameter. Kitagawa (2012, p 9) describes the sufficient parameter: it “carries all the information for the
structural parameters through the value of the likelihood function.”
4Broadly, the approach of not specifying a prior for the partially identified parameter is shared also
by Kline (2011). Kline (2011) focuses on comparing Bayesian and frequentist inference on testing
inequality hypotheses concerning a moment of a multivariate distribution, which can be interpreted
to provide some limited results on posterior probability statements about whether a specified value of
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for a discussion of the role of priors and posteriors in this approach. Intuitively, the
identified set in a partially identified model is itself a point identified quantity, and
therefore large sample approximations to posterior probability statements concerning
the identified set do not depend on the prior, which is similar to the “typical” situation
with point identified parameters in general.

One consequence is that, under certain regularity conditions, in large samples the
posterior probabilities associated with true statements concerning the identified set are
approximately 1, and the posterior probabilities associated with false statements con-
cerning the identified set are approximately 0. The behavior for statements that are “on
the boundary” is complicated, but can be derived analytically. See section 4.

Another consequence is that, under certain necessary and sufficient conditions, the
(1−α)-level credible set for the identified set is also an (1−α)-level frequentist confidence
set for the identified set. This result means that there is an “asymptotic equivalence”
between Bayesian and frequentist approaches to partially identified models, if the focus
is on inference concerning the identified set rather than the partially identified parameter,
which was the focus in other results including Moon and Schorfheide (2012).

1.1. Outline. Section 2 sets up the class of models considered in this paper, and pro-
vides examples. Section 3 sets up the posterior probabilities over the identified set that
concern the question of whether a certain value of the partially identified parameter
is in the identified set, and derives the large sample approximations to that posterior
probability. Section 4 sets up the further posterior probabilities over the identified
set that concern other questions about the identified set, and derives the large sample
approximations to those posterior probabilities. Section 5 establishes the frequentist
coverage properties of the Bayesian credible sets. Section 6 describes the computational
implementation. Section 7 reports Monte Carlo experiments. Section 8 provides an em-
pirical example of estimating a binary entry game with airline data. Section 9 concludes.
Moreover, an online supplement contains additional material.5

2. Model and examples

This section sets up the class of models, and provides examples.
The model is characterized by a point identified reduced-form finite-dimensional pa-

rameter µ, a partially identified finite-dimensional parameter θ, and a known mapping
between µ and the identified set for θ. Often, µ can be viewed as statistics concerning
the observable data (e.g., moments) and θ can be viewed as the parameter of an econo-
metric model. The parameter space for µ is M and the parameter space for θ is Θ. The
the parameter is in the identified set (because it satisfies the moment inequality conditions). However,
already at the level of model framework, Kline (2011) differs substantially from this paper, with the
consequence that the main contributions of the approach in this paper are not present in Kline (2011).
5Section B.1 provides further examples of the model framework, section B.2 provides results on measur-
ability, section B.3 discusses inference under misspecification, section B.4 provides further Monte Carlo
experiments, and section B.5 provides further results in the context of the empirical application.
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parameter space M is a subspace of Rdµ , endowed with the subspace topology, where
dµ is the dimension of µ. The parameter space Θ is a subset of Rdθ , where dθ is the
dimension of θ. The unknown true value of µ is µ0.

The defining property of this class of models is the existence of a known mapping
from µ to the identified set for θ. For example, this mapping might give the set of
parameter values θ∗ such that the econometric model evaluated at θ∗ generates µ. This
mapping often arises as an obvious implication of the specification of the econometric
model. Examples are provided below. The mapping can equivalently be expressed as
a level set of a known criterion function of θ and µ, or as a known set-valued mapping
of µ. In either case, this mapping gives the set of θ consistent with µ, and thus the
identified set for θ.

Under the criterion function approach, there is a function Q(θ, µ) ≥ 0 that summarizes
the relationship between µ and the identified set for θ. The criterion function is a function
of the point identified parameter (which essentially substitutes for the data) and the
partially identified parameter, a distinction from the prior literature (e.g., Chernozhukov
et al. (2007), and Romano and Shaikh (2008, 2010)) where the criterion function depends
on the data and the (potentially) partially identified parameter.

By construction, the identified set for θ can be expressed as

ΘI ≡ ΘI(µ0) ≡ {θ ∈ Θ : Q(θ, µ0) = 0}.

Further, the identified set for θ that would arise at any parameter value µ∗ is

ΘI(µ∗) ≡ {θ ∈ Θ : Q(θ, µ∗) = 0}.

Therefore, ΘI is the true identified set, whereas ΘI(µ) is the identified set as a mapping
of µ. If the model is point identified, then ΘI(µ) is a singleton for all µ ∈M .

Let the inverse identified set be µI(θ) ≡ {µ : Q(θ, µ) = 0}. It follows that µI(θ) is
the set of µ consistent with θ being in the identified set evaluated at µ. Therefore, the
statement that µ ∈ µI(θ) is equivalent to the statement that θ ∈ ΘI(µ).

Finally, let ∆(·) be a function defined on Θ. Suppose that δ is the partially identified
parameter of interest, defined by δ = ∆(θ). For example, if ∆(θ) = θ1, then the first
component of θ is the parameter of interest, resulting in subvector inference. Alterna-
tively, if ∆(θ) = θ, then the entirety of θ is the parameter of interest. Then, ∆(Θ) is the
induced parameter space for δ, ∆I ≡ ∆(ΘI) is the induced true identified set for δ, and
∆I(µ) ≡ ∆(ΘI(µ)) is the induced identified set for δ as a mapping of µ. The parameter
space ∆(Θ) is a subset of Rdδ , where dδ is the dimension of δ.

The following gives a few examples of models that fit this framework. The online
supplement discusses further examples, including moment inequality models.
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Example 1 (Intersection bounds). Suppose that µ is a dµ × 1 “regularly estimable”6

parameter vector, perhaps moments of a distribution. Suppose µ0 is the true value.
Suppose that the identified set for θ is the interval [maxj∈L µ0j,minj∈U µ0j]. The sets
L and U are a partition of {1, 2, . . . , dµ} that determine which of the elements of µ
contribute to the lower and upper bounds for θ. See also, for example, Chernozhukov
et al. (2013). Then, one possible specification of the criterion function is Q(θ, µ) =
(maxj∈L µj−θ)+ +(θ−minj∈U µj)+. The identified set at µ is ΘI(µ) = {θ : maxj∈L µj ≤
θ ≤ minj∈U µj}. Note that ΘI(µ) = ∅ when maxj∈L µj > minj∈U µj. The inverse
identified set is µI(θ) = {µ : maxj∈L µj ≤ θ ≤ maxj∈U µj}.

In particular, “simple interval identified parameters” concerns dµ = 2, and arises in
the context of missing data and general “selection problems” (e.g., Manski (2003)) and
best response functions in games (e.g., Kline and Tamer (2012)).

Example 2 (Discrete-support models). Suppose that X has discrete support, and let µ
be a parameter vector that characterizes the distribution of X. (X comprises all of the
data, not just the “explanatory variables.”) Then for any such model, f(θ) can be the
discrete distribution of the data implied by the econometric model at the parameter θ,
and µ can be the actual distribution of the data. Evaluated at the truth, µ0 = f(θ0), so
one possible specification of the criterion function is Q(θ, µ) = ||µ−f(θ)||. The identified
set at µ is ΘI(µ) ≡ {θ : µ = f(θ)}. The inverse identified set is µI(θ) = {µ : µ = f(θ)}.
This shows that essentially any partially identified model, with discretized observables,
fits the framework of this paper.7

In particular, consider the example of a discrete game involving N players, such that
the actions available to player i are Ai ≡ {0, 1, . . . , Ai} for some finite Ai. Then the
observables are the outcomes of the game Y ∈ ∏Ai, and possibly discretized covariates
Z. The game theory model implies that there is some function from unknown parameters
θ to the distribution of the observables µ, where µ = {P (Y = y|Z = z)}y,z, so that
the model has the form that f(θ) = µ for some function f that is implied by the
game theory model. See the Monte Carlo experiments in section 7.1 and the empirical
application in section 8 for specifications of f(·). The parameters in θ can include
parameters characterizing how the utility functions depend on the covariates, parameters
characterizing the distribution(s) of the unobservables, and parameters characterizing
the selection mechanisms over regions of multiple equilibrium outcomes. See for example
Tamer (2003), Berry and Tamer (2006), or Kline (2015a,b) for further details of various
models of this general form, each of which imply a certain form for f(·).
6 “Regularly estimable” means, essentially, that the Bernstein-von Mises theorem applies to µ|X.
7 This is a minimum distance approach to inference in models with discrete data, but the approach
allows θ to be non-point identified.
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3. Posterior probabilities over the identified set

3.1. Setup. Since µ is point identified, let Π(µ|X) be a posterior for µ after observing
the data X. This paper takes Π(µ|X) as given, only supposing that it satisfies standard
regularity conditions elaborated later in this section. The posterior Π(µ|X) induces
posterior probability statements concerning ∆I . This section addresses the posterior
probability statements concerned with answering questions related to: Could δ∗ have
generated the data? Could each δ∗ ∈ ∆∗ have generated the data? Section 4 addresses
posterior probability statements concerned with answering other questions. Section 5
addresses credible sets for the identified set. Section 6 addresses the computational
implementation.

Definition 1. Based on the posterior for µ, define the following posterior probability
statements:

(1) For a singleton δ∗ ∈ ∆(Θ),

Π(δ∗ ∈ ∆I |X) ≡ Π(δ∗ ∈ ∆(ΘI(µ))|X) ≡ Π(µ ∈ ∪{θ:∆(θ)=δ∗}µI(θ)|X)

(2) For a set ∆∗ ⊆ ∆(Θ),

Π(∆∗ ⊆ ∆I |X) ≡ Π(∆∗ ⊆ ∆(ΘI(µ))|X) ≡ Π(µ ∈ ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)|X)

The posterior probability statements on the left correspond to statements concerning
the “posterior uncertainty” about ∆I . These are then expressed in terms of the posterior
for µ. The non-trivial identities in definition 1 are justified by lemma 2.

Π(δ∗ ∈ ∆I |X) answers an important question about the identified set: Does a spec-
ified δ∗ belong to the identified set? It answers this question by giving the posterior
probability that δ∗ is in the identified set. This can be used to check whether δ∗ could
have generated the data. Π(∆∗ ⊆ ∆I |X) answers another important question: Is a
specified set ∆∗ contained in the identified set? It answers this question by giving the
posterior probability that ∆∗ is contained in the identified set. This can be used to check
whether all parameter values in ∆∗ could have generated the data.

These posterior probability statements concerning ∆I do not address questions re-
lating to the actual “true value” of δ that generated the data. In partially identified
models, the data reveal only that the “true value” of δ is contained in ∆I , suggesting
that ∆I rather than δ should be the target of inference.

3.2. Large sample approximations. This section establishes the regularity condi-
tions under which there is a large sample approximation to Π(∆∗ ⊆ ∆I |X). Intuitively,
because the identified set is a point identified quantity, under regularity conditions
Π(∆∗ ⊆ ∆I |X) does not depend on the prior asymptotically. The results establish
that, in many cases, in large samples Π(∆∗ ⊆ ∆I |X) equals either 1 or 0 depending on
whether ∆∗ ⊆ ∆I is true or false.
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Definition 2 (Topological terminology). This paper uses standard topological termi-
nology. For a given subset A of B, the interior of A is int(A). The exterior of A is
ext(A), which is the complement of the closure of A. The boundary of A is bd(A). The
complement of A is AC . The convex hull of A is co(A). A is a convex polytope if A is
convex and compact, and has finitely many extreme points (i.e., A is the convex hull of
finitely many points).

The first regularity condition concerns the probability space for the posterior for µ.

Assumption 1 (Regularity condition for Π(µ|X)). The parameter space for µ (i.e.,
M) is a subspace of the Euclidean space Rdµ endowed with the subspace topology. The
posterior distribution for µ, Π(µ|X), is a probability measure defined on the Borel8 σ-
algebra of M , B(M).

Also, the results suppose the following regularity conditions on the large sample be-
havior of the posterior for µ.

Assumption 2 (Posterior for µ consistent at µ0). Along almost all sample sequences,
for any open neighborhood U of µ0 it holds that Π(µ ∈ U |X)→ 1.

Posterior consistency for a point identified parameter holds under very general con-
ditions, for example by Doob’s theorem. This requires, in particular, that the prior for
µ has support on a neighborhood of µ0 (e.g., the prior for µ has support on the entire
parameter space).

Assumption 3 (Large sample normal posterior for µ). There is a function of the data
µn(X) and a convariance matrix Σ0 such that, along almost all sample sequences,

√
n(µ−

µn(X))|X converges in total variation to N(0,Σ0).

This assumption is essentially the conclusion of the various “Bernstein-von Mises”-
like theorems for a point identified parameter (e.g., Van der Vaart (1998), Shen (2002),
or Bickel and Kleijn (2012)), taking µn(X) to be the maximum likelihood estimator
and Σ0 to be the inverse Fisher information matrix.9 This assumption can also hold,
for example, for the Bayesian bootstrap for non-parametric estimation of moments of
an unknown distribution under a suitably flat Dirichlet process prior, taking µn(X) to
be the sample average and Σ0 to be the covariance of the unknown distribution (e.g.,
Ferguson (1973), Rubin (1981), Lo (1987), Gasparini (1995), and Choudhuri (1998)).
8The Borel sets of M are the Borel sets corresponding to the subspace topology on M viewed as a
subspace of a Euclidean space, i.e., B(M) = {A ∩ M : A ∈ B(Rdµ)}. Note in particular that if
M ∈ B(Rdµ), then B(M) = {A ∈ B(Rdµ) : A ⊆M} ⊆ B(Rdµ).
9 Depending on the topological “complexity” of µI(·) and the posterior probability under study, it
is possible to relax this assumption to require only convergence in distribution and an application of
Pólya’s theorem or similar results to get uniform convergence over the relevant subsets of the parameter
space M . (See the proof of part 1.3 of theorem 1, or parts 3.3 and 3.6 of theorem 3 for the relevant
considerations.) For example, see Rao (1962), Billingsley and Topsøe (1967), or Bickel and Millar
(1992), for the cases including convex subsets.
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See also for example Kline (2011) for a connection to a different (more limited) way of
pointwise testing of moment inequality conditions from a Bayesian perspective.

Remark 1 (Technical consideration: measurability). It is not immediate that posterior
probabilities over the identified set exist, because it is possible that there are subsets ∆∗

such that Π(∆∗ ⊆ ∆I |X) ≡ Π(µ ∈ ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)|X) does not exist because it
corresponds to a non-measurable event. Consequently,M1 is introduced as the subsets
such that for ∆∗ ∈M1, Π(∆∗ ⊆ ∆I |X) ≡ Π(µ ∈ ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)|X) corresponds
to a measurable event. The theoretical analysis of the posterior probabilities over the
identified set necessarily restrict attention to assigning posterior probabilities to those
∆∗. Lemma 3 in the online supplement shows that if the criterion function is continuous,
∆(·) is continuous, and Θ is closed, then M1 contains all the Borel sets. Therefore,
although measurability could potentially be a problem in some settings, measurability
is not a problem for assigning posterior probabilities concerning “nice” sets (i.e., Borel
sets) in “nice” models (i.e., continuous Q(·) and ∆(·) and closed parameter space).

Theorem 1. Under assumptions 1 and 2, for any ∆∗ such that Π(∆∗ ⊆ ∆I |X) is defined
(i.e., ∆∗ ∈M1, see remark 1), along almost all sample sequences:
(1.1) if µ0 ∈ int

(
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)
, then Π(∆∗ ⊆ ∆I |X)→ 1.

(1.2) if µ0 ∈ ∪δ∈∆∗:{δ}∈M1

(
ext

(
∪{θ:∆(θ)=δ}µI(θ)

))
, then Π(∆∗ ⊆ ∆I |X)→ 0.

Under the additional assumption 3:
(1.3)

∣∣∣Π(∆∗ ⊆ ∆I |X)− PN(0,Σ0)
(√

n
(
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)− µn(X)

))∣∣∣→ 0.

It is possible to simplify the statement of theorem 1 under the assumption of “conti-
nuity” of the identified set.

Assumption 4 (Continuity of the identified set). For all δ ∈ Rdδ , if δ ∈ int(∆I) then
µ0 ∈ int(∪{θ:∆(θ)=δ}µI(θ)). For all δ ∈ Rdδ , ∪{θ:∆(θ)=δ}µI(θ) is closed. For any open
∆∗ ⊆ Rdδ , ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C is open.

The first part of this assumption requires that if δ is in the interior of ∆I , then there
is a neighborhood of µ0 such that δ is also in the identified sets ∆I(µ) for all µ in that
neighborhood. The second part of this assumption requires that the set of µ such that
δ ∈ ∆I(µ) is closed. The third part of this assumption requires that the set of µ such
that ∆I(µ) ⊆ ∆∗ for open ∆∗ is open.

Lemma 3 in the online supplement shows that a sufficient condition for the second
and third parts of the assumption is continuity of the criterion function, continuity of
∆(·), and compactness of the parameter space. Unfortunately, continuity of the criterion
function does not imply the first part of the assumption; however, this assumption is
satisfied in typical models.10 In particular, the first part of this assumption is implied
10 The following is a counterexample, that illustrates the seeming “strangeness” of models that would
violate this assumption. Suppose that ∆(·) is the identity function, and suppose that the criterion
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by convexity of ∆I(µ) for all µ and inner semicontinuity of ∆I(µ) at µ0 viewed as a
mapping between Euclidean spaces (e.g., Rockafellar and Wets (2009, Theorem 5.9)).

Under assumption 4, the statement of the large sample approximation results simplifies
substantially. (Some parts of theorem 1 do not change with the addition of assumption
4, and so are not displayed in corollary 2.)

Corollary 2. Under assumptions 1, 2, and 4, along almost all sample sequences:
(2.1) if ∆∗ ⊆ int(∆I) and ∆∗ is a convex polytope such that ∆I(µ) ∩∆∗ is convex for

all µ in a neighborhood of µ0, then Π(∆∗ ⊆ ∆I |X)→ 1.
(2.2) if ∆∗ 6⊆ ∆I , then Π(∆∗ ⊆ ∆I |X)→ 0.

Essentially, corollary 2 shows that Π(∆∗ ⊆ ∆I |X) is approximately 1 (respectively, 0)
in large samples if ∆∗ ⊆ ∆I is true (respectively, false).

Part 2.1 shows that if ∆∗ ⊆ int(∆I) and ∆∗ is not too “complex” then Π(∆∗ ⊆
∆I |X) → 1. Part 2.1 can be applied to finitely many convex polytopes in the interior
of the identified set, so by “piecing together” an approximation of the interior of the
identified set by convex polytopes, in models with sufficiently “simple” identified sets,
each compact subset ∆∗ of the interior of the identified set will have the property that
Π(∆∗ ⊆ ∆I |X) → 1. It is not necessary that ∆I(µ) is convex in a neighborhood of µ0,
because convexity of ∆I(µ) ∩∆∗ is a weaker condition than convexity of ∆I(µ).

Part 2.2 shows that if ∆∗ 6⊆ ∆I , then Π(∆∗ ⊆ ∆I |X)→ 0.

Remark 2 (The role of prior information). This approach to inference entails the im-
plicit specification of a prior over the identified set, in the same sense that this approach
results in a posterior over the identified set. This is because a prior for µ implies a
prior for the identified set by the same logic as appears in definition 1, dropping condi-
tioning on X. The key distinction between this approach and “conventional” Bayesian
approaches concerns the inferential object (identified set versus the partially identified
parameter) and how the data revises the “prior” over the inferential object. There is “no
prior” for the partially identified parameter in the same sense that “no (conventional)
posterior” for the partially identified parameter results.

The following illustrates the results in the context of an interval identified parameter.

Example 3 (Posterior probabilities for the simple interval identified parameter). Sup-
pose θ is a simple interval identified parameter, as in example 1, so ΘI(µ) = [µL, µU ],
where µ = (µL, µU) are often moments of a distribution. In this example, the function

function Q(θ, µ0) equals zero for all θ in [0, 1]. Therefore, all points in (0, 1) are in the interior of the
identified set. It is consistent with Q being continuous that Q(θ, µ) > 0 for all θ and all µ 6= µ0, which
would violate the first part of the assumption. However, models like the interval identified parameter
model share this basic structure, but do satisfy the assumption since in that model it would not happen
that Q(θ, µ) > 0 for all θ and all µ 6= µ0, suggesting that this assumption is reasonable.
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∆(θ) = θ, so δ ≡ θ. Therefore, {θ : ∆(θ) = δ} = δ, so essentially all expressions involv-
ing δ can be “replaced” by θ. Suppose Θ∗ = [a, b] is a finite interval, possibly with a = b

so Θ∗ is a singleton.
Consider Π(Θ∗ ⊆ ΘI |X). This is the posterior probability that all values in Θ∗ are

contained in the identified set, or equivalently the posterior probability that each of the
values in Θ∗ could have generated the data. Note that ∩θ∈Θ∗µI(θ) = ∩θ∈Θ∗{µ : µL ≤
θ ≤ µU} = {µ : µL ≤ a, µU ≥ b}, so Π(Θ∗ ⊆ ΘI |X) ≡ Π({µ : µL ≤ a, µU ≥ b}|X). So,
Π(Θ∗ ⊆ ΘI |X) is the posterior probability of the set of µ such that the identified set
evaluated at µ does indeed contain Θ∗.

Similarly, note that, prior to observing the data, Π(Θ∗ ⊆ ΘI) would be the prior
probability of the set {µ : µL ≤ a, µU ≥ b}. In that sense, per remark 2, this approach
to inference implicitly entails the specification of a prior over the identified set.

The following discusses the implications of theorem 1.
Case 1: Suppose that [a, b] ⊂ int(ΘI) = (µ0L, µ0U) ⊂ ΘI = [µ0L, µ0U ]. This implies

µ0L < a ≤ b < µ0U . Then, µ0 ∈ int(∩θ∈Θ∗µI(θ)), so by part 1.1 of theorem 1, Π([a, b] ⊆
ΘI |X) → 1. Therefore, in large samples, there will essentially be posterior certainty
assigned to the (true) statement that [a, b] is contained in the identified set.
Case 2: Conversely, suppose that [a, b] 6⊆ ΘI . Suppose also that indeed µ0L ≤ µ0U

(so that the identified set is non-empty). Therefore, either µ0L > a or µ0U < b. Note
that µI(θ)C = {µ : µL > θ or µU < θ}. Therefore, µ0 ∈ int(µI(a)C) = ext(µI(a))
or µ0 ∈ int(µI(b)C) = ext(µI(b)), respectively, so by part 1.2 of theorem 1, Π([a, b] ⊆
ΘI |X)→ 0. Therefore, in large samples, there will essentially be no posterior probability
assigned to the (false) statement that [a, b] is contained in the identified set.

Further discussion of this example is in example 5 in the online supplement.

4. Further posterior probabilities over the identified set

4.1. Setup. The posterior Π(µ|X) also induces posterior probability statements con-
cerning ∆I that answer questions not already addressed in section 3. This section ad-
dresses the posterior probability statements concerned with answering questions related
to: Do all parameter values in the identified set have some property? Does at least one
parameter value in the identified set have some property? Do none of the parameter
values in the identified set have some property?

Definition 3. Based on the posterior for µ, define11 the following posterior probability
statements:

(1) For a set ∆∗ ⊆ ∆(Θ),

Π(∆I ⊆ ∆∗|X) ≡ Π(∆(ΘI(µ)) ⊆ ∆∗|X) ≡ Π(µ ∈ ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C |X)
11As in section 3, the posterior probability statements on the left correspond to statements concerning
the “posterior uncertainty” about ∆I which are then expressed in terms of the posterior for µ. The
non-trivial identities in definition 3 are justified by lemma 2.
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(2) For a set ∆∗ ⊆ ∆(Θ),

Π(∆I ∩∆∗ 6= ∅|X) ≡ Π(∆(ΘI(µ)) ∩∆∗ 6= ∅|X) ≡ Π(µ ∈ ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)|X)

(3) For a set ∆∗ ⊆ ∆(Θ),

Π(∆I ∩∆∗ = ∅|X) = 1− Π(∆I ∩∆∗ 6= ∅|X)

Π(∆I ⊆ ∆∗|X) answers the question: Do all parameter values in the identified set
have some property? It answers this question by giving the posterior probability that
the identified set is contained in ∆∗. This can be used to check whether all parameter
values that could have generated the data have the property defined by ∆∗. For example,
if δ is a scalar and ∆∗ = [0,∞), then Π(∆I ⊆ ∆∗|X) is the posterior probability that
all parameter values that could have generated the data are non-negative. If θ is point
identified for all µ ∈M , and ∆(θ) ≡ θ, then Π(ΘI ⊆ Θ∗|X) is the ordinary posterior for
θ, in the sense that ΘI(µ) is just a singleton, so Π(ΘI ⊆ Θ∗|X) is simply the posterior
probability that θ ∈ Θ∗.

Π(∆I ∩ ∆∗ 6= ∅|X) answers the question: Does at least one parameter value in the
identified set have some property? It answers this question by giving the posterior
probability that the identified set has non-empty intersection with ∆∗. This can be used
to check whether at least one of the parameter values that could have generated the
data has the property defined by ∆∗. For example, if δ is a scalar and ∆∗ = [0,∞), then
Π(∆I ∩ ∆∗ 6= ∅|X) is the posterior probability that at least one non-negative δ could
have generated the data. In particular, taking ∆∗ = ∆(Θ),

Π(∆I ∩∆∗ 6= ∅|X) = Π(∆I 6= ∅|X) ≡ Π(µ ∈ ∪δ∈∆(Θ) ∪{θ:∆(θ)=δ} µI(θ)|X)

is the posterior probability that the identified set ∆I is non-empty, which can be inter-
preted to be a conservative (but implementable) measure of the posterior probability
that the model is not misspecified. It is conservative because the fact that the identified
is non-empty does not imply that the model is correctly specified. But, if the identified
set is empty, then the model must be misspecified.

Π(∆I ∩ ∆∗ = ∅|X) answers the question: Do none of the parameter values in the
identified set have some property? It answers this question by giving the posterior
probability that the identified set has empty intersection with ∆∗. This can be used to
check whether none of the parameter values that could have generated the data has the
property defined by ∆∗. For example, if δ is a scalar and ∆∗ = [0,∞), then Π(∆I∩∆∗ =
∅|X) is the posterior probability that no non-negative δ could have generated the data.

Remark 3 (Technical consideration: measurability). As in section 3, it is not immediate
that posterior probabilities over the identified set exist. M2 are the subsets such that
for ∆∗ ∈ M2, Π(∆I ⊆ ∆∗|X) ≡ Π(µ ∈ ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C |X) corresponds to a
measurable event. M3 are the subsets such that for ∆∗ ∈ M3, Π(∆I ∩ ∆∗ 6= ∅|X) ≡
Π(µ ∈ ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)|X) corresponds to a measurable event. Lemma 3 in the
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online supplement shows that if the criterion function is continuous, ∆(·) is continuous,
and Θ is closed, thenM2 andM3 contain all the Borel sets.

Theorem 3. Under assumptions 1 and 2, for any ∆∗ such that Π(∆I ⊆ ∆∗|X) is defined
(i.e., ∆∗ ∈M2, see remark 3), along almost all sample sequences:
(3.1) if µ0 ∈ int

(
∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C

)
, then Π(∆I ⊆ ∆∗|X)→ 1.

(3.2) if µ0 ∈ ∪δ∈(∆∗)C :{δ}∈M1

(
ext

(
∩{θ:∆(θ)=δ}µI(θ)C

))
, then Π(∆I ⊆ ∆∗|X)→ 0.

Under the additional assumption 3:
(3.3)

∣∣∣Π(∆I ⊆ ∆∗|X)− PN(0,Σ0)
(√

n
(
∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C − µn(X)

))∣∣∣→ 0.
Under assumptions 1 and 2, for any ∆∗ such that Π(∆I ∩∆∗ 6= ∅|X) is defined (i.e.,

∆∗ ∈M3, see remark 3), along almost all sample sequences:
(3.4) if µ0 ∈ int

(
∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)
, then Π(∆I ∩∆∗ 6= ∅|X)→ 1.

(3.5) if µ0 ∈ ext
(
∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)
, then Π(∆I ∩∆∗ 6= ∅|X)→ 0.

Under the additional assumption 3:
(3.6)

∣∣∣Π(∆I ∩∆∗ 6= ∅|X)− PN(0,Σ0)
(√

n
(
∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)− µn(X)

))∣∣∣→ 0.

It is possible to simplify the statement of theorem 3, under the assumption of “conti-
nuity” of the identified set.

Corollary 4. Under assumptions 1, 2, and 4, for any ∆∗ such that Π(∆I ⊆ ∆∗|X) is
defined (i.e., ∆∗ ∈M2, see remark 3), along almost all sample sequences:
(4.1) if ∆I ⊆ int(∆∗), then Π(∆I ⊆ ∆∗|X)→ 1.
(4.2) if int(∆I) 6⊆ ∆∗, then Π(∆I ⊆ ∆∗|X)→ 0.
Under the same assumptions, for any ∆∗ such that Π(∆I ∩∆∗ 6= ∅|X) is defined (i.e.,

∆∗ ∈M3, see remark 3), along almost all sample sequences:
(4.3) If ∆I(µ)∩∆∗ 6= ∅ for all µ in a neighborhood of µ0, then Π(∆I ∩∆∗ 6= ∅|X)→ 1.
(4.4) If ∆I(µ)∩∆∗ = ∅ for all µ in a neighborhood of µ0, then Π(∆I ∩∆∗ 6= ∅|X)→ 0.

Essentially, corollary 4 shows that the posterior probability of a true (respectively,
false) statement concerning the identified set is approximately 1 (respectively, 0) in
large samples.

Remark 4 (Relation to robust Bayesian inference of Kitagawa (2012)). The model
framework for Kitagawa (2012)12 is essentially: there is a likelihood and φ is a “suffi-
cient parameter” for the likelihood, with a prior specified, resulting in a posterior φ|X,
and H(φ) is the identified set for the partially identified parameter of interest η, as
a function of φ. A class of priors is specified over the partially identified parameter,
and bounds are derived for the posterior for η due to specifying a class of priors. Very
roughly, φ is analogous to µ in this paper, and H(φ) is analogous to ∆I(µ) in this pa-
per. However, these quantities are distinct in critical ways: φ and H(φ) arise implicitly
12See also Giacomini and Kitagawa (2014).
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from the specification of a likelihood, whereas µ and ∆I(µ) are explicitly specified by
the econometrician. The difference between an identified set implicitly arising from flat-
spots in a likelihood versus an explicit specification of an identified set becomes clear
when considering an interval identified parameter or moment inequality model. The
difference between φ and µ becomes clear when considering a structural econometric
model (e.g., the entry game models considered in this paper) where the prior is either
placed on the “sufficient parameter” φ of the model likelihood or the “summary sta-
tistics” µ concerning the data that is generated by the underlying econometric model.
These differences result in further differences along other dimensions, for example the
computational results in this paper depend on the separation between standard Bayesian
inference on µ and computation of the identified set as a known mapping of µ.

Kitagawa (2012) shows that, under appropriate conditions, the smallest posterior
probability that can be assigned to a set D of the parameter space for η is the posterior
probability under φ|X of the event H(φ) ⊆ D. Also, the largest posterior probability
that can be assigned to a set D of the parameter space for η is the posterior probability
under φ|X of the event H(φ) ∩ D 6= ∅. Thus, subject to caveats about differences in
model frameworks, the posterior probability statements concerning the identified set in
this paper can be interpreted also as bounds on the possible posteriors for the partially
identified parameter.

5. Frequentist properties of the credible sets

A credible set for ∆I is a set C∆I
1−α(X) that satisfies the following definition.

Definition 4. For some α ∈ (0, 1),

C∆I
1−α(X) has the property that Π(∆I ⊆ C∆I

1−α(X)|X) = 1− α

Under a set of minimal regularity conditions, this section establishes necessary and
sufficient conditions for C∆I

1−α(X) to be a valid frequentist confidence set for the identified
set, in the sense that P (∆I ⊆ C∆I

1−α(X)) ≈ 1− α in repeated large samples. In general,
the definition of a confidence set allows conservative coverage, P (∆I ⊆ C∆I

1−α(X)) '
1 − α. Based on previous results comparing Bayesian and frequentist inference under
partial identification (i.e., Moon and Schorfheide (2012)), the leading concern appears
to be the opposite case: a Bayesian credible set that does not even achieve at least the
required frequentist coverage. Nevertheless, the results in this section do not address the
possibility of a Bayesian credible set that has conservative coverage. The computation
of the credible set is discussed in remark 5, and in section 6, alongside other discussion
of computational implementation.

Under the sufficient conditions, these results reveal an “asymptotic equivalence” be-
tween Bayesian and frequentist inference in partially identified models, implying that
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C∆I
1−α(X) can also be used by frequentist econometricians, even for functions of the par-

tially identified parameter (without conservative projection methods).13 However, it is
worth noting that the frequentist coverage may not be uniform, an important problem
addressed in the frequentist literature (see prior references). It is also worth noting that
the necessary and sufficient condition can be false, in which case the credible set fails
to be a valid frequentist confidence set. But, even in those cases, the credible set is
valid from the Bayesian perspective, which has been the main focus of this paper. These
properties are highlighted in the Monte Carlo experiments in section 7.

5.1. Asymptotic independence of the credible set. The proof of theorem 5 estab-
lishes that in repeated samples

P (∆I ⊆ C∆I
1−α(X)) = P

(√
n(µ0 − µn(X)) ∈

√
n
(
∩
δ∈(C∆I

1−α(X))C ∩{θ:∆(θ)=δ} µI(θ)C − µn(X)
))

.

Use the notation that ∆̃−1,∆I
1−α (X) =

√
n
(
∩
δ∈(C∆I

1−α(X))C ∩{θ:∆(θ)=δ} µI(θ)C − µn(X)
)
. There-

fore, it is necessary to make an assumption concerning the joint sampling distribution
of
√
n(µ0 − µn(X)) and ∆̃−1,∆I

1−α (X).
The latter quantity, ∆̃−1,∆I

1−α (X), is the set of µ consistent with ∆I(µ) ⊆ C∆I
1−α(X).

Theorem 3 implies that PN(0,Σ0)
(
∆̃−1,∆I

1−α (X)
)
≈ 1 − α for each large dataset, since

C∆I
1−α(X) is a credible set. Further, under reasonable conditions on µn(X) (see assumption

6), the repeated large sample distribution of
√
n(µ0−µn(X)) is N(0,Σ0). However, those

properties do not necessarily uniquely characterize the joint sampling distribution.
Use the notation that Fn(A) = P (

√
n(µ0 − µn(X)) ∈ A) for any Borel set A.

Assumption 5 (Asymptotic independence of credible sets).∣∣∣P (√n(µ0 − µn(X)) ∈ ∆̃−1,∆I
1−α (X)

)
− E

(
Fn(∆̃−1,∆I

1−α (X))
)∣∣∣→ 0 as n→∞.

This asymptotic independence assumption concerns repeated sampling behavior, and
therefore is inherently a frequentist (and non-Bayesian) concept. It is motivated by and
related to an assumption that, in sampling distribution,

√
n(µ0−µn(X)) and ∆̃−1,∆I

1−α (X)
are independent for all sufficiently large sample sizes. Under that independence assump-
tion, the condition in assumption 5 holds with equality in sufficiently large sample sizes:

P
(√

n(µ0 − µn(X)) ∈ ∆̃−1,∆I
1−α (X)

)
= E

(
1
[√
n(µ0 − µn(X)) ∈ ∆̃−1,∆I

1−α (X)
])

= E∆̃−1,∆I
1−α (X)E

√
n(µ0−µn(X))

(
1
[√
n(µ0 − µn(X)) ∈ ∆̃−1,∆I

1−α (X)
])

= E
(
Fn(∆̃−1,∆I

1−α (X))
)
.

13One caveat to claims about exact credible sets concerns computation of the credible set. Some
computationally attractive methods for computing the credible set may result in slight “overcoverage,”
but in principle, with sufficient computing time, exact posterior probabilities are possible.
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Therefore, assumption 5 can be understood to be an assumption that requires that, in
sampling distribution,

√
n(µ0 − µn(X)) and ∆̃−1,∆I

1−α (X) are “almost” independent for
sufficiently large sample sizes.

5.2. Characterization of the frequentist properties of the credible set. To get
the main result in this section, we also require regularity conditions about the repeated
sampling behavior of the estimator µn(X).

Assumption 6 (Repeated sampling behavior of the estimator of µ). The estimator
µn(X) appearing in assumption 3 has the property that

√
n(µ0 − µn(X)) converges in

total variation to N(0,Σ0).

This is essentially the “frequentist” version of assumption 3. The fact that the as-
ymptotic covariances in assumption 3 and 6 are the same is part of the conclusion of the
various “Bernstein-von Mises”-like theorems.14

The following theorem establishes the frequentist coverage properties of C∆I
1−α(X).

Theorem 5. Suppose that for all realizations of the data X, C∆I
1−α(X) is a credible set

for the identified set, in the sense that

Π(∆I ⊆ C∆I
1−α(X)|X) = 1− α.

Suppose also that assumptions 1, 3, and 6 obtain. Assumption 5 obtains if and only if
C∆I

1−α(X) are valid frequentist confidence sets:

P (∆I ⊆ C∆I
1−α(X))→ 1− α.

In general, it is necessary to study assumption 5 on a case-by-case basis, as it depends
on the model-specific structure of the identified set, similar to how inference in “non-
standard models” tends to proceed on a case-by-case basis. However, an important
sufficient condition for assumption 5 is discussed in remark 5 below, with the result
collected in lemma 1 that follows.

Remark 5 (Sufficient condition: smooth interval identified set). Suppose that the iden-
tified set for δ is an interval: ∆I(µ) = [∆IL(µ),∆IU(µ)], where ∆IL(·) and ∆IU(·) are
functions that may not be explicitly known by the econometrician. The identified set
for δ is an interval in many important cases, including the case where the identified
set for θ is convex, and δ is a scalar element of θ. Suppose that the credible set has
the form C∆I

1−α(X) = [∆IL(µn(X)) − c1−α(X)√
n

,∆IU(µn(X)) + c1−α(X)√
n

], where c1−α(X) is
chosen to have the credible set property. Suppose that for all µ in a neighborhood of µ0,
∆I(µ) 6= ∅. This essentially requires that the identified set be non-empty in a sufficiently
14As with convergence in total variation assumed for the large sample approximation to the posterior
µ|X, it is possible to relax the assumption of convergence in total variation if the relevant collection of
sets is sufficiently small. See the proof of theorem 5 for the relevant considerations.



18 KLINE AND TAMER

small neighborhood around the true µ.15 Then supposing that ∆IL(·) and ∆IU(·) satisfy
the regularity conditions of the (Bayesian) delta method, in a neighborhood of µ0, with
positive definite covariance, assumption 5 is satisfied. This result is formalized in lemma
1. The existence of derivatives of ∆IL(·) and ∆IU(·) with respect to µ from the delta
method rules out kinks in ∆IL(·) and ∆IU(·) at µ0, for example intersection bounds with
multiple simultaneously binding constraints at µ0.16

The credible set C∆I
1−α(X) can be computed by first computing an “estimate” of

the identified set (i.e., [∆IL(µn(X)),∆IU(µn(X))]) and then symmetrically “expand-
ing” from that estimate outward until the credible set achieves the required Bayesian
credibility level. The identified set is “estimated” by computing the identified set at
µn(X) rather than a draw from the posterior µ|X.

Lemma 1. Suppose that assumptions 1, 3, and 6 obtain. Suppose also that the setup in
this remark obtains: both the Bayesian and frequentist delta methods (e.g., Bernardo and
Smith (2009, Section 5.3)) apply to (∆IL(µ),∆IU(µ)) with the same full rank covariance,
and for all µ in a neighborhood of µ0, ∆I(µ) 6= ∅. Then assumption 5 is satisfied for
C∆I

1−α(X) = [∆IL(µn(X)) − c1−α(X)√
n

,∆IU(µn(X)) + c1−α(X)√
n

], where c1−α(X) is chosen to
have the credible set property.

A generic converse of theorem 5, a result that says that any frequentist confidence set
can be interpreted as an approximation (in large samples) to a Bayesian credible set, is
not available. For example, one (1−α)-level confidence set is: the entire parameter space
with probability 1− α, and the empty set with probability α. This cannot be expected
to have a Bayesian interpretation, even though it is a valid frequentist confidence set.17

One method to “nudge” a desired frequentist confidence set to have at least a minimal
Bayesian interpretation is to compute that frequentist confidence set as usual, compute
the Bayesian credible set proposed in this paper, and then report the union of those
two sets. This will inherit all of the coverage properties of both underlying approaches,
although of course it can be “conservative” from one or both perspectives.

Remark 6 (Frequentist properties of the credible set for the partially identified param-
eter). A credible set for the partially identified parameter is Cδ1−α(X) ≡ {δ∗ : Π(δ∗ ∈
∆I |X) ≥ α}. Roughly, since δ∗ ∈ ∆I means that the model specification with δ∗ gener-
ates the same distribution of the data as does the true data generating process, Cδ1−α(X)
can be viewed as collecting all model specifications (i.e., specifications of δ) which have
at least 1 − α posterior probability of generating the same distribution of the data as
15Note that in many models this rules out point identification, since in many models if ∆I(µ0) is a
singleton, then some µ in any neighborhood of µ0 result in ∆I(µ) = ∅.
16The reconciliation between robust Bayes credible sets and frequentist confidence sets, in Kitagawa
(2012), also tends to not hold in this sort of setting.
17 In point identified models, the “obvious” frequentist confidence set to study is the confidence set
based on inverting the Wald test based on the asymptotic approximation to µn(X), but that is not
sensible in partially identified models.



BAYESIAN INFERENCE IN PARTIALLY IDENTIFIED MODELS 19

the true data generating process. Or, Cδ1−α(X) can be viewed as collecting all model
specifications for which there is at least a minimal amount of evidence (in the above
sense). It is a necessary implication of this definition that it is possible that Cδ1−α(X) is
the empty set, particularly for large α and/or situations of (near) point identification.
Consider the limiting situation of point identification. Then, δ∗ ∈ ∆I is equivalent to δ∗

being the singleton “true value” of δ. Often, there will not be high posterior probability
that any particular δ∗ is the “true value” of δ (e.g., if the “posterior for δ” is an ordinary
density), in which case Cδ1−α(X) may be the empty set.

A related possibility is to report the set Rδ
r(X) ≡ {δ∗ ∈ ∆(Θ) : Π(δ∗ ∈ ∆I |X) ≥

rmaxδ Π(δ ∈ ∆I |X)} for some r ∈ (0, 1). This is a highest relative odds set for δ, in
the sense that Rδ

r(X) is the set of all values δ∗ that are at least r-times as likely to
be in the identified set as the most likely parameter value. In some but not all cases
Cδ1−α ≈ Rδ

α(X), because in some but not all cases maxδ Π(δ ∈ ∆I |X) ≈ 1.
For this to be a valid frequentist confidence set, considering θ rather than some δ of

interest for simplicity, it must be that for any θ∗ ∈ ΘI that in repeated large samples
P (θ∗ ∈ Cθ1−α(X)) ≥ 1 − α, or equivalently that P (Π(θ∗ ∈ ΘI |X) ≥ α) ≥ 1 − α, or
equivalently P (Π(θ∗ ∈ ΘI |X) < α) ≤ α. Therefore, essentially, it must be that Π(θ∗ ∈
ΘI |X) has the U [0, 1] distribution in repeated large samples, or stochastically dominates
the U [0, 1] distribution, or equivalently it must be that Π(θ∗ ∈ ΘI |X) can be interpreted
as a (possibly conservative) p-value for the null hypothesis that θ∗ ∈ ΘI . By the large
sample approximation in theorem 1, for fixed realization of the data X, Π(θ∗ ∈ ΘI |X) ≈
PN(0,Σ0)(

√
n (µI(θ∗)− µn(X))) = PN(0,Σ0)(

√
n (µI(θ∗)− µ0 + µ0 − µn(X))). In repeated

large samples, this is distributed approximately as PN(0,Σ0)(
√
n (µI(θ∗)− µ0)+N(0,Σ0)).

So, the credible set for the partially identified parameter is a valid frequentist confidence
set whenever PN(0,Σ0)(

√
n (µI(θ∗)− µ0) +N(0,Σ0)) is (or stochastically dominates) the

U [0, 1] distribution. (Obviously, this is only a heuristic argument as n appears in the
“limiting” distribution.) For example, this is true in the important special case of an
interval identified parameter, without point identification, from examples 3 and 5. See
also Kline (2011) for cases where it is not true.

Remark 7 (Measurability of ∆̃−1,∆I
1−α (X)). The discussion in this section treats ∆̃−1,∆I

1−α (X)
essentially as a random variable. This is understood to be justified based on the un-
derlying measurability of the random variables that characterize the set ∆̃−1,∆I

1−α (X):
∆̃−1,∆I

1−α (X) is “equivalent” to the bundle of random variables that characterize ∆̃−1,∆I
1−α (X)

plugged into the functional form for ∆̃−1,∆I
1−α (X).

Remark 8 (An alternative credible set). Another approach to constructing a credible
set for the identified set is to project a credible set for µ onto the space of subsets of ∆(Θ).
That is, for any credible set Cµ1−α(X) for µ, ∆I(Cµ1−α(X)) = {δ : ∃µ ∈ Cµ1−α(X) s.t. δ ∈
∆I(µ)} is a credible set for the identified set, such that Π(∆I(µ) ⊆ ∆I(Cµ1−α(X))|X) ≥
1 − α. Moreover, because per lemma 2, ∆I(µ) ⊆ C∆I

1−α(X) is logically equivalent to
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µ ∈ ∩
δ∈(C∆I

1−α(X))C ∩{θ:∆(θ)=δ} µI(θ)C , any 1 − α credible set for the identified set can be
associated with a 1 − α credible set for µ: ∩

δ∈(C∆I
1−α(X))C ∩{θ:∆(θ)=δ} µI(θ)C . Under the

condition that the credible set for µ is also a valid frequentist confidence set, under
“Bernstein-von Mises”-like conditions, then also this credible set for the identified set
will be a valid frequentist confidence set for the identified set, in the sense of having at
least the required coverage probability. However, as with projection methods in general,
such an approach is likely to be conservative (from both the Bayesian and frequentist
perspectives), unless the credible set for µ is somehow constructed in a special way to
avoid conservativeness under the projection. That is, even though every 1− α credible
set for the identified set can be associated with a 1 − α credible set for µ, in general a
1−α credible set for µ will project as a greater than 1−α credible set for the identified
set. This sort of approach is mentioned in Moon and Schorfheide (2009).

6. Computational implementation

An important feature of this approach is that it is computationally attractive even in
high-dimensional models. In general, inference is accomplished by the following sampler
that can be used to approximate the posterior probabilities:

(1) Generate a large sample {∆(ΘI(µ(s)))}Ss=1 according to:
(a) Draw µ(s) ∼ µ|X by any method that is appropriate for Π(µ|X).
(b) Compute ∆(ΘI(µ(s))), the identified set at µ(s).

(2) Based on {∆(ΘI(µ(s)))}Ss=1, compute an approximation to the desired posterior
probability.

For example, Π(∆∗ ⊆ ∆I |X) is the percentage of the draws {∆(ΘI(µ(s)))}Ss=1 such
that indeed ∆∗ ⊆ ∆(ΘI(µ(s))), and a credible set (i.e., definition 4) is a set that contains
1− α percent of the draws {∆(ΘI(µ(s)))}Ss=1.

By separating the “inference” problem which concerns the posterior µ|X (not the
whole parameter space) from the remaining computational problem of determining the
identified set for θ evaluated at a particular value of µ, which admits a variety of an-
alytic and computational simplifications, it is possible to avoid in general the sorts of
“exhaustive search” grid search (or “guess and verify”) procedures that are commonly
used to construct frequentist confidence sets.

6.1. Computational approaches. Step (b) involves getting the set ΘI(µ) for a given
draw of µ from the posterior µ|X, which is the problem of finding all solutions in θ to
Q(θ, µ) = 0 for a given µ. The computational difficulty is increased due to the necessity
of finding the set of solutions, rather than just one of the solutions. The best approach
to step (b) depends on the application.

One approach involves “guessing and verifying:” guessing values of θ and verifying
whether Q(θ, µ) = 0. That will always work, but often there are much faster approaches.
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In some models, ΘI(µ) has a known expression as a function of µ that is computa-
tionally simpler than checking whether each θ ∈ Θ satisfies θ ∈ ΘI(µ). For example,
in a simple interval identified parameter model, ΘI(µ) = [µL, µU ]. This is computation-
ally simpler than computing the identified set by “guessing and verifying” based on the
definition that ΘI(µ) ≡ {θ : Q(θ, µ) = 0}.

In some other models, and for some ∆(·), it is possible to simplify the computation
of ∆(ΘI(µ)). For example, suppose that ΘI(µ) is a compact and convex set, and that
∆(θ) = θk, the k-th element of θ. Then, ∆(ΘI(µ)) is a finite closed interval in R.
Consequently, ∆(ΘI(µ)) can be computed by computing minθ∈ΘI(µ) θk and maxθ∈ΘI(µ) θk,
which can be computationally simpler than “guessing and verifying” by computing ΘI(µ)
and then checking whether each δ ∈ ∆(Θ) satisfies δ ∈ ∆(ΘI(µ)). This is demonstrated
by example in section B.4.2 of the online supplement in a Monte Carlo experiment
involving interval data on the outcome in a linear regression model.

6.2. Markov chain Monte Carlo approximation. It may only be known that ΘI(µ) ≡
{θ : Q(θ, µ) = 0}, without any known analytic simplifications as above. If so, then some
numerical method must be applied to compute ΘI(µ). One approach is based on simu-
lating a random variable whose support is the identified set.

Let
fΘI(µ)(θ) = 1[Q(θ, µ) = 0]

λ(ΘI(µ))
be the ordinary Lebesgue density of the uniform distribution on ΘI(µ), where λ(·) is
Lebesgue measure on Θ. If ΘI(µ) is measurable and bounded with positive Lebesgue
measure, then fΘI(µ) is well-defined and has support on ΘI(µ). Consequently, any
method that can simulate draws from the density fΘI(µ) can be used to numerically
approximate ΘI(µ), by taking the approximation of ΘI(µ) to be the support of the sim-
ulated draws from fΘI(µ). However, the normalizing constant λ(ΘI(µ)) is difficult to
determine, because it is difficult to explicitly characterize ΘI(µ). Therefore, let

f̃ΘI(µ)(θ) = 1[Q(θ, µ) = 0]

be the corresponding un-normalized density. There are many methods for simulating
draws from an un-normalized density: among these methods are Metropolis-Hastings
sampling and slice sampling. See for example Gamerman and Lopes (2006) for a text-
book on related methods. The “recommendations” of this paper based on our own
experimentation are discussed below.

In some cases, especially when ΘI(µ) has empty interior, that (un-normalized) density
may not perform well because the density is supported on a lower-dimensional subspace.
In those cases, it is possible to use the alternative un-normalized density

f̃ΘI(µ),T (θ) = exp
(
−Q(θ, µ)

T

)
,
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where T > 0 is a small tuning parameter.18 Then, f̃ΘI(µ),T (θ) = 1 on ΘI(µ), and
f̃ΘI(µ),T (θ) ≈ 0 far from ΘI(µ) (i.e., when Q(θ, µ) � 0 and/or T is small). Therefore,
ΘI(µ) can be simulated as ΘI(µ) ≈ {θ : f̂(θ) > 1 − ε} for small ε > 0, where f̂(θ) is
the density of the simulated draws from f̃ΘI(µ),T (θ). In practice, it seems reasonable to
take ΘI(µ) to be the support of the draws from f̃ΘI(µ),T . This will potentially result in
a numerical approximation of the identified set that is “too big,” but that is generally
acceptable in the literature on partially identified models (as “non-sharp” identified
sets). Another possibility is to check that each of the draws from f̃ΘI(µ),T (θ) at least
approximately satisfy the condition that the criterion function evaluated at the draw
equals zero,19 which will sharpen the numerical approximation of the identified set.

There are many methods for drawing from such un-normalized densities in the Markov
chain Monte Carlo literature. From the perspective of ease of computational implemen-
tation, based on our own experimentation we suggest using slice sampling (e.g., Neal
(2003)). Slice sampling is implemented in many computational and statistical software
packages, but one caveat is that some implementations require an initial “guess” for
θ in the identified set (i.e., a guess for where the “density” is non-zero). This can be
accomplished in a first step of finding one solution to Q(θ, µ) = 0 by a standard opti-
mization method. One useful feature of slice sampling is that it does not require the
specification of auxiliary distributions (e.g., a proposal distribution) required by some
other methods like Metropolis-Hastings sampling, which can be difficult to determine in
some applications. Overall, the advantage of this approach is the limited programming
required because of pre-implemented slice sampling routines. Of course, the complete
implementation details depend on the software package, but generically it is enough to
program the criterion function Q(µ, θ), so that there is a function that can be called to
evaluate Q(µ, θ) at a desired value of the arguments, program the function that is the
density f̃ΘI(µ)(θ) or f̃ΘI(µ),T (θ), which will call the Q(µ, θ) function, and then apply the
pre-implemented slice sampling routine to that density.

7. Monte Carlo experiments

This section reports Monte Carlo experiments that illustrate the behavior of this
approach to inference. The online supplement provides further Monte Carlo experiments,
in the context of moment inequality models (a simple interval identified parameter, and
regression with interval data).
18 It can be shown under certain conditions that as T → 0, the limit of the sequence f̃ΘI(µ),T is
supported on the set of minimizers (the identified set). Consequently, as discussed in the text, with
small T , most draws from the density f̃ΘI(µ),T will be close to ΘI(µ). See Hwang (1980).
19 In some models, it may not be desirable to require that the criterion function evaluated at the draw
equals exactly zero. For example, if the evaluation of the criterion function itself involves a complicated
numerical problem (like evaluating a multivariate normal cumulative distribution function) that is
subject to numerical error, a “numerical error tolerance” may be desired.
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7.1. Binary entry game. This section reports the results of a Monte Carlo experi-
ment in the context of a simple version of a binary entry game. A related model will
be estimated with real data in section 8. For the experiment, consider the standard
specification of a binary entry game game described in table 1:

Player 2
0 1

Pl
ay
er

1 0 0 0 0 β2 + ε2

1 β1 + ε1 0 β1 + ∆1 + ε1 β2 + ∆2 + ε2

Table 1. Payoff matrix for the binary entry game

In each cell, the first entry is the payoff to player 1, and the second entry is the payoff
to player 2. It is assumed that ∆1 and ∆2 are both negative, and that players play a pure
strategy Nash equilibrium. This game admits two pure strategy Nash equilibria when
−βi ≤ εi ≤ −βi −∆i, i = 1, 2: in this region, there are no assumptions on equilibrium
selection. The true parameters are set at ∆01 = −0.5 = ∆02 and β01 = 0.2 = β02, and
ε1 and ε2 are jointly normally distributed with variance 1 and correlation ρ0 = 0.5, and
this correlation is constrained by the econometrician to be positive. It is assumed known
that the econometrician correctly knows the sign of the parameters.

There are six parameters: the β1, β2, ∆1, ∆2, ρ, and the equilibrium selection prob-
ability for the region of multiple equilibria. The equilibrium selection probability is
“profiled out,” as described below when defining the criterion function. The point iden-
tified parameter µ is the vector of choice probabilities µ = (P11, P10, P01, P00), where
Pa1a2 is the probability that player 1 takes action a1 and player 2 takes action a2, and
the partially identified parameter is θ = δ = (β1,∆1, β2,∆2, ρ). The mapping that links
µ to the identified set for θ results from the assumptions made on the game, as follows.

The criterion function is Q(θ, µ) = (P11−P11(θ))2 +(P10−P10(θ))2 +(P01−P01(θ))2 +
(P00 − P00(θ))2 + min{|s(θ, µ)|, |s(θ, µ) − 1|}(1 − 1[0 ≤ s(θ, µ) ≤ 1]), where P00(θ) =
P (ε1 ≤ −β1, ε2 ≤ −β2) and P11(θ) = P (ε1 ≥ −β1−∆1, ε2 ≥ −β2−∆2) correspond to the
model-predicted probabilities of the outcomes that occur only as a unique equilibrium,
at θ. The s(θ, µ) term is the candidate equilibrium selection probability at θ and µ,
described below.
P10(θ) and P01(θ) are more complicated, as they correspond to the model-predicted

probabilities of outcomes that occur in the region of multiple equilibria. By the law of
total probability and using the definition of pure strategy Nash equilibrium,

P01(θ) = P (−β1 ≤ ε1 ≤ −β1 −∆1, ε2 ≥ −β2 −∆2) + P (ε1 ≤ −β1, ε2 ≥ −β2)

+s× P (−β1 ≤ ε1 ≤ −β1 −∆1,−β2 ≤ ε2 ≤ −β2 −∆2),
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where the parameter s represents the equilibrium selection probability (of choosing the
(0, 1) equilibrium) in the region of multiple equilbiria. Since it must be that P01 = P01(θ)
in the identified set, there is a unique candidate value for s after fixing θ and µ, given
by s(θ, µ) = P01−(P (−β1≤ε1≤−β1−∆1,ε2≥−β2−∆2)+P (ε1≤−β1,ε2≥−β2))

P (−β1≤ε1≤−β1−∆1,−β2≤ε2≤−β2−∆2) . For this to be a valid
probability, it must be that 0 ≤ s(θ, µ) ≤ 1, explaining that part of the criterion
function. The expression for P10(θ) is similar (and is uniquely determined by the others
since probabilities sum to 1.) When simulating data from the game, (1, 0) and (0, 1) are
actually chosen with equal probability whenever in the region of multiple equilibria, but
this is not known by the econometrician.

In order to compute the identified set, the slice sampler is used to sample from the
“density” f̃ΘI(µ)(θ) = 1[Q(θ, µ) = 0], as described in section 6.2.20 The support of
draws from f̃ΘI(µ)(θ) is taken to be the identified set for θ evaluated at that value of µ,
which is then used in the sampler described at the beginning of section 6. Moreover,
the identified set evaluated at that value of µ, for any function ∆(·) of θ, can be taken
to be ∆(·) applied to that computed identified set. In particular, the identified sets
for subvectors of θ can be easily computed by “ignoring” the other elements of θ. By
computing the identified at each draw µ(s) from a sample of draws from the posterior
µ|X, it is possible to simulate draws from the posterior distribution “over the identified
set.” Based on numerical approximation, the parameters are not point identified (which
is not surprising since there are 4 equations [one of which is redundant] and 6 unknowns).
The true marginal identified sets for ∆1 and ∆2 are each approximately [−1.49,−0.05],21

while the true identified sets for β1 and β2 are each approximately [0, 0.72]. Further, the
data appears to be uninformative about the correlation coefficient, in the sense that the
identified set is essentially the entire parameter space.

Figure 1 displays posterior probabilities that various values of the parameters belong
to the identified set based on samples of size N = 500 from this data generating process.
Each posterior “curve” of a different color in panels 1a and 1b corresponds to a differ-
ent draw from the data generating process. The µ parameters are multinomial, so an
uninformative conjugate Dirichlet prior is used, implying a Dirichlet posterior for µ|X.

Panel 1a displays the posterior probabilities that various values of ∆1 belong to the
identified set. Panel 1b does the same for β1. Panel 1c displays the posterior probabilities
20 In order to account for numerical error in the computation of the multivariate normal cumulative
distribution function, actually a small tolerance is allowed, i.e., the criterion function can be very slightly
above zero. The tolerance implies that in practice the “density” is 1[Q(θ, µ) ≤ 0.001].
21 By numerical approximation, 0 is not in the identified sets. This is also possible to see analytically.
Suppose that indeed (∆1,∆2) = (0, 0). Then it must be that βi = −Φ−1(P (yi = 0)). For this data
generating process, P (yi = 0) > 1

2 , so βi < 0. Further, P01 = P (ε1 ≤ β1, ε2 ≥ −β2) + P (β1 ≤ ε1 ≤
0, ε2 ≥ −β2) + P (0 ≤ ε1 ≤ −β1, ε2 ≥ −β2) and P00 = P (ε1 ≤ β1, ε2 ≤ β2) + P (β1 ≤ ε1 ≤ 0, ε2 ≤
β2)+P (0 ≤ ε1 ≤ −β1, ε2 ≤ β2)+P (ε1 ≤ −β1, β2 ≤ ε2 ≤ −β2). By the rotational symmetry property of
the multivariate normal distribution, P00 −P01 = P (ε1 ≤ β1, ε2 ≤ β2)−P (ε1 ≤ β1, ε2 ≥ −β2) +P (ε1 ≤
−β1, β2 ≤ ε2 ≤ −β2) ≥ P (ε1 ≤ β1, ε2 ≤ β2) − P (ε1 ≤ β1, ε2 ≥ −β2) since some terms cancel. This is
non-negative since ρ ≥ 0. But for this data generating process, this is actually false (albeit numerically
close to being true). So it cannot be that (∆1,∆2) = (0, 0) is in the identified set.
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Figure 1. Π(·|X) for various parameters

that various values of (β1,∆1) belong to the identified set, whereas panel 1d displays
the true identified set for (β1,∆1), computed by numerical approximation. The figure
in panel 1c is a “contour plot” of the posterior, with the legend on the right showing the
numerical interpretation of the level curves. For example, any point inside of the green
region has posterior probability of being in the identified set of at least 0.6. Unlike the
graphs in the first row, the posterior displayed in panel 1c corresponds to just one draw
from the data generating process, as it would be too cluttered to try to show the results
across draws. It is interesting to note from panel 1d that the joint identified set for
(β1,∆1) lies on a diagonal, i.e., large values of ∆1 are associated with small values of β1,
and vice versa, and that this is indeed reflected in the posterior over the identified set for
this pair of parameters. In all of the panels, the posterior “curve” closely approximates
an indicator function for the true identified set, as expected based on the theoretical
results. The results corresponding to (β2,∆2) are similar, and so are not reported.
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The circles along the horizontal axis in panels 1a and 1b are the endpoints of the 95%
credible sets for the identified sets, for each draw from the data generating process, and
the corresponding parameter. The credible set of a given color corresponds to the same
draw of X as the posterior “curve” displayed in the same color. In approximately 94.0%
of the draws from the data generating process, the 95% credible set for the identified set
for β1 indeed does contain the true identified set for β1, and in approximately 91.0% of
the draws from the data generating process, the 95% credible set for the identified set for
∆1 indeed does contain the true identified set for ∆1, so the credible sets are also valid
frequentist confidence sets. As also discussed above, since these credible sets/confidence
sets concern functions of the partially identified parameter, other frequentist approaches
might require conservative projection methods. The credible sets throughout this paper
are computed as described in remark 5. In particular, the identified set is “estimated”
by computing the identified set using the slice sampling routine, evaluating the criterion
function at the sample choice probabilities rather than a draw from the posterior µ|X,
and then expanded outward until it achieves the required Bayesian credibility level.

8. Empirical illustration: Estimating a binary entry game

This section reports the results of applying this approach to inference to a real data
application. The model is a binary entry game (similar to that used in section 7.1),
applied to data from airline markets. The data comes from the second quarter of the
2010 Airline Origin and Destination Survey (DB1B). The data contains 7882 markets,
which are formally defined as trips between two airports irrespective of intermediate
stops. The empirical question concerns the entry behavior of two kinds of firms: LCC
(or, low cost carriers)22 and OA (or, other airlines). A firm that is not an LCC is
by definition an OA. Essentially the question is: what explains the decision of these
firms to enter each market, or equivalently, what explains the decision of an airline
to provide service between two airports? The unconditional choice probabilities are
(0.16, 0.61, 0.07, 0.15), which are respectively the probabilities that both OA and LCC
serve the market, that OA and not LCC serve the market, that LCC and not OA serve
the market, and finally that neither serves the market.

The model is essentially the same as that in section 7.1, except that explanatory
variables are introduced to the utility functions. For the purposes of mapping the data
to a binary entry game, the airlines are aggregated into two firms: “LCC” and “OA.”
So, firm LCC (resp., OA) enters the market if any low cost carrier (resp., other airline)
serves that market. The payoff to firm i from entering market m is

βconsi + βxi xim + ∆iy3−i + εim,

22 The low cost carriers are: AirTran, Allegiant Air, Frontier, JetBlue, Midwest Air, Southwest, Spirit,
Sun Country, USA3000, and Virgin America.
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which essentially results in the payoff matrix in section 7.1 except that “βconsi + βxi xim”
replaces “βi.” This implies that the “non-strategic” terms (that part of utility that does
not depend on the action of the opponent) varies across firms and markets. The variables
yim indicate whether firm i enters market m. As in section 7.1, the unobservables are
assumed to be normally distributed with variance 1 and unknown correlation.

The analysis considers two explanatory variables: market presence and market size.
The first explanatory variable is market presence, which is a market- and airline-specific
variable: for each airline, and for each airport, compute the number of markets that
airline serves from that airport, divided by the total number of markets served from
that airport by any airline. The market presence variable for a given market and airline
is the average of these ratios (excluding the one market under consideration) at the
two endpoints of the trip, providing some proxy for an airline’s presence in the airports
associated with that market. (See Berry (1992).) This variable is important since it is
an excluded regressor: the market presence for firm i enters only firm i’s payoffs. Since
the airlines are aggregated into two firms (“LCC” and “OA”), the market presence vari-
able must also be aggregated: the market presence for the LCC firm (resp., OA firm)
is the maximum among the actual airlines in the LCC category (resp., OA category).
The second explanatory variable is market size, which is a market-specific variable (but
shared by all airlines in that market), which is defined as the population at the end-
points of the trip. The market size and market presence variables actually used in the
empirical application are discretized binary variables based on the continuous variables
just described. They take the value of one if the variable is higher than its median value
and zero otherwise.

The analysis entails estimating three versions of the model: the first contains only
the market presence variable, the second contains only the market size variable, and the
third contains both the market presence and market size variables.

For all of the models, the point identified parameter µ is a vector of choice probabilities
conditional on the explanatory variables, and the partially identified parameter θ is the
vector that characterizes the payoff functions and the correlation in the unobservables,
as in section 7.1. The link between µ and θ uses the assumptions that: players are
playing a pure strategy Nash equilibrium, and that the ∆ parameters are both negative.
However, the approach can handle a weakening of either of these assumptions.

The link between µ and θ is based on moment equalities that match the model-
predicted probabilities of the outcomes (conditional on the explanatory variables) to the
observed probabilities, similar to those used in section 7.1.23 The criterion function is
the “sum” of the criterion functions in section 7.1, across the types of market defined
by the explanatory variables (the “non-strategic” term varies across different types of
markets). The computation otherwise parallels that in section 7.1.
23 An alternative is moment inequalities similar to ones used in Ciliberto and Tamer (2009). But, with
only two firms, the approach is to use moment equalities that “profile out” the selection probabilities.
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The following concerns the specification including both explanatory variables. The
online supplement includes results for two more specifications, each corresponding to
including just one of the explanatory variables.

8.1. Model with market presence and market size. This specification has both
binary explanatory variables: market presence and market size. The payoff of firm LCC

if it enters market m is

βconsLCC + βsizeLCCXm,size + βpresLCCXLCCm,pres + ∆LCCyOAm + εLCCm

and similarly the payoff of firm OA if it enters market m is

βconsOA + βsizeOA Xm,size + βpresOA XOAm,pres + ∆OAyLCCm + εOAm.

The variable Xim,pres is a binary firm- and market-specific variable that is equal to 1 if
market presence for firm i in marketm is larger than the median market presence for firm
i. The variable Xm,size is a binary market-specific variable that is equal to 1 if market
size for market m is larger than the median market size. In this specification, µ is a
32-dimensional vector of conditional choice probabilities (because there are three binary
explanatory variables per market resulting in 8 types of markets and each type of market
is characterized by four choice probabilities). The partially identified parameter θ is 9-
dimensional. The equilibrium selection function (which is a function of the explanatory
variables) is profiled out for a given θ, as in section 7.1.

Figure 2 reports the posterior probabilities that various parameter values belong to the
identified set. The posterior probabilities over the identified sets for the ∆ parameters,
and the βsize parameters, seem similar across the two types of firms. The effect of market
presence seems to be greater for LCC firms compared to OA firms, since it seems that
the identified set for the LCC firms is disjoint from and greater than the identified set
for the OA firms. The monopoly profits associated with a market with below-median
size and below-median market presence (i.e., the constant terms) seems to be smaller for
LCC firms compared to OA firms. And the “curve” of posterior probabilities associated
with ρ is basically flat and equal to one for values of ρ greater than approximately 0.7,
implying that any sufficiently high correlation almost certainly could have generated the
data. The circles along the horizontal axes in figure 2 are the endpoints of the 95%
credible sets for the identified set for the corresponding parameter.
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Figure 2. Posterior probabilities that various parameter values belong
to the identified set in model with market presence and market size
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9. Conclusions

This paper has developed a Bayesian24 approach to inference in partially identified
models. The approach results in posterior probability statements concerning the identi-
fied set, which is the quantity about which the data is informative, without the specifica-
tion of a prior for the partially identified parameter. The resulting posterior probability
statements have intuitive interpretations and answer empirically relevant questions, are
revised by the data, require no asymptotic repeating sampling approximations, can
accommodate inference on functions of the partially identified parameters, and are com-
putationally attractive even in high-dimensional models. Also, this paper establishes
conditions under which the credible sets for the identified set also are valid frequentist
confidence sets for the identified set, providing an “asymptotic equivalence” between
Bayesian and frequentist inference in partially identified models. The approach works
well in Monte Carlo experiments and in an empirical illustration.

This paper has restricted attention to finite-dimensional models (i.e., µ and θ are in
finite-dimensional Euclidean spaces), consistent with much of the literature on partially
identified models. However, nothing about the approach in this paper fundamentally re-
lies on the fact that the parameters are finite-dimensional. A formal extension to models
with infinite-dimensional parameters would involve recent work in Bayesian statistics.
Just to give one recent example, Castillo and Nickl (2013) prove a non-parametric version
of the Bernstein-von Mises theorem that could replace assumption 3.

24There is some disagreement in the overall statistical literature concerning the appropriate meaning of
“Bayesian,” for example Good (1971) has identified the existence of 46656 varieties of Bayesians. Since
the approach to inference in this paper does not result in a conventional posterior over the parameters,
this approach does not satisfy the requirements of all varieties of Bayesianism. However, it does satisfy
this definition: “It seems to me [I.J. Good, in Good (1965)] that the essential defining property of
a Bayesian is that he regards it as meaningful to talk about the probability P (H|E) of a hypothesis
H, given evidence E.” The approach to inference in this paper talks about hypotheses concerning the
identified set.



BAYESIAN INFERENCE IN PARTIALLY IDENTIFIED MODELS 31

Appendix A. Proofs

Lemma 2. The event ∆∗ ⊆ ∆I(µ) is equivalent to the event µ ∈ ∩δ∈∆∗ ∪{θ:∆(θ)=δ}µI(θ).
The event ∆I(µ) ⊆ ∆∗ is equivalent to the event µ ∈ ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C, which
is equivalent to the event µ ∈ ∩δ∈(∆∗)C∩∆(Θ)∩{θ:∆(θ)=δ}µI(θ)C. The event ∆I(µ)∩∆∗ 6= ∅
is equivalent to the event µ ∈ ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ), which is equivalent to the event
µ ∈ ∪δ∈∆∗∩∆(Θ) ∪{θ:∆(θ)=δ} µI(θ).

Proof of lemma 2. ∆∗ ⊆ ∆(ΘI(µ)) is equivalent to δ ∈ ∆(ΘI(µ)) for all δ ∈ ∆∗. δ ∈
∆(ΘI(µ)) is equivalent to the existence of θ ∈ ΘI(µ) such that δ = ∆(θ), which in turn
is equivalent to µ ∈ µI(θ) for some θ such that δ = ∆(θ). And that is equivalent to
µ ∈ ∪{θ:∆(θ)=δ}µI(θ).

∆(ΘI(µ)) ⊆ ∆∗ is equivalent to δ /∈ ∆(ΘI(µ)) for all δ ∈ (∆∗)C . δ /∈ ∆(ΘI(µ))
is equivalent to the nonexistence of θ ∈ ΘI(µ) such that δ = ∆(θ), which in turn is
equivalent to µ ∈ µI(θ)C for all θ such that δ = ∆(θ). And that is equivalent to
µ ∈ ∩{θ:∆(θ)=δ}µI(θ)C .

It is immediate that if µ ∈ ∩δ∈(∆∗)C∩{θ:∆(θ)=δ}µI(θ)C , then µ ∈ ∩δ∈(∆∗)C∩∆(Θ)∩{θ:∆(θ)=δ}

µI(θ)C . Suppose that µ ∈ ∩δ∈(∆∗)C∩∆(Θ) ∩{θ:∆(θ)=δ} µI(θ)C . And let δ∗ ∈ (∆∗)C and θ∗

such that δ∗ = ∆(θ∗) be given. Then, it must be that δ∗ ∈ ∆(Θ). Therefore, if
µ ∈ ∩δ∈(∆∗)C∩∆(Θ) ∩{θ:∆(θ)=δ} µI(θ)C then µ ∈ ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C .

∆(ΘI(µ)) ∩ ∆∗ 6= ∅ is equivalent to the existence of some δ ∈ ∆∗ such that δ ∈
∆(ΘI(µ)). δ ∈ ∆(ΘI(µ)) is equivalent to µ ∈ ∪{θ:∆(θ)=δ}µI(θ) from above. So ∆(ΘI(µ))∩
∆∗ 6= ∅ is equivalent to µ ∈ ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ).

It is immediate that if µ ∈ ∪δ∈∆∗∩∆(Θ)∪{θ:∆(θ)=δ}µI(θ), then µ ∈ ∪δ∈∆∗∪{θ:∆(θ)=δ}µI(θ).
Suppose that µ ∈ ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ). Then, it must be that there is δ∗ ∈ ∆∗ and
θ∗ such that δ∗ = ∆(θ∗) and µ ∈ µI(θ∗). Therefore, it must be that δ∗ ∈ ∆(Θ). And
therefore, if µ ∈ ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) then µ ∈ ∪δ∈∆∗∩∆(Θ) ∪{θ:∆(θ)=δ} µI(θ). �

Proof of theorems 1 and 3. For 1.1, since µ0 ∈ int
(
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)
, there is an

open neighborhood U of µ0 such that U ⊆ int
(
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)
. Therefore, since

µ|X is consistent by assumption 2, Π(∆∗ ⊆ ∆I |X) ≡ Π(µ ∈ ∩δ∈∆∗∪{θ:∆(θ)=δ}µI(θ)|X) ≥
Π(µ ∈ U |X)→ 1 along almost all sample sequences.

For 1.2, let δ∗ ∈ ∆∗ be such that µ0 ∈ int
((
∪{θ:∆(θ)=δ∗}µI(θ)

)C)
. Then, it fol-

lows Π(∆∗ ⊆ ∆I |X) ≤ Π(δ∗ ∈ ∆I |X) = Π(µ ∈ ∪{θ:∆(θ)=δ∗}µI(θ)|X) = 1 − Π(µ ∈(
∪{θ:∆(θ)=δ∗}µI(θ)

)C
|X). Since µ0 ∈ int

((
∪{θ:∆(θ)=δ∗}µI(θ)

)C)
, there is an open neigh-

borhood U of µ0 such that U ⊆ int
((
∪{θ:∆(θ)=δ∗}µI(θ)

)C)
. Therefore, since µ|X is

consistent by assumption 2, Π(µ ∈
(
∪{θ:∆(θ)=δ∗}µI(θ)

)C
|X) ≥ Π(µ ∈ U |X) → 1 along

almost all sample sequences.
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For 3.1, note that Π(∆I ⊆ ∆∗|X) ≡ Π(µ ∈ ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C |X). Therefore,
by the same arguments as in the proof of 1.1, but applied to ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C ,
the result follows.

Similarly, for 3.2, let δ∗ ∈ (∆∗)C be such that µ0 ∈ int
(
∪{θ:∆(θ)=δ∗}µI(θ)

)
. Then,

Π(∆I ⊆ ∆∗|X) ≡ Π(µ ∈ ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C |X) ≤ Π(µ ∈ ∩{θ:∆(θ)=δ∗}µI(θ)C |X).
Then, by the same arguments as in the proof of 1.2, but applied to ∩{θ:∆(θ)=δ∗}µI(θ)C ,
the result follows.

For 3.4, since µ0 ∈ int
(
∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)
, there is an open neighborhood U of

µ0 such that U ⊆ int
(
∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)
. Therefore, since µ|X is consistent by

assumption 2, Π(∆I∩∆∗ 6= ∅|X) ≡ Π(µ ∈ ∪δ∈∆∗∪{θ:∆(θ)=δ}µI(θ)|X) ≥ Π(µ ∈ U |X)→ 1
along almost all sample sequences.

For 3.5, since µ0 ∈ ext
(
∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)
, there is an open neighborhood U of µ0

such that U ⊆ int
((
∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)C)
. Therefore, since µ|X is consistent by as-

sumption 2, it follows that Π(∆I ∩∆∗ = ∅|X) = Π(µ ∈
(
∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)C
|X) ≥

Π(µ ∈ U |X)→ 1 along almost all sample sequences.
For 1.3, again Π(∆∗ ⊆ ∆I |X) ≡ Π(µ ∈ ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)|X), so

∣∣Π(∆∗ ⊆ ∆I |X)− PN(0,Σ0)
(√

n
(
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)− µn(X)

))∣∣
=
∣∣Π (µ ∈ ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)|X

)
− PN(0,Σ0)

(√
n
(
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)− µn(X)

))∣∣
=
∣∣Π (√n(µ− µn(X)) ∈

√
n
(
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)− µn(X)

)
| X
)
− PN(0,Σ0)

(√
n
(
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)− µn(X)

))∣∣→ 0

The second equality follows from the fact that µ ∈ ∩δ∈∆∗∪{θ:∆(θ)=δ}µI(θ) is equivalent
to
√
n(µ − µn(X)) ∈

√
n
(
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)− µn(X)

)
. The claimed limit holds

along almost all sample sequences, by assumption 3.
The proof of 3.3 is similar, except applied to the posterior Π(∆I ⊆ ∆∗|X) ≡ Π(µ ∈
∩δ∈(∆∗)C∩{θ:∆(θ)=δ}µI(θ)C |X). The proof of 3.6 is similar, except applied to the posterior
Π(∆I ∩∆∗ 6= ∅|X) ≡ Π(µ ∈ ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)|X). �

Proof of corollaries 2 and 4. For 2.1, the event ∆∗ ⊆ ∆I(µ), which is equivalent to the
event that µ ∈ ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) by lemma 2, is a measurable event by assumption
4, since it is the intersection of closed sets. Let the set of finitely many extreme points
of ∆∗ be S. Also, let the neighborhood of µ0 where ∆I(µ) ∩∆∗ is convex be U . Then,
Π(∆∗ ⊆ ∆I |X) = Π(∆∗ ⊆ ∆I , µ ∈ U |X) + Π(∆∗ ⊆ ∆I , µ ∈ UC |X) ≥ Π(∆∗ ⊆ ∆I , µ ∈
U |X).

Suppose that, for µ ∈ U , S ⊆ ∆I(µ) ∩ ∆∗, which is implied by S ⊆ ∆I(µ). Then
since ∆I(µ) ∩∆∗ is convex, ∆∗ = co(S) ⊆ ∆I(µ) ∩∆∗ ⊆ ∆I(µ). Consequently, Π(∆∗ ⊆
∆I , µ ∈ U |X) ≥ Π(S ⊆ ∆I , µ ∈ U |X).

Since ∆∗ ⊆ int(∆I), in particular S ⊆ int(∆I). Therefore, for each δ ∈ S, by
assumption 4, µ0 ∈ int(∪{θ:∆(θ)=δ}µI(θ)). Therefore, µ0 ∈ ∩δ∈Sint(∪{θ:∆(θ)=δ}µI(θ)).
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Since S is finite, equivalently µ0 ∈ int(∩δ∈S ∪{θ:∆(θ)=δ} µI(θ)). Then, by the same
arguments as in the proof of part 1.1 of theorem 1, Π(S ⊆ ∆I , µ ∈ U |X) → 1 along
almost all sample sequences, which establishes the claim.

For 2.2, since ∆∗ 6⊆ ∆I , there is δ∗ such that δ∗ ∈ ∆∗ and δ∗ /∈ ∆I . In particu-
lar, therefore µ0 /∈ ∪{θ:∆(θ)=δ∗}µI(θ), which is equivalent to µ0 ∈

(
∪{θ:∆(θ)=δ∗}µI(θ)

)C
,

which is an open set by assumption 4. Therefore, part 1.2 of theorem 1 applies, which
establishes the claim.

For 4.1, let ∆̃∗ = int(∆∗) and note that, since ∆I ⊆ ∆̃∗ ⊆ ∆∗, it follows that Π(∆I ⊆
∆∗|X) ≥ Π(∆I ⊆ ∆̃∗|X). The event that ∆I(µ) ⊆ ∆∗ is measurable by assumption. The
event that ∆I(µ) ⊆ ∆̃∗ is measurable, since by assumption 4, ∩

δ∈∆̃∗C ∩{θ:∆(θ)=δ}µI(θ)C is
open. Since ∆I ⊆ ∆̃∗, by lemma 2, µ0 ∈ ∩δ∈∆̃∗C ∩{θ:∆(θ)=δ} µI(θ)C . And therefore there
is an open neighborhood U of µ0 such that U ⊆ ∩

δ∈∆̃∗C ∩{θ:∆(θ)=δ} µI(θ)C . Therefore,
part 3.1 of theorem 3 applies, so Π(∆I ⊆ ∆̃∗|X)→ 1, which establishes the claim.

For 4.2, let δ∗ ∈ (∆∗)C ∩ int(∆I). Then by assumption 4, µ0 ∈ int(∪{θ:∆(θ)=δ∗}µI(θ)).
Then part 3.2 of theorem 3 establishes the claim.

For 4.3, ∆I(µ) ∩ ∆∗ 6= ∅ for all µ in an open neighborhood of µ0 is equivalent, by
lemma 2, to the statement that all such µ satisfy µ ∈ ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ), which
implies that µ0 ∈ int(∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)), so part 3.4 of theorem 3 establishes the
claim.

For 4.4, ∆I(µ) ∩ ∆∗ = ∅ for all µ in an open neighborhood of µ0 is equivalent, by
lemma 2, to the statement that all such µ satisfy µ ∈

(
∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)

)C
, which

implies that µ0 ∈ ext(∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)), so part 3.5 of theorem 3 establishes the
claim. �

Proof of theorem 5. Note that, per lemma 2, ∆I(µ) ⊆ C∆I
1−α(X) is logically equivalent to

µ ∈ ∩
δ∈(C∆I

1−α(X))C ∩{θ:∆(θ)=δ} µI(θ)C ≡ ∆−1,∆I
1−α (X).

By assumption 3, for any given ε > 0, there is a set of samples sequences for the data
X with probability at least 1− ε under the true data generating process and a minimal
sample size Nε such that, for any sample size n ≥ Nε (and for all such sample sequences
resulting in an X):

∣∣∣∣∣∣Π(
√
n(µ− µn(X)) ∈ ·|X)− PN(0,Σ0)(·)

∣∣∣∣∣∣
TV

< ε.

Applying this to ∆̃−1,∆I
1−α (X) ≡

√
n
(
∆−1,∆I

1−α (X)− µn(X)
)
, it follows PN(0,Σ0)

(
∆̃−1,∆I

1−α (X)
)
∈

Π
(√

n(µ− µn(X)) ∈
√
n
(
∆−1,∆I

1−α (X)− µn(X)
)
|X
)

+ [−ε, ε].
Note Π

(√
n(µ− µn(X)) ∈

√
n
(
∆−1,∆I

1−α (X)− µn(X)
)
|X
)

= Π
(
µ ∈ ∆−1,∆I

1−α (X)|X
)

=
1−α, by definition of a credible set for the identified set. That implies PN(0,Σ0)

(
∆̃−1,∆I

1−α (X)
)
∈

[1−α−ε, 1−α+ε]. That implies PN(0,Σ0)
(
∆̃−1,∆I

1−α (X)
)
→a.s. 1−α. Finally, that implies

E
(
PN(0,Σ0)

(
∆̃−1,∆I

1−α (X)
))
→ 1− α.

By assumption 6, for any given ε > 0, there is a minimal sample size N ′ε such
that for any sample size n ≥ N ′ε, Fn(A) ∈ PN(0,Σ0)(A) + [−ε, ε] for all Borel sets
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A. Therefore, E
(
Fn
(
∆̃−1,∆I

1−α (X)
))
∈ E

(
PN(0,Σ0)

(
∆̃−1,∆I

1−α (X)
))

+ [−ε, ε]. So, because
E
(
PN(0,Σ0)

(
∆̃−1,∆I

1−α (X)
))
→ 1− α from above, E

(
Fn
(
∆̃−1,∆I

1−α (X)
))
→ 1− α.

But also, P
(√

n(µ0 − µn(X)) ∈
√
n
(
∆−1,∆I

1−α (X)− µn(X)
))

= P (µ0 ∈ ∆−1,∆I
1−α (X)) =

P (∆I ⊆ C∆I
1−α(X)), since µ0 ∈ ∆−1,∆I

1−α (X) is logically equivalent to ∆I ⊆ C∆I
1−α(X) by

lemma 2. Therefore, P (∆I ⊆ C∆I
1−α(X))→ 1− α if and only if∣∣∣P (√n(µ0 − µn(X)) ∈

√
n
(
∆−1,∆I

1−α (X)− µn(X)
))
− E

(
Fn
(
∆̃−1,∆I

1−α (X)
))∣∣∣→ 0,

which is assumption 5. �

Proof of lemma 1. In large samples, Π(∆I(µ) ⊆ C∆I
1−α(X)|X) ≈ Π(∆IL(µ) ≥ ∆IL(µn(X))−

c1−α(X)√
n

,∆IU(µ) ≤ ∆IU(µn(X)) + c1−α(X)√
n
|X), since ∆I(µ) 6= ∅ with posterior probabil-

ity approaching 1 in large samples by assumption 2. Then, Π(∆IL(µ) ≥ ∆IL(µn(X))−
c1−α(X)√

n
,∆IU(µ) ≤ ∆IU(µn(X))+ c1−α(X)√

n
|X) = Π(

√
n(∆IL(µ)−∆IL(µn(X))) ≥ −c1−α(X),

√
n(∆IU(µ)−∆IU(µn(X))) ≤ c1−α(X)|X). Let ∆′I(µ) = (∆′IL(µ) ∆′IU(µ)) be the dµ×2

matrix of derivatives of ∆IL(·) and ∆IU(·) with respect to the elements of µ. By the
Bayesian delta method, the posterior for (

√
n(∆IL(µ) − ∆IL(µn(X))),

√
n(∆IU(µ) −

∆IU(µn(X)))) is approximately N(0, (∆′I(µ0))TΣ0∆′I(µ0)) in large samples. Because
the covariance is full rank (i.e., (∆′I(µ0))TΣ0∆′I(µ0) is positive definite), c1−α(X) must
converge to the unique constant c1−α that solves PN(0,(∆′I(µ0))TΣ0∆′I(µ0))(µL ≥ −c1−α, µU ≤
c1−α) = 1−α. Therefore, P

(√
n(µ0 − µn(X)) ∈ ∆̃−1,∆I

1−α (X)
)

= P
(
∆I(µ0) ⊆ C∆1

1−α(X)
)

=
P (∆IL(µ0) ≥ ∆IL(µn(X))− c1−α(X)√

n
,∆IU(µ0) ≤ ∆IU(µn(X))+ c1−α(X)√

n
) = P (

√
n(∆IL(µ0)−

∆IL(µn(X))) ≥ −c1−α(X),
√
n(∆IU(µ0) − ∆IU(µn(X))) ≤ c1−α(X)) → 1 − α, since

by the delta method, (
√
n(∆IL(µ0)−∆IL(µn(X))),

√
n(∆IU(µ0)−∆IU(µn(X)))) is dis-

tributedN(0, (∆′I(µ0))TΣ0∆′I(µ0)) in repeated large samples. Moreover, PN(0,Σ0)(∆̃−1,∆I
1−α (X))→

1−α by theorem 3, so (as established in the proof of theorem 5 without using assumption
5), also E

(
Fn(∆̃−1,∆I

1−α (X))
)
→ 1− α, establishing assumption 5. �
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Appendix B. Online supplement

This online supplement contains additional material. B.1 provides further examples
of the model framework, B.2 provides results on measurability, B.3 discusses inference
under misspecification, B.4 provides further Monte Carlo experiments, and B.5 provides
further results in the context of the empirical application.

B.1. Further examples of model framework.

Example 4 (Moment inequalities). Suppose that θ is known to satisfy the moment
inequality conditions EP0(m(X, θ)) ≥ 0, where m(X, θ) is a known vector-valued “mo-
ment function” of the data, X, and the parameter, θ. The expectation is taken with
respect to the true unknown data generating process P0 for X. Suppose that (per-
haps just as an approximation) the random vector X has a discrete distribution with
J support points (x1, . . . , xJ), such that P(X = xj) = pj. In this model, the pa-
rameter µ is equal to a specification of (p1, . . . , pJ), and so the identified set at µ is
Θ(µ) = {θ ∈ Θ : ∑J

j=1m(xj, θ)pj ≥ 0}.
More generally, the identified set is ΘI(P0) ≡ {θ : EP0(m(X, θ)) ≥ 0}. The identified

set that would arise if the data generating process for X equaled P would similarly be
ΘI(P) ≡ {θ : EP(m(X, θ)) ≥ 0}. Suppose that the structure of the moment function
m(·) is such that there is a point identified parameter µ(P) (e.g., moments of functions of
X) and a mapping ΘI(µ) such that ΘI(µ(P)) = {θ : EP(m(X, θ)) ≥ 0} = ΘI(P). Then,
the point identified parameter is µ, the identified set at µ is ΘI(µ), and the inverse
identified set is µI(θ) = {µ : θ ∈ ΘI(µ)}.

The existence of µ(P) and ΘI(µ) is satisfied if the moment function satisfies the prop-
erty that m(X, θ) = ∑J

j=1mj1(X)mj2(θ). Then, µ(P) = {EP(mj1(X))}j and ΘI(µ) =
{θ : ∑J

j=1 µjmj2(θ) ≥ 0}. Many empirically relevant moment inequalities conditions
satisfy this property, particularly including various moment inequality conditions based
on linear regression.25 If the moment inequality conditions do not satisfy this property,
by discretization the approximation in example 2 can be used.

Example 5 (Posterior probabilities for the simple interval identified parameter, contin-
ued). This example continues the discussion in example 3.

Consider Π(ΘI ⊆ Θ∗|X). This is the posterior probability that all values in the
identified set are contained in Θ∗, or equivalently the posterior probability that all
values of the parameter that could have generated the data are contained in Θ∗. Note
that ∩θ∈(Θ∗)CµI(θ)C = ∩θ∈(−∞,a)∪(b,∞){µ : µL ≤ θ ≤ µU}C = ∩θ∈(−∞,a)∪(b,∞){µ : µL >
θ or µU < θ} = {µ : µL > µU or a ≤ µL ≤ µU ≤ b} ⊃ {µ : a ≤ µL, µU ≤ b}.26 So,
25 See for example section B.4.2 concerning regression with interval data.
26 The last equality follows: for the first direction, suppose that µ ∈ {µ : µL > µU or a ≤ µL ≤ µU ≤ b}.
Suppose that µL > µU . Then let θ be any number. Then either θ < µL, or θ ≥ µL (and therefore θ >
µU ). So either θ < µL or θ > µU . So, clearly µ ∈ ∩θ∈(−∞,a)∪(b,∞){µ : µL > θ or µU < θ}. Alternatively,
suppose that a ≤ µL ≤ µU ≤ b. Let θ ∈ (−∞, a) ∪ (b,∞). If θ ∈ (−∞, a), then µL ≥ a > θ, so µL > θ.
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Π(ΘI ⊆ Θ∗|X) ≡ Π({µ : µL > µU or a ≤ µL ≤ µU ≤ b}|X). In other words, this
posterior probability is the posterior probability of the set of µ such that the identified
set evaluated at µ is either empty, or non-empty but contained within Θ∗.

Or, consider Π(ΘI 6= ∅|X). Note that ∪θ∈ΘµI(θ) = ∪θ∈Θ{µ : µL ≤ θ ≤ µU} =
{µ : µL ≤ µU}. So, Π(ΘI 6= ∅|X) ≡ Π({µ : µL ≤ µU}|X). In other words, this
posterior probability is the posterior probability of the set of µ such that the identified
set evaluated at µ is non-empty.

First, consider again the large sample behavior of Π(Θ∗ ⊆ ΘI |X).
Case 3: Consider the general case when µ|X has a large sample normal approxima-

tion as in assumption 3. Suppose that µ are the moments of some bivariate distribution.
Suppose that µn(X) is the sample average and that Σ0 is the covariance of the mo-
ments.27 Then, in large samples, by part 1.3 of theorem 1, the posterior probability is
approximately

Π(Θ∗ ⊆ ΘI |X) ≈ PN(0,Σ0)
(
(µL, µU ) :

√
n ({µ̃ : µ̃L ≤ a, µ̃U ≥ b} − µn(X))

)
= PN(0,Σ0)

(
µL ≤

√
n(a− µnL(X)), µU ≥

√
n(b− µnU (X))

)

This large sample approximation makes it possible to derive the repeated large sam-
ple behavior. The repeated large sample distribution in some cases is degenerate, in
particular if µ0L < a ≤ b < µ0U or if either µ0L > a or µ0U < b, as considered in previous
cases. So, suppose for example that µ0L = a and µ0U > b. Then, under suitable regu-
larity conditions,

√
n(a− µnL(X))→d N(0,Σ0,LL) and

√
n(b− µnU(X))→ −∞ almost

surely. Consequently, in repeated large samples, Π(Θ∗ ⊆ ΘI |X) → Uniform[0, 1].
The same result holds when µ0L < a and µ0U = b. Consequently, if µ0L < µ0U ,
Π(µ0L ⊆ ΘI |X)→ Uniform[0, 1] and Π(µ0U ⊆ ΘI |X)→ Uniform[0, 1]. So the bound-
ary points of the identified set are “covered” with the same distribution as a p-value in
repeated large samples, providing frequentist coverage properties. (See also section 5.)

Now, consider the large sample behavior of Π(ΘI ⊆ Θ∗|X).
Case 4: Suppose that ΘI ⊂ (a, b) ⊂ [a, b] and ΘI 6= ∅. This implies that a <

µ0L ≤ µ0U < b. Then, µ0 ∈ int
(
∩θ∈(Θ∗)CµI(θ)C

)
, so by part 3.1 of theorem 3, Π(ΘI ⊆

Θ∗|X)→ 1.

Alternatively, if θ ∈ (b,∞), then µU ≤ b < θ, so µU < θ. So, in either case, µ ∈ ∩θ∈(−∞,a)∪(b,∞){µ :
µL > θ or µU < θ}. For the other direction, suppose that µ ∈ ∩θ∈(−∞,a)∪(b,∞){µ : µL > θ or µU < θ}.
If µL > µU , then obviously µ ∈ {µ : µL > µU or a ≤ µL ≤ µU ≤ b}, so suppose that µL ≤ µU . Suppose
that it did not hold that a ≤ µL ≤ µU ≤ b. Then either µL < a or µU > b. Suppose that µL < a.
First, suppose that µL = µU < a. Then, let θ = µL. It must be that µ ∈ {µ : µL > θ or µU < θ},
but this is obviously impossible as then either µL > θ = µL or µU < θ = µU . So assume that
µL < µU , and let θ ∈ (µL,min{a, µU}), which exists as long as µL < µU . Since θ < a, it must be
that µ ∈ {µ : µL > θ or µU < θ}. But it cannot be that µL > θ > µL, and also it cannot be that
µU < θ < µU , a contradiction. So it must be that µL ≥ a. Similarly, it must be that µU ≤ b.
27 This arises for example if µ is the population mean of a normal distribution, or the population mean
of an unknown distribution with suitably flat Dirichlet process prior.
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Case 5: Conversely, suppose that ΘI 6⊆ [a, b] and int(ΘI) 6= ∅. This implies that
µ0L < µ0U and either µ0L < a or µ0U > b. Consider the case that µ0L < a; the case
that µ0U > b is similar. Let θ∗ be some point that is in (µ0L,min{a, µ0U}). Note that if
a ≤ µ0U , then this interval is non-empty since µ0L < a. Alternatively, if a > µ0U , then
this interval is non-empty since µ0L < µ0U . Then, µ0 ∈ int(µI(θ∗)) = int({µ : µL ≤
θ∗ ≤ µU}) = {µ : µL < θ∗ < µU}, since µ0L < θ∗ < µ0U by choice of θ∗. So by part 3.2
of theorem 3, Π(ΘI ⊆ Θ∗|X)→ 0.
Case 6: And, in large samples, by part 3.3 of theorem 3, the posterior probability is

approximately Π(ΘI ⊆ Θ∗|X) ≈ PN(0,Σ0)(
√
n
(
∩θ∈(Θ∗)CµI(θ)C − µn(X)

)
).

Finally, consider the large sample behavior of Π(ΘI 6= ∅|X).
Case 7: Suppose that µ0L < µ0U , so that the identified set is non-empty, and not a

singleton. Then, µ0 ∈ int (∪θ∈ΘµI(θ)). So by part 3.4 of theorem 3, Π(ΘI 6= ∅|X)→ 1.
Case 8: Conversely, suppose that µ0L > µ0U , so that the identified set is empty.

Then, µ0 ∈ ext (∪θ∈ΘµI(θ)). So by part 3.5 of theorem 3, Π(ΘI 6= ∅|X)→ 0.
Case 9: Finally, suppose that µ0L = µ0U , so that the identified set is a singleton.

Then, in large samples, by part 3.6 of theorem 3,

Π(∆I 6= ∅|X) ≈ PN(0,Σ0)
(
(µL, µU ) :

√
n ({µ̃ : µ̃L ≤ µ̃U} − µn(X))

)
= PN(0,Σ0)

(
µL − µU ≤

√
n(µnU (X)− µnL(X))

)
= PN(0,ρ0)

( ˜̃µ ≤ √n(µnU (X)− µnL(X))
)
,

where ρ0 = Σ0,LL + Σ0,UU − 2Σ0,UL. Under regularity conditions, in repeated large
samples,

√
n(µnU(X) − µnL(X)) →d N(0, ρ0), so in repeated large samples, Π(∆I 6=

∅|X) →d Uniform[0, 1]. So the posterior probability that the identified set is non-
empty provides a consistent frequentist test of non-emptiness of the identified set.

B.2. Measurability. In order to establish the measurability of the events corresponding
to the posterior probability statements, the following definitions are introduced relative
to the measurable sets introduced in assumption 1.

Definition 5 (Measurable inverse included-in sets). M1 is a collection of subsets of Rdδ

such that for all ∆∗ ∈ M1, ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) is a measurable subset of M , i.e.,
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) ∈ B(M).

These are the subsets such that Π(∆∗ ⊆ ∆I |X) ≡ Π(µ ∈ ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ)|X)
corresponds to a measurable event.

Definition 6 (Measurable inverse included sets). M2 is a collection of subsets of Rdδ

such that for all ∆∗ ∈M2, ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C is a measurable subset of M , i.e.,
∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C ∈ B(M).

These are the subsets such that Π(∆I ⊆ ∆∗|X) ≡ Π(µ ∈ ∩δ∈(∆∗)C∩{θ:∆(θ)=δ}µI(θ)C |X)
corresponds to a measurable event.
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Definition 7 (Measurable inverse intersection sets). M3 is a collection of subsets of
Rdδ such that for all ∆∗ ∈M3, ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) is a measurable subset of M , i.e.,
∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) ∈ B(M).

These are the subsets such that Π(∆I∩∆∗ 6= ∅|X) ≡ Π(µ ∈ ∪δ∈∆∗∪{θ:∆(θ)=δ}µI(θ)|X)
corresponds to a measurable event.

Lemma 3 establishes a sufficient condition for the second and third parts of assumption
4, and establishes the measurability corresponding to definitions 5, 6, and 7. Lemma 3
shows that it is possible to establish measurability without assuming compactness of the
parameter space, by using the fact that Euclidean spaces are σ-compact and somewhat
subtle facts about Borel sets in metrizable spaces.

Lemma 3. Suppose that Q(θ, µ) is a continuous function, and that Θ is compact. Sup-
pose that ∆(·) is a continuous function. Then:

(1) ∆I is compact. ∆(Θ) is compact.
(2) For any ∆∗ ⊆ Rdδ , ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) is closed.
(3) For any open ∆∗ ⊆ Rdδ , ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C is open.
(4) For any closed ∆∗ ⊆ Rdδ , ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) is closed.

Suppose that Q(θ, µ) is a continuous function, and that Θ is closed. Suppose that ∆(·)
is a continuous function. Then:

(5) M1 = P(Rdδ).
(6) B(Rdδ) ⊆M2.
(7) B(Rdδ) ⊆M3.

Proof of lemma 3. For 1, suppose that {θn}n is a sequence in ΘI that converges to some
point θ∗ ∈ Θ. Since θn ∈ ΘI , Q(θn, µ0) = 0. Since Q is continuous, Q(θ∗, µ0) = 0, so θ∗ ∈
ΘI . Therefore, ΘI is closed, and therefore compact since Θ is bounded. Consequently,
∆I ≡ ∆(ΘI) is compact. Similarly, since Θ is compact, ∆(Θ) is compact.

For 2, suppose that {µn}n is a sequence in ∪{θ:∆(θ)=δ}µI(θ) that converges to some
point µ∗ ∈ M . Since µn ∈ ∪{θ:∆(θ)=δ}µI(θ) there must be θn such that ∆(θn) = δ and
µn ∈ µI(θn). Since ∆ is a continuous function and Θ is compact, {θ : ∆(θ) = δ} is
compact. Therefore there is a convergent subsequence θnk → θ∗ ∈ {θ : ∆(θ) = δ}.
Since Q is continuous and Q(θnk , µnk) = 0 along this subsequence, also Q(θ∗, µ∗) = 0.
So, µ∗ ∈ µI(θ∗), and thus µ∗ ∈ ∪{θ:∆(θ)=δ}µI(θ). Therefore ∪{θ:∆(θ)=δ}µI(θ) is closed.
And since an arbitrary intersection of closed sets is a closed set, for any ∆∗ ⊆ Rdδ ,
∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) is closed.

For 4, note by lemma 2 that ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) = ∪δ∈∆∗∩∆(Θ) ∪{θ:∆(θ)=δ} µI(θ).
Suppose that {µn}n is a sequence in ∪δ∈∆∗∩∆(Θ) ∪{θ:∆(θ)=δ} µI(θ) that converges to some
point µ∗ ∈ M . Since µn ∈ ∪δ∈∆∗∩∆(Θ) ∪{θ:∆(θ)=δ} µI(θ) there must be δn ∈ ∆∗ ∩ ∆(Θ)
and θn ∈ Θ such that ∆(θn) = δn and µn ∈ µI(θn). Since Θ is compact, and since
∆∗ ∩ ∆(Θ) is compact (since it is the intersection of a closed set and a compact set),
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there is a convergent subsequence δnk → δ∗ ∈ ∆∗ ∩ ∆(Θ) and θnk → θ∗ ∈ Θ. Since
δnk = ∆(θnk), δ∗ = ∆(θ∗). Since Q is continuous and Q(θnk , µnk) = 0 along this
subsequence, also Q(θ∗, µ∗) = 0. So, µ∗ ∈ µI(θ∗), and thus µ∗ ∈ ∪{θ:∆(θ)=δ∗}µI(θ). And
so, µ∗ ∈ ∪δ∈∆∗∩∆(Θ) ∪{θ:∆(θ)=δ} µI(θ). Therefore ∪δ∈∆∗∩∆(Θ) ∪{θ:∆(θ)=δ} µI(θ) is closed.

For 3, note by lemma 2 that
(
∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C

)C
= ∪δ∈(∆∗)C ∪{θ:∆(θ)=δ}

µI(θ) = ∪δ∈(∆∗)C∩∆(Θ)∪{θ:∆(θ)=δ} µI(θ). By part 4, this is closed because (∆∗)C is closed.
So, ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C is open.

For 5, let Θm = Θ ∩ B(m), where B(m) is the closed ball of radius m. Since Θ is
closed and B(m) is compact, Θm is compact. Then, ∪m≥1Θm = Θ and Θm ⊆ Θm+1, so
Θ is the countable union of increasing compact sets.

Also note that ∪m≥1 ∩δ∈∆∗ ∪{θ∈Θm:∆(θ)=δ}µI(θ) = ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ). If µ ∈
∪m≥1∩δ∈∆∗∪{θ∈Θm:∆(θ)=δ}µI(θ), then µ ∈ ∩δ∈∆∗∪{θ∈Θm:∆(θ)=δ}µI(θ) for some m ≥ 1, and
therefore, for that m, for all δ ∈ ∆∗ there is θ ∈ Θm such that ∆(θ) = δ and µ ∈ µI(θ),
so µ ∈ ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ). Conversely, if µ ∈ ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ), then for all
δ ∈ ∆∗ there is θ such that ∆(θ) = δ and µ ∈ µI(θ). Since it must be that θ ∈ Θm for
all m large enough, then also µ ∈ ∪m≥1 ∩δ∈∆∗ ∪{θ∈Θm:∆(θ)=δ}µI(θ).

The proof of part 2 also establishes: if Θ is closed but not necessarily compact:
for any ∆∗ ⊆ Rdδ , ∩δ∈∆∗ ∪{θ∈Θm:∆(θ)=δ} µI(θ) is closed. So, ∩δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) =
∪m≥1 ∩δ∈∆∗ ∪{θ∈Θm:∆(θ)=δ}µI(θ) is the countable union of closed sets, so is a Borel set.

For 7, let Θm be defined as above, and also let ∆m = Rdδ ∩B(m).28 Since Rdδ is closed
andB(m) is compact, ∆m is compact. Also note that ∪m≥1∪δ∈∆∗∩∆m∪{θ∈Θm:∆(θ)=δ}µI(θ) =
∪δ∈∆∗ ∪{θ∈Θ:∆(θ)=δ} µI(θ). If µ ∈ ∪δ∈∆∗ ∪{θ∈Θ:∆(θ)=δ} µI(θ), then there is δ ∈ ∆∗ and θ
such that ∆(θ) = δ and µ ∈ µI(θ). Consequently, for large enough m, δ ∈ ∆∗ ∩∆m and
θ ∈ Θm, so µ ∈ ∪m≥1 ∪δ∈∆∗∩∆m ∪{θ∈Θm:∆(θ)=δ}µI(θ). Conversely, if µ ∈ ∪m≥1 ∪δ∈∆∗∩∆m

∪{θ∈Θm:∆(θ)=δ}µI(θ), then it is immediate that µ ∈ ∪δ∈∆∗ ∪{θ∈Θ:∆(θ)=δ} µI(θ).
The proof of part 4 also establishes: if ∆∗ is closed then ∪δ∈∆∗∩∆m ∪{θ∈Θm:∆(θ)=δ}µI(θ)

is closed. Consequently, ∪δ∈∆∗ ∪{θ∈Θ:∆(θ)=δ} µI(θ) is the countable union of closed sets,
so is a Borel set. Suppose that ∆∗ is either a countable union or a countable intersection
of sets ∆∗n such that ∪δ∈∆∗n ∪{θ:∆(θ)=δ} µI(θ) is a Borel set for each ∆∗n. In the case
that ∆∗ is a countable union, ∆∗ = ∪n≥1∆∗n. Therefore, ∪δ∈∆∗ ∪{θ:∆(θ)=δ} µI(θ) =
∪n≥1∪δ∈∆∗n∪{θ:∆(θ)=δ}µI(θ) is a countable union of Borel sets, so is a Borel set. In the case
that ∆∗ is a countable intersection, ∆∗ = ∩n≥1∆∗n. Therefore, ∩δ∈∆∗ ∩{θ:∆(θ)=δ}µI(θ)C =
∩n≥1∩δ∈∆∗n ∩{θ:∆(θ)=δ}µI(θ)C is the countable intersection of Borel sets, so is a Borel set.
This is because ∪δ∈∆∗n ∪{θ:∆(θ)=δ} µI(θ) are Borel sets, so also ∩δ∈∆∗n ∩{θ:∆(θ)=δ} µI(θ)C are
Borel sets. Consequently, ∪δ∈∆∗∪{θ:∆(θ)=δ}µI(θ) is a Borel set for any Borel set ∆∗. This
is because the Borel sets of a metrizable space are contained in any collection of sets
that has the property: all closed sets are elements of the collection, and the collection is
28 Note that the dimension of the closed balls in the expressions for Θm and ∆m may be different.
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closed under countable unions and countable intersections. See for example Aliprantis
and Border (2006, Corollary 4.18).

For 6, note that
(
∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C

)C
= ∪δ∈(∆∗)C ∪{θ:∆(θ)=δ} µI(θ) is a Borel

set for any Borel set (∆∗)C , by part 7. So, since the Borel sets are closed under comple-
ments, ∩δ∈(∆∗)C ∩{θ:∆(θ)=δ} µI(θ)C is a Borel set for any Borel set ∆∗. �

It is worth noting that there exists other results establishing measurability of random
sets, see for example Molchanov (2006) or Kitagawa (2012). Results similar to lemma 3
might be possible by establishing these (or similar) conditions on the criterion function
and parameter space imply the sufficient conditions for the other measurability results.

Remark 9 (Restricting measurability to the parameter space ∆(Θ)). Lemma 3 views
the posterior probabilities as defined on Rdδ , rather than restricted to ∆(Θ). This is
useful because it might be difficult to check whether a particular set of interest is a
subset of the parameter space when ∆(·) has a complicated functional form. However, it
is relevant to know how measurability obtains when viewing the posterior probabilities
as defined on ∆(Θ) as a subspace of Rdδ with the subspace topology.

In this analysis, the Borel sets of ∆(Θ) are the Borel sets corresponding to the subspace
topology on ∆(Θ) viewed as a subspace of a Euclidean space, i.e., B(∆(Θ)) = {A∩∆(Θ) :
A ∈ B(Rdδ)}. Note in particular that if ∆(Θ) ∈ B(Rdδ), then B(∆(Θ)) = {A ∈ B(Rdδ) :
A ⊆ ∆(Θ)} ⊆ B(Rdδ). Therefore, essentially the same measurability results obtain when
viewing the posterior probabilities as defined on ∆(Θ).

Remark 10 (Measurability of Q(θ, µ)). Because of the connection (by definition) of
measurability of a function and the measurability of pre-images of measurable sets, it is
tempting to ask for an analogue of lemma 3 that assumes only measurability of Q(θ, µ).
Unfortunately, such a result (in general) is not available. Suppose that M = [0, 1] and
Θ = [0, 1], and let A be any set in Θ×M with the property that: A is Borel measurable,
but the projection of A ontoM is not Borel measurable. That such sets exists is the same
as the existence of analytic but not Borel measurable sets. Let Q(θ, µ) be one minus
the characteristic function for A, which is measurable (by definition). Then, consider
the set of µ such that ΘI(µ) ∩ Θ 6= ∅, i.e., the set of µ corresponding to the posterior
probability of a non-empty identified set, or equivalently quantity 2 in definition 3. That
set of µ is the projection of A onto M , which is not Borel measurable by construction.
That suggests we should not expect to be able to assign a posterior probability to non-
emptiness of the identified set with this Q(θ, µ), despite measurability of Q(θ, µ).

B.3. Misspecification. A common concern in applied work is the behavior of an esti-
mator under model misspecification. Many estimators in point identified models have
the feature that even if the model is misspecified, the estimator still estimates a useful
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parameter.29 This section briefly describes the “expected” behavior under misspecifica-
tion in the context of an interval identified parameter.

It is useful to consider the behavior of posterior probability statements that condi-
tion on the identified set being non-empty, which “imposes” the assumption of correct
specification even when that assumption is false. These are the posterior probabilities of
the form Π(·|X,ΘI 6= ∅). As shown in the theoretical results, the posterior probabilities
in a misspecified model that do not condition on the identified set being non-empty
(i.e., Π(·|X)) will tend in large samples toward estimating that indeed the identified
set is empty, which is perhaps the desired behavior under misspecification (since in
that case indeed the identified set is empty). However, conditioning on ΘI 6= ∅ can be
used as a way to get a “pseudo-true” identified set even under misspecification. This
method amounts to “rejecting” draws from the posterior of µ|X that violate a certain
condition (namely, non-emptiness of the identified set), which more generally has been
implemented in other settings. For example, Uhlig (2005) imposes an identification con-
straint concerning sign restrictions on an impulse response function in VAR models by
“rejecting” draws from the posterior that violate that restriction.

Essentially, based on Π(·|X,ΘI 6= ∅), the posterior should be expected to “estimate”
the identified set corresponding to the value of µ that is “closest” (under a metric
induced by the posterior for µ) to the true µ0 among all values of µ that result in
a non-empty identified set. In that sense, this approach estimates a “pseudo-true”
identified set under misspecification. This can be most easily seen in the context of an
interval identified parameter from example 1 summarized in figure 3, but the basic idea
immediately generalizes to any model.

µL

µU

µ0

µ̃0

Figure 3. Behavior under misspecification
29 For example, ordinary least squares regression estimates the minimum mean square error linear
approximation to the conditional expectation, quantile regression estimates a certain weighted mean
square error (i.e., Angrist et al. (2006)), and maximum likelihood estimates a “pseudo-true” parameter
that minimizes the Kullback-Leibler divergence to the truth (e.g., White (1982)). The situation might
be different in partially identified models (e.g., Ponomareva and Tamer (2011)).
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This figure shows µL along the horizontal axis, and µU along the vertical axis. The
dashed diagonal line corresponds to the values of µ such that θ is point identified, since
along that line µL = µU , so it must be that θ = µL = µU . Values of µ above the diagonal
line correspond to values of µ such that θ is partially identified, since there µL < µU .
Finally, values of µ below the diagonal line correspond to value of µ such that the model
is misspecified, since there µL > µU . So, suppose that the true µ0 indeed is below the
diagonal line, as reflected in the figure. The posterior for µ is unaffected by the fact that
the model is misspecified, so the posterior for µ still behaves like a conventional posterior
for a point identified parameter. The concentric circles emanating from µ0 represent the
level sets of the posterior for µ, with values of µ closer to µ0 more likely according to the
posterior for µ. (It is assumed here that the posterior is centered at the true µ0, which
will be approximately true at least in large samples under assumptions 2 and 3. More
generally, the posterior will be centered at approximately µn(X) per assumption 3.)

Now consider the behavior of Π(·|X,ΘI 6= ∅). This is concerned with the posterior
for µ, conditioning on the fact that the identified set is non-empty. In the interval
identified parameter model, this is equivalent to conditioning on µL ≤ µU . Therefore,
Π(·|X,ΘI 6= ∅) is based on the posterior µ|(X,µL ≤ µU). The most likely draws from
µ|(X,µL ≤ µU) will be in a neighborhood of µ̃0, which is the point in the set {µ : µL ≤
µU} that has highest density according to the posterior for µ|X. As a consequence,
inference on the identified set conditioning on non-emptiness of the identified set will
tend to be centered around the identified set evaluated at µ̃0, and in that sense this
approach estimates a “pseudo-true” identified set under misspecification. The basic idea
immediately generalizes to other models.

B.4. Further Monte Carlo experiments.

B.4.1. A simple interval identified parameter. This section reports the results of a Monte
Carlo experiment in the context of a simple interval identified parameter, described in
examples 1 and 3. The data generating process in this experiment is: XU

XL

 ∼ Normal
 µ0U

µ0L

 ,
 Σ0,UU Σ0,UL

Σ0,UL Σ0,LL

 .
Consequently, the endpoints of the interval identified set are the first moments of the
distribution of X. Suppose that the data is a random sample of N = 500 observations
from the data generating process. Also suppose that Σ0 is the identity matrix. The
econometrician does not know that the data is normally distributed.

There are many approaches that result in a posterior distribution for µ. One possibility
is to specify a normal likelihood, and specify conjugate priors for the unknown param-
eters. However, this entails potentially undesirable parametric distributional assump-
tions. Another possibility is to use the Bayesian bootstrap, which is a non-parametric
approach to Bayesian inference on moments of a distribution that does not require the
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specification of a parametric likelihood, and that require minimal computational invest-
ment. (See the discussion after assumption 3 for references.)

As a consequence of considering posterior probabilities over the identified set (rather
than a posterior over the partially identified parameter), the theoretical results show
that both priors will result in the same large sample approximations to the posterior
probabilities over the identified set. Consequently, this Monte Carlo experiment works
directly with the large sample approximations based on the Bayesian bootstrap so that
µ|X ∼ Normal(µn, Σn

n
) where µn is the sample average of the moments corresponding

to µ, and Σn is the sample covariance of the moments corresponding to µ. By the logic
of those approximations, those approximations are still functions of the sample size n:
these results can be viewed as using a numerical approximation to the posterior (which
is still a function of sample size n). As expected from the theoretical results, results
not reported here show that almost exactly the same results obtain from the “exact”
posteriors under reasonable prior specifications. The Bayesian bootstrap does not entail
parametric distributional assumptions, so it does not assume that the data generating
process is normal.

The experiment involves multiple different specifications of µ0.
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Figure 4. Posterior probabilities that various parameter values belong
to the identified set

First, suppose that µ0L = 0 and µ0U = 1, so that there is a non-singleton identified
set. Figure 4a displays the values of Π(θ ∈ ΘI |X) for various values of θ, and various
draws from the data generating process. Each “curve” corresponds to Π(θ ∈ ΘI |X)
for a particular value of X drawn from the data generating process, treating θ as the
argument that is plotted along the horizontal axis. Consequently, the distribution over
Π(θ ∈ ΘI |X) (i.e., the existence of multiple curves in the figure) is the distribution
induced by the data generating process.
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As discussed in example 3, for essentially all draws of X, Π(θ ∈ ΘI |X) ≈ 1 for values
in approximately [0.1, 0.9]. So, Π(θ ∈ ΘI |X) ≈ 1 on a large subset of the interior of the
identified set. (In larger samples, per the discussion in example 3, the interval on which
Π(θ ∈ ΘI |X) ≈ 1 would be wider.) Also, for essentially all draws of X, Π(θ ∈ ΘI |X) ≈ 0
for values outside approximately [−0.1, 1.1]. (In larger samples, per the discussion in
example 3, the interval on which Π(θ ∈ ΘI |X) 6≈ 0 would be narrower.) And finally, per
the discussion in example 3, in the neighborhoods of the two points on the boundary of
the identified set, the values of Π(θ ∈ ΘI |X) vary depending on the particular draw of
X. Note that, as discussed throughout this paper, this figure should not be interpreted
to mean that there is a “posterior for” θ that is uniform on (most of) the identified set,
[0, 1]. Indeed, if µ0U = 2 instead, then the analogous figure would have values of 1 on
about [0.1, 1.9], which would obviously not be a “uniform” posterior on the identified set.
Instead, the interpretation is that there is essentially posterior certainty that all such
points are in the identified set, or equivalently, there is essentially posterior certainty
that all such points could have generated the data.

The circles along the horizontal axis of figure 4a are the endpoints of the 95% credible
set for the identified set, for each draw from the data generating process. The credible set
of a given color corresponds to the same draw of X as the posterior “curve” displayed in
the same color. In approximately 95.8% of the draws from the data generating process,
the 95% credible set indeed does contain the true identified set, so the credible set is
also a valid frequentist confidence set.

Now, second, suppose that µ0L = 0 and µ0U = 0, so that there is point identification;
however, this is not known a priori by the econometrician. Figure 4b similarly displays
the values of Π(θ ∈ ΘI |X) for various values of θ, and various draws from the data
generating process. Π(θ ∈ ΘI |X) tends to be largest for values around 0, the singleton
value of the identified set. However, unlike in the above case of a non-singleton identified
set, in general Π(θ ∈ ΘI |X) is bounded away from 1. This is consistent with the discus-
sion in example 3 that concludes that in large samples, Π(0 ∈ ΘI |X) ≈ PN(0,Σ0)(µL ≤
−
√
nµnL(X), µU ≥ −

√
nµnU(X)). A “typical” value of (

√
nµnL(X),

√
nµnU(X)) in large

samples is (0, 0), which would imply that Π(0 ∈ ΘI |X) ≈ PN(0,Σ0)(µL ≤ 0, µU ≥ 0).
Since Σ0 is the identity matrix, Π(0 ∈ ΘI |X) ≈ 1

4 .
The reason for this is that Π(0 ∈ ΘI |X) = Π(µL ≤ 0 ≤ µU |X). If µ0L = 0 = µ0U , then

the posterior for µ does not necessarily satisfy µL ≤ 0 ≤ µU with high probability, since
consistency of the posterior allows that µL > µU with high probability, and also that
0 < µL ≤ µU or µL ≤ µU < 0 with high probability. This is roughly analogous to the
“boundary” problem that would arise in existing frequentist approaches to this model.
But note that, unlike in existing frequentist approaches, it is not necessary to use an ad
hoc rule like a “tolerance parameter.” This is because the Bayesian approach, including
for data such that µnL > µnU , results in a non-degenerate posterior distribution over the
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identified set. In particular, if µnL > µnU , then some of the draws of the identified set will
be the “empty” identified set (for draws such that µL > µU), while others will be a narrow
identified set (for draws such that µL ≤ µU and µL ≈ µU). Therefore, the Bayesian
approach “automatically” accounts for the fact that µnL > µnU does not necessarily
mean that the true identified set is empty, whereas existing frequentist approaches have
to impose this fact using an ad hoc rule.

Nevertheless, even in large samples there will not be a large amount of posterior
evidence that 0 ∈ ΘI . And, since consistency allows that 0 < µL ≤ µU or µL ≤ µU < 0
with high probability, this is true even for Π(0 ∈ ΘI |X,ΘI 6= ∅), since Π(0 ∈ ΘI |X,ΘI 6=
∅) = Π(0 ∈ ΘI |X,µL ≤ µU). However, this is not a deficiency of this approach. Rather,
it is the logical Bayesian inference based on the structure of the model, as just discussed.

More similarly to before with partial identification, for essentially all draws of X,
Π(θ ∈ ΘI |X) ≈ 0 for values outside approximately [−0.2, 0.2].

As above, the circles along the horizontal axis of of figure 4b are the endpoints of the
95% credible set for the identified set, for each draw from the data generating process.
The credible set of a given color corresponds to the same draw of X as the posterior
“curve” displayed in the same color. In approximately 90.6% of the draws from the data
generating process, the 95% credible set indeed does contain the true identified set, so
the credible set is not quite (but is almost) a valid frequentist confidence set. The lack
of exact frequentist coverage is not surprising because when µ0L = µ0U , the discussion
in remark 5 does not hold.
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Figure 5. Other posterior probabilities when µ0L = 0 and µ0U = 0
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In some applications, it may be of interest to know the value(s) of θ that are “most
likely” to be in the identified set, and/or to compare the relative odds that various
values of θ are in the identified set. Figure 5a displays the values of the posterior odds

Π(θ∈ΘI |X)
maxθ Π(θ∈ΘI |X) . The relative odds of θ

∗
1 and θ∗2 is the ratio of the displayed posterior odds,

since the denominator cancels. Π(θ∈ΘI |X)
maxθ Π(θ∈ΘI |X) behaves more like Π(θ ∈ ΘI |X) behaved

before in the case of a non-singleton identified set. The posterior odds for values outside
approximately [−0.2, 0.2] are approximately zero. And the posterior odds for essentially
a single value of θ in a neighborhood of the true identified set is 1. The value of θ that
has maximal posterior odds depends on the draw of X; it tends to be approximately
µnL+µnU

2 , which is indicated for each draw from the data generating process by a circle
that is the same color as the corresponding posterior “curve.” If there is a non-singleton
identified set, then maxθ Π(θ ∈ ΘI |X) ≈ 1 so Π(θ∈ΘI |X)

maxθ Π(θ∈ΘI |X) ≈ Π(θ ∈ ΘI |X), so the
posterior odds are essentially the same as Π(θ ∈ ΘI |X) in the case of a non-singleton
identified set.

Particularly in the case that µ0L = 0 = µ0U , it may also be of interest to know
the posterior probability that the identified set is non-empty. Figure 5b displays the
posterior probability that the identified set is non-empty, for various draws from the data
generating process. The posterior probability in this figure of a given color corresponds
to the same draw of X as the posterior “curves” displayed above of the same color. As
expected from example 3, these posterior probabilities are distributed approximately
according to Uniform[0, 1] in repeated samples. If there is a non-singleton identified
set, then the posterior probability that the identified set is non-empty is essentially 1
for all draws from the data generating process, so those posterior probabilities are not
displayed.

B.4.2. Regression with interval data. This section reports the results of a Monte Carlo
experiment in the context of interval data on the outcome in a linear regression model.
The data generating process in this experiment is:

Y = Zβ + U = −1 + 1Z1 + 2Z2 + 3Z3 + U,

where β = (−1, 1, 2, 3) is the true parameter and
Z1

Z2

Z3

U

 ∼ Normal




1
1
1
0

 ,


1 0.3 0.3 0

0.3 1 0.3 0
0.3 0.3 1 0
0 0 0 0.1




The observed outcome is the interval [floor(Y ), ceil(Y )]. The data is therefore X =
(floor(Y ), ceil(Y ), Z). The data is a random sample of N = 2000 observations from the
data generating process. See also for example Manski and Tamer (2003).

This model implies the conditional moment inequality conditions E(floor(Y )|Z) ≤
Zβ ≤ E(ceil(Y )|Z) for all Z, and thereforeE(f(Z)(ceil(Y )−Zβ)) ≥ 0 and E(f(Z)(Zβ−
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floor(Y ))) ≥ 0 for any non-negative vector-valued function f(·). The Monte Carlo ex-
periment uses the four “instruments” in f(Z) = (1, Z2

1 , Z
2
2 , Z

2
3). Therefore, there are

eight moment inequality conditions, and the point identified parameter µ is a 19 × 1
vector of non-redundant moments of various products of floor(Y ), ceil(Y ), and the
components of Z. The posterior for µ comes from the large sample approximation to
the Bayesian bootstrap, so µ|X ∼ Normal(µn, Σn

n
) where µn is the sample average of

the moments corresponding to µ, and Σn is the sample covariance of the moments cor-
responding to µ. The partially identified parameter of interest is β3, the coefficient on
Z3. Consequently, ∆(β) = β3. By numerical approximation, the true identified set for
β3 corresponding to these eight moment inequality conditions is ∆I ≈ [1.84, 4.16]. The
identified set ΘI(µ) is a convex polytope (i.e., the set of solutions of the moment inequal-
ity conditions). Therefore, computation of ∆I(µ) is a linear programming problem.
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Figure 6. Π(β3 ∈ ∆I |X)

Figure 6 displays the values of Π(β3 ∈ ∆I |X) for various values of β3, and various
draws from the data generating process. As before, each “curve” corresponds to Π(β3 ∈
∆I |X) for a particular value ofX drawn from the data generating process. For essentially
all draws of X, Π(β3 ∈ ∆I |X) ≈ 1 for values in approximately [1.9, 4.1]. So, Π(β3 ∈
∆I |X) ≈ 1 on essentially the entirety of the identified set. Also, for essentially all
draws of X, Π(β3 ∈ ∆I |X) ≈ 0 for values outside approximately [1.5, 4.5]. In the
neighborhoods of the two points on the boundary of the identified set, the values of
Π(β3 ∈ ∆I |X) vary depending on the particular draw of X.

The circles along the horizontal axis of figure 6 are the endpoints of the 95% credible
set for the identified set, for each draw from the data generating process. The credible set
of a given color corresponds to the same draw of X as the posterior “curve” displayed
in the same color. In approximately 95.6% of the draws from the data generating
process, the 95% credible set indeed does contain the true identified set, so the credible
set is also a valid frequentist confidence set. Note that this concerns just part of the
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partially identified parameter, but is nevertheless consistent-in-level. Other frequentist
approaches might require conservative projection methods.

B.5. Further empirical results.

B.5.1. Model with market presence. One specification uses only the firm- and market-
specific binary explanatory variable: market presence. In this specification, the payoff
of firm LCC if it enters market m is

βconsLCC + βpresLCCXLCCm,pres + ∆LCCyOAm + εLCCm

and similarly the payoff of firm OA if it enters market m is

βconsOA + βpresOA XOAm,pres + ∆OAyLCCm + εOAm.

In this specification, θ is a 7-dimensional vector. The point identified parameter µ is a
16-dimensional vector of conditional choice probabilities: there are four types of markets
(because there are two binary explanatory variables per market) and each type of market
is summarized by four choice probabilities (because there are two firms each of which
has a binary decision to enter or not).

Figure 7 reports the posterior probabilities that various parameter values belong to
the identified set. The posterior probabilities for the identified sets for the ∆ parameters
seem essentially the same across the two types of firms. The effect of market presence
on the payoff of both firms is almost certainly positive, in the sense that the posterior
“curve” for both firms is close to zero on negative values, but the effect of having a greater
market presence seems higher for LCC firms, in the sense that the posterior “curve”
for the LCC firms is relatively greater on larger values of the parameter space. The
monopoly profits associated with below-median market presence (i.e., the constant term)
seems lower for LCC firms. Finally, the “curve” of posterior probabilities associated
with ρ is basically flat and equal to one for values of ρ greater than approximately 0.5,
implying that any sufficiently high correlation almost certainly could have generated the
data. The circles along the horizontal axes in figure 7 are the endpoints of the 95%
credible sets for the identified set for the corresponding parameter. Figure 8 displays
the posterior probabilities over the identified sets for a few pairs of parameters.

B.5.2. Model with market size. Another specification also has only one binary explana-
tory variable: market size. In this specification, the payoff of firm LCC if it enters
market m is

βconsLCC + βsizeLCCXm,size + ∆LCCyOAm + εLCCm

and similarly the payoff of firm OA if it enters market m is

βconsOA + βsizeOA Xm,size + ∆OAyLCCm + εOAm.
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Figure 7. Posterior probabilities that various parameter values belong
to the identified set in model with market presence only

Therefore, this specification of the model does not contain any excluded regressors.
In this specification, the point identified parameter µ is an 8-dimensional vector of
conditional choice probabilities, while the partially identified parameter θ remains a
7-dimensional vector.

Figure 9 reports the posterior probabilities that various parameter values belong to
the identified set. As compared to the figures for the model with market presence in
section B.5.1, this specification with market size seems to contain less information about
θ, as expected from the literature on identification that suggests the key role of excluded
regressors. In particular, this specification of the model implies 8 moment equality
conditions (2 of which are redundant) compared to the 16 moment equality conditions
(4 of which are redundant) in the specification with market presence.
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Figure 8. Posterior joint probabilities that various pairs of parameter
values belong to the identified set in model with market presence only

The posterior “curve” for the identified sets for the ∆ parameters suggests that the
data in this specification is much less informative about the magnitude of the interac-
tion effect than it was in the specification in section B.5.1. The same is true for the
posterior “curve” for the identified set for the βsize parameters. The posterior “curve”
for monopoly profits associated with below-median market size (i.e., the constant terms)
seems about the same compared to the specification in section B.5.1, but the identified
sets are slightly larger with less evidence of a difference across types of firms. Finally,
it is not surprising that evidently nothing is learned about ρ, since the literature on
identification suggests that it is difficult to distinguish between correlated unobserv-
ables and other factors without an excluded regressor. The circles along the horizontal
axes in figure 9 are the endpoints of the 95% credible sets for the identified set for the
corresponding parameter.
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Figure 9. Posterior probabilities that various parameter values belong
to the identified set in the model with market size only
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