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Abstract

We develop a novel theory of real estate foreclosure auctions, which have the special
feature that the lender acts as a seller for low and as a buyer for high prices. We get three
predictions: (i) lenders’ bids are bunched at the amount owed, (ii) if all auctions observed
exhibit a common value component, there are gaps in lenders’ bids, (iii) if there are both
independent private values and common value component auctions, there will be no gaps,
but non-monotonicity of the probability of sale in the reserve price. Using novel data from
Palm Beach County (US), we show that (i) and (iii), but not (ii) are consistent with the
data. Further, the data is consistent with the claim that adverse selection plays less of a
role for securitized than for non-securitized mortgages. Our theory also allows an analysis
of the welfare effect of judicial versus non-judicial foreclosures.

Keywords: foreclosure auctions, common value component, securitization

JEL Codes: to be added

1 Introduction

Foreclosure auctions of real estate have a substantial economic impact. In 2013, 16.2% of

residential sales in the U.S. were foreclosure related (foreclosure auctions or sales of real estate

owned by a lender).1 Foreclosures were one of the major concerns during the economic crisis,

with many home owners losing their property because of the drop of real estate prices.

1See http://www.realtytrac.com/Content/foreclosure-market-report/december-and-year-end-2013

-us-residential-and-foreclosure-sales-report-7967.
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We develop a novel theory of foreclosure auctions, thereby incorporating the institutional

specificities of foreclosures. A foreclosure auction is run by a government agency (in our data

set the Clerk and Comptroller’s Office) after a mortgagee stopped making payments to the

lender. The lender (typically a bank) and third party bidders (typically realtors) participate

in this auction. Payments up to the amount owed (the judgment value) are paid to the lender,

payments above the judgment value (if any) are paid to the owner of the property. The owner

typically does not participate. In such an auction, the bank essentially acts as a seller below

the judgment value (its bid being a reserve price) and as a buyer above the judgment value (its

bid being a regular bid by a buyer in an auction).

In foreclosure auctions, the bank is likely the better informed party. When the property

is in foreclosure, the owners have little incentive to take proper care of it. Moreover, in many

cases owners abandon houses altogether, taking with them whatever they can get their hand

on. The vacant rate is very high for foreclosed houses. For example, the city of Cleveland

estimated in early 2009 that at least 10,000 (or one in 13) of all its houses were vacant while the

county treasurer estimated that the number was 15,000 – 50% higher.2 Most mortgages include

provisions that protect lender’s interest in the property if the owner vacates the property. Such

provisions may include allowing the lender’s representative to enter the property to make

repairs and providing regular maintenance such as turning utilities on and off.3 This means

that the lender, especially if it has a local presence in the market (more on this below), will

have access to the foreclosed property and will be able to assess its condition much better than

the realtors, who will in most cases have to content with an outside visual inspection. This is

the key information asymmetry in this market.

We derive participants’ bidding strategies in a setup with a common value component that

nests the independent private values case. The theory has three striking empirically testable

implications. First, there is bunching of banks’ bids at the judgment amount. Second, if one

could perfectly separate a data set into auctions with and without a common value component

one should observe the following. In auctions with a common value component there is a gap

in banks’ bids below and above the judgment amount. In independent private value auctions,

2See http://www.courtinnovation.org/sites/default/files/abandoned_property.pdf
3See http://www.nolo.com/legal-encyclopedia/deceptive-foreclosure-practices-when-banks

-treat-occupied-homes-vacant.html
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there are no gaps. Third, if one cannot perfectly separate auctions with and without a common

value component one should observe the following selection effect. For prices slightly below the

judgement amount, the private value auctions are selected into the observable sample. This is

because there is a gap below the judgement amount under common values. For prices slightly

above the judgement amount, both private and common value auctions are selected. As the

probability of sale (“demand”) is lower under common values due to the effect of adverse

selection, the observable demand will exhibit a downward jump at the judgement value. This

demand discontinuity due to the selection effect is a testable prediction under common values.

We have collected a novel data set with foreclosure auctions from Palm Beach County in

Florida. We have data on 43,015 auctions from 2010 to 2013 with the total judgment amount

being $13.3bn and the sum of winning bids being $3.3bn. The data reveals that bunching

indeed occurs at the judgment value. We also observe that the probability of sale increases just

below and just above the judgment amount as theory predicts. However, we do not observe

gaps below and above the judgment amount, which suggests that some auction in our data

set are with and some without a common value component. This is further supported by the

empirical evidence that the demand exhibits a discontinuity at the judgement value, pointing,

as we have argued, to the presence of common value auctions in our dataset.

A major concern during the financial crisis was the securitization of mortgages. Originat-

ing banks securitized their mortgages through securitization agencies (mostly the Government

Sponsored Enterprises Freddie Mac and Fannie Mae), the securitized assets were then sold on

the capital market. The claim was often made that banks excessively granted mortgages and

securitized low quality mortgages, thus shifting the burden to the holders of securitized assets

and Government Sponsored Entities (and ultimately to the tax payer).

For non-securitized mortgages the plaintiff in the foreclosure auction is typically a local

bank that is likely to have private information about the quality of the property being sold.

For securitized mortgages the plaintiff is typically a non-local bank that acts as a trustee

for a pool of securitized mortgages. Such a non-local trustee may not have the resources to

inspect each of the foreclosed properties in the pool. One would therefore expect the plaintiff

to have less private information for securitized mortgages. In this setting, one would expect

the adverse selection effect to be much smaller, with the observable implication of a much
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less pronounced discontinuity in the demand at the judgement value. Our empirical findings

support this prediction.

What are the welfare implications of common values and the associated adverse selection

in foreclosure auctions? Building on the insights in Cai et al. [2007], Jullien and Mariotti

[2006] and Lamy [2010], we show that seller bids in the foreclosure auction under common

values involve a signalling premium for bids below the judgement value. That is, they are

higher relative to what they would have been if the realtors knew the bank’s information. This

introduces a further distortion, on top of the usual deadweight loss stemming from the bank’s

monopoly position as the seller. Fro the bids above the judgement value, on the other hand,

there is no distortion, as the bank will act as a buyer, and the English auction will allocate the

house efficiently.

Roughly half of the states in the U.S. (including Florida) only allow judicial foreclosure, i.e.

the foreclosure auction has to be run by a court with rules as the ones described in this article.

The other half of the states allow for both judicial and non-judicial foreclosures. If the mortgage

contract contains a power of sale clause, the bank can choose a non-judicial foreclosure in case

of a failure to repay, i.e. the bank can directly seize the property and sell it without going

through a court.

The power of sale allows the bank to market the property, and to verifiably disclose, through

inspections, the information regarding its condition. This eliminates the signalling premium,

but introduces another distortion. The bank, acting as a de facto owner of the property, is no

longer obligated to pay the owner back any auction proceed above the judgement value. Thus

the monopoly price distortion now extends to prices above the judgement value. So the overall

welfare effect of the power of sale is ambiguous. The estimation of this effect would require

structural estimation of a foreclosure auction, and is left for future work.

2 Model

Consider the owner, the bank (i.e. the seller, S) and n realtors (i.e. the buyers, B) who

participate in the foreclosure sale. The judgment value of the house (i.e. the balance of the

mortgage) is denoted as vJ . The foreclosure auction is modelled as a (button) English auction

as in Milgrom and Weber (1982), with both the bank and the realtors bidding in the auction.
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The bid by the bank can be interpreted as a hidden reserve price. The auction website expedites

bidding by allowing the participants to employ automatic bidding agents. The bidders provide

their agents the maximum price they are willing to pay (their dropout price), and the agent

then bids on their behalf. These proxy bids can be updated at any time.4

The key difference from a standard English auction is that the proceeding of the foreclosure

auction up to the judgment amount goes to the bank, anything above the judgment amount

goes to the original owner. This effectively turns the bank into a seller for prices below and

into a buyer for prices above the judgment amount.

The winner pays the auction price p. If the price exceeds the judgment value, p ≥ vJ ,

then the bank gets vJ and the owner pockets the difference p − vJ . If the price is below the

judgment value, p < vJ , then the banks gets p and the owner gets nothing. The property is

transferred to a realtor only if a realtor wins; otherwise, the bank keeps the property. It follow

that if the bank wins the auction, it effectively pays the auction price to itself, so in reality no

money changes hands in that case. But if a realtor wins, then there is an actual money transfer,

from the realtor to the bank and possibly the owner as well (if the auction price exceeds the

judgment value).

As is usual, we model the foreclosure sale (auction) as a game of incomplete information.

As is explained in the empirical section of the paper, banks and brokers buy houses for different

purposes: banks mostly sell the houses later on. Brokers typically renovate the property before

reselling. Motivated by this, we make the following assumption concerning the information of

the bank and the brokers. First, we assume that the i’s realtor idiosyncratic signal, denoted

as Xi
B, only concerns its renovation value added to the house. Second, we assume that the

bank’s signal XS concerns the baseline resale value of the house. The signals Xi
B and XS will

be sometimes referred to as buyers’ and seller’s types. Their realizations will be denoted as xiB

and xS , respectively.

The bank is assumed to be the informed party. Its signal XS is normalized to equal the

expected value of the house in the market, so the seller’s valuation is

uS(xS) = xS .

4Such proxy bidding makes the button model even more applicable here, as it alleviates the need to model
difficult features such as e.g. jump bidding that may be present in the traditional open auctions.
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The realtors do not observe XS ; they only privately observe their own signals Xi
B. The realtor’s

expected value of the house, given its own signal xB and the seller’s signal xS , is denoted as

uB(xB, xS).

We make the following assumptions concerning the expected valuations of the realtors.

Assumption 1 (Buyer valuations). The buyer’s expected valuation is differentiable and strictly

increasing in own signal xiB, and nondecreasing in the bank’s signal xS,

∂uB(xB, xS)

∂xB
> 0,

∂uB(xB, xS)

∂xS
≥ 0

This assumption ensures that a buyer’s valuation of the house is increasing in its own signal

xB, and is non-decreasing in the seller’s signal xS . If uB does not depend on xS , we have a

special case of private values. Otherwise, the valuations are interdependent.

For the reasons that will be clear in the sequel, we normalize the buyer signals so that the

value conditional on winning the auction is equal to the signal,

uB(xB, xB) = xB. (1)

This normalization is without loss of generality because Assumption 1 ensures that uB(xB, xB)

is continuous and strictly increasing in xB.

We make the following assumptions regarding the distribution of the signals.

Assumption 2 (Signals). The bank’s signal XS is drawn from a distribution FS supported on

R+ and with density fS continuous and positive on the support. The realtor signals Xi
B, i =

1, ..., n, are drawn from a (joint) distribution FB, supported on Rn+, with density fB continuous

and positive on the support.

We assume that the signals are independent.

Assumption 3 (Independence). The signals X1
B, ..., X

n
B, XS are independently drawn from

their respective distributions.

This independence assumption is made to simplify the analysis of the game, by eliminating

the need to consider adjustments that brokers would otherwise make to their proxy bids follow-

ing dropouts by other brokers. Under independence, we shall see that the information in the
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auction will be transmitted only from the bank to the brokers, following the bank’s dropout

from the auction. After that, the brokers would essentially have independent private values,

and simply enter those values as their (updated) proxy bids, and there will be no updating

from brokers’ dropout prices.5

3 Independent Private Values

It is useful to first start with the special case of independent private values, since it provides

some of the key insights without all the complexity of value interdependence. The independent

private values setup is particularly useful to highlight the role of the judgment amount, below

which the bank acts as a seller and above which the bank acts as a buyer.

Observe that it is a weakly dominant strategy for the realtor to choose its valuation as the

drop out price, so

pB(xB) = xB.

We allow the realtor values (signals) to be correlated. We make the following standard regularity

assumption.

Assumption 4 (Virtual value monotonicity). The Myerson virtual value

JB(xB) = xB −
1− FB(xB)

fB(xB)

is strictly increasing.

With these preliminaries, the bank’s dropout strategy is characterized in the proposition

below. Refer to Figure 1.

Proposition 1 (Equilibrium). The bank’s and realtor’s bidding strategies are given by, respec-

tively,

pS(xS) =


J−1B (xS) if xS ≤ JB(vJ),

vJ if xS ∈ [JB(vJ), vJ ],

xS if xS ≥ vJ .
pB(xB) = xB. (2)

5Independence is also assumed in Jullien and Mariotti [2006], while Cai et al. [2007] and Lamy [2010] allow
the buyer signals to be correlated, but still independent of the seller’s signal.
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Figure 1: Equilibrium

Proof. If the bank decides set the reserve price below the judgment value, p ≤ vJ , and if there

is only one buyer (n = 1), then its expected profit is

Π1
S(xS , p) = xSFB(p) + p(1− FB(p)).

where the first term corresponds to the bank keeping the house if the realtor loses in the

auction, and the second term corresponds to the transfer of the house from the bank to the

realtor at price p. If there are multiple buyers (n ≥ 2), its expected payoff is

Π1
S(xS , p) = xSF(1)(p) + p(F(2)(p)− F(1)(p)) +

∫ ∞
p

xBf(2)(xB)dxB, (3)

where the last term corresponds to the price set by the second-highest realtor bid, when this

value is above p.6

If, on the other hand, the bank decides to drop out at a price above the judgment value,

p > vJ , then the expected payoff is given by

Π2
S(xS , p) =

{
xSFB(vJ) + vJ(1− FB(p)), if n = 1,

xSF(1)(vJ) + vJ(1− F(1)(p)) +
∫ p
vJ

(
xS − (xB − vJ)

)
f(1)(xB)dxB, if n ≥ 2.

(4)

6Here and below we denote the cumulative distributions of the highest and second highest broker signal as
F(1) and F(2) respectively.
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From now on, for concreteness we restrict attention to n ≥ 2; obvious modifications would be

needed for n = 1. The first term applies in the event when the bank wins the house with the

realtor dropping out at a price below the judgment value. In this case, the bank simply keeps

the house, effectively paying the auction price to itself. The payoff in this case is simply xS ,

and the probability of such an event is F(1)(vJ). The second term applies in the event when

the realtor wins the house at a price above the judgment value, i.e. the bank drops out at a

price p < vJ . In this case, the realtor pays p, but the bank only gets vJ , as the remainder

goes to the owner. The probability of this event is 1 − F(1)(vJ). Finally, the last term gives

the expected payoff in the event when the bank wins the auction at a price xB (the realtor’s

dropout price) above the judgment value. In this case, the bank needs to compensate the

owner for the difference between the price and the judgment value, so the bank’s payoff is then

xS − (xB − vJ).

With these formulas at hand, consider first the case when the bank’s valuation is below vJ .

Taking the derivative in (4), we get

∂Π2
S(xS , p)

∂p
= (xS − p)f(1)(p), p ≥ vJ .

We can see that the dropout prices above vJ are on a downward-sloping arm of the the expected

payoff functions and therefore will not be offered by a bank with xS ≤ vJ . It follows that for

xS ≤ vJ , the problem of choosing an optimal dropout price amounts to maximizing the expected

payoff in (3) subject to the constraint p ≤ vJ . The Kuhn-Tucker first-order condition for this

problem is

F(2)(p)− F(1)(p)− f(1)(p)(p− xS) ≥ 0, p ≤ vJ , (5)

with complementary slackness. Dividing the above equation through by f(1)(p), and noting

that, under independence,
F(2)(p)− F(1)(p)

f(1)(p)
=

1− FB(p)

fB(p)
,

we see that if the constraint doesn’t bind, then the optimal price is found from JB(p) = xS , so

by the monotonicity of JB(·), we get pS(xS) = J−1B (xS) iff xS ≤ JB(vJ). For xS ∈ [JB(vJ), vJ ],

the constraint is binding, so pS(xS) = vJ . To complete the equilibrium characterization for

xS > vJ , consider again the first-order condition (5). For xS > vJ , this first-order condition

implies that it is optimal for the bank to bid its value, which completes the proof.
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Figure 2: Computed equilibrium bid distributions for the bank (GS(·); solid curve) and the
realtor (GB(·); dashed curve). The value distributions are specified as normal, with equal
means µS = µB = 0.4 and standard deviation σS = σR = 0.6. The judgment value is vJ = 1.
Observe the mass point at the judgement value in GS(·).

Discussion As we mentioned before, the bank’s equilibrium behavior is different depending

on whether the bank’s valuation is below or above the judgment value. The bank acts in a

seller role in the former case, and in a buyer role in the latter. The most interesting feature of

the equilibrium is the bunching region [JB(vJ), vJ ]. In this region, the bank’s dropout prices

are pooled at the judgment value (see Figure 1).

Why are the bank’s dropout prices bunched at the judgment value? To get an intuition for

this, note that the bank will only benefit from a dropout price above vJ if it keeps the house,

i.e. wins the auction. Otherwise, if it sells the house, then even though the sale price would

be higher than vJ , the bank stands to pocket only the judgment value vJ . So if the bank’s

valuation is below vJ , the bank would prefer to take vJ . This explains why there is a constraint

p ≤ vJ in the bank’s optimal pricing problem when xS ≤ vJ , which causes bunching at vJ for

bank’s values somewhat below vJ .

This bunching will cause a mass point at vJ in the distribution of the bank’s dropout prices.

Figure 2 illustrates this in an example with one buyer and normal distributions.
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4 Common Values

We now consider the general environment with common values, where the bank is the informed

party. As we shall see, an equilibrium still involves bunching at vJ , but there is also a novel

feature: the seller’s reserve price strategy is discontinuous and involves gaps around vJ . We

begin by considering a setting that corresponds to vJ → ∞, i.e. the standard English auction

with an informed seller. We will refer to this setting as the unconstrained equilibrium.

4.1 Unconstrained equilibrium

Auctions in which the seller has information about the common value component have been

considered in Jullien and Mariotti [2006], Cai et al. [2007] and Lamy [2010].7 These papers char-

acterize a separating equilibrium in strictly increasing, continuous and differentiable strategies.

In the sequel, we shall refer to this equilibrium as an unconstrained equilibrium.

As some of our results rely on specific steps of their equilibrium construction, we now

present these main steps in our context of the English auction.

We restrict attention to equilibria where the seller adopts an increasing and continuous

equilibrium dropout strategy p∗S(xS), with a differentiable inverse X∗S(p). Given our assumption

that buyer signals are independent, only the seller’s dropout price is relevant for information

updating. Denote a buyer’s strategy before the seller has dropped out as p∗B(xB), with the

inverse X∗B(p). As in Milgrom and Weber (1982), it is found by equating the object’s expected

value to the buyer assuming the seller drops out at p, to the price p:

uB(X∗B(p), X∗S(p)) = p (6)

Following the seller’s dropout at a price p̃, a buyer’s dropout strategy is simply uB(xB, XS(p̃))

as the buyers will then have independent private values.

From now on, we assume n ≥ 2, with a discussion of the case n = 1 relegated to a remark.

If the seller with signal xS enters a price p, while the buyers adopt a cutoff strategy X∗B(p),

7These papers consider the case of a publicly observable seller’s reserve price in a second-price auction.
However, our independence assumption ensures that the equilibrium is outcome equivalent.
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the seller’s expected profit will be

Π(p, xS) = p(F(2)(X
∗
B(p))− F(1)(X

∗
B(p)))

+

∫ ∞
XB(p)

uB(x,X∗S(p))f(2)(x)dx+ xSF(1)(XB(p)). (7)

The first term on the r.h.s. of (7) is the expected revenue when the seller sells at the reserve

p, which only occurs if there is a single buyer with signal above the cutoff XB(p). The second

term is the expected revenue when the second-highest buyer signal is above the cutoff X∗B(p);

in that case, the price paid to the seller is equal to uB(x,X∗S(p)), where x is the second-highest

buyer signal. The last term is the seller’s expected payoff if the seller keeps the house.

In equilibrium, the seller must choose his price p = p∗S(xS) optimally, so we must have the

following first-order condition,

∂Π(p,X∗S(p))

∂p
= 0, (8)

which, taking into account (6) and after some algebra, yields

dX∗B(p)

dp
=

1−FB(X∗
B(p))

fB(X∗
B(p)) +

dX∗
S(p)
dp

∫∞
X∗

B(p)
∂uB(x,X∗

S(p))
∂xS

f(2)(x)dx

p−X∗S(p)
. (9)

If we now totally differentiate the marginal participating buyer’s indifference condition (6),

uB(X∗B(p), X∗S(p)) = p =⇒ ∂uB
∂xB

dX∗B(p)

dp
+
∂uB
∂xS

dX∗S(p)

dp
= 1, (10)

and substitute dX∗B(p)/dp from (12), we obtain after some algebra the following two differential

equations for X∗S(p) and X∗B(p):

dX∗S(p)

dp
=

(JB(X∗B, X
∗
S)−X∗S)]f(1)(X

∗
B)

∂uB
∂xS

(uB(X∗B, X
∗
S)−X∗S)f(1)(X

∗
B) + ∂uB

∂xB

∫∞
X∗

B

∂uB
∂xS

f(2)(x)dx
, (11)

dX∗B(p)

dp
=

F(2)(X
∗
B)− F(1)(X

∗
B) +

∫∞
X∗

B

∂uB
∂xS

f(2)(x)dx

∂uB
∂xS

(uB(X∗B, X
∗
S)−X∗S)f(1)(X

∗
B) + ∂uB

∂xB

∫∞
X∗

B

∂uB
∂xS

f(2)(x)dxt
, (12)

where the Myerson virtual value JB(xB, xS) is now defined as

JB(xB, xS) ≡ uB(xB, xS)− ∂uB(xB, xS)

∂xB

1− FB(xB)

fB(xB)
. (13)

12



In parallel to Assumption 4 in the previous section, we assume that JB(xB, xS) is monotone is

the buyer’s signal.8

Assumption 5 (Virtual value monotonicity). The function JB(xB, xS) is increasing in xB.

The following proposition describes the separating equilibrium in our model.

Proposition 2 (Unconstrained equilibrium: Cai et al. [2007] and Lamy [2010]). There is a

unique equilibrium in monotone differentiable strategies. The seller’s inverse bidding (hidden

reserve price) strategy X∗S(p) are given by the (unique) solutions to the differential equations

(11) and (12), subject to the initial conditions X∗S(p) = 0 and X∗B(p) = p. The lowest price

offered by the seller p is given by p = pS(0) = u
(1)
B (xB, 0), where xB is the lowest buyer type

that purchases with positive probability, given by the unique solution to JB(xB, 0) = 0. For an

out-of-equilibrium reserve price p < p, buyers believe that the seller’s type is 0.

There is a noteworthy property of this separating equilibrium, in comparison with the

scenario where there is no information asymmetry between the bank and and the brokers, i.e.

if xS is known to the brokers. In this symmetric information setup, the analysis in the previous

section implies that the bank with valuation xS will set the price so that the marginal buyer

type willing to purchase at this price, X0
B(p) is found from the “marginal revenue equals cost”

equation JB(X0
B(p), xS)−xS = 0. The price strategy itself is given by p0S(xS) = uB(X0

B(p), xS).

How does this price compare to the one with asymmetric information, p∗S(xS)? Proposition 2

shows that there is no distortion at the bottom, so that the two price are equal: p∗S(0) = p0S(0).

The following corollary shows that asymmetric information leads to a signalling premium in

the seller’s price.

Corollary 1 (Signalling premium). Under asymmetric information, the seller bids higher,

p∗S(xS) > p0S(xS) for xS > 0.

Proof. For xS > 0, monotonicity implies dX∗S(p)/dp > 0. Going back the differential equation

(11), this means that for p = p∗S(xS), we must have JB(X∗B(p), xS) > xS , which, by the

8In the independent private values (IPV) case, uB(xB , xS) = xB according to our normalization, and one can

show
F(2)(xB)−F(1)(xB)

f(1)(xB)
= 1−FB(xB)

fB(xB)
. So JB(xB , xS) becomes the usual Myerson virtual value as in the previous

section.
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monotonicity of JB(xB, xS) in xB, implies X∗B(p) > X0
B(p). Since uB(X0

B(p), X0
S(p)) = p and

uB(X∗B(p), X∗S(p)) = p, with uB(xB, xS) being monotone increasing in both arguments (under

common values), we must have

X∗S(p) < X0
S(p) =⇒ p∗S(xS) > p0S(xS)

for xS > 0.

The signalling premium leads to welfare losses under asymmetric information. Consider,

for simplicity, a single buyer. Our normalization uB(xB, xB) = xB implies that it is efficient

to transfer the object from the seller with valuation xS to the buyer with valuation xB if and

only if xB > xS . Denote as xB(xS) the minimal buyer type that will, in equilibrium, trade

with the seller with valuation xS . It is found from uB(xB(xS), xS) = p(xS). Under asymmetric

information, this type is determined from uB(x∗B(xS), xS) = p∗S(xS), while under symmetric

information, it is determined from uB(x0B(xS), xS) = p0S(xS). Since p∗S(xS) > p0S(xS) due to

the signalling premium, we must have

x∗B(xS) > x0B(xS) > xS .

Thus, the trading boundary, already distorted even under symmetric information due to the

market power of the seller, is distorted even further under asymmetric information.

Under independent private values, it is well known that the seller’s optimal reserve price

does not depend on the number of bidders n. With common values, it generally will, since n

appears on the r.h.s. of the differential equations (11) and (12) describing the equilibrium. In

a linear valuation model, Lamy [2010] shows that the effect of the number of bidders on the

seller’s price may be either positive or negative, depending on the seller’s signal.9 However,

the effect is unambiguous if we compare n = 1 and n > 1.10 Denote the seller’s price in the

auction with n buyers as pS(xS , n).

Corollary 2 (The effect of n). The seller’s price is the lowest when n = 1:

n > 1 =⇒ p∗S(xS , n) < p∗S(xS , 1).

9By focusing on the linear model, Lamy [2010] qualifies the results initially obtained in Cai et al. [2007]. We
are not aware of any general results of this sort.

10Neither Cai et al. [2007] nor Lamy [2010] consider the case of a single buyer.
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Figure 3: γ-Equilibrium with common values

Proof. Dividing (12) by equerryeq:sdifeq yields a single differential equation for xB(xS). For

n = 1, it is

x′B(xS , 1) =
∂uB/∂xS
∂uB/∂xB

1

JB(xB, xS)− xS
1− FB(xB)

fB(xB)
,

while n > 1, it is

x′B(xS , n) =
∂uB/∂xS
∂uB/∂xB

1

JB(xB, xS)− xS

(1− FB(xB)

fB(xB)
+

∫∞
xB

∂uB
∂xS

f(2)(x)dx

f(1)(xB)

)
> x′B(xS , 1).

Since xB(0, n) = xB(0, 1),

x′B(xS , n) > x′B(xS , 1) =⇒ xB(xS , n) > xB(xS , 1) ∀xS > 0.

This, in turn, implies

pS(xS , n) = uB(xB(xS , n), xS) > uB(xB(xS , 1), xS) = pS(xS , 1).

4.2 Foreclosure auction equilibrium

Recall that in a judicial foreclosure, the bank is only entitled to the sale revenue up to vJ . As

we have shown in the previous section, under IPV, this results in pooling of the seller’s optimal
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price offers at vJ , while the offer below vJ are unaffected. In the present setting, however, simply

“truncating” the seller’s offer strategy at vJ , with pooled offers at vJ as in Figure 1, would

create incentives for the seller to deviate and thus cannot result in an equilibrium. Specifically,

the seller who would offer slightly below vJ , could instead signal a dramatically higher quality

by “bunching in”, i.e. deviating to p = vJ . Also, some sellers at the lower end of the pool, could

do better by deviating slightly above, thus signaling higher quality and dramatically increasing

the probability of sale.

In this section, we characterize a (semi) separating equilibrium where the bank’s price

strategy pS(xS) coincides with the separating equilibrium strategy p∗S(xS) as in Proposition

2 for xS ∈ [0, x1S ], exhibits a jump to vJ at some type x1S . Above vJ , the bank randomizes

between p = vJ and the price that would keep the marginal buyer type the same as at vJ .

Denote the minimal buyer type that drops our at p = vj as x2B. Then for the bank to be

indifferent over any price in the randomization region p ∈ [vJ , x
2
B], the bank should have the

same “demand” 1− FB(x2B)n. So the “upper arm” of the equilibrium is given by

pS(xS) = uB(x2B, xS).

For any price p ∈ [vJ , x
2
B] the buyer with type x2B is indifferent between dropping out or staying

in. We denote the seller type where this upper arm departs from vJ as x∗S ; it is found uniquely

from

uB(x2B, x
∗
S) = vJ .

See Figure 3.

The x2B-type buyer must be indifferent between winning the auction and paying the price vJ

or staying out. Let γ ∈ [0, 1] be the probability that the bank chooses vJ . Then the posterior

distribution of the seller’s types given p = vJ is given by

f∗S(xS , γ) =


fS(xS)

γ(FS(x
2
B)−FS(x

∗
S))+(1−γ)(FS(x

∗
S)−FS(x

1
S))
, xS ∈ [x1S , x

∗
S ]

γfS(xS)
γ(FS(x

2
B)−FS(x

∗
S))+(1−γ)(FS(x

∗
S)−FS(x

1
S))
, xS ∈ [x1S , x

∗
S ]

The x2B-buyer indifference condition then takes the form

H(x1S , x
2
B, γ) ≡

∫ x2B

x1S

uB(x2B, xS)f∗S(xS , γ)dxS = vJ . (14)
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This condition implies that the buyer’s cutoff XB(p) = x2B for the prices in the “upper” gap,

p ∈ (vJ , x
2
B), so the seller would face the same “demand” 1− FB(x2B)n if he decided to set the

reserve price in this gap. This ensures that, first, the sellers with xS ∈ [x1S , vJ ] will not have an

incentive to deviate to such a price, since doing so will not increase the probability of sale at

vJ , and at the same time cannot yield a higher price because any excess revenue over vJ goes to

the owner. Second, the seller types xS ∈ [vJ , x
2
B] will not have an incentive to deviate upwards

either. As in the previous section, these sellers aim to bid as high as possible to deter buyer

entry given that they strive to retain the object. But, as we have argued, ex-post individual

rationality implies that they will not bid higher than their valuation xS .11

The next condition specifies that the x1S-type seller is indifferent between dropping out at

p = p1 and p = vJ :

ΠS(x1S , p
1) = ΠS(x1S , vJ). (15)

By a standard single-crossing argument, if the seller with xS = x1S weakly prefers price vJ to a

price p1, then the seller types xS ∈ (x1S , x
2
B] will in fact strictly prefer vJ to p1. Taken together,

the indifference conditions (14) and (15) imply that pS(xS) = vJ for xS ∈ [x1S , x
2
B].

The bank will never choose to drop out at a price in the “gap” (p1, vJ), provided that

buyers will believe that the quality is not higher than what it would be, in expectation, if the

bank instead waited and dropped out at vJ . Given such an out of equilibrium belief, which is

reasonable, the bank will prefer to drop out at vJ instead: doing so will allow the bank to sell at

a higher price if xS < vJ , while will still not allow the bank to retain the house if xS ∈ [vJ , x
2
B].

(The price will only go above p1 if at least one broker has valuation xB > x2B; such a broker

will outbid the bank).

The bank with xS > x2B will be bidding against the brokers in a standard English auction,

who will also have xB > x2B if the price goes higher than vJ). The bank will drop out at its

value xS , while brokers will drop out at prices that would make them indifferent given the bank

dropping out at the same price. That is, the broker type XB(p) that drops out at p is given

by the solution to uB(XB(p), XS(p)) = p. Since XS(p) = p for p > x2B, our normalization

11Alternatively, one can assume that a buyer bids up to his expected utility, even if this drop out price is
below the seller’s publicly announced maximum bid.
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uB(xB, xB) = xB implies that XB(p) = p also. That is, for p > x2B, both the bank and the

brokers will drop out at prices equal their signals.

So we define a class of randomized foreclosure equilibria, or γ-equilibria, as follows.

Definition 1 (Foreclosure equilibrium). For any randomization probability γ ∈ [0, 1], the γ-

equilibrium is defined as follows. The bank’s dropout strategy pS(xS) and the broker’s dropout

strategy when the bank hasn’t dropped out, pB(xB), are given respectively by

pS(xS) =


p∗S(xS), xS < x1S ,

vJ , xS ∈ [x1S , x
∗
S ],

γδvJ + (1− γ)δpS(xS), xS ∈ [x∗S , x
2
B],

xS , xS > x2B.

, pB(xB) =


p∗B(xB), xB < x1B,

x2B, xB ∈ [x1B, x
2
B],

xB, xB > x2B.

The broker’s dropout strategy when the bank has dropped out at price p is given by uB(xB, XS(p))

for p 6= vJ (where pS(·) is invertible), and for p = vJ , by

pB(xB, vJ) =

∫ x2B

x1S

uB(xB, xS)fS(xS , γ)dxS .

Refer to Figure 3. We say that the foreclosure equilibrium has the separation property if

x1S > 0. In this case, the seller types below x1S will reveal themselves through their dropout

decisions. If, on the other hand, x1S = 0, then equilibrium involves bunching of all seller types

xS ∈ [0, x2B].

Of course, the various cutoff types that appear in the equilibrium description depend on

the randomization probability γ, x1S(γ), x2B(γ) etc. If γ = 0, so that all the weight is put on

the upper arm pS(xS), then p1 = vJ and

x1S(0) = x∗S = X∗S(vJ), x2B(0) = x1B = X∗B(vJ),

and the equilibrium involves a continuous and strictly increasing bank’s strategy pS(xS). There

is no bunching at vJ .

This equilibrium for γ = 0 is directly derivable from the unconstrained equilibrium, as

the buyer and seller cutoffs x1S(0) and x2B(0) are simply the values that correspond to the

unconstrained equilibrium. See Figure 4. Thus, such an equilibrium always exists.12

12Here, we are implicitly assuming that the judgement value is not too low, vJ > p.
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Figure 5: Equilibrium with common values: γ = 0.
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If γ = 1, the equilibrium puts all the weight on the bunch, see Figure 5. With γ = 1, there

is also a possibility that the bunch will extend all the way to the left, i.e. we have x1S(0) = 0,

in which case the equilibrium is not semi-separating in the sense of our definition.

The next proposition establishes equilibrium existence and uniqueness of a semiseparating

equilibrium.

Proposition 3 (Equilibrium existence and uniqueness). For any γ ∈ [0, 1], there exists a

unique γ-equilibirum. Moreover, a γ ∈ (0, 1] exists such that the equilibrium is semi-separating

(i.e. x1S(γ) > 0) for γ < γ and semi-pooling (i.e. x1S(γ) = 0) for γ ≥ γ.

Proof. The indifference condition (16) can be equivalently stated as

(p̂(p1)− x1S)(1− F(1)(x
1
B)) = (p̂(vJ)− x1S)(1− F(1)(x

2
B)), (16)

where p̂(p) denotes the equilibrium price received by the seller conditional on winning the

auction with a reserve p. Given x1S and p1 = p∗S(x1S), the buyer’s type that is indifferent

between buying or not at p1 is uniquely determined as x1B = X∗B(p1); recall that the buyer type

that is indifferent at p = vJ has been denoted as x2B.

The seller’s indifference condition (16) defines x2B as an implicit function of x1S . This

function is denoted as yB(·). The lower cutoff values are restricted between the lowest possible

value xS = 0, and the value x̂S = X∗S(vJ) that corresponds to the unconstrained equilibrium

bid vJ . The buyer’s indifference condition (14),

H(x1S , x
2
B, γ) = vj ,

also defines x2B as an implicit function of x1S ,

x2B = z(x1S , γ).

Both mapping are defined on the domain [0, x̂S ].

The equilibrium cutoffs x1S and x2B are given by the intersection of the graphs of yB(·) and

zB(·),

x2B = yB(x1S) = zB(x1S , γ). (17)

We now show that such an intersection to exist for all suffiently small γ > 0. Refer to Figure 6.

We will first show the following monotonicity properties of yB(x) and zB(x, γ):
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Figure 6: Functions yB(·) and zB(·, γ).

1. yB(x) is decreasing in x.

2. zB(x, γ) is increasing in x and decreasing in γ.

We first show that yB(·) is an increasing function. The seller’s indifference condition (15)

can be re-written as

F(1)(x
2
B) = 1−

ΠS(x1S)

p̂(vJ)− x1S
where we denoted

ΠS(x1S) = (p̂(p∗S(x1S))− xS)(1− F(1)(xB(p∗S(xS)))).

Next, we show that ΠS(x1S)/(p̂(vJ)−x1S) is increasing in x1S , which implies that x2B is decreasing

in x1S . The derivative of this function is

d

dx1S

ΠS(x1S)

p̂(vJ)− x1S
=

Π′S(x1S)(p̂(vJ)− x1S) + ΠS(x1S)

(p̂(vJ)− x1S)2

21



The envelope theorem implies Π′S(x1S) = −(1− F(1)(x
1
B)). So the numerator is equal to

ΠS(x1S)− (p̂(vJ)− x1S)(1− F(1)(x
1
B))

= ΠS(x1S)− (p̂(p1)− x1S)(1− F(1)(x
1
B))− (p̂(vJ)− p̂(p1))(1− FB(x1B))

= −(p̂(vJ)− p1)(1− F(1)(x
1
B)) < 0

where the inequality follows since p1 < vJ and p̂(·) is a an increasing function. Hence, yB(x1B)

is a decreasing function satisfying yB(x̂1S) = x2B.

The monotonicity of zB(x1S , γ) in x1S and γ follows from the fact that H(x1S , x
2
B, γ) defined

in (14) is an increasing function in first two arguments, and is a decreasing function of γ. This

is intuitively clear and can be shown by a direct calculation of the partial derivatives. When

the equilibrium puts all the weight on the upper arm, i.e. γ = 0,

y(x̂S) = z(x̂S , 0).

As γ increases away from 0, the z(·, γ) curve shifts down, so by continuity, there is a (unique)

intersection with the y(·) curve at least for sufficiently small γ. This implies that there is

a unique semi-separating equilibrium for all sufficiently small γ. As γ continues to increase

towards 1, the intersection point moves to the left. If

zB(0, 1) > yB(0),

then there is a (unique) intersection even if γ = 0, so that a γ-separating equilibrium will exist

for all γ ∈ [0, 1]. Otherwise, there is a γ ∈ (0, 1) such that the equilibrium is semi-separating

for γ ∈ [0, γ) and is fully bunched all the way to 0 for γ ∈ [γ, 1].

5 Empirical Predictions

Regardless of the environment, our model predicts bunching of seller bids at the judgement

value. Denoting the distribution of seller reserve prices as GS(·), we therefore have the following

testable hypothesis.

Hypothesis 1 (Bunching at vJ). The distribution GS(p) has an atom at p = vJ ,

lim
p↑vJ

GS(p) < GS(vJ).
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Next, we can exploit the equilibrium prediction that, if there is adverse selection, i.e. the

seller’s signal affects buyer valuations, the reserve price pS(xS) jumps from p1 < vJ to vJ . This

leads to the following testable prediction.

Hypothesis 2 (Gaps under common values). If

∂uB
∂xS

> 0,

then the distribution GS(p) puts 0 probability mass on price intervals (p1, vJ) and (vJ , x
2
B), i.e.

it has “gaps” below vJ and above vJ . If, on the other hand, the values are private,

∂uB
∂xS

= 0,

then the distribution GS(p) has a positive density at any price p ∈ [p,∞)\{vJ}.

However, one should not expect gaps if there is heterogeneity with respect to common values,

as one certainly would expect in reality. If the sales of some of the houses are characterized

by common value, whereas for others the auction is essentially an independent private values

auction, then the PV auction will fill out the gaps.

But heterogeneity with respect to adverse selection does have empirically testable implica-

tions. Take the simplest example, in which there are two types of houses: “independent private

values houses” with uB(xB, xS) = xB and “adverse selection houses” with uB(xB, xS) 6= xB.

This is illustrated in Figure 7. Denote the lower bound of the lower gap by p1 = pS(x1S) and let

p2 = x2B. For bank’s prices below the gap for adverse selection houses (pS < p1), we will observe

a mixture of IPV and of adverse selection houses. The probability of sale for such prices is the

average of the IPV and the adverse selection probability of sale. In the gap (pS ∈ (p1, vJ)), we

only observe independent private value. Hence, there will be an increase of the probability of

sale. For pS = vJ , we again observe both IPV and adverse selection houses, hence a sharp drop

in the probability of sale just below pS = vJ . Then again a sharp increase of the probability

of sale just above pS = vJ , since this in the interval (vJ , p2) more weight is put on IPV houses

since the adverse selection houses appear only when the upper “arm” is played, i.e. with prob-

ability γ in our equilibrium. One should not expect a sharp change at p2, since for pS > p2

the probability of sale is the same for IPV and for adverse selection houses. The reason that

1− F(1)(XB(pS))) = 1− F(1)(pS) is that for pS > p2, one has XS(pS) = pS .
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Figure 7: Probability of sale as a function of the bank’s public maximum bid for independent
private values houses (dotted, blue), adverse selection houses (red, dashed), and a mixture of
both types of houses (black, solid).

Note that Figure 7 shows an extreme example: there are only two types of properties, those

with strong adverse selection and those without any adverse selection. In reality, one would

expect that there are more than two types of properties, that there are different strengths of

adverse selection and hence gaps with different sizes. This will smooth out Figure 7, but we

should still expect that the probability of sale increases in the bank’s maximum bid at some

prices slightly below the judgment amount and slightly above the judgment amount.

6 Data

The Clerk & Comptroller’s auction website provides service for sales on the foreclosed properties

in Palm Beach county, Florida, US. The website provides a platform for the banks (plaintiff,

to whom property owners hold liability) and potential buyers (mosty realtors), to meet in this

peculiar marketplace. The ClerkAuction conducts foreclosure sales on all business days, which

provides a great deal of data on these sales.

We collected data on foreclosure sales from the website between January 21, 2010 and

November 27, 2013. Our data record all transaction details on these sales, including winning

bid, winner identities, and judgment values.
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Our dataset contains 43,015 auctions with a total judgment amount of $13.3bn. The sum

of winning bids is $3.3bn. Table 1 reports the summary statistics for main variables. The

variable bank winning indicates that 84% of auctions under study ended up having properties

transferred to bank’s ownership.

Table 1: Summary statistics

Variable Mean Std. Dev. Min Max

bank winning 0.83 0.37 0 1
number of realtors 2.14 1.56 0 14

Variables with original scales
winning bid 76,150.47 181,014.49 100.00 15,800,100.00
judgment amount 308,740.00 1,308,200.93 135.00 121,296,126.62

Variables normalized by judgment amount
winning bid 0.31 1.53 2.24e-06 249.63

We now turn to empirical tests of our hypotheses. Figure 8 shows a graph with the empirical

cumulative distribution of bids normalized by the judgment value. Observe the similarity in

shape of the curves in Figures 2 and 8. In both there is bunching of the bank’s bids at the

judgment value. Note that for the numerical example in Figure 2 we assumed that the bank’s

and the realtor’s distributions of valuations are the same, hence the overlap for bids above the

judgment value. However, this does not necessarily have to hold; indeed Figure 8 suggests that

this is not the case empirically.

Next, we plot the probability of sale as a function of the bank’s public maximum bid

(Figure 9). The most striking feature of the graph is that the probability of sale increases with

the bank’s reserve (i.e. maximum bid) just before and just after the judgment value.

This is exactly what theory predicts in case that there is heterogeneity in terms of adverse

selection (see Figure 7). Further, observe that there is no gap below or above the judgment

amount. This suggests that for some houses, adverse selection plays no role and one basically

has an independent private value auction. For other auctions, there is adverse selection.

Figure 9 smooths sale as a function of the bank’s maximum bid under the assumption that

there is no discontinuity. Even without assuming a discontinuity, the figure suggests that this
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Figure 8: CDFs of bids (Normalized by judgment values). Bank wins in 35,904 auctions, broker
wins in 6,830 auctions.
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Figure 9: Probability of sale to a realtor as a function of the bank’s maximum drop-out price
(i.e. the bank’s reserve price) (symmetric nearest neighbor smoothing). Dots denote individual
observations (at the top if the house goes to a realtor, at the bottom if the bank keeps the
house).
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Figure 10: Probability of sale as a function of the bank’s reserve price. Locally linear kernel
regression with the data split at p/vJ = 1 (confidence interval: 95%, kernel: Epanechnikov,
bandwith selection: rule-of-thumb (ROT) as described in Fan, J., and I. Gijbels. 1996. Local
Polynomial Modelling and Its Applications. London: Chapman & Hall).

function is discontinuous at vJ . We also ran a locally linear kernel regression, splitting the data

set at p/vJ = 1 as shown in Figure 10. Figure 11 shows the same regression as Figure 10, but

based on data generated by a Monte Carlo simulation based on our model.

7 Securitization

There is an ongoing controversy about the securitization of mortgages in the U.S. Often, the

claim is made that securitization was one of the main causes of the financial crisis. According to

this view, securitization led to banks being to lax when handing out mortgages, knowing that

holders of securitized assets and the Government Sponsored Enterprises Freddie Mac and Fannie

Mae would ultimately pay the bill. An opposing view is that a lack of securitization caused

the crisis: during the crisis, the issuing of securitized assets was drastically reduced, leading to

less liquidity for banks, which forced banks to cut back on lending and hence exacerbating the

crisis.

We first briefly describe the securitization of mortgages. First, the originating bank grants

a mortgage to the home owner. In order to get liquidity, the originating bank sells the cash
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Figure 11: Estimation based on data generated by a Monte Carlo simulation, using the same
estimation procedure as shown in Figure 10. Probability of sale as a function of the bank’s
reserve price. Locally linear kernel regression with the data split at p/vJ = 1 (confidence
interval: 95%, kernel: Epanechnikov, bandwith selection: rule-of-thumb (ROT) as described
in Fan, J., and I. Gijbels. 1996. Local Polynomial Modelling and Its Applications. London:
Chapman & Hall).

flows from a pool of mortgages to a securitization agency, typically one of the Government

Sponsored Enterprises Freddie Mac and Fannie Mae. The securitization agency splits the pool

of assets into tranches and sells the tranches to investors on the capital market.

Since we have the name of the plaintiff in each foreclosure auction, we can categorize

mortgages as securitized vs non-securitized. We use a simple classification rule, we classify

a mortgage as securitized if the name of the plaintiff contains at least one of the following

keywords: ”TRUST”, ”ASSET BACKED”, ”ASSET-BACKED”, ”CERTIFICATE”, ”SECU-

RITY”, ”SECURITIES”, ”HOLDER”. This simple categorization does give false negatives

(for some securitized mortgages none of the keywords shows up in the name of the plaintiff),

but almost no false positives.

We report descriptive statistics for securitized versus non-securitized mortgages in Table 2.

Figures 12 and 13 show the probability of sale as a function of the bank’s public maximum

bid for securitized and non-securitized mortgages. One can see that for securitized mortgages
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Table 2: Descriptive statistics for securitized and non-securitized mortgages.

Price Judgment Price
Judgement value #

value

All auctions 76,150 308,740 0.313 43,015
(181,014) (1,308,201) (1.532)

Securitized 87,256 344,098 0.277 14,087
(119,882) (990,335) (2.505)

Non-securitized 70,742 291,522 0.330 28,928
(204,047) (1,437,471) (0.658)

the increase in the probability of sale just below and just above the judgment amount is much

less pronounces. This is consistent with the theory that adverse selection plays less of a role

for securitized mortgages, since the trustee of the mortgage pool is less likely to have an

informational advantage over brokers than a local bank.

8 Non-Judicial Foreclosures

In this paper we have developed a theory of judicial foreclosures, i.e. foreclosures that are orga-

nized by a court. Roughly half of the states in the U.S. (including Florida) only allow judicial

foreclosures. The other half of the states allow both judicial and non-judicial foreclosures. In

a non-judicial foreclosure, the lender typically has the power of sale and can seize and sell the

house without going through a court. The implication of this is that, under common values,

the bank’s information will become known to the realtor. The bank will market the property,

and will allow prospective buyers to inspect it, thereby revealing xS to them.

Note that comparing the utility of the original owner would be trivial: with non-judicial

foreclosures, the original owner does not get anything, whereas with a judicial foreclosure, he

may get something, so he is trivially better off.

Therefore, instead of the original owner’s utility, we will compare overall welfare in judicial

and non-judicial foreclosures. Note that we only need to consider the allocation rule, since

transfers do not matter for welfare. An allocation rule consists of the probability QS(xB, xS)

that the seller gets the house and the probability QiB(xB, xS) that buyer i gets the house as

a function of the seller’s signal xS and the vector of buyers’ signals xB = (xiB)ni=1. Welfare is

29



0
.2

.4
.6

.8
1

p
ro

b
a

b
ili

ty
 o

f 
s
a

le

0 .5 1 1.5
public maximum bid/judgment amount

Securitized Mortgages

Figure 12: Probability of sale to a realtor as a function of the bank’s maximum drop-out
price (i.e. the bank’s reserve price) (symmetric nearest neighbor smoothing) for securitized
mortgages (bank wins in 2,671 auctions, broker wins in 577 auctions). Dots denote individual
observations (at the top if the house goes to a realtor, at the bottom if the bank keeps the
house).
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Figure 13: Probability of sale to a realtor as a function of the bank’s maximum drop-out
price (i.e. the bank’s reserve price) (symmetric nearest neighbor smoothing) for non-securitized
mortgages (bank wins in 7,724 auctions, broker wins in 1,644 auctions). Dots denote individual
observations (at the top if the house goes to a realtor, at the bottom if the bank keeps the
house).

30



then the expected sum of utilities for a given allocation rule:∫ ∞
0

...

∫ ∞
0

[
n∑
i=1

QiB(xB, xS)uB(xiB, xS) +QS(xB, xS)uS(xS)

]
dFB(x1B)...dFB(xnB)dFS(xS)

(18)

Observe that uB(xB, xS) > uS(xS) iff xB > xS since uB(x, x) = x and uB and uS are weakly

increasing in their arguments. Therefore, (18) is maximized by giving the house to the bidder

with the highest signal x. Formally, the first-best allocation rule is

Q∗S(xB, xS) =

{
1 if xS > maxi x

i
B,

0 otherwise,

and

Qi∗B(xB, xS) =

{
1 if Q∗S(xB, xS) = 0 and xiB > xjB for all j 6= i,

0 otherwise.

As usual, an arbitrary tie-breaking rule can be specified for the zero-probability event that two

signals are exactly the same.

For a non-judicial foreclosure auction, we assume that the bank sells the house in a standard

auction with the same buyers with the same valuations showing up as in a judicial foreclosure

auction. However, the bank is able to transmit the information to the realtors directly, by

advertising the property and allowing inspections. Thus the nonjudicial foreclosures will be

described by independent private values model, with xS directly revealed to the relators.

Independent Private Values In an independent private values setup, the bank sets the

reserve price equal to J−1B (xS) for all values of xS in a non-judicial forceclosure. Thus the

marginal buyer’s cutoff is also equal to J−1B (xS). In a judicial foreclosure, the marginal buyer

type is given by J−1B (xS) for xS < J−1B (vJ) and is equal to xS for xS > vJ .

Figure 14 shows the boundaries of the different allocation rules for the one buyer case.

In first-best the buyer gets the house, if the realization of signals is above the 45 degree line

(dashed). For judicial foreclosures, the buyer gets the house above the dotted blue line. For

non-judicial foreclosure, the buyer gets the house above the sold red line. It is straightforward

to show that welfare is higher with judicial foreclosures than with non-judicial foreclosures,

since the deadweight loss of monopoly (the area between the dashed and solid line for judicial,

the area between the dashed and the dotted line for non-judicial foreclosures) is smaller.
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Figure 14: Judicial versus non-judicial foreclosure with independent private values. Lines
separating the regions in which the seller and in which the buyer gets the house for first-best
allocation (black dashed 45 degree line), for judicial foreclosure (solid red), and non-judicial
foreclosure (blue dotted).
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Common Values With adverse selection, the situation is more complicated as illustrated

in Figure 15 for the one buyer case. The blue dotted line corresponds to the non-judicial

foreclosure and comes from the solution under private values, where the realtor knows xS . The

martial buyer type with whom the xS-type bank will trade is founds at the solution to the

“marginal revenue equals cost” equation,

JB(xnonjudB (xS), xS) = xS .

The red solid line is the allocation rule for the judicial foreclosure implied by the seller’s pricing

behavior derived in our paper, i.e. XB(pS(xS)). Observe that, due to the signalling premium,

the solid line is above the dotted line for xS < x2B. However, since the judicial auction is fully

efficient for xS > x2B, the solid line is below the dotted line for xS > x2B. Hence, it is ambiguous

whether the welfare would be larger or smaller for non-judicial foreclosures. The answer to this

question would involve estimating a structural model of the foreclosure auction. This is left for

future work.

It should be noted that we are ignoring any possible differences in administrative costs for

judicial and non-judicial foreclosures. A full welfare analysis would have to take account such

differences as well.

9 Conclusions

We develop a novel theory of foreclosure auctions. Our theory has the following main empir-

ically testable predictions: (i) that banks’ bids are bunched at the judgment amount, (ii) if

all auctions observed exhibit a common value component, there are gaps in banks’ bids just

above and just below the judgment amount, (iii) if there are both independent private values

and common value component auctions, there will be no gaps, but non-monotonicity of the

probability of sale in the reserve (the probability of sale increases with the reserve just below

and just above the judgment amount). Using a novel data set, we show that predictions (i) and

(iii), but not (ii) are consistent with the data. This can be interpreted as both independent

private values and common value component auctions showing up in the data set. Further,

the data is consistent with the claim that adverse selection plays less of a role for securitized

than for non-securitized mortgages. This is consistent with the idea that local banks with
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Figure 15: Judicial versus non-judicial foreclosure with a common value component. Lines
separating the regions in which the seller and in which the buyer gets the house for first-best
allocation (black dashed 45 degree line), for judicial foreclosure (solid red), and non-judicial
foreclosure (blue dotted).
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non-securitized mortgages have better information about the common value component than

non-local banks who act as trustees for pools of securitized mortgages. Further, we show that

judicial foreclosures generate higher welfare than non-judicial foreclosures in an independent

private values setup. A welfare comparison between judicial and non-judicial foreclosures with

a common value component is left for future work.
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