
Airports, Air Pollution, and Contemporaneous Health

Wolfram Schlenker♣ and W. Reed Walker♠

October 2014

Abstract

We link daily air pollution exposure to measures of contemporaneous health for communities sur-
rounding the 12 largest airports in California. These airports are some of the largest sources of
air pollution in the United States, and they experience large changes in daily air pollution emis-
sions depending on the amount of time planes spend idling on the tarmac. Excess airplane idling,
measured as residual daily taxi time, is due to network delays originating in the Eastern United
States. This idiosyncratic variation in daily airplane taxi time significantly impacts the health of
local residents, largely driven by increased levels of carbon monoxide (CO) exposure. We use this
variation in daily airport congestion to estimate the population dose-response of health outcomes
to daily CO exposure, examining hospitalization rates for asthma, respiratory, and heart related
emergency room admissions. A one standard deviation increase in daily pollution levels leads to an
additional $540 thousand in hospitalization costs for respiratory and heart related admissions for
the 6 million individuals living within 10km (6.2 miles) of the airports in California. These health
effects occur at levels of CO exposure far below existing EPA mandates, and our results suggest
there may be sizable morbidity benefits from lowering the existing CO standard.
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The effect of pollution on health remains a highly debated topic. The US Clean Air Act (CAA)

requires the Environmental Protection Agency (EPA) to develop and enforce regulations to protect

the general public from exposure to airborne contaminants that are known to be hazardous to

human health. In January 2011, the EPA decided against lowering the existing CAA carbon

monoxide standard due to insufficient evidence that relatively low carbon monoxide levels adversely

affect human health. In order to assess the benefits of lowering the standard, accurate estimates are

needed that link contemporaneous air pollution exposure to observable health outcomes at levels

of pollution currently faced by local populations. However, these estimates are hard to come by

as pollution is rarely randomly assigned across individuals, and individuals who live in areas of

high pollution may be in worse health for reasons unrelated to pollution. Preferences for clean

air may covary with unobservable determinants of health (e.g., exercise) which can lead to various

forms of omitted variable bias in regression analysis. Moreover, heterogeneity across individuals

in either preference for, or health responses to, ambient air pollution implies that individuals may

self-select into locations on the basis of these unobserved differences. In both cases, estimates

of the health effects of ambient air pollution may reflect the response of various subpopulations

and/or spurious correlations pertaining to omitted variables. While recent research attempts to

address the issue of non-random assignment using various econometric tools such as fixed effects or

instrumental variables, these studies often focus on infant health over longer periods of time (Chay

& Greenstone 2003, Currie & Neidell 2005). Much less is known about short-term, daily effects

of ambient air pollution on the health of the more general population, such as the non-elderly,

non-child, adult population.1

We develop a framework for estimating the contemporaneous effect of air pollution on health

using variation in local air pollution driven by airport runway congestion. Airports are one of the

largest sources of air pollution in the United States with Los Angeles International Airport (LAX)

being the largest source of carbon monoxide in the state of California (Environmental Protection

Agency 2005). A large fraction of airport emissions come from airplanes, with the largest aggregate

channel of emissions stemming from airplane idling (Transportation Research Board 2008). We

show that airport runway congestion, as measured by the total time planes spent taxiing between

the gate and the runway, is a significant predictor of local pollution levels. Since local runway

congestion may be correlated with other determinants of pollution such as weather, we exploit the

fact that California airport congestion is driven by network delays that began in large airports

outside of California.2 A recent article in the New York Times (New York Times January 27, 2012)

1There is a larger literature in epidemiology which focuses on daily responses to air pollution (see e.g. Ito, Thurston
& Silverman (2007), Linn et al. (1987), Peel et al. (2005), Schildcrout et al. (2006), Schwartz et al. (1996)). The work
in our paper complements the existing epidemiological literature by focusing on issues pertaining to measurement
error, avoidance behavior, and self-selection bias in the context of susceptibility to pollution exposure. Each of these
issues is critically important to providing unbiased estimates of the causal relationship between pollution and health.
The instrumental variables approach in this paper exploits arguably exogenous pollution shocks that are unlikely to be
known by local residents, allowing us to simultaneously address issues of measurement error and avoidance behavior.
Recent work in economics and environmental health, discussed in more detail below, suggests that short run variation
in pollution exposure may be significant predictors of mortality and morbidity (Moretti & Neidell 2011, Knittel, Miller
& Sanders 2011).

2This relationship is well known within the transportation literature (Welman, William & Hechtman 2010). Opti-
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provides a useful motivation:

[Airplane] delays ripple across the country. A third of all delays around the nation each

year are caused, in some way, by the New York airports, according to the F.A.A. Or,

as Paul McGraw, an operations expert with Airlines for America, the industry trade

group, put it, “When New York sneezes, the rest of the national airspace catches a

cold.”

Our analysis hence links health outcomes of residents living near California airports to changes in

air pollution driven by runway congestion at airports on the East Coast. The identifying variation

in California pollution is caused by events several thousand miles away (e.g., weather in Atlanta),

which is unlikely to be correlated with determinants of health in California.

The goal of this paper is to identify the ways in which short run, daily variation in air pollution

affects population health. In doing so, this paper makes four primary contributions to the existing

literature in this area. First, while most existing literature focuses on the health impacts of infants

or elderly, we are able to examine the health responses of the entire population. We find that infants

as well as the elderly are most sensitive to ambient air pollution. At the same time, a one-unit

increase in pollution has much larger aggregate effects for adults aged 20-64, given their large share

of the overall population. Studies that focus on infants or the elderly significantly underestimate

overall health effects.

The second contribution of this paper is to estimate the contemporaneous effect of multiple

pollutants simultaneously. It has traditionally been difficult to decipher which pollutant is respon-

sible for adverse health outcomes since short-term fluctuations among ambient air pollutants are

highly correlated. Our solution to this identification problem is to rely on the fact that wind speed

and wind direction transport individual pollutants in different ways. By using interactions between

taxi time, wind speed, and wind angle from airports, we can pin down the direct effect of each

pollutant, while holding the others constant. We use over-identified models to instrument for sev-

eral pollutants simultaneously, an approach that was simultaneously developed in related work by

Knittel, Miller & Sanders (2011). We find that CO is responsible for the majority of the observed

increase in hospital admissions. This finding has direct policy implications. The EPA recently

decided to maintain the current CO pollution standard, citing a lack of evidence that reducing CO

below current ambient levels would improve population health outcomes.

We believe there are two additional features that set this paper apart from existing work in

both economics and epidemiology. Our paper is most closely related to the recent work of Moretti

& Neidell (2011) and Knittel, Miller & Sanders (2011) who also instrument daily pollution in

health regressions with variation in local transportation conditions (i.e. container shipping in Long

Beach, CA and automobile congestion in Central and Southern CA, respectively). Relative to these

papers and the existing literature, we believe this paper is the first to use the network structure of

mal airplane scheduling incorporates anticipated ripple effect. For example, Pyrgiotisa, Maloneb & Odoni (2013) use
queuing theory to simulate how delays propagate through the system. They quote a study that found a multiplier
effect of seven, i.e., each 1-hour delay of a particular airplane leads to a combined 7 hours delay for the airline.
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transportation to generate local variation in congestion that is driven by events that occur several

thousand miles away. This matters because one of the key drivers of transportation congestion is

local weather, and local weather is also likely to affect ambient pollution, violating the identifying

assumptions of the model. By way of example, we show that instrumenting local airport congestion

with network delays that are not correlated with local weather doubles our point estimates, relative

to the baseline case. We also explicitly model the spatial dispersion of air pollution emissions, as

it varies with wind speed, wind direction, and distance from the airport. Pollutant transport is

very locally heterogeneous, and failing to account for this spatial heterogeneity leads to bias when

estimating the population dose-response function.

The fourth contribution of this study is the use of newly available Emergency Discharge Data

to better capture the morbidity impacts of air pollution. Previous research has predominantly

focused on the effects of pollution on mortality or morbidity as measured in Inpatient Discharge

Records. Inpatient Discharge data consist only of observations for patients that stayed overnight

in a hospital, and thus exclude a large fraction of respiratory-related emergency room admissions

that do not require overnight hospital visits. We show that estimates using the more commonly

used Inpatient Discharge data substantially underestimate the morbidity impacts of air pollution,

relative to estimates from the combined Emergency Discharge and Inpatient Discharge datasets.3

In summary, our approach combines newly available data with arguably exogenous daily changes

in air pollution that originates several thousand miles away and is unknown to the local popula-

tion. The instrumental variables setting allows us to simultaneously address issues pertaining to

both avoidance behavior and classical forms of measurement error, each of which lead to significant

downward bias in conventional dose-response estimates. The primary estimation framework exam-

ines how zip code level emergency room admissions covary with these quasi-experimental increases

in air pollution stemming from airports.

We find that a one standard deviation increase in daily pollution explains roughly one third

of average daily admissions for asthma problems. It leads to an additional $540 thousand in hos-

pitalization costs for respiratory and heart related admissions of individuals within 10km of one

of the 12 largest airports in California. This is likely a significant lower bound of the social costs

as the willingness to pay to avoid a sickness might be significantly larger than the medical reim-

bursement cost (Grossman 1972). Our baseline IV estimates are an order of magnitude larger than

uninstrumented fixed effects estimates, highlighting the importance of accounting for measurement

error and/or avoidance behavior in conventional estimators. We find no evidence that airport

runway congestion affects diagnoses unrelated to air pollution such as bone fractures, stroke, or

appendicitis. We also present a variety of evidence in favor of a non-linear dose-response function.

As pollution levels increase the marginal effect of a 1 unit increase in pollution increases but at a

decreasing rate. This is consistent with thresholds at which the health effect of air pollution levels

off (i.e. the dose-response function is not convex over the levels of pollution we observe), and along

3Knittel, Miller & Sanders (2011) focus on infant mortality, while Moretti & Neidell (2011) examine morbidity
outcomes, but only for individuals of Emergency Room visits that eventually get admitted to an overnight stay as
the authors rely on the Inpatient Discharge data.
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the lines of what research in epidemiology has observed (Pope et al. 2009, Pope III et al. 2011).

We present several sensitivity checks of results that do not alter our conclusions. For example,

we focus on morning airport congestion in the East since it is possible that California airport delays

impact airports on the East Coast, which then feedback to California airports. Due to the difference

in time zones, very few flights from California reach East Coast airports before 12pm. Estimates

remain similar to our baseline estimates. A distributed lag model finds no evidence for delayed

impacts or forward displacement, i.e., that individuals on the brink of an asthma or heart attack

may experience an episode that would have otherwise occurred in the next few days anyway. A

Poisson model linking sickness counts to pollution levels gives comparable estimates to our baseline

linear probability model, which does not account for the truncation of daily sickness rates at zero.

Lastly, we find little evidence of treatment effect heterogeneity that would raise concerns pertaining

to forms of self-selection bias and/or the external validity of the underlying dose-response estimates.

The findings in this paper suggest that daily variation in ambient air pollution has economically

significant health effects at levels below current EPA mandates. We believe this is particularly im-

portant due to the fact that in January 2011, the EPA decided against lowering the existing CAA

carbon monoxide standard due to insufficient evidence that relatively low carbon monoxide levels

adversely affect human health. The maximum hourly CO concentration in our data is 7.5ppm

(see Appendix Table A2), which is below the ambient air quality standard of 35ppm for any 1-

hour reading or 9ppm for any 8-hour average, i.e., air quality levels were always within the limit.4

Yet, fluctuations in pollution levels significantly below the standard still have sizable health conse-

quences. While a full-fledged benefit-cost analysis would have to balance the cost of reducing CO

against the benefits, EPA indicated there were no appreciable benefits from lowering the standard

to begin with, which we find not to be the case.

1 Background: Airports, Airplanes, and Air Pollution

Regulators have long been aware of the pollution generated by cars, trucks, and public transit.

There have been countless legislative policies designed to curtail harmful emissions from these

sources (Auffhammer & Kellogg 2011). However, aircraft and airport emissions have only recently

become the subject of regulatory scrutiny, although little has been done to reduce or manage

emissions generated by airports and air travel. While there has been some effort to curtail the

substantial CO2 emissions generated by aircraft,5 there has been relatively little effort to control or

contain some of the more pernicious air pollutants generated by jet engines. This lack of regulatory

scrutiny can be traced back to the way in which pollutants are regulated in the United States

under the Clean Air Act. Current Federal law preempts all federal, state, and local agencies

except the Federal Aviation Administration from establishing measures to reduce emissions from

4The same is not true for NO2. The maximum 1-hour reading in our data is 136ppb, which is above the 1-hour
standard of 100ppb.

5The European Union has recently approved greenhouse gas measures, which oblige airlines, regardless of nation-
ality, that land or take off from an airport in the European Union to join the emissions trading system starting on
January 1, 2012.
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aircraft due to potential interstate and international commerce conflicts that might arise from other

decentralized regulations.6

Aircraft jet engines, like many other mobile sources, produce carbon dioxide (CO2), nitrogen

oxides (NOx), carbon monoxide (CO), oxides of sulfur (SOx), unburned or partially combusted

hydrocarbons (also known as volatile organic compounds, or VOCs), particulates, and other trace

compounds (Federal Aviation Administration 2005a). Each of these pollutants is emitted at differ-

ent rates during various phases of operation, such as idling, taxing, takeoff, climbing, and landing.

NOx emissions are higher during high power operations like takeoff when combustor tempera-

tures are high. On the other hand, CO emissions are higher during low power operations like

taxiing when combustor temperatures are low and the engine is less efficient (Federal Aviation

Administration 2005a).7 Even though the aircraft engine is often idling during taxi-out, the per

minute CO and NOx emissions factors are higher than at any other stage of a flight (Environmental

Protection Agency 1992). Combining this with the long duration of taxi-out times during peak

periods of the day, total taxiing over the course of a day can add up to a substantial amount.

Consistent with these facts, Los Angeles International airport is estimated to be the largest point

source of CO emissions in the state of California and the third largest of NOx (Environmental

Protection Agency 2005).

Airports provide a particularly compelling setting through which to estimate the contempo-

raneous relationship between air pollution and health. Not only are airports some of the largest

polluters of ambient air pollution in the United States but they also have extraordinarily rich data

on daily operating activity, detailing for each domestic flight the length of time spent taxiing to

and from the gate before takeoff and after landing. This allows for a precise understanding of the

aggregate amount of daily runway congestion at airports. Moreover, daily runway congestion at

airports exhibits a great degree of residual variation even after controlling for normal scheduling

patterns. Much of the variation in runway congestion is driven by network delays propagating from

major airport hub delays thousands of miles away. Network delays at distant airports serve as an

ideal instrumental variable for local pollution; the effect of a snow storm in Chicago on conges-

tion at LAX should be orthogonal to any other confounding influences of air pollution in the Los

Angeles area. In addition, local residents are likely unaware of increases in taxi time and hence

cannot engage in self-protective behavior. Lastly, every airport has detailed weather data, allowing

researchers to exploit the spatial distribution of airport-generated pollution. We can therefore es-

timate how areas downwind of an airport on a given day are disproportionately affected by runway

congestion relative to areas upwind. Understanding this spatial variation in pollutant transport

improves the efficiency of our estimates, while also providing important tests of the validity of our

research design.

6Currently, the Environmental Protection Agency has an agreement with the FAA to voluntarily regulate ground
support equipment at participating airports known as the Voluntary Airport Low Emission (VALE) program (United
States Environmental Protection Agency 2004).

7As a result, reducing engine power for a given operation like takeoff or climb out generally increases the rate of
CO emissions and reduces the rate of NOx emissions.
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2 Data

This project uses the most comprehensive data currently available on airport traffic, air pollution,

weather, and daily measures of health in California. This data is rich in both temporal and

spatial dimension, allowing for fine-grained analysis of how daily airport congestion impacts areas

downwind of an airport on a given day. The various datasets and linkages are described in more

detail below.

2.1 Airport Traffic Data

A useful feature of a study involving airports is the detailed nature of daily flight data. The

Bureau of Transportation Statistics (BTS) Airline On-Time Performance Database contains flight-

level information by all certified U.S. air carriers that account for at least one percent of domestic

passenger revenues. It has a wealth of information on individual flights: flight number, the origin

and departure airport, scheduled departure and arrival times, actual departure and arrival times,

the time the aircraft left the runway and when it touches down. We construct a daily congestion

measure for each of the 12 major airports in California by aggregating the combined taxi time of

all airplanes at an airport. This measure consists of (i) the time airplanes spend between leaving

the gateway and taking off from the runway and (ii) the time between landing and reaching the

gate. An interesting feature of aggregate daily taxi time is the large amount of residual variation

remaining after controlling for daily airport scheduling, weather, and holidays. We relate this

variation to local measures of pollution and health in our econometric analysis. One caveat of the

BTS data is that it only includes information for major domestic airline passenger travel.8 As long

as international flights are not treated differently in the queuing system and are hence colinear to

the taxi time of domestic flights, congestion of national flights should be a good proxy for overall

congestion.

We limit our analysis to the 12 largest airports in California by passenger count. These airports

are in alphabetical order (including airport call sign in brackets): Burbank (BUR), Los Angeles

International (LAX), Long Beach (LGB), Oakland International (OAK), Ontario International

(ONT), Palm Springs (PSP), San Diego International (SAN), San Francisco International (SFO),

San Jose International (SJC), Sacramento International (SMF), Santa Barbara (SBA), and Santa

Ana / Orange County (SNA). The locations of these airports are shown as dots in Figure 1.

Average flight statistics at each of these airports are reported in Table A1 of the appendix. There

is significant variation in daily ground congestion at airports: the standard deviation of daily taxi

time at the largest airport (LAX) is 1852 minutes. Once we account for year, month, weekday and

holiday fixed effects as well as local weather, the remaining variation is still 891 minutes. Most of

the airports are close to urban areas as they serve the travel needs of these populations. Seven

airports in California rank among the top 50 busiest airports in the nation according to passenger

8In January 2005, international departures (both cargo and passenger) accounted for 8.5% of total departures,
whereas cargo (both international and domestic) accounted for 5.9% of all United States airport departures (Depart-
ment of Transportation 2009).
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enplanement (Federal Aviation Administration 2005b).

A potential concern when linking daily airport activity to daily ambient air pollution levels is

that runway congestion in California airports may be highest in the late afternoon and evening.

This would lead us to erroneously misclassify some of the daily airport effects to the wrong day.

Appendix Figure A2 plots the distribution of aggregate taxi time within a day. Most ground

activity at airports is skewed towards the beginning of the day. We will address the sensitivity

of our estimates towards these issues of misclassification or across-day spillovers in subsequent

sections.

2.2 Pollution Data

We construct daily measures of air pollution surrounding airports using the monitoring network

maintained by the California Air Resource Board (CARB). This database combines pollution read-

ings for all pollution monitors administered by CARB, including information on the exact location

of the monitor. Data includes both daily and hourly pollution readings. We concentrate on the

set of monitors with hourly emission readings for CO, NO2, and O3 in the years 2005-2007.9 The

locations of all CO and NO2 monitors in relation to airports are shown in Figure 1.

A unique feature of pollution data is the significant number of missing observations in the

database. We therefore use the following algorithm when we aggregate the hourly data to daily

pollution readings: Our measure of the daily maximum pollution reading is simply the maximum

of all hourly pollution readings. The daily mean is the duration-weighted average of all hourly

pollution readings. We define the duration as the number of hours until the next reading.10 We

prefer this approach to simply taking the arithmetic average of all hourly readings on a day since

hourly pollution data exhibit great temporal dependence. A missing hourly observation is better

approximated by the previous non-missing value than the daily average. We also keep track of the

number of observations per day. In a sensitivity check (not reported) we rerun the analysis using

only monitors with at least 20 or 12 readings per day.11

We create daily zip code pollution measures by taking the average monitor reading of all mon-

itors within 15km of a zip code centroid, weighting by the inverse distance between the monitor

9While data exists for other pollutants in California, we limit our analysis to using CO, NO2 as they are directly
emitted by airplanes and have better coverage than PM10. O3 forms from VOC and NOx. In a sensitivity check we
do not find that O3 pollution levels are impacted by airport congestion. Nevertheless, we present sensitivity analyses
that include O3 and PM10 as controls with little effect on our results. While monitor data exists as far back as 1993,
portions of our hospital data, described further in this section, exists only from 2005 onwards.

10Readings occur on the hour of each day ranging from midnight to 11pm. If readings at the beginning of a day
(midnight, 1am, etc.) are missing, we adjust the duration of the first reading from midnight to the second reading.
For example, if readings occur on 3am, 5am, and 8am, the 3am reading would be assigned a duration of 5 hours and
the 5am reading would be assigned a duration of 3 hours. By the same token, if the last reading of a day is not 11pm,
the duration of that last reading is from the time of the reading until midnight.

11If a monitor has not a single reading for a day, we approximate it’s value in a three step procedure: (i) we derive
the cumulative density function (cdf) at each monitor; (ii) take the inverse-distance weighted average of the cdf for
a given day at all monitors with non-missing data; (iii) we fill the missing observation with the same percentile of
the station’s cdf. For example, if surrounding monitors with non-missing data on average have pollution levels that
correspond to the 80th percentile of their respective distributions, we fill the missing value of a station with the 80th
percentile of it’s own distribution of pollution readings. This procedure gives us a balanced panel.
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and the zip code centroid.12 Summary statistics are given in Panel A of Table A2 in the appendix.

Since we have both the longitude and latitude of all airports and zip code centroids, we are able to

derive (i) the distance between the airport and a zip code, and (ii) the angle at which the zip code

is located relative to the airport. In order to leverage the spatial features of our data, we normalize

the angle between a zip code centroid and an airport to 0 if the zip code is lying to the north of

the airport. Degrees are measured in clockwise fashion, e.g., a zip code that is directly east of an

airport will have an angle of 90 degrees. The angle between an airport and a zip code allows us to

explore the link between airport emissions and pollution downwind of airports using the weather

data described next.

2.3 Weather Data

We use temperature, precipitation, and wind data in our analysis to both control for the direct

effects of weather on health (Deschênes, Greenstone & Guryan 2009) and also to leverage the

quasi-experimental features of wind direction and wind speed in distributing airport pollution from

airports. Our weather data comes from Schlenker & Roberts (2009), which provides minimum and

maximum temperature as well as total precipitation at a daily frequency on a 2.5×2.5 mile grid for

the entire United States.13 To assign daily weather observations to an airport or zip code, we use

the grid cell in which the zip code centroid is located. Summary statistics for the zip-code level

data are given in Panel B of Table A2 in the appendix.

Average wind speed and wind direction come from the National Climatic Data by the National

Oceanic and Atmospheric Administration’s (NOAA) hourly weather stations. Most airports have

weather stations with hourly readings. We construct wind direction, which is normalized to equal

zero if the wind is blowing northward and counted in clockwise fashion. If the angles of the zip code

and the wind direction are identical, the zip code is hence exactly downwind from the airport. An

angle of 180 degrees implies that the zip code is upwind from the airport. The hourly wind speed

and wind direction is aggregated to the daily level by calculating the duration-weighted average

between readings comparable to the pollution data above. The distribution of wind directions is

shown in Figure 2. Airports at the ocean predominantly have winds coming from the direction of

the ocean. For example, Santa Barbara, located on the only portion of the California coast that

runs east-west has winds blowing northward. Note again that we are measuring the direction in

which the wind is blowing, not from which it is coming. In our empirical analysis, we use this daily

variation in wind speed and wind direction to predict how pollution from airports disproportionately

impacts some zip codes more than others on a given day.

12Inverse distance weighting pollution measures has been used to impute pollution in previous research. See for
example, Currie & Neidell (2005).

13There is one exception: in a set of regression models where we estimate the effect of airport weather on taxi time
we use the closest non-missing daily weather station data from NOAA’s COOP station data set for each airport. This
is because Schlenker & Roberts (2009) use a spatial interpolation procedure that might result in artificial correlation
between weather data at airports due to the spatial interpolation technique.
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2.4 Hospital Discharge and Emergency Room Data

Health effects are measured by overnight hospital admission and emergency room visits to any

hospital in the state of California. We use the California Emergency Department & Ambulatory

Surgery data set for the years 2005-2007.14 The dataset gives the exact admission date, the zip code

of the patient’s residence (as well as the hospital), the age of the patient, as well as the primary

and up to 24 secondary diagnosis codes. An important limitation of the Emergency Department

data is that any person who visits an ER and is subsequently admitted to an overnight stay drops

out of the dataset. This is done to prevent double counting in California’s hospital admissions

records, as overnight hospital stays are logged in California’s Inpatient Discharge data. Therefore

we also obtained Inpatient Discharge data for all individuals who stayed overnight in a hospital

in the years 2005-2007. In our baseline model we focus on the sum of emergency room visits and

overnight stays in a zip code-day to avoid non-random attrition in the ER data. Focusing only on

emergency room admittance would suffer from selection bias as higher pollution levels (and more

severe health outcomes) could result in more overnight stays, yet the emergency room numbers

would actually appear smaller.

We count the daily admissions of all people in a zip code who had a diagnosis code pertaining to

three respiratory illnesses: asthma, acute respiratory, and all respiratory. Note that each category

adds additional sickness counts but includes the previous. For example, asthma attacks are also

counted in all respiratory problems. We also count heart related problems, which Peters et al.

(2001) have shown to be correlated with pollution. Finally, we include three placebos: stroke, bone

fractures, and appendicitis.15 In our baseline model, we count a patient as suffering from a sickness

if either the primary or one of the secondary diagnosis codes lists the illness in question.

We merge the zip code level hospital data with age-specific population counts in each zip code

obtained from both the 2000 and 2010 Censuses. We use the weighted average between the 2000

(weight 0.4) and 2010 (weight 0.6) counts, as the midpoint of our data is 2006. We limit our analysis

to the 164 zip codes whose centroid lies within 10km of an airport and which have at least 10000

inhabitants.16 The total population of these 164 zip codes is around 6 million people, or roughly

one sixth of the overall population of California at the time. Summary statistics for the zip codes

in the study are given in Panel C of Appendix Table A2. We use these age-specific population

counts to construct daily hospitalization rates for each zip code. Table A3 provides sickness rates

per 10 million inhabitants for both the entire population as well as population subgroups of those

over 65 years of age and under 5 years of age.

14The Emergency Room data was not collected prior to 2005.
15The exact ICD-9 codes are: asthma: [493, 494); acute respiratory: [460,479), [493,495), [500,509), [514,515),

[516,520); all respiratory: [460, 520); heart problems: [410, 430); stroke [430, 439); bone fractures [800, 830);
appendicitis: [540, 544).

16The latter sample restriction excludes 0.8 percent of the total population that lives in a zip code whose centroid
is within 10km of an airport but has less than 10000 inhabitants.
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2.5 External Validity - Populations Close to Airports

Our analysis focuses on areas within 10km of airports. This raises the broader question as to

how our estimated results generalize to populations outside of the 10km airport radius. Table A4

investigates this question by examining zip code characteristics from the 2000 Census. We present

three comparisons: First, we look at zip codes that are in our sample in columns (1a)-(1c) but

divide them into zip codes whose centroids are within [0,5]km and (5,10]km of an airport. Second,

we compare zip codes within 10km of an airport versus neighboring zip codes that are between

10 and 20km of an airport in columns (2a)-(2c). Third, we compare zip codes within 10km of an

airport to all other zip code in California in columns (3a)-(3c).

For the first two sets of comparisons, few comparison tests are significant, roughly at a rate that

should happen due to randomness. In other words, areas [0,5]km from an airport are comparable

to areas (5,10]km or (10,20]km.17 On the other hand, the third set of comparisons shows that areas

within 10km are not comparable to the rest of the state of California, which includes more rural

areas. Zip codes closer to airports are on average more urban, more populated, wealthier, and

have higher housing prices. Therefore, we would caution against interpreting the estimated dose

response relationship as representative for the entire population at large. From the standpoint of

airport externalities, the population close to airports is the population of interest. Moreover, much

of the air pollution regulation in the United States is spatially targeted towards urban areas (i.e.

those areas with higher degrees of ambient air pollution), and in that case, these estimates may be

more appropriate for regulatory analysis than a dose response function averaged over individuals

in both urban and rural locations.

3 Empirical Methodology

We are estimating the link between ground level airport congestion, local pollution levels, and

contemporaneous hospitalization rates for major airports in the state of California. To begin, we

consider the effects of increased levels of airport traffic congestion on local measures of pollution.

3.1 Aggregate Daily Taxi Time and Local Pollution Levels

Ambient air pollution is a function of the distance between a point source and the receptor loca-

tion, as well as many other atmospheric variables including, but not limited to, wind speed, wind

direction, humidity, temperature, and precipitation. To model the effects of increases in aggregate

airport taxi time on pollution levels, we adopt the following additive linear regression model

Model 1: pzat = α1Tat +WztΦ+ weekdayt +montht + yeart + holidayt︸ ︷︷ ︸
ZztΓ

+νza + ezat (1)

1747% of Californians live in a zip code within 20km of an airport.
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where pollution pzat in zip code z that is paired with airport a on day t is specified as a function

of taxi time Tat and a vector of zip-code level controls Zzt that include weather controls Wzt.18

Our baseline regressions include 17 weather controls: A quadratic in minimum and maximum

temperature, precipitation and wind speed (8 terms) as well as 9 terms for wind direction that are

included in equation (3) below.19 To model this relationship formally, we define wind direction by

the cosine of the difference between the wind direction and the direction in which the zip code is

located. The variable will be equal to 1 in the case that the angle in which the wind is blowing

equals the direction in which the zip code is located, and the variable will be equal to zero when they

are at a right angle (the difference is 90 degrees). The vector Wzt includes all possible time-varying

interactions between distance, wind speed and angle (up and downwind) to control for pollution

formation not directly influenced by taxi time. We also control for temporal variation in pollution

by including weekday fixed effects (weekdayt), month fixed effects (montht), and year fixed effects

(yeart) as well holiday fixed effects (holidayt) to limit the influence of airport congestion outliers.20

In a sensitivity check (available upon request), we instead include day fixed effects, i.e., one for

each of the 1095 days, and the results remain robust. Since there may be time-invariant unobserved

determinants of pollution for any given zip code, all regressions include zip code fixed effects, νza.

The parameter of interest is α1, which tells us the effect of a 1000 minute increase in aggregate

daily ground congestion on local ambient air pollution levels. Increased airplane taxiing leads to an

increase in airplane emissions and presumably increases in ambient air pollution. Hence, we would

expect this coefficient to be positive.

We also estimate models similar to equation (1), where we interact taxi time (or instrumented

taxi time) with the distance between an airport and the monitor. The idea would be to allow the

marginal effect of taxi time to differ based on monitors that were closer relative to further from the

airport. This results in the following equation:

Model 2: pzat = α1Tat + α2Tatdza + ZztΓ+ νza + ezat (2)

The additional coefficient is α2. The effect of taxi time on pollution should fade out with distance,

and we would hence expect this coefficient to be negative. The marginal effect of taxi time in model

2 is α1 + α2dza.

In a third step we also include interactions with wind direction and wind speed. The intuition is

that both wind direction and speed transport airport emissions across space. Thus, holding speed

constant, areas downwind should be relatively more affected by aggregate daily taxi time relative to

18In principle a zip-code z could be paired with more that one airport a. In practice, our baseline model uses zip
codes whose centroid is within 10km of an airport. Each zip code is assigned to exactly one airport as none is within
10km of two airports.

19Specifically, our weather controls include the terms corresponding to α3,α4 and α6 −α12 in equation (3) without
the interaction with taxi time Tat. Results are robust to different functional forms of weather control variables.
Additionally, we have estimated models that exclude all weather controls, and the coefficients for our primary pollutant
of interest (CO see below) are not significantly affected (although the standard errors increase).

20We include fixed effects for New Year, Memorial Day, July 4th, Labor Day, Thanksgiving, and Christmas, as well
as the three days preceding and following the holiday.
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areas upwind. To model this relationship formally, we let vat be the wind speed and czat the cosine

of the difference between the wind direction and the direction in which the zip code is located,

which can differ upwind czat > 0 and downwind czat < 0.21 Allowing for all possible time-varying

interactions we get:

Model 3: pzat = α1Tat + α2Tatdza + α3TatczatI[czat>0] + α4TatczatI[czat<0]

+α5Tatvat + α6TatdzaczatI[czat>0] + α7TatdzaczatI[czat<0]

+α8Tatdzavat + α9TatczatI[czat>0]vat + α10TatczatI[czat<0]vat

+α11TatdzaczatI[czat>0]vat + α12TatdzaczatI[czat<0]vat

+ZztΓ+ νza + ezat (3)

The new coefficients are α3 through α12. The predicted signs of these coefficients are less intuitive.

While higher wind speeds can clear the air they may also carry greater amounts of the pollutant

further distances.22 Moreover, downwind areas should have higher pollution levels relative to those

areas upwind, but aircrafts usually start against the wind. To better interpret the combination of all

of these interactions, we plot the marginal effects of this particular regression model using contour

plots in subsequent sections. These contour plots provide strong visual evidence of the relationship

between daily aggregate airport taxi time, wind speed, wind direction, and local pollution levels.

One potential cause for concern in equations (1)-(3) are any omitted transitory determinants of

local pollution levels that may also covary with ground congestion. If such omitted variables exist,

then least squares estimates of the coefficients on taxi time (e.g. α1) will be biased. This could

occur, for example, if weather adversely affected airport activity while also affecting local pollution

levels. To address this potential source of bias, we need an instrumental variable that is correlated

with changes in ground congestion at an airport but is unrelated to local levels of pollution. A

natural instrument comes from delays at major airport hubs outside California, which propagate

through the air network as connecting flights are delayed, leading to more ground congestion at

airports in California. The basic logic is that instead of smoothing out scheduling over the course

of the day, planes now arrive in more distinct blocks of time, leading to more waiting/taxiing by

those planes taking off as the runway space is shared. Specifically, we instrument taxi time at each

California airport with taxi time at major airports outside of California (Atlanta (ATL), Chicago

O’Hare (ORD), and New York John F. Kennedy (JFK)), in the following first stage regression:23

Tat = αa0 +
3∑

k=1

12∑

a=1

αakTktIa + ZatΘ+ ωat (4)

Appendix Figure A1 shows the location of those airports in relation to the California airports.

21The cosine is 0 if the angle is 90degrees, i.e., the separately estimated effect is different upwind and downwind.
22Recall that we are already controlling for overall wind speed in Wzt, but it has so far not been interacted with

taxi time or any other weather measure.
23These airports were chosen because they are among the largest airports in the country, they serve different

regions, and they are subject to different weather systems. The results are robust to different airport specifications.
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We allow the coefficients αak in equation (4) to vary by airport a by interacting taxi time with

an airport indicator Ia. These interactions allow for heterogeneity in the impact of delays from

major airports outside of California Tkt on each of the California airports Tat. This is important

as the impact of delays in Atlanta on California airports is likely to differ across airports. Our

baseline model utilizes 36 instruments (3 airports outside California interacted with each of the 12

airports in California).24 We use two-way cluster robust standard errors for inference, clustering on

both zip code and day. The two-way cluster robust variance-covariance estimator implicitly adjusts

standard errors to properly account for both spatial correlation across zip codes on a given day,

which are all due to the same network delays, as well as within-zip code serial correlation in air

pollution over time.25

The standard conditions for consistent estimation of α1 in the context of our 2SLS estimator are

that αak ̸= 0 in equation (4) and E[Tkt · eazt | Zzt, νza] = 0. Subsequent sections will show that the

first condition clearly holds; taxi time at airports on the East Coast leads to large increases in taxi

time at California airports. The second condition requires that the error term in the instrumental

variable regression be uncorrelated with taxi time at major airports outside of California, Tkt. This

condition would be violated if ground congestion in Chicago somehow co-varied with pollution levels

in California through reasons unrelated to California airport congestion due to network delays.

While the second condition is not explicitly testable, our data and research design permit

several indirect tests. First, we show evidence that taxi time in California is predicted by weather

fluctuations at airports inside and outside of California, but the reverse is not true: weather at the

major airports in California has no significant effect on taxi time at Eastern airports. Second, we

show that network delays propagate East to West rather than West to East. Taxi time in Atlanta is

not higher due to increased taxi time in Los Angeles.26 Further sensitivity checks show that using

only taxi time before noon at Eastern Airports or directly instrumenting with observed weather

variables at airports in the Eastern United States has little impact on our baseline estimates. In the

following sections we use the variation in California airport taxi time, and the spatial distribution

of emissions from an airport, as a predictor of local air pollution measures in order to better

understand contemporaneous relationships between elevated levels of air pollution and hospital

admissions.
24Model 2 instruments both Tat and Tatdaz with the taxi time outside California Tkt and Tktdaz, and thus uses 72

instruments. Similarly, model 3 instruments all 12 interaction of taxi time Tat at the 12 airports by the taxi time at
the three largest airports outside California Tkt, which results in 12×12×3 = 432 instruments.

25Standard errors clustering on both airport and day tend to be smaller than those using zip code and day. We
choose the latter when conducting inference, as they tend to be the more conservative of the two. Results with airport
and day clustering are available upon request.

26This issue is largely addressed by the difference in time zones between our instrumental variable airports and
California. Airplane traffic in the United States generally starts around 6am in the morning and slows down in the
evening. Due to the change in time zones, a flight that leaves at LAX in the morning to go to one of the airports
does not reach of the three airports outside California before noon. On the other hand, a flight that leaves at 6am
on the East Coast will reach California by 9am.
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3.2 Aggregate Daily Taxi Time, Local Pollution, and Health

To estimate the pollution-health association in our data we begin by assuming that the relationship

between health and ambient air pollution can be summarized by the following linear model:

yzat = βpzat + ZztΠ+ ηza + ϵzat (5)

where the dependent variable yzat is our observable measure of health in zip code z when paired

with airport a on day t.27 The remaining notation is consistent with the previous models, Zzt are

the same weather and time controls and ηza is a zip code fixed effect.

We focus primarily on respiratory related hospital admissions as defined by International Sta-

tistical Classification of Diseases and Related Health Problems ICD-9 (Friedman et al. 2001, Seaton

et al. 1995). The dependent variable yzat is the number of admissions to either the emergency room

or an overnight hospital stay where either the primary or one of the secondary diagnosis code fell in

one of the following admission categories: asthma, acute respiratory, all respiratory, or heart related

diagnoses. These daily zip code counts are scaled by zip code population so that the dependent

variable represents hospitalization rates per 10 million zip code residents. We also estimate models

for diagnoses unrelated to pollution: strokes, bone fractures, and appendicitis. These outcomes are

meant to serve as an important test for the internal validity of our research design. Since these

health outcomes are unrelated to pollution exposure, they should not be significantly related to

changes in pollution.

The coefficient of interest in this model is β which provides an estimate of the effect of a one

unit increase in pollution levels on daily hospitalization rates in zip code z and time t. Consistent

estimation of β requires E[pzat ·ϵzat | Zzt, ηza] = 0. The inclusion of a zip code fixed effect implicitly

controls for any time invariant determinants of local health that also covary with average pollution

levels. For example, if relatively disadvantaged households live in more polluted areas and have

poorer health for reasons unrelated to air pollution, then the zip code fixed effect will control for

this time-invariant unobserved heterogeneity. However, least squares estimation of β will be biased

if there are time-varying influences of both health and pollution (e.g., weather), and/or if there is

measurement error in pzat. Since we are proxying for pollution exposure using the average level

of pollution in a zip code on a given day, measurement error might be substantial (i.e. people’s

actual exposure to ambient air pollution might differ significantly from that which is reported by a

monitor).

Instrumental variables provide a convenient solution to the bias from omitted variables as well

as the bias introduced from measurement error in the independent variable.28 We use airport

ground congestion as an instrumental variable for local pollution levels in the following first stage

27Our analysis implicitly assumes that we can summarize health responses and behavior at the zip code level and
that the effect of interest, β, is stable over time and across airports.

28Instrumental variables only solves the bias from measurement error in the independent variable when the mea-
surement error is classical, namely mean zero and i.i.d. (Griliches & Hausman 1986).
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regression equation:

First Stage (Model 1): pzat = α1T̂at + ZztΓ+ νza + ezat (6)

The first stage regression, equation (6), estimates the degree to which instrumented airport taxi

time T̂at predicts local pollution levels in areas surrounding airports.29 The second stage equation

uses the predicted values from the first stage to estimate the impact of local pollution variation

on health. We also estimate versions of equation (6) using models that interact T̂at with distance,

wind speed, and wind direction as in equations (2) and (3), models 2 and 3, respectively.

Aside from the relationship between pollution and health, we are also explore “reduced form”

relationships between health outcomes and taxi time. These “reduced form” estimates are directly

policy relevant; namely, how does aggregate daily taxi time impact the health of nearby residents?

Understanding the degree to which variation in airport runway congestion directly impacts health

has implications for both managing congestion through either demand pricing mechanisms (e.g., a

congestion tax) or a more efficient runway queuing system.

3.3 Health Outcomes: Alternative Models

We supplement our baseline health regressions with several alternative models, exploring model

specification and model dynamics in more detail. These various regression models are described in

more detail below.

3.3.1 Health Outcomes: Non-linearities and Threshold Effects

There is reason to suspect that the relationship between pollution and health outcomes is non-

linear in the level of pollution. Do highly polluted days matter more for predicting negative health

outcomes than moderately polluted days? We test these hypotheses in two different ways. First, we

examine heterogeneity in the dose-response relationship between seasons of the year as pollution

levels of CO and NOx are higher in the winter months as shown in Figure A3. We interact all

variables in all regressions (first and second stage) with a dummy for summer (April-September),

thereby allowing the effect to be different for two subsets of the year. Marginal changes at higher

baseline levels of pollution (i.e. winter) should be larger than marginal changes at lower levels

of baseline pollution (i.e. summer) if the dose-response function was in fact non-linear. There

may be other important differences in health outcomes across seasons that could explain these

seasonal disparities. For example, pollen levels might be higher in the winter as most precipitation

29We are using predicted aggregate taxi time T̂at as an instrumental variable in these regression models. In
standard OLS regression, inference using generated regressors should be corrected for first stage sampling variance
(e.g. Murphy & Topel (2002)). When the generated regressor is used as an instrumental variable this is no longer the
case. Wooldridge (2002, p. 117) presents a weak set of assumptions for which the standard errors of 2SLS regressions
using generated instruments are unbiased. The key assumption turns on strict exogeneity between the error term
in the structural model and the covariates used to generate the instrument in the auxiliary regression. See Dahl &
Lochner (2012) for a similar approach, using a predicted variable as an instrumental variable in a 2SLS setting. These
issues are also discussed tangentially in Wooldridge (1997) and Wooldridge (2003).
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occurs in the winter and hence flowering occurs in early spring. A body that is weakened by the

elevated pollen levels might be more (or less) susceptible to pollution shocks. The nonlinearity we

are measuring might be an interaction effect with other substances and not directly related to the

average pollution level.

Second, we use the over-identified model 3 to instrument higher order polynomials of average

daily pollution levels and plot the responding dose-response function. Pollution spreads nonlinearly

in wind direction and wind speed, and our overidentified models allow us to identify higher-order

polynomials.

3.3.2 Health Outcomes: Dynamic Effects and Forward Displacement

By looking at the daily response of health outcomes to contemporaneous pollution shocks, we may

be neglecting important dynamic effects of pollution and health. For example, contemporaneous

exposure to air pollution may have lagged effects on health, leading people to seek care one or

two days after the initial pollution episode. Our contemporaneous regression models might miss

these important lagged impacts. Alternatively, health estimates may be driven by various forms

of forward displacement. Short-term spikes in pollution might lead individuals on the brink of an

asthma or heart attack to experience an episode that would have otherwise occurred in the next

few days anyway. Such behavior would overestimate the dose-response function as an increase in

hospitalization rates is followed by a decrease once pollution levels subside. We explore the dynamic

effects of pollution on health by estimating the following distributed lag model:

yzat =
3∑

k=0

βkpza(t−k) + ZztΠ+ ηza + ϵzat (7)

Instrumented pollution pzat is again obtained using either model 1, 2, or 3 from previous sections. In

the case of forward displacement, the spike in hospital admissions should be followed by a decrease in

admissions, and hence
∑3

k=0 βk < β, where the latter β comes from the baseline, contemporaneous

regression. In a sensitivity check (available upon request) we include 6 lags and 3 leads.

3.3.3 Health Outcomes: Heterogeneity and Self-Selection

Our baseline models rely upon the relatively unattractive assumption that the relationship between

pollution and health is the same for everyone in the population. If there is heterogeneity in a person’s

relative susceptibility to pollution (or in how people respond to adverse health outcomes), then

people may sort themselves into locations based on these observed or unobserved differences. This

heterogeneity may manifest itself through access to medical care or through biological differences in

the pollution-health relationship among certain segments of the population. Previous research (e.g.,

Chay & Greenstone (2003)) and results presented in subsequent sections of this paper suggest that

health effects differ by observable characteristics of the population. If people sort themselves based

on this underlying heterogeneity, then our estimates may identify the average effect of pollution on
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health for a nonrandom subpopulation in the data (Willis & Rosen 1979, Garen 1984, Wooldridge

1997, Heckman & Vytlacil 1998).

We address these issues in various ways. In a sensitivity check, we limit our estimates to

people 65 and older who have guaranteed health insurance in the form of Medicare. Thus, any

heterogeneity in hospitalization should no longer be driven by access to health insurance. Another

concern is that the severity of the particular health shock determines whether a person will seek

emergency care. We therefore also include heart problems as a category, which are severe enough

that patients will seek medical help independent of their insurance or financial situation. There

may also exist significant heterogeneity based on unobservable characteristics. Previous research

suggests that individuals engage in avoidance behavior on days where pollution is predicted to be

high (Neidell 2009), which implies there is likely heterogeneity in β as well as correlation between

β and pzat. In a previous version of this paper, we developed a framework to test whether selection

on unobserved heterogeneity leads to bias in our estimates (Schlenker & Walker 2011), but did not

find this to be the case. In the presence of self-selection biases, Wooldridge (1997) and Wooldridge

(2003) show that, under a fairly weak set of assumptions, standard instrumental variables (IV)

estimators consistently estimate the average treatment effect.30

3.3.4 Health Outcomes: Poisson Model

Since our dependent variable is measured as hospital visits in a given zip code day (before we

convert it to a sickness rate), we also estimate regression models that account for the non-negative

and discrete nature of the data. Specifically, we use a conditional (“fixed effects”) quasi-maximum

likelihood Poisson model (Hausman, Hall & Griliches 1984, Wooldridge 1999).31 To account for the

endogeneity of pollution exposure, we generalize the standard conditional Poisson model into an

instrumental variables setting. To do this, we adopt a control-function approach to the conditional

Poisson model (see e.g., Wooldridge (1997) and Wooldridge (2002)), whereby we include the residual

(êzat) from our first stage regression (i.e., the effect of taxi time on pollution) in our regression

equation of interest:

E[szat|pzat, Tat,Zzt, ηza] = ηza exp (βpzat + γ1êzat + ZztΠ) (8)

where szat are sickness counts (no longer rates), pzat is the observed pollution level in a county, and

êzat is the residual from one of the first-stage regression of pollution on taxi time using model 1, 2,

or 3. The fixed effect model allows the marginal effect of pollution to differ by zip code. The model

accounts for the fact that zip codes have different number of residents through the fixed effects ηza.

30The assumptions in Wooldridge (2003) involve the standard IV exclusion restriction, the assumption that the
unobserved heterogeneity is mean independent conditional on controls, and the conditional covariance of the random
coefficient heterogeneity and the treatment variable cannot depend on the controls or instruments (i.e. the regression
slope can be arbitrarily correlated with the treatment, but the conditional covariance cannot depend on the control
variables or the excluded instruments).

31The Poisson model is generally preferred to alternative count data models, such as the negative binomial model,
because the Poisson model is more robust to distributional misspecification provided that the conditional mean is
specified correctly (Cameron & Trivedi 1998, Wooldridge 2002).
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While including the first-stage error purges the estimates of the various selection biases outlined

above (Wooldridge 2002, p. 663), the standard errors need to be corrected for the variation coming

from the first stage estimation. To account for the first stage sampling error in the ezat, we bootstrap

the regression using a block-bootstrap procedure where we randomly draw the entire history of a

zip code with replacement.

4 Empirical Results

4.1 Aggregate Daily Taxi Time and Local Pollution Levels

We start by examining the effect of airport congestion on pollution levels in surrounding areas.

Appendix Table A5 gives the first-stage results when taxi time is instrumented using runway con-

gestion at the three major airports outside of California. There is one noteworthy result: For

major hubs in California, an increase in taxi time at East Coast airports increases taxi time as

delays propagate through the system. On the other hand, the sign reverses for smaller airports:

an increase in taxi time at East Coast airports decreases local taxi time. As Pyrgiotisa, Maloneb

& Odoni (2013) point out, propagation through the system can have “counter-intuitive results.” If

planes bunch up at one hub, the effects on close-by commuter airports can be the opposite as the

connectors now arrive more evenly spread, or because flights are canceled.32

Table 1 presents regression estimates using the specifications outlined in equation (1), (2), and

(3), presented in columns a, b, and c, respectively. Each column represents a different regression,

where the dependent variable in the columns (1a)-(1c) is the daily mean CO measured in parts per

billion (ppb). Columns (2a)-(2c) report regression estimates for daily mean NO2, while columns

(3a)-(3c) report estimates for ozone O3.33 Taxi time is reported in thousands so that the coefficients

in Table 1 report the marginal effect of a 1000 minute increase in taxi time on local pollution levels.

All regressions report robust standard errors, clustering on both zip code and day.34

Column (1a) suggests that a 1000 minute increase in taxi time increases ambient CO concen-

trations in zip codes within 10km of an airport by 45ppb (an 8% increase relative to the mean,

or 12% of the day-to-day standard deviation). Since the standard deviation of taxi time at LAX

32For example, flights out of Santa Barbara frequently get canceled if Los Angeles is backed up to reduce the queue
of incoming airplanes into Los Angeles.

33OLS estimates are presented in Appendix Table A6.
34The heavily over-identified models from equation (3) impose significant computational burdens when estimating

IV models containing two-way, cluster-robust standard errors. To circumvent this issue, we report the results from
running the first stage and then using the predicted values in the second stage without accounting for the fact that
we are using generated regressors in the second stage. Plugging in the predicted regressors is computationally much
easier because we don’t cluster all the first-stage regressions, instead we simply recover the point estimates from each
regression. Two-way cluster robust routines require estimating three variance-covariance matrices, one corresponding
to the first cluster group, one corresponding to the second cluster group, and one corresponding to the two-way
expansion of the two groups. Since we have more than a hundred instruments in model 3 (12 variables times 12
airports times 3 east coast airports = 432 first stage regressions), this imposes a significant computational burden.
To understand the likely magnitude of this bias, Appendix Table A7 reports two sets of standard errors for equations
(1) and (2): (i) the IV results; and (ii) running the first stage and using the predicted values in the second stage
with two-way clustered errors but no other adjustments. The results suggest that the standard errors from the IV
are quite similar to those from manual 2SLS.
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in Table A1 is 1852, a one-standard deviation increase in taxi time leads to 0.23 standard devia-

tion increase in CO pollution of the zip codes around LAX. Column (1b) of Table 1 includes an

interaction of taxi time with distance to the airport. The non-interacted taxi time coefficient now

reports the effect of airplane idling on pollution levels directly at the airport. The point estimate

implies that a one standard deviation increase in taxi time at LAX leads to 0.28 standard deviation

increase in CO levels in areas adjacent to LAX. The interaction term shows how this effect decays

linearly with distance.

Lastly, column (1c) reports the coefficients from the estimated version of equation (3) that

interacts taxi time with wind speed and wind angle from an airport. The F-test for the joint

significance of these coefficients is given in the last two rows of the table and shows that they are

highly significant. Since individual coefficients are difficult to interpret, we plot the marginal effect

of an extra 1000 minutes of taxi time for four wind speeds in the first row of Figure 3. Wind

speeds increase from left to right. The color indicates the marginal impact ranging from low (blue)

to high (red). If a zip code is directly downwind, it is on the positive x-axis, while areas upwind

are on the negative x-axis.35 Figure 3 makes clear that there is significant spatial heterogeneity

in the marginal effect of taxi time, and this heterogeneity depends on distance from an airport,

wind speed, and wind direction. As such, equation (3) (i.e. model 3) is best able to capture this

heterogeneity.

Columns (2a)-(2c) of Table 1 give estimates pertaining to the effect of taxi time on NO2 levels.

The results are comparable to those from CO, although the linear decrease in distance from the

airport is not significant. A one standard deviation increase in taxi time at LAX increases NO2

concentrations by roughly 1ppb, or 10% of the day-to-day standard deviation. The second row

of Figure 3 shows again that downwind areas are much more impacted than upwind areas. Both

Table 1 and Figure 3 show that the relative impact of NO2 is different than CO: the range of

marginal impacts for CO in Figure 3 is between -71% and +43% relative to the average impact

from column (1a) in Table 1. In contrast, the marginal effect of taxi time on NO2 varies between

-60% and +33% relative to the average effect from column (2a) of Table 1. The spatial pattern

is also somewhat different. In subsequent sections, we use these relative differences in pollutant

dispersion to jointly estimate the effect of both CO and NO2. Recall from Section 1 that CO

emissions are higher during low power operation, while NO2 is higher during high power operation.

Larger wind speeds require more thrust during takeoff and hence change the mix of CO and NO2

emissions.

Finally, columns (3a)-(3c) replicate the same analysis for ozone (O3), a pollutant that is not

35Areas downwind are more affected by taxi time than areas upwind. For the very highest wind speeds, the largest
marginal impact of taxi time can be found just upwind from the centroid of the airport (although the average marginal
impact remains highest downwind). This is possibly due to the fact that airplanes start against the wind and mostly
line up in the opposite direction, i.e., the direction in which the wind is blowing. Local wind is highly predictive of
congestion. When local wind is strong and the average local taxi time is high and the queue is long, an additional
unit of congestion due to network delays will hence “add” an additional plane that is idling upwind from the airport
centroid. For example, the four runways of LAX are between 2.7km and 3.7km long, which is significant as we are
examining monitors within 10km of the airport centroid.

19



directly emitted from airplanes.36 The results in Table 1 suggest that airport taxi time has little

significant impact on ozone levels, although some of the interaction terms are significant. In the

remainder of the analysis we focus on CO and NO2, the two criteria air pollutants for which

airplanes are large emitters, while acknowledging that we may be picking up the health effects of

other pollutants that are correlated with airplane emissions.

Our baseline pollution estimates presented above come from models in which airport taxi time

is instrumented with taxi time at large airports outside of California. We instrument taxi time

because delays and runway congestion might be correlated with local weather, which in turn might

impact pollution levels. In addition, there is likely measurement error in our taxi time variable as it

only includes domestic, commercial flight activity. While we control for weather in our regressions,

there might be unobserved weather (or other) variables that jointly impact both pollution and taxi

time. Appendix Table A6 replicates the baseline IV analysis of Table 1 using local taxi time at

California airports, which is not instrumented. The estimated effect is generally half as big for

CO and NO2. The smaller OLS estimates are consistent with adverse weather (e.g., precipitation)

causing both airport delays and at the same time reducing ambient air pollution. Alternatively,

these results could be driven by the well known attenuation bias stemming from measurement error

in fixed effects models. In the remainder of the paper we rely on instrumented taxi time stemming

from network delays.

We use taxi time at three major airports in our baseline regressions: Atlanta (ATL), Chicago

(ORD), and New York (JFK). Appendix Table A7 presents first-stage F-statistics if we instrument

taxi time at California on up to four airports outside of California. Recall that we allow the

coefficients to vary by airport, as network congestion will have different absolute effects on California

airports. Irrespective of whether we use 1, 2, 3, or 4 airports outside of California, the F-statistic

is well above 10. In our baseline model we use three airports that cover weather patterns in three

regions of the Eastern United States: Southeast (Atlanta), Midwest (Chicago), and Northeast

(New York JFK), and the first-stage F-stat is 50. The fourth large airport outside of California

that we include in columns (d) is Dallas/Fort Worth (DFW). While results are not particularly

sensitive to including DFW, we exclude it from our baseline specifications as it is significantly

closer to California airports and thus may be more endogenous than the other three airports (i.e.

Dallas/Fort Worth may be delayed because California airports are delayed).

Reverse causality is less of a concern for the other three airports: A flight that leaves a California

airport at 6am will not reach Atlanta, Chicago, or New York until roughly noon due to the change

in time zones. Table A8 in the appendix tests for reverse causality directly by regressing taxi time

at an airport on eight weather measures we generally include as controls: a quadratic in minimum

and maximum temperature, precipitation, as well as wind speed.37 The column heading gives the

36Ozone is formed through a complicated chemical reaction between both nitrogen dioxides and VOC’s in the
presence of sunlight. As Auffhammer & Kellogg (2011) have shown, increasing VOC in VOC-rich environments can
have no effect on ozone or slightly decrease it, while it will increase ozone if VOCs are limited compared to NOx.
This poses a challenge for the monotonicity assumption behind IV regressions.

37Weather measures in our baseline regression also include the direction in which the wind is blowing relative to
the direction in which the zip code is located. Since the dependent variable in the current regression is at the airport
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airport at which the congestion is measured while the row indicates the airport at which the weather

variables are measured.38 The table reports p-values of a hypothesis test pertaining to the joint

significance of the weather variables. The diagonal is highly significant as local weather measures

impact airport taxi time. While weather at the eastern airports (ATL, ORD, or JFK) sometimes

impacts taxi time at the two largest airports in California (LAX and SFO), the reverse is not true.

This is consistent with weather at Eastern airports causing local network delays that propagate

through the airspace and impact taxi time in California. The reverse direction does not hold.

California airports do not affect East Coast airports on the same day. This result is not simply an

artifact of there being less weather variation in California, as weather at LAX significantly impacts

taxi time at SFO.

We have also run two sensitivity checks to further rule out endogeneity through reverse causality,

the results of which are reported at the end of the subsequent section on health effects and shown in

Table A13. First, we only utilize the combined taxi time between 5am and noon at the three major

Eastern airports to rule out California feedback effects. This reduces the F-stat in model 1 from

50 to 35.5, but the results remain similar to baseline estimates. Second, instead of using taxi time

at the three major Eastern airports, we use the eight weather variables at each of these airports.

Since this effectively increases the number of instruments by a factor of eight, we no longer estimate

model 3 (which had 432 instruments to begin with). The F-statistic for the weather-instrumented

regression is 5436. Again, results remain similar to our baseline estimates but the standard errors

in the second stage increase. Going forward we instrument using the overall daily taxi time, as

it has a higher F-statistic than focusing only on the mornings yet is more tractable than using

weather measures, which would result in 3456 instruments in model 3.

We conduct two last robustness checks. First, since the variation in pollution due to delays

outside of California should be uncorrelated with weather in California, we have estimated models

(not reported) that exclude California weather controls altogether. Reassuringly, our baseline

estimates for the most important pollutant (CO, see below) are similar whether we include or

exclude California weather controls, but the error terms increase. Second, there may of course

be some omitted variable that affects congestion outside of California and health outcomes in

California. This hypothesis is not directly testable, but we have estimated models (available upon

request) which include taxi time at other CA airports as a control variable in our baseline reduced

form regressions, and the results remain very similar.

To put the magnitude of these effects into perspective, it is useful to consider the current

ambient air standards in place for CO as regulated by the EPA under the Clean Air Act. The

current one hour carbon monoxide standard specifies that pollution may not exceed 35 ppm (or

35000 ppb) more than once per year. California has their own CO standard which is 20ppm. A

one standard deviation increase in LAX airplane idling (1852 minutes) translates into an 83 ppb

increase (44.78 × 1.852) in carbon monoxide levels for areas within 10km of LAX using estimates

level and not the zip code level, these variables are not well defined and hence dropped.
38If we pair airport taxi time with weather from another airport, we also include the local weather measure as

control. The local weather measures are not included in the joint test of significance.
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from column (1a) of Table 1. Adding this number to the average daily maximum CO level at zip

codes from Panel A of Table A2 (1234 ppb), the estimated increase in pollution concentrations is far

below the current EPA standard. Similarly, for NO2, the current EPA 1-hour standard is 100 ppb.

Using estimates from column (2a) of Table 1, a standard deviation increase in LAX taxi time would

lead to a 1ppb increase in NO2 levels. Evaluated relative to the average daily maximum NO2 levels

of 35.5 ppb, these are again well below the ambient criteria standard. Note that the maximum of

the maximum daily NO2 levels is above the standard as some areas are out of attainment. The

remaining sections estimate the social costs of these congestion related increases in ambient air

concentrations by focusing on heath outcomes of the populations most affected by these emissions.

4.2 Effects of Taxi Time on Local Measures of Health

We begin by investigating the “reduced form” health effects of airports, relating aggregate daily

taxi time to local measures of health. Namely, how does variation in airport congestion predict

local health outcomes? Table 2 presents the results from a regression relating daily measures of

airport taxi time to local hospital admissions for the overall population as well as two susceptible

subgroups: individuals below 5 years of age and individuals aged 65 and above. The dependent

variable is measured as the daily sum of hospital and emergency room visits for persons living in

a particular zip code scaled by the population (per 10 million individuals) in that particular zip

code. The regressions are weighted by zip code population size, and taxi time is instrumented using

taxi time at three major airports in the East. The estimated coefficient on the taxi time variable

corresponds to the increased rate of hospitalizations per 10 million individuals in a zip code for an

extra 1000 minutes of taxi time. Using various diagnosis codes, we examine the impact of taxi time

on asthma, respiratory, and heart related admissions separately. As a falsification exercise, we also

estimate the incidence of taxi time on strokes, bone fractures, and appendicitis rates. The reported

standard errors are clustered on both zip code and day.

For the overall population (Panel A), all respiratory sickness rates as well as heart problems are

significantly impacted by taxi time, while the placebo effects for stroke, bone fractures, and appen-

dicitis are not significantly affected. Results become larger in magnitude for the at-risk age groups.

For the population 65 years and above, the incidence of stroke and bone fractures is marginally

significant at the 10% level. This may be do to statistical chance or may be explained by the fact

that senior citizens may also be more susceptible to sicknesses that covary with one another (e.g.,

a respiratory problem might make them fall and break a bone). Additionally, Medicare provides

doctors implicit incentives to add additional diagnosis codes to receive higher reimbursement rates.

Consistent with this explanation, models for which the dependent variable is measured only using

the primary diagnosis code, the placebo effects for 65 and older are no longer significant.

4.3 Hospital Admissions and Instrumented Pollution Exposure

Results thus far have shown that aggregate airplane taxi time generates variation in pollution levels

of nearby communities. We exploit this variation to examine the relationship between pollution and
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health explicitly. Table 3 summarizes regression results for various pollutants and illnesses using a

variety of traditional econometric specifications. Each entry corresponds to a different regression,

where the dependent variable is measured as hospital admission rates, and the independent variable

is the daily mean ambient pollution concentration in a particular zip code. As before, regression

estimates are weighted by zip code population and standard errors are clustered on both zip code

and day.39

The first row within each panel presents estimates from a pooled OLS version of equation (5)

without any controls Zzt, which suggests that increased ambient air concentrations lead to adverse

health outcomes for respiratory and heart problems. Since various pollutants are often correlated

with one another, these estimates should be interpreted with caution, as the pollutant of interest will

proxy for other correlated air pollutants. Each consecutive row adds more controls. The second row

uses time controls (year, month, weekday, and holiday fixed effects), and the third row additionally

adds weather controls (quadratic in minimum and maximum temperature, precipitation and wind

speed as well as controls for wind direction). To control for unobserved, time-invariant determinants

of health, the fourth row of each panel in Table 3 reports regression estimates from a model

using zip code fixed effects. The model is identified by examining how within zip code changes in

pollution are related to hospitalization rates of that particular zip code. Again, pollution is often

strongly correlated with health, although the estimates in the fourth row are usually smaller than

those in the first three. These smaller point estimates are consistent with time-invariant omitted

variables introducing bias into the estimates from rows one through three. Alternatively, classical

measurement error in the pollution variable may lead to significant attenuation bias in fixed effects

models (Griliches & Hausman 1986), and this may be responsible for the smaller point estimates

in the last row.

Aside from attenuation bias, fixed effects models may also suffer from biases introduced by any

unobserved, time-varying determinants of both pollution and health (e.g., weather). To explore this

issue further, Table 4 presents instrumental variable estimates of the pollution-health relationship,

using instrumented aggregate airport taxi time as an instrumental variable for daily mean pollution.

Table 4 presents results for both the overall population in Panel A as well as children below 5 in

Panel B and people aged 65 and above in Panel C.40 The three rows (labeled model 1-3) use (i)

taxi time, (ii) taxi time interacted with distance, and (iii) taxi time interacted with distance, wind

speed, and wind direction, respectively. These are the specifications outlined in equation (1), (2),

and (3) above.

The estimates in Table 4 are usually an order of magnitude larger than the OLS, fixed-effects

estimates from Table 3. To put the magnitudes into perspective: The average asthma sickness rate

for the overall population is 339 per 10 million inhabitants (Panel A1 and A2 of Table A3). The

39Unweighted regressions yield similar results and are available upon request.
40Results for the two remaining groups: children ages 5-19 and adults ages 19-64 are given in Appendix Table A9.

Children between 5 and 19 years of age show no sensitivity to pollution shocks. Conversely, the estimated dose-
response for adults are roughly comparable to the baseline estimates, which is not surprising since they are the
largest share of the overall population.
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asthma coefficient for CO (model 3) in Table 4 implies that a one standard deviation increase in

CO pollution leads to an additional 0.194×368 = 71 asthma attacks per 10 million people,41 which

is 21% of the daily mean.42 This suggests that fluctuations in air pollution are a major cause of

asthma related illnesses. For heart related problems, the relative magnitude is 18% of the daily

mean. It is important to note that the estimated CO effect may not necessarily be coming from CO

itself but from some other pollutant that’s co-emitted in jet exhaust that we do not observe (e.g.

a toxic VOC that’s emitted due to incomplete combustion). In addition to measurement error or

avoidance behavior, the fact that variation in CO comes from airplanes may be a further explanation

for the discrepancy between OLS and IV estimates. However, the Federal Aviation Administration

(2005a) suggests that aircraft engines produce the same types of emissions as automobiles, which

are the largest single source of carbon monoxide emissions in the United States.

Models 2 and 3 in Table 4 estimate over-identified models instrumenting pollution with both

taxi time and taxi time interactions. While estimates in model 2 are similar to those from model 1,

estimates from model 3 are generally smaller. The reason for the difference in magnitudes between

models 2 and 3 is not entirely clear, but we believe there are two competing explanations. The

first explanation stems from the inability of models 1 and 2 to capture the spatial heterogeneity

in the effect of taxi time. Recall that model 3 uses distance as well as wind direction and wind

speed. Marginal impacts of airport congestion vary greatly across space as shown in Figure 3, much

more than in a model that only includes distance. Failing to model this heterogeneity in pollution

exposure may lead to inaccurate scaling of the reduced form relationships in our IV/2SLS setting.

A competing explanation as to why model 3 estimates differ from models 1 and 2 stems from

measurement error in the location of exposure. While we know the exact location of each pollution

monitor and hence can correctly model the pollution surface in space, we only know the zip code

of a person’s residence and the hospital, not the exact location where they fell ill. As a result,

all models will pair sickness counts with incorrect pollution measures if they are not close to the

centroid of the zip code when they fell ill, but this might be aggravated by model 3 that explicitly

uses the spatial distribution of the pollution surface. Table A10 investigates this latter hypothesis

by looking at various subsets of the data. Panel A presents our baseline results, Panel B assigns

pollution data based on the zip code of the residence, while Panel C assigns pollution based on the

hospital zip code. A few results are noteworthy: first, the estimates using model specification 3 are

very close to the estimates using specification 1 and 2 in Panel B1 where we only count sicknesses

if both the zip code of the residence and hospital are within 10km of the same airport. On the

other hand, model specification 3 diverges in panel B2 where the hospital zip code is outside the

10km radius from airports, perhaps because we measure exposure less accurately (e.g. the person

might have been at work). In addition, panel B3 shows that there are no significant results where

41Panel A of Table A2 in the appendix shows that the standard deviation for CO is 368.
42This back-of-the-envelope calculation increases the pollution level in each zip code by the average overall standard

deviation of pollution fluctuations. Moreover, the average sickness rate is not population weighted. In subsequent
sections, we increase pollution in each zip code by the zip-code specific standard deviation in pollution fluctuations
and calculate the population-weighted average sickness count. The relative impact decreases to 17% of the daily
mean under the linear probability model and 19% under a Poisson count model.
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the hospital is within 10km of another airport, suggesting that we are not simply picking up a

daily pattern that is common to all airports.43 As a secondary bit of evidence, model 3 in Panel B

of our baseline Table 4 gives comparable point estimates to model 1 and 2 for children under the

age of 5, whom are more likely to be at home or in a close-by day care. Due to these competing

explanations for the differences across models, we continue to present all model estimates whenever

possible, allowing the reader to choose their preferred estimate.

There are two additional explanations for the discrepancies between models 3 and 1 and 2

which we find less salient. First, there is a well-known bias of 2SLS estimators when instruments

are weak and when there are many over-identifying restrictions (Bound, Jaeger & Baker 1995). In

linear models with iid errors, Stock, Wright & Yogo (2002) propose rule-of-thumb thresholds for F-

statistics for the first stage. However, in both the non-iid case (i.e. with clustered standard errors)

and in cases with multiple endogenous variables, less is known about the relationship between

the F-statistic and the properties of instrumental variables estimates. Baum, Schaffer & Stillman

(2003) suggest comparing the test statistic to the Stock, Wright & Yogo (2002) critical values

for the Cragg-Donald F statistic with a single instrument. According to this metric, results from

Table 1 suggest that model 3 is a strong first-stage predictor of local pollution levels with a F-

statistic that is 14 for CO pollution and to a lesser extent for NO2 pollution (F-stat of 5). The

first stage in model 3 is not as strong as in models 1 and 2, and the model is highly over-identified

with 12 excluded instruments. Bound, Jaeger & Baker (1995) show how the bias of 2SLS increases

in the number of instruments and decreases in the strength of the first stage. The bias of 2SLS

in the case of weakly identified or over-identified models is towards the OLS counterpart. Since

this is consistent with model 3 estimates in Table 4 being smaller than both model 1 and 2 but

still above the OLS estimates, Table A11 in the appendix estimates models 2 and 3 using Limited

Information Maximum Likelihood (LIML), which is median-unbiased for over-identified, constant-

effects models (Davidson & MacKinnon 1993). Results remain similar, which suggests that weak

instrument attenuation is less of a concern (Angrist & Pischke 2008). Finally, a second alternative

explanation for why model 3 gives lower point estimates is that the hourly wind data represent

snapshots of the wind speed and direction and include significant measurement error. However,

this is somewhat at odds with the fact that we find such significant spatial patterns in the pollution

regressions.

Panels B and C of Table 4 present estimates for children and senior citizens. While the dose-

response relationships are larger, so are average sickness rates. In relative terms, a one standard

deviation increase in CO pollution now causes a 37% increase in asthma cases for children under

5 compared to the average daily mean. On the other hand, a one standard deviation increase

in CO pollution causes a 24% increase in heart problems for people 65 and above. The higher

absolute sensitivity in Panel B and C suggests that there may exist significant heterogeneity in the

population response to ambient air pollution exposure. Since the population aged 65 and older

has guaranteed access to health insurance through Medicare, they may be more inclined to visit

43If we assign pollution based on the hospital zip code in panels C, results are generally not significant.
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the emergency room or hospital relative to the rest of the population, leading to larger estimated

effects. On the other hand, the relative magnitude compared to average sickness rates are only

slightly larger than for the overall population.

Columns (3)-(5) of each panel includes results for one of three placebos: strokes, bone fractures,

and appendicitis. Both strokes and appendicitis are severe enough that people should go to the

hospital. None of the results are significant for the overall population in Panel A. Consistent with

the reduced form evidence in Table 2, some of the coefficients in Panel C are significant at the

10% level. In Appendix Table A12 we replicate the analysis using only the primary diagnosis code.

None of the placebo regressions remain significant. Since we are interested in the overall effect of

pollution on hospitalization rates, our baseline models continue to count total sickness counts for

both primary and secondary diagnoses.

Appendix Table A13 further investigates the sensitivity of our IV estimates to different choices

of instrumental variables. As a point of comparison, Panel A replicates the baseline results of

Table 4 for all ages. Panel B instruments for pollution using only the taxi time between 5am and

noon at Eastern airports to rule out endogeneity through reverse causality. The results remain

robust to this change. Panel C goes one step further and instruments for taxi time at California

airports using only weather measures at the three major airports in the Eastern United States.

While the point estimates remain comparable, the standard errors generally increase.44

4.3.1 Jointly Estimating the Effect of Ambient Air Pollutants

A common challenge in studies linking health outcomes to pollution measures is that ambient air

pollutants are highly correlated. It is therefore difficult to determine empirically which pollutant

is the true cause of any observed changes in health. Our research design provides one possible

solution to the identification problem. Wind speed and wind direction differentially affect both CO

and NO2 dispersion patterns. Moreover, the rate of CO and NO2 emissions depend on the thrust

produced by the engine, and higher wind speeds require more engine thrust. Wind speed hence

impacts both the rate at which pollutants are produced and how they disperse. Table 5 estimates

the joint effect of both CO and NO2 on health using our first stage model with wind speed and

wind direction interactions (model 3).

In all specifications for which we have multiple endogenous variables, we report the Angrist &

Pischke (2008) conditional F-statistics in the tables and text, although these are somewhat hard to

interpret. As mentioned above, there are no rule-of-thumb thresholds for linear models with non-

iid errors or for models with multiple endogenous variables. When comparing the conditional F-

statistics to the Stock, Wright & Yogo (2002), the F-statistics suggest that the first stage is “weak”.

Perhaps more usefully, in all specifications for which we have multiple endogenous variables, we also

present two tests that are robust to issues pertaining to weak instruments, the Anderson-Rubin test

statistic and the closely related Stock-Wright (2000) S statistic. The null hypothesis tested in both

cases is that the coefficients of the endogenous regressors in the structural equation are jointly equal

44We do not estimate model 3 using weather variables as it would include 3456 instruments.
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to zero, and, in addition, that the overidentifying restrictions are valid. We use a cluster-robust

version of both test statistics that has the correct size even under weak identification (Chernozhukov

& Hansen 2008). The tests are equivalent to estimating the reduced form of the equation (with the

full set of instruments as regressors) and testing that the coefficients of the excluded instruments

are jointly equal to zero. In most specifications, inference based on the Anderson-Rubin and Stock-

Wright tests are consistent with inference based on the Wald test of the same null hypothesis. This

suggests that we are not drawing spurious inferences based on weak instruments. We also present

results using LIML because LIML is approximately median unbiased for overidentified models, and

the results are similar between 2SLS and LIML. When 2SLS is subject to weak instrument bias, the

2SLS estimand will diverge significantly from the LIML estimand toward the OLS estimand. Thus,

the fact that LIML and 2SLS deliver similar results assuages our concerns pertaining to significant

biases associated with weak instruments.45

Table 5 shows that the coefficient for CO remains comparable in size to our baseline estimates

from Table 4, albeit slightly larger. Conversely, the coefficients on NO2 switch sign and are mostly

negative and insignificant. We have also used the methods proposed by Chernozhukov & Hansen

(2008) to build non-spherical confidence regions for the multiple endogenous variables. Within the

joint parameter space of CO and NO2, the joint confidence region lies in the quadrant where CO

is positive and NO2 is weakly negative.46

We interpret these findings as evidence that the returns from regulating CO exceed those from

regulating NO2. One possible explanation for our results stems from the work done by Auffhammer

& Kellogg (2011). Figure 9 of Auffhammer & Kellogg (2011) shows that the Southern California

coastline, the location of most of the zip codes in our study, ozone generation seems VOC limited,

i.e., a reduction in VOC reduces ozone. Conversely, regions further inland and in Northern Califor-

nia are NO2 limited. Reducing NO2 in areas that are VOC limited has little effect on ozone, and

this may be the reason we observe small and insignificant results for NO2. In the remainder of the

paper, we therefore focus on CO.

4.3.2 Threshold Effects and Non-Linearities in the Pollution-Health Relationship

We explore the functional form of the dose-response function in four separate ways. First, Table A14

estimates the relationship separately for the summer (April-September) and the winter (October-

March). Each panel of the table provides the point estimates for the two seasons from a joint

regression where all variables and instruments are interacted with seasonal dummies as well as the

p-values of a test whether the coefficients are the same. Especially for the case of children under

the age of 5, the effect seem to be significantly higher during winter months when average pollution

levels are higher.

Recall that CO and NO2 pollution are higher during the winter months, so a nonlinear dose-

response function that has increasing marginal damages of pollution should exhibit larger coeffi-

45A similar diagnostic exercise of this nature can be found on pages p. 213-215 of Angrist & Pischke (2008).
46The full set of results, which consist of 2 dimensional plots for each hypothesis test, are available upon request.
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cients for the winter months. The coefficient for the winter months is almost always larger than

for the summer months for the illnesses that are related to pollution (columns (1a)-(2)). These

results are consistent with increasing marginal impacts of pollution. However, there may be other

important differences in health outcomes across seasons that could explain these disparities. An

obvious candidate for differences between the summer and the winter would be the level of ambient

ozone concentrations which tend to be much higher in the summer than the winter. In additional

results (Table A15), we control for ozone levels as a potential confound and the results are nearly

identical.

We have also explored models which estimate the possible non-linear effects of pollution on

health outcomes by including higher order polynomials. Models with higher order pollution terms

increase the number of endogenous variables in our regressions, and we use the overidentified

model 3 to instrument for the higher order terms. Since higher order polynomials can be difficult

to interpret, Figure A5 plots the predicted marginal effects of the pollutant on a range of health

outcomes as a function of the level of the pollutant on the given day. That is, we plot the dose

response function, where the y-axis measures the health response and the x-axis measures the level

of pollution. Since we are fitting non-linear models, the responsiveness is allowed to vary across

the x-axis. The solid red line displays the results from our baseline, linear dose-response model

(constant marginal damage). The green and blue dashed lines represent results from the quadratic

and cubic model, respectively. The 95% confidence interval for the cubic model is added in grey.

The four columns represent the four sicknesses that are related to pollution fluctuations (asthma,

acute respiratory, all respiratory, and heart problems, respectively). The predicted marginal effect is

plotted over the empirical distribution of daily pollution levels, from the 5th to the 95th percentile.47

While there is some evidence that respiratory problems (columns 1-3) exhibit increasing marginal

damages as pollution levels start to increase, again especially for children under the age of 5, the

confidence intervals reflect an inability to reject the null that the damage function is constant over

the observed range of CO values.

We have investigated non-linearities in two additional ways that are broadly consistent with the

findings above (results available upon request). First, we estimated models whereby we interacted

our daily pollution variation of interest with the mean pollution level in a zip code. This allows

the dose-response curve to vary (linearly) in the level of average pollution levels of a zip code.

If this interaction term is zero, this would support the hypothesis that the marginal effect of a

one unit increase in emissions is the same regardless of the level of ambient air pollution (i.e.

a constant, linear dose-response). If the coefficient on the interaction was significantly positive,

then this would support the hypothesis that the marginal effect of ambient air pollution on health

outcomes is progressively worse in areas with higher than average pollution levels. A challenge

with this particular test is that the average level of ambient air pollution in a zip code can be

correlated with many observed and unobserved factors that may contribute to heterogeneity in the

dose-response relationship. For example, people in more polluted areas may lack basic preventive

47Figure A4 shows the observed distribution of daily CO levels in our data set.
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health services and thus be more responsive to marginal changes in air pollution because of their

underlying health conditions rather than any non-linearity in the dose-response. Nevertheless,

results suggest (available upon request) that CO exhibits an increasing dose-response function.

Second, we explored the shape of the dose-response function in an OLS, fixed effects setting. While

we think the regression coefficient magnitudes may be attenuated by things such as measurement

error and/or avoidance type behaviors, the shape of the dose-response curve is likely less sensitive

to these concerns (unless of course the bias varied with the level of pollution - which might happen

through avoidance behavior such as “bad air day” alerts). We use this logic to explore the shape of

the dose-response function by fitting OLS, fixed-effect regression models that include polynomials

in the daily mean pollution level (i.e. quadratic, cubic, or quartic). We then plot the predicted

marginal effects of the pollutant on a range of health outcomes as a function of the level of the

pollutant on the given day (as in Figure A5). We see that for both asthma and respiratory illness,

the predicted marginal effect is increasing in the level of the pollutant. The patterns suggests some

sort of “threshold” by which the marginal effect of CO on health outcomes “flattens out”.

While the various results in this section come from different econometric models, the conclusions

pertaining to the shape of the dose-response function remain similar across the specifications. The

evidence suggests that the marginal effect of pollution is increasing in the level of the pollutant, but

at a decreasing rate. The concavity of the dose-response function is also consistent with modern

evidence from epidemiology (see e.g. Pope et al. (2009) and Pope III et al. (2011)).

4.3.3 Potential Confounding Sources of Variation

While our estimates suggest that CO is primarily responsible for the observed health responses,

there may be other sources of unobserved, concomitant variation that may lead to similar rela-

tionships. For example, while we estimate the effect of CO and NO2 in the same model, we do

not directly control for other pollutants such as ozone. It seems unlikely that ozone O3 is causing

the observed relationship. As mentioned above, Appendix Table A14 estimates the relationship

separately for the summer (April-September) and the winter (October-March). Ozone is higher

during the summer, while CO and NO2 are higher during the winter. The observed health effects

are larger and more significant during the winter time when ozone is not a big problem. We have

also estimated models that directly control for ozone (Table A15), and the results remain similar

and a bit more precise than our baseline estimates. The standard errors are also much larger for

the summer, especially in the case of acute respiratory problems and overall respiratory problems.

This is not surprising, because other pollutants like ozone also impact health outcomes, which will

be part of the error term.

One potential omitted variable that we cannot measure well is particulate matter, a pollutant

which may emerge from combustion emissions and has been shown in the past to increase infant

mortality due to respiratory causes (Currie & Neidell 2005). Particulate matter monitors in Cal-

ifornia are limited in both their spatial and temporal coverage; readings on ambient particulate

monitors are conducted every few days (as opposed to hourly data from other pollutants), and
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there are far fewer monitors. These limitations do not square well with our research design which

relies on high-frequency, daily variation across very localized areas. Nevertheless, we have directly

explored the degree to which particular matter predicts adverse health outcomes for the subsample

of days and locations for which we have particulate monitor data. Table A16 presents results using

the full set of particulate monitors for PM2.5.48 Table A16 suggests that PM does not have much

explanatory power in predicting health outcomes, although the standard errors preclude definitive

conclusions.49 Even still, we believe that some amount of caution is warranted in interpreting CO

as the unique pollutant-related causal channel leading to adverse health outcomes; there may be

in fact other unobserved sources of ambient air pollution that covary with CO that may also affect

health.

4.3.4 Inpatient versus Outpatient Data

Traditionally, studies have relied on Inpatient data sets to examine health responsiveness to various

external factors such as pollution. One limitation of such data is that a person only enters the

Inpatient data set if they are admitted for an overnight stay in the hospital. Many ER visits

result in a discharge the same day and hence never result in an overnight stay. Starting in 2005,

California began collecting Outpatient (Emergency Room) data. Previous published estimates all

replied on Inpatient data only. To better understand the differences between these two datasets as

well as compare our results to those from the previous literature, we replicate the analysis using

sickness counts from only the Inpatient data in Panels A1-C1 in Table A17 of the appendix. By the

same token, Tpanels A2-C2 only uses the Outpatient data.50 Not surprisingly, there is a significant

relationship between pollution and heart problems (column 2) in the Inpatient data for patient

ages 65 and above (as these conditions usually require an overnight stay), but no or very limited

sensitivity of asthma or overall respiratory illnesses (column 1a and 1c) to pollution. Conversely,

the Outpatient (ER) data shows a much larger sensitivity of respiratory problems to changes in

pollution. These results show the importance of Outpatient (ER) data when studying the morbidity

effects of ambient air pollution on health outcomes.

4.3.5 Temporal Displacement and Dynamics

Our baseline regression models examine only the contemporaneous effect of pollution on health.

Contemporaneous estimates may lead to underestimates of the total effects of air pollution on health

if health effects respond sluggishly to changes in pollution. Conversely, estimates may overstate the

hypothesized effect due to temporal displacement: if spikes in daily pollution levels make already

sick people go to the hospital one day earlier, contemporaneous models overestimate the true effect

48We only observe 2 PM10 pollution monitors within 15km of an airport (or equivalently 2 zip codes) which makes
our research design infeasible due to the importance of distance and wind angle/speed heterogeneity.

49All of the estimates in Table A16 come from limited information maximum likelihood estimates as opposed to
2SLS (although results are similar).

50Patients that enter the ER and are later admitted for an overnight stay are dropped from the ER data to avoid
double counting.
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associated with permanently higher pollution levels. If temporal displacement is important, the

contemporaneous increase in sickness rates should be followed by a decrease in sickness rates in

subsequent periods.

We investigate both of these issues by estimating a distributed lag regression model, including

three lags in the pollution variable of interest. Table 6 presents the distributed lag results of

pollution for the overall population. We present individual coefficients as well as the combined effect

(the sum of the four) in the last row of each panel. To preserve space, we only list the results for

the sickness categories that are impacted by changing CO pollution levels. Since regulatory policy

is concerned with the health effects of a permanent change in pollution, we focus on cumulative

effects of the model over the estimated 4 day horizon. The cumulative effect is slightly larger

than the comparable baseline results in Table 4. This might be because some individuals delay

hospital visits, although the exact dynamics are hard to determine empirically given the lack of

significance of the individual coefficients. We have also experimented with different leads/lags

(available upon request). For example, in a model with 3 leads and 6 lags, the sum of the six lags

and contemporaneous terms are similar in magnitude. The three leads, on the other hand, are not

jointly significant.

4.3.6 Count Model

Our baseline health estimates consist of linear probability models, relating the population-scaled

hospital admission rates to changes in pollution. To account for the non-negative and discrete

nature of the hospital admission data, Table 7 presents estimates from a quasi-maximum likelihood,

conditional Poisson IV estimator given in equation (8). In contrast to the baseline linear probability

health models, these models are not weighted. In addition, since we use a control function to address

issues pertaining to measurement error and omitted variables, we adjust standard errors for the

first stage sampling variation using a block-bootstrap sampling procedure, resampling zip codes.51

Analogous to the linear probability model, we find that respiratory illnesses and heart problems are

sensitive to pollution fluctuations, while the three placebos are not (with the usual caveat applying

to sickness counts for people aged 65 and above).

The coefficients no longer give marginal impacts and are difficult to interpret. In order to

compare the marginal impacts of pollution exposure and congestion across all of our models, Table 8

presents the predicted increase in sickness counts from (i) a one standard deviation increase in taxi

time, and (ii) a one standard deviation increase in pollution levels in each zip code. The results

are then added for all zip codes that are within 10km of an airport. The table also summarizes

population surrounding airports. Various admission categories are given in rows, while the columns

show the results for each of the 12 airports. The last column gives the combined impact among all

12 airports.

Panels A, B, and C give the predicted increase in hospital admissions using estimates from

51This is equivalent to clustering by zip code instead of two-way clustering by zip code and day. An unweighted
regression of the linear probability model (available upon request) that clusters by zip code gives comparable results.

31



the baseline linear probability model whereby pollution is instrumented using model 3 (pollution

instrumented with taxi time + interactions with distance and wind direction). These results are

presented for the overall population (Panel A), children below 5 years (Panel B), and senior citizens

65 and above (Panel C). Panel D gives the results for the overall population using the count model

shown in Table 7. Impacts are evaluated at the sample mean for the nonlinear Poisson model.

The results from the Poisson model are similar to those from the linear probability model in

Panel A. Panel E gives the average daily sickness count in 2005-2007 for the overall population for

comparison.

Pollution fluctuations have a large effect on the 6 million people living within 10km of one of

the 12 airports: A one standard deviation increase in a zip-codes specific pollution fluctuations

increases asthma counts for the overall population by 17% under the linear probability model and

19% under the Poisson count model.52 Overall, a one standard deviation increase in zip-code

specific daily pollution levels results in 107 additional admissions for respiratory problems and 49

additional admissions for heart problems, which are 17% and 9% of the daily mean. For respiratory

problems, infants only account for roughly one third of the overall impacts. Studies focusing only

on the impact on infants therefore would miss a significant portion of the overall impacts. Not

surprisingly, the elderly are responsible for the largest share of heart related impacts.

Airport congestion significantly contributes to the overall impacts: a one standard deviation

increase in taxi time increases respiratory and heart admissions by roughly 1% of the daily mean. At

LAX, the largest airport in California, a one standard deviation increase in taxi time is responsible

for roughly one-fourth of the effect of a one-standard deviation increase in pollution. On the other

hand, smaller airports (e.g., Santa Barbara or Long Beach) are responsible for a much lower share

of the overall pollution impacts.

4.3.7 Economic Cost

In order to monetize the health impacts associated with both pollution exposure, we use the

diagnosis-specific reimbursement rates offered to hospitals through Medicare.53 We view this mea-

sure as a lower bound on the total health costs for several reasons: first, our methodology measures

limited impacts on both a temporal and spatial scale. By focusing on day-to-day fluctuations, we

do not address the long run, cumulative effect of pollution on health. If these are sizable relative

to the contemporaneous effects, the overall cost estimate will be higher. Similarly, our focus has

been on individuals living within 10km of an airport. Some of our estimates suggest the marginal

52Recall that these estimates are smaller than what we reported under Table 4, where we increased pollution levels
in each zip code by the average overall standard deviation in pollution levels and took an average baseline sickness
rate that was not population weighted.

53This information comes from a translation between our hospital diagnosis codes (ICD-9) and Diagnosis Related
Group (DRG) codes. We used the crosswalk from the AMA Code Manager Online Elite. Using the set of DRG
codes, we calculate the Medicare reimbursement rates using the DRG Payment calculator provided by TRICARE
(http://www.tricare.mil/drgrates/). In accordance with Medicare reimbursement policy, we adjust the DRG pay-
ments using the average wage index in our sample. The average cost for respiratory problems and heart related
admissions are US$ 2702 and 6501, respectively.
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impact of taxi time extends beyond the 10km radius, in which case we would be understating the

overall effect. Second, we only count people that are sick enough to go to the hospital - anybody

who sees their primary care physician or stays home feeling sick will not be counted. Recent work

by Hanna & Oliva (2011) finds that pollution decreases labor supply in Mexico City, imposing

real economic costs on society not measured in our analysis. Similarly, Deschênes, Greenstone &

Shapiro (2012) find that increased levels of ambient NO2 lead to increased levels of spending on

respiratory related prescription medicines, an outcome not measured in our analysis. Third, and

most importantly, the marginal willingness to pay to avoid treatment is likely higher than the cost

of treatment. For example, severe heart related problems that are not treated within a narrow

time frame will likely result in death. The statistical value of life that EPA uses for its benefit-cost

analyses is around 6 million dollars, which is 1000 times as larger as our medical reimbursement

cost for heart-related problems. Individuals might be willing to pay significantly more than medi-

cal reimbursement rates to avoid illnesses that, if not adequately treated, have dire consequences.

Using the predicted increase in hospital visits under the linear probability model given in Table 8,

a one standard deviation increase in pollution levels amounts to about a $540,000 increase in hos-

pitalization payments related to respiratory and heart related hospital admissions under model 3.54

Since a one-standard deviation change in pollution is an extrapolation from the fluctuations caused

by airport congestion, we also analysis counterfactual where peak exposure levels are capped using

the nonlinear models of Figure A5 but find comparable results that are available upon request.55

5 Conclusions

This study has shown how daily variation in ground level airport congestion due to network delays

significantly affects both local pollution levels as well as local measures of health. In doing so, we

develop a framework through which to credibly estimate the effects of exogenous shocks to local

air pollution on contemporaneous measures of health. Daily local pollution shocks are caused by

events that occur several thousand miles away and are arguably exogenous to the local area. We

address several longstanding issues pertaining to non-random selection and behavioral responses

to pollution. In addition, we show how newly available data on the universe of emergency room

provides much cleaner insight as to the sensitivity of populations to ambient pollution levels, relative

to existing Inpatient Discharge records. Our results suggest that ground operations at airports are

responsible for a tremendous amount of local ambient air pollution. Specifically, a one standard

deviation change in daily congestion at LAX is responsible for a 0.28 standard deviation increase

54The corresponding number under model 1 is $920 thousand. These figures are calculated by taking the estimated
increase in hospital visits and multiplying it by the average Medicare reimbursement for each of the respective
diagnoses.

55Specifically, we test the sensitive of our results to assumed linear extrapolation through a counterfactual where
all CO levels in 2005-2007 are caped at half the observed mean, i.e., values that exceed half the historic mean are
reduced to equal half the historic mean. The implied pollution reduction is evaluated both using our linear baseline
model as well as a quadratic or cubic in pollution exposure. The predicted economic benefits are 520 thousand in
the linear model and 650 thousand in the two nonlinear models, suggesting that allowing for increasing marginal
damages of pollution might give slightly larger damages.
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in levels of CO next to the airport that fades out with distance. The average impact for zip codes

within 10km is 0.23 standard deviations.

When connecting these models to measures of health, we find that admissions for respiratory

problems and heart disease are strongly related to these pollution changes. A one standard de-

viation increase in daily zip-code specific pollution levels increases asthma counts by 17% of the

baseline average, total respiratory problems by 17%, and heart problems by 9%. Infants and the

elderly show a higher sensitivity to pollution fluctuations, and marginal damages of pollution seem

to be increasing in pollution for infants. At the same time, adults age 20-64 are also impacted. For

respiratory problems, the general adult population accounts for the majority of the total impacts

despite the lower sensitivity to fluctuations as they are the largest share of the population. A one

standard deviation increase in pollution levels is responsible for 540 thousand dollars in hospital-

ization costs for the 6 million people living within 10km of one of the 12 airports of our study. This

is likely a significant lower bound as the willingness to pay to avoid such illnesses will be higher

than the Medicare reimbursement rates.

Examining various mechanisms for the observed pollution-health relationship, we find that CO

is primarily responsible for the observed health effects as opposed to NO2 or O3. We find no

evidence of forward displacement or delayed impacts of pollution. We also find no evidence that

people in areas with larger pollution shocks are less susceptible or less responsive to pollution.

These estimates suggest that relatively small amounts of ambient air pollution can have sub-

stantial effects on the incidence of local respiratory illness. While EPA recently decided against

lowering the existing carbon monoxide standards due to lack of sufficient evidence of the harmful ef-

fects of CO at levels below current EPA mandates, we find significant impacts on morbidity. Recent

research suggests that the rates of respiratory illness in the United States are rising dramatically,

even as ambient levels of air pollution have continued to fall (Center for Disease Control 2011).

Why asthma rates continue to rise is an open question, but the increase in asthma rates is most pro-

nounced amongst African Americans who disproportionately live in densely populated, congested

areas. At the same time, traffic congestion in cities has been rising dramatically. Results presented

here suggest that at least part of the increased rate of asthma in urban areas can be explained by

increased levels of traffic congestion. The exact mechanism remain beyond the scope of the current

study, but this remains an interesting area for further research.56

56Currently, the highest rates of asthma incidence in the United States are found in Bronx, New York (Garg
et al. 2003). This area of northern New York City is bisected by 5 major highways, that rank among the most
congested in the United States (Bruner 2009).
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Figure 1: Location of Airports, Pollution Monitors, and Zip Codes

Southern California
 

Airport Location
CARB CO Pollution Monitor
CARB NO2 Pollution Monitor
Zip Code Centroid [0,10] km of Airport
Zip Code Centroid (10,oo) km of Airport

Northern California

Notes: The 12 largest airports in California are shown as dots. The location of CO pollution monitors in the California

Air Resource Board (CARB) data base are shown as x, the location of NO2 monitors as +. Zip code boundaries are

shown in grey. They are shaded if the centroid is within 10km (6.2miles) of an airport.
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Figure 2: Histogram of Daily Wind Direction At Airports
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Notes: Histogram of the distribution of daily directions in which the wind is blowing (2005-2007). Plot is normalized

to the most frequent category. The four circles indicate the quartile range. Airport locations are shown in Figure 1.

40



F
ig
u
re

3:
C
on

to
u
r
M
ap

s:
M
ar
gi
n
al

Im
p
ac
t
of

T
ax

i
T
im

e
on

P
ol
lu
ti
on

L
ev
el
s

C
a
rb

o
n

M
o
n
o
x
id
e
(C

O
)

D
ow
nw
in
d

−1
0k
m

10
km

−1
0k
m

10
km

D
ow
nw
in
d

−1
0k
m

10
km

−1
0k
m

10
km

D
ow
nw
in
d

−1
0k
m

10
km

−1
0k
m

10
km

D
ow
nw
in
d 10
km

−1
0k
m

10
km

13
.0
0

15
.0
4

17
.0
8

19
.1
2

21
.1
6

23
.2
0

25
.2
4

27
.2
8

29
.3
2

31
.3
6

33
.4
0

35
.4
4

37
.4
8

39
.5
2

41
.5
6

43
.6
0

45
.6
4

47
.6
8

49
.7
2

51
.7
6

53
.8
0

55
.8
4

57
.8
8

59
.9
2

61
.9
6

64
.0
0

N
it
ro

g
en

D
io
x
id
e
(N

O
2
)

D
ow
nw
in
d

−1
0k
m

10
km

−1
0k
m

10
km

D
ow
nw
in
d

−1
0k
m

10
km

−1
0k
m

10
km

D
ow
nw
in
d

−1
0k
m

10
km

−1
0k
m

10
km

D
ow
nw
in
d 10
km

−1
0k
m

10
km

0.
23

0.
25

0.
27

0.
29

0.
31

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

0.
46

0.
48

0.
51

0.
53

0.
55

0.
57

0.
59

0.
61

0.
63

0.
65

0.
68

0.
70

0.
72

0.
74

0.
76

N
ot
es
:
G
ra
p
h
s
d
is
p
la
y
th
e
m
ar
gi
n
al

im
p
ac
t
of

ta
x
i
ti
m
e
(p
p
b
p
er

10
00

m
in
u
te

of
ta
x
i
ti
m
e,

i.
e.
,
k
m
in
)
on

p
ol
lu
ti
on

le
ve
ls

ac
ro
ss

sp
ac
e
fo
r
d
iff
er
en

t
w
in
d
sp

ee
d
s.

T
h
e
x
-a
x
is

sh
ow

s
th
e
d
ir
ec
ti
on

in
w
h
ic
h
th
e
w
in
d
is

b
lo
w
in
g:

p
os
it
iv
e
x
-v
al
u
es

im
p
ly

th
e
lo
ca
ti
on

is
d
ow

n
w
in
d
,
n
eg
at
iv
e
va

lu
e
im

p
ly

th
ey

ar
e
u
p
w
in
d
.
P
oi
n
ts

on

th
e
y
-a
x
is

ar
e
at

a
ri
gh

t
an

gl
e
to

th
e
w
in
d
d
ir
ec
ti
on

.
T
h
e
w
in
d
sp

ee
d
s
in

co
lu
m
n
s
1-
4
ar
e
0.
1m

/s
,
1m

/s
,
2m

/s
,
an

d
3m

/s
co
rr
es
p
on

d
in
g
to

th
e
0.
1,

10
.6
,
34

.5
,
an

d

66
.5

p
er
ce
n
ti
le
s
of

th
e
d
is
tr
ib
u
ti
on

of
w
in
d
sp

ee
d
s
in

20
05

-2
00

7
at

th
e
12

ai
rp

or
ts

in
ou

r
st
u
d
y
(s
ee

F
ig
u
re

1)
.

41



T
ab

le
1:

P
ol
lu
ti
on

R
eg
re
ss
ed

O
n
In
st
ru
m
en
te
d
T
ax

i
T
im

e

C
O

P
o
ll
u
ti
o
n

N
O

2
P
o
ll
u
ti
o
n

O
3
P
o
ll
u
ti
o
n

V
a
ri
a
b
le

(1
a
)

(1
b
)

(1
c)

(2
a
)

(2
b
)

(2
c)

(3
a
)

(3
b
)

(3
c)

T
ax

i
T
im

e
44
.7
8∗

∗∗
56
.2
6∗

∗∗
52

.5
6∗

∗∗
0.
57

∗∗
∗

0.
67

∗∗
∗

0.
67

∗∗
∗

-0
.0
0

0.
08

0.
16

(5
.0
4)

(9
.4
8)

(1
0.
49

)
(0
.0
9)

(0
.1
5)

(0
.2
2)

(0
.0
9)

(0
.1
1)

(0
.2
0)

T
ax

i
x
D
is
ta
n
ce

-1
.6
2

-2
.1
3

-0
.0
1

-0
.0
2

-0
.0
1

-0
.0
3

(1
.2
2)

(1
.3
7)

(0
.0
2)

(0
.0
3)

(0
.0
1)

(0
.0
2)

T
ax

i
x
A
n
gl
e u

13
.1
6∗

0.
31

-0
.5
0∗

∗∗

(7
.7
8)

(0
.2
2)

(0
.1
8)

T
ax

i
x
A
n
gl
e d

5.
48

0.
05

0.
05

(6
.9
7)

(0
.1
8)

(0
.1
2)

T
ax

i
x
S
p
ee
d

-2
.0
5

-0
.0
8∗

0.
04

(1
.8
9)

(0
.0
4)

(0
.0
5)

T
ax

i
x
D
is
ta
n
ce

x
A
n
gl
e u

-0
.6
0

-0
.0
2

0.
05

∗∗

(1
.1
0)

(0
.0
3)

(0
.0
2)

T
ax

i
x
D
is
ta
n
ce

x
A
n
gl
e d

0.
16

-0
.0
1

-0
.0
1

(0
.8
9)

(0
.0
3)

(0
.0
2)

T
ax

i
x
D
is
ta
n
ce

x
S
p
ee
d

0.
55

∗∗
0.
01

∗
-0
.0
0

(0
.2
5)

(0
.0
1)

(0
.0
1)

T
ax

i
x
A
n
gl
e d

x
S
p
ee
d

1.
70

0.
10

∗
-0
.0
7

(2
.6
6)

(0
.0
5)

(0
.0
6)

T
ax

i
x
A
n
gl
e u

x
S
p
ee
d

-1
0.
41

∗∗
∗

-0
.1
9∗

∗
0.
26

∗∗
∗

(3
.7
4)

(0
.1
0)

(0
.0
9)

T
ax

i
x
D
is
t.

x
A
n
gl
e u

x
S
p
ee
d

1.
50

∗∗
∗

0.
03

∗∗
-0
.0
3∗

∗

(0
.5
0)

(0
.0
1)

(0
.0
1)

T
ax

i
x
D
is
t.

x
A
n
gl
e d

x
S
p
ee
d

-0
.6
3∗

-0
.0
1

0.
01

(0
.3
5)

(0
.0
1)

(0
.0
1)

O
b
se
rv
at
io
n
s

17
95
80

17
95
80

17
95

80
17

95
80

17
95

80
17

95
80

17
95

80
17

95
80

17
95

80
Z
ip

C
od

es
16
4

16
4

16
4

16
4

16
4

16
4

16
4

16
4

16
4

D
ay

s
10
95

10
95

10
95

10
95

10
95

10
95

10
95

10
95

10
95

F
-s
ta
t(
jo
in
t
si
g.
)

78
.4
8

42
.2
4

14
.1
1

39
.6
7

19
.8
0

4.
88

0.
00

0.
76

1.
26

p
-v
al
u
e
(j
oi
nt

si
g.
)

1.
33
e-
15

1.
66
e-
15

7.
89

e-
20

2.
68

e-
09

2.
00

e-
08

7.
48

e-
07

.9
77

3
.4
70

5
.2
45

2

N
ot
es
:

T
ab

le
re
gr
es
se
s
zi
p
-c
o
d
e
le
ve
l
p
ol
lu
ti
on

m
ea
su
re
s
on

ai
rp

or
t
co
n
ge
st
io
n

(t
ot
al

ta
x
i
ti
m
e
in

10
00

m
in
)
in

20
05

-2
00

7.
T
ax

i
ti
m
e
at

th
e
lo
ca
l
ai
rp

or
t
is

in
st
ru
m
en

te
d

w
it
h

th
e
ta
x
i
ti
m
e
at

th
re
e
m
a
jo
r
ai
rp

or
ts

in
th
e
E
as
te
rn

U
n
it
ed

S
ta
te
s.

A
ll

re
gr
es
si
on

s
in
cl
u
d
e
w
ea
th
er

co
n
tr
ol
s
(q
u
ad

ra
ti
c
in

m
in
im

u
m

an
d

m
ax

im
u
m

te
m
p
er
at
u
re
,
p
re
ci
p
it
at
io
n
an

d
w
in
d
sp

ee
d
as

w
el
l
as

co
n
tr
ol
s
fo
r
w
in
d
d
ir
ec
ti
on

),
te
m
p
or
al

co
n
tr
ol
s
(y
ea
r,

m
on

th
,
w
ee
k
d
ay
,
an

d
h
ol
id
ay

fi
x
ed

eff
ec
ts
),

an
d
zi
p
co
d
e
fi
x
ed

eff
ec
ts
.
R
eg
re
ss
io
n
s
ar
e
w
ei
gh

te
d
b
y
th
e
to
ta
l
p
op

u
la
ti
on

in
a
zi
p
co
d
e.

E
rr
or
s
ar
e
tw

o-
w
ay

cl
u
st
er
ed

b
y
zi
p
co

d
e
an

d
d
ay
.
S
ig
n
ifi
ca
n
ce

le
ve
ls

ar
e
in
d
ic
at
ed

b
y

∗∗
∗
1%

,
∗∗

5%
,
∗
10

%
.

42



T
ab

le
2:

S
ic
kn

es
s
R
at
es

R
eg
re
ss
ed

O
n
In
st
ru
m
en
te
d
T
ax

i
T
im

e

A
cu

te
A
ll

A
ll

B
o
n
e

A
p
p
en

-
A
st
h
m
a

R
es
p
ir
a
to

ry
R
es
p
ir
a
to

ry
H
ea

rt
S
tr
o
k
e

F
ra

ct
u
re

s
d
ic
it
is

(1
a
)

(1
b
)

(1
c)

(2
)

(3
)

(4
)

(5
)

P
a
n
el

A
:
A
ll

A
g
es

T
ax

i
T
im

e
13
.8
4∗

∗∗
24
.7
7∗

∗∗
33

.8
9∗

∗∗
19

.3
5∗

∗∗
2.
55

-1
.3
3

0.
26

(2
.7
2)

(7
.7
3)

(9
.8
2)

(5
.2
4)

(1
.7
1)

(2
.8
7)

(0
.6
8)

P
a
n
el

B
:
A
g
es

B
el
o
w

5
T
ax

i
T
im

e
24
.4
6∗

∗
84
.2
8

11
6.
12

∗
6.
63

∗
0.
80

2.
16

-0
.2
9

(1
1.
21
)

(5
1.
35
)

(6
2.
46

)
(3
.4
7)

(0
.9
4)

(5
.8
4)

(1
.3
8)

P
a
n
el

C
:
A
g
e
6
5
a
n
d

A
b
o
v
e

T
ax

i
T
im

e
36
.8
9∗

∗∗
63
.8
0∗

∗∗
10

0.
53

∗∗
∗

15
6.
54

∗∗
∗

22
.8
7∗

19
.1
3∗

0.
75

(1
1.
39
)

(1
6.
43
)

(2
5.
25

)
(3
6.
98

)
(1
2.
95

)
(9
.9
5)

(1
.2
1)

O
b
se
rv
at
io
n
s

17
95
80

17
95
80

17
95

80
17

95
80

17
95

80
17

95
80

17
95

80
Z
ip

C
od

es
16
4

16
4

16
4

16
4

16
4

16
4

16
4

D
ay
s

10
95

10
95

10
95

10
95

10
95

10
95

10
95

N
ot
es
:
T
ab

le
re
gr
es
se
s
zi
p
-c
o
d
e
le
ve
l
si
ck
n
es
s
ra
te
s
(c
ou

n
ts

fo
r
p
ri
m
ar
y
an

d
se
co
n
d
ar
y
d
ia
gn

os
is

co
d
es

p
er

10
m
il
li
on

p
eo
p
le
)
on

d
ai
ly

co
n
ge
st
io
n
(t
ax

i
ti
m
e
in

10
00

m
in
)
th
at

is
ca
u
se
d
b
y
n
et
w
or
k
d
el
ay

s
(t
ax

i
ti
m
e
at

th
re
e
m
a
jo
r
ai
rp

or
ts

in
th
e
E
as
te
rn

U
n
it
ed

S
ta
te
s)
.
A
ll
re
gr
es
si
on

s
in
cl
u
d
e
w
ea
th
er

co
n
tr
ol
s
(q
u
ad

ra
ti
c

in
m
in
im

u
m

an
d

m
ax

im
u
m

te
m
p
er
at
u
re
,
p
re
ci
p
it
at
io
n

an
d

w
in
d

sp
ee
d

as
w
el
l
as

co
n
tr
ol
s
fo
r
w
in
d

d
ir
ec
ti
on

),
te
m
p
or
al

co
n
tr
ol
s
(y
ea
r,

m
on

th
,
w
ee
k
d
ay
,
an

d

h
ol
id
ay

fi
x
ed

eff
ec
ts
),

an
d
zi
p
co

d
e
fi
x
ed

eff
ec
ts
.
R
eg
re
ss
io
n
s
ar
e
w
ei
gh

te
d
b
y
th
e
to
ta
l
p
op

u
la
ti
on

in
a
zi
p
co
d
e.

E
rr
or
s
ar
e
tw

o-
w
ay

cl
u
st
er
ed

b
y
zi
p
co

d
e
an

d

d
ay
.
S
ig
n
ifi
ca
n
ce

le
ve
ls

ar
e
in
d
ic
at
ed

b
y

∗∗
∗
1%

,
∗∗

5%
,
∗
10

%
.

43



T
ab

le
3:

S
ic
kn

es
s
R
at
es

R
eg
re
ss
ed

O
n
P
ol
lu
ti
on

A
cu

te
A
ll

A
ll

B
o
n
e

A
p
p
en

-
A
st
h
m
a

R
es
p
ir
a
to

ry
R
es
p
ir
a
to

ry
H
ea

rt
S
tr
o
k
e

F
ra

ct
u
re

s
d
ic
it
is

(1
a
)

(1
b
)

(1
c)

(2
)

(3
)

(4
)

(5
)

P
a
n
el

A
:
C
O

P
o
ll
u
ti
o
n

-
A
ll

A
g
es

N
o
C
on

tr
ol
s

0.
07
0∗

∗∗
0.
26

5∗
∗∗

0.
35

3∗
∗∗

0.
03

5
-0
.0
02

-0
.0
22

∗∗
∗

-0
.0
01

(0
.0
17
)

(0
.0
41

)
(0
.0
53

)
(0
.0
28

)
(0
.0
06

)
(0
.0
07

)
(0
.0
01

)
T
im

e
C
on

tr
ol
s

0.
03
0

0.
05

8
0.
07

0
-0
.0
22

-0
.0
14

∗
-0
.0
08

0.
00

1
(0
.0
24
)

(0
.0
57

)
(0
.0
75

)
(0
.0
40

)
(0
.0
08

)
(0
.0
10

)
(0
.0
01

)
T
im

e
+

W
ea
th
er

0.
05
6∗

∗
0.
04

7
0.
07

1
0.
00

2
-0
.0
05

-0
.0
12

-0
.0
01

(0
.0
28
)

(0
.0
68

)
(0
.0
91

)
(0
.0
52

)
(0
.0
10

)
(0
.0
12

)
(0
.0
01

)
T
im

e
+

W
ea
th
er

+
Z
ip

C
od

e
F
E

0.
01
1

0.
04

9∗
∗∗

0.
07

7∗
∗∗

0.
02

7∗
∗∗

-0
.0
01

-0
.0
07

∗
0.
00

2
(0
.0
07
)

(0
.0
18

)
(0
.0
22

)
(0
.0
08

)
(0
.0
03

)
(0
.0
04

)
(0
.0
01

)

P
a
n
el

B
:
N
O

2
P
o
ll
u
ti
o
n

-
A
ll

A
g
es

N
o
C
on

tr
ol
s

3.
1∗

∗∗
10

.7
∗∗

∗
14

.6
∗∗

∗
4.
3∗

∗∗
0.
6∗

∗∗
-0
.3

0.
1∗

∗

(0
.5
)

(1
.3
)

(1
.7
)

(1
.1
)

(0
.2
)

(0
.2
)

(0
.0
)

T
im

e
C
on

tr
ol
s

1.
7∗

∗
6.
0∗

∗∗
7.
9∗

∗∗
1.
0

-0
.1

0.
6∗

0.
1∗

∗

(0
.7
)

(1
.5
)

(2
.1
)

(1
.4
)

(0
.3
)

(0
.3
)

(0
.0
)

T
im

e
+

W
ea
th
er

4.
2∗

∗∗
8.
3∗

∗∗
11

.5
∗∗

∗
3.
0

0.
8∗

0.
7

-0
.0

(1
.0
)

(2
.6
)

(3
.6
)

(2
.4
)

(0
.5
)

(0
.5
)

(0
.1
)

T
im

e
+

W
ea
th
er

+
Z
ip

C
od

e
F
E

0.
1

1.
2∗

2.
5∗

∗∗
0.
9∗

∗∗
0.
1

-0
.0

0.
1∗

(0
.2
)

(0
.6
)

(0
.8
)

(0
.3
)

(0
.1
)

(0
.2
)

(0
.0
)

O
b
se
rv
at
io
n
s

17
95
80

17
95

80
17

95
80

17
95

80
17

95
80

17
95

80
17

95
80

Z
ip

C
od

es
16
4

16
4

16
4

16
4

16
4

16
4

16
4

D
ay

s
10
95

10
95

10
95

10
95

10
95

10
95

10
95

N
ot
es
:
T
ab

le
re
gr
es
se
s
zi
p
-c
o
d
e
le
ve
l
si
ck
n
es
s
ra
te
s
(b
as
ed

on
p
ri
m
ar
y
an

d
se
co
n
d
ar
y
d
ia
gn

os
is

co
d
es
)
on

d
ai
ly

p
ol
lu
ti
on

(p
p
b
)
in

20
05

-2
00

7.
E
ac
h
en

tr
y
is

a

se
p
ar
at
e
re
gr
es
si
on

.
C
ol
u
m
n
s
u
se

si
ck
n
es
s
ra
te
s
(c
ou

n
ts

p
er

10
m
il
li
on

p
eo
p
le
)
fo
r
d
iff
er
en

t
d
is
ea
se
s,

w
h
il
e
ro
w
s
u
se

d
iff
er
en

t
co
n
tr
ol
s.

T
h
e
fi
rs
t
sp

ec
ifi
ca
ti
on

(r
ow

)
in

ea
ch

p
an

el
h
as

n
o
co
n
tr
ol
s,

w
h
il
e
th
e
se
co
n
d
ad

d
s
ti
m
e
co
n
tr
ol
s
(y
ea
r,

m
on

th
,
w
ee
k
d
ay

as
w
el
l
as

h
ol
id
ay

fi
x
ed

eff
ec
ts
),

th
e
th
ir
d
ad

d
s
w
ea
th
er

co
n
tr
ol
s

(q
u
ad

ra
ti
c
in

m
in
im

u
m

an
d
m
ax

im
u
m

te
m
p
er
at
u
re
,
p
re
ci
p
it
at
io
n
an

d
w
in
d
sp

ee
d
as

w
el
l
as

co
n
tr
ol
s
fo
r
w
in
d
d
ir
ec
ti
on

),
an

d
th
e
fo
u
rt
h
ad

d
s
zi
p
co

d
e
fi
x
ed

eff
ec
ts
.

A
ll
re
gr
es
si
on

s
ar
e
w
ei
gh

te
d
b
y
th
e
to
ta
l
p
op

u
la
ti
on

in
a
zi
p
co
d
e.

E
rr
or
s
ar
e
tw

o-
w
ay

cl
u
st
er
ed

b
y
zi
p
co

d
e
an

d
d
ay
.
S
ig
n
ifi
ca
n
ce

le
ve
ls

ar
e
in
d
ic
at
ed

b
y

∗∗
∗
1%

,
∗∗

5%
,
∗
10

%
.

44



Table 4: Sickness Rates Regressed On Instrumented Pollution

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A: All Ages

Model 1: CO 0.311∗∗∗ 0.556∗∗∗ 0.761∗∗∗ 0.434∗∗∗ 0.057 -0.030 0.006
(0.065) (0.162) (0.207) (0.134) (0.039) (0.063) (0.015)

Model 2: CO 0.307∗∗∗ 0.550∗∗∗ 0.755∗∗∗ 0.419∗∗∗ 0.050 -0.030 0.003
(0.062) (0.163) (0.210) (0.128) (0.038) (0.064) (0.015)

Model 3: CO 0.194∗∗∗ 0.396∗∗∗ 0.515∗∗∗ 0.226∗∗∗ 0.020 -0.039 0.002
(0.047) (0.125) (0.165) (0.079) (0.030) (0.040) (0.011)

Model 1: NO2 24.5∗∗∗ 43.8∗∗∗ 59.9∗∗∗ 34.2∗∗∗ 4.5 -2.4 0.5
(6.2) (16.2) (20.5) (10.5) (3.1) (5.2) (1.2)

Model 2: NO2 24.3∗∗∗ 43.6∗∗∗ 59.8∗∗∗ 33.5∗∗∗ 4.2 -2.4 0.3
(6.1) (16.3) (20.8) (10.4) (3.1) (5.2) (1.2)

Model 3: NO2 12.4∗∗∗ 18.9∗ 24.2∗ 17.1∗∗ 0.7 -1.0 0.3
(4.0) (11.0) (14.2) (7.1) (2.2) (3.0) (0.9)

Panel B: Ages Below 5
Model 1: CO 0.565∗∗ 1.948∗ 2.683∗∗ 0.153∗ 0.018 0.050 -0.007

(0.240) (1.124) (1.353) (0.081) (0.021) (0.136) (0.032)
Model 2: CO 0.579∗∗ 1.930∗ 2.624∗ 0.127 0.020 0.064 -0.013

(0.235) (1.111) (1.356) (0.078) (0.023) (0.132) (0.034)
Model 3: CO 0.669∗∗∗ 2.166∗∗∗ 2.493∗∗ 0.075 0.023 -0.012 -0.009

(0.170) (0.796) (0.980) (0.057) (0.015) (0.122) (0.022)
Model 1: NO2 42.2∗∗ 145.3 200.2∗ 11.4∗ 1.4 3.7 -0.5

(20.5) (95.2) (117.3) (6.4) (1.6) (10.0) (2.4)
Model 2: NO2 43.2∗∗ 144.1 195.9∗ 9.5 1.5 4.8 -0.9

(20.2) (94.3) (117.6) (6.2) (1.7) (9.7) (2.5)
Model 3: NO2 43.6∗∗∗ 122.2∗ 140.8∗ 4.5 2.9∗∗ 3.7 0.6

(14.9) (67.7) (82.4) (4.6) (1.3) (9.3) (2.0)

Panel C: Ages 65 and Older
Model 1: CO 0.849∗∗∗ 1.469∗∗∗ 2.314∗∗∗ 3.604∗∗∗ 0.526∗ 0.440∗ 0.017

(0.312) (0.440) (0.642) (1.001) (0.297) (0.242) (0.028)
Model 2: CO 0.815∗∗∗ 1.413∗∗∗ 2.275∗∗∗ 3.529∗∗∗ 0.502∗ 0.409∗ 0.016

(0.288) (0.422) (0.637) (0.971) (0.302) (0.241) (0.028)
Model 3: CO 0.493∗∗ 0.696∗∗ 1.424∗∗∗ 1.937∗∗∗ 0.198 0.187 -0.025

(0.204) (0.309) (0.511) (0.620) (0.249) (0.161) (0.026)
Model 1: NO2 66.5∗∗∗ 114.9∗∗∗ 181.1∗∗∗ 282.0∗∗∗ 41.2∗ 34.5∗ 1.4

(22.8) (34.3) (52.3) (76.1) (24.2) (18.2) (2.2)
Model 2: NO2 66.5∗∗∗ 115.1∗∗∗ 181.4∗∗∗ 282.2∗∗∗ 41.2∗ 34.5∗ 1.4

(22.8) (34.3) (52.3) (76.2) (24.3) (18.2) (2.2)
Model 3: NO2 35.3∗∗ 38.9 75.8∗ 131.6∗∗∗ 3.6 12.2 -0.8

(14.2) (24.6) (41.3) (47.8) (16.5) (12.0) (1.6)
Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10 million

people) on daily instrumented pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is

instrumented on airport congestion (taxi time) that is caused by network delays (taxi time at three major airports

in the Eastern United States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes

surrounding an airport, while model 2 adds an interaction with the distance to the airport, and model 3 furthermore

adds interactions with wind direction and speed (columns (a)-(c) in Table 1). All regressions include weather

controls (quadratic in minimum and maximum temperature, precipitation and wind speed as well as controls for

wind direction), temporal controls (year, month, weekday, and holiday fixed effects), and zip code fixed effects.

Regressions are weighted by the total population in a zip code. Errors are two-way clustered by zip code and day.

Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.45



Table 5: Sickness Rates Regressed On Instrumented Pollution - Joint Estimation

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A: All Ages

Model 3: CO 0.222∗∗ 0.867∗∗∗ 1.189∗∗ 0.105 0.054 -0.127∗ -0.006
(0.106) (0.313) (0.476) (0.139) (0.049) (0.073) (0.017)

Model 3: NO2 -2.2 -40.1 -57.4 10.7 -2.9 7.6 0.7
(8.0) (25.6) (38.4) (13.4) (3.5) (5.6) (1.5)

F(1st stage) - CO 4.18 4.18 4.18 4.18 4.18 4.18 4.18
F(1st stage) - NO2 1.57 1.57 1.57 1.57 1.57 1.57 1.57
P(Anderson-Rubin) 0.0000 0.0000 0.0000 0.0012 0.0027 0.1418 0.0484
P(Stock-Wright S) 0.0413 0.0795 0.1141 0.1232 0.5319 0.4795 0.5710

Panel B: Ages Below 5
Model 3: CO 0.901 4.685∗∗ 5.388∗∗ 0.133 -0.073 -0.385 -0.102

(0.599) (2.167) (2.483) (0.142) (0.051) (0.355) (0.072)
Model 3: NO2 -18.8 -206.8 -237.6 -4.8 8.0∗ 30.9 7.7

(46.1) (174.9) (199.0) (11.5) (4.1) (27.3) (6.4)
F(1st stage) - CO 3.39 3.39 3.39 3.39 3.39 3.39 3.39
F(1st stage) - NO2 1.30 1.30 1.30 1.30 1.30 1.30 1.30
P(Anderson-Rubin) 0.0000 0.0001 0.0000 0.0185 0.0474 0.0687 0.6100
P(Stock-Wright S) 0.0588 0.0886 0.2163 0.4046 0.3567 0.3185 0.5764

Panel C: Age 65 and Above
Model 3: CO 0.268 0.775∗ 1.726∗∗ 1.279 0.490 0.147 -0.051

(0.323) (0.445) (0.772) (0.821) (0.399) (0.281) (0.046)
Model 3: NO2 20.1 -6.4 -25.8 60.3 -25.5 3.7 2.2

(22.1) (36.3) (62.6) (67.7) (25.9) (21.4) (3.1)
F(1st stage) - CO 4.96 4.96 4.96 4.96 4.96 4.96 4.96
F(1st stage) - NO2 2.09 2.09 2.09 2.09 2.09 2.09 2.09
P(Anderson-Rubin) 0.1146 0.0026 0.0035 0.0009 0.0164 0.1595 0.0017
P(Stock-Wright S) 0.4530 0.1484 0.2756 0.1831 0.3849 0.2969 0.1264
Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10

million people) on daily instrumented pollution levels (ppb) in 2005-2007. The effect of the two pollutants is jointly

estimated for the over-identified model 3 using LIML. Pollution is instrumented on airport congestion (taxi time)

that is caused by network delays (taxi time at three major airports in the Eastern United States). All regressions

include weather controls (quadratic in minimum and maximum temperature, precipitation and wind speed as well

as controls for wind direction), temporal controls (year, month, weekday, and holiday fixed effects), and zip code

fixed effects. Regressions are weighted by the total population in a zip code. Errors are two-way clustered by zip

code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table 6: Sickness Rates of All Ages Regressed On Instrumented CO Pollution - Lagged Pollution

Acute All Heart
Asthma Respiratory Respiratory Problems

Model 1
Pollution in t-3 0.026 0.220 0.345 0.022

(0.096) (0.188) (0.250) (0.139)
Pollution in t-2 0.130 0.109 0.023 0.003

(0.143) (0.246) (0.336) (0.255)
Pollution in t-1 -0.017 -0.060 -0.001 -0.020

(0.132) (0.251) (0.289) (0.183)
Pollution in t 0.200∗∗ 0.355 0.485 0.422∗∗∗

(0.101) (0.263) (0.331) (0.134)
Cum. Effect 0.339∗∗∗ 0.624∗∗∗ 0.853∗∗∗ 0.427∗∗∗

(0.070) (0.163) (0.210) (0.151)

Model 2
Pollution in t-3 0.040 0.229 0.353 0.022

(0.094) (0.188) (0.250) (0.138)
Pollution in t-2 0.117 0.098 0.013 -0.002

(0.141) (0.245) (0.331) (0.250)
Pollution in t-1 -0.021 -0.062 -0.004 -0.028

(0.133) (0.253) (0.291) (0.184)
Pollution in t 0.203∗∗ 0.352 0.485 0.415∗∗∗

(0.099) (0.262) (0.331) (0.132)
Cum. Effect 0.338∗∗∗ 0.618∗∗∗ 0.847∗∗∗ 0.408∗∗∗

(0.066) (0.163) (0.214) (0.143)

Model 3
Pollution in t-3 -0.002 0.126 0.121 0.045

(0.041) (0.095) (0.124) (0.057)
Pollution in t-2 0.079 0.023 0.020 -0.014

(0.060) (0.116) (0.151) (0.087)
Pollution in t-1 -0.059 0.008 0.020 -0.004

(0.056) (0.154) (0.191) (0.111)
Pollution in t 0.177∗∗∗ 0.316 0.420 0.225∗∗

(0.067) (0.201) (0.263) (0.100)
Cum. Effect 0.195∗∗∗ 0.473∗∗∗ 0.582∗∗∗ 0.252∗∗∗

(0.052) (0.115) (0.153) (0.067)
Observations 179088 179088 179088 179088
Zip Codes 164 164 164 164
Days 1092 1092 1092 1092

Notes: Table replicates the results of CO pollution on sickness counts for all ages in Table 4 except that three lags of

the instrumented pollution levels are included. Each column in each panel presents the coefficients from one regression

as well as the cumulative effect (sum of all four coefficients). Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗

10%.
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Table 7: Sickness Counts Regressed On Instrumented CO Pollution - Poisson Model

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A: All Ages

Model 1: CO 0.834∗∗∗ 0.596∗∗∗ 0.577∗∗∗ 0.488∗∗∗ 0.270 -0.114 0.325
(0.171) (0.109) (0.112) (0.128) (0.184) (0.184) (0.454)

Model 2: CO 0.846∗∗∗ 0.589∗∗∗ 0.573∗∗∗ 0.482∗∗∗ 0.246 -0.116 0.245
(0.172) (0.111) (0.116) (0.128) (0.185) (0.188) (0.466)

Model 3: CO 0.561∗∗∗ 0.399∗∗∗ 0.378∗∗∗ 0.292∗∗∗ 0.132 -0.150 0.163
(0.132) (0.090) (0.087) (0.095) (0.195) (0.133) (0.325)

Panel B: Ages Below 5
Model 1: CO 1.202∗∗∗ 0.237 0.303 2.061∗ 3.334 0.187 -0.369

(0.387) (0.179) (0.208) (1.148) (2.876) (0.572) (2.923)
Model 2: CO 1.202∗∗∗ 0.216 0.278 1.891∗ 3.347 0.233 -0.691

(0.396) (0.179) (0.207) (1.105) (2.799) (0.567) (2.963)
Model 3: CO 1.133∗∗∗ 0.261∗∗ 0.256∗ 1.297 4.238∗ -0.064 -1.290

(0.287) (0.132) (0.143) (0.966) (2.480) (0.495) (2.643)

Panel C: Ages 65 and Older
Model 1: CO 1.287∗∗∗ 0.757∗∗∗ 0.610∗∗∗ 0.634∗∗∗ 0.397∗ 0.626∗∗ 1.190

(0.364) (0.208) (0.173) (0.165) (0.219) (0.314) (1.247)
Model 2: CO 1.264∗∗∗ 0.743∗∗∗ 0.608∗∗∗ 0.630∗∗∗ 0.388∗ 0.589∗ 1.135

(0.341) (0.202) (0.174) (0.166) (0.224) (0.313) (1.291)
Model 3: CO 0.804∗∗∗ 0.413∗∗ 0.397∗∗ 0.369∗∗∗ 0.159 0.292 -0.852

(0.275) (0.180) (0.154) (0.126) (0.223) (0.219) (1.185)

Notes: Table replicates the results for regression models of CO in Table 4 except that we use a Poisson count model

instead of a linear probability model. Further differences are that the regressions are unweighted and standard

errors are obtained from 100 clustered bootstrap draws (drawing entire zip code histories with replacement), which

is comparable to clustering by zip code in the baseline regression. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%,
∗ 10%.
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Table 8: Impact of CO Pollution on Health (Model 3)

LAX SFO SAN OAK SJC SMF SNA ONT BUR SBA LGB PSP Total
Panel A: Linear Probability Model - All Ages

Population 812 182 540 448 910 41 822 454 794 59 875 93 6028
One Standard Deviation Increase in Taxi Time

Asthma 1.20 0.16 0.29 0.15 0.21 0.01 0.26 0.09 0.12 0.00 0.10 0.01 2.60
Acute Respiratory 2.44 0.34 0.59 0.30 0.44 0.02 0.53 0.19 0.25 0.01 0.20 0.02 5.31
All Respiratory 3.18 0.44 0.77 0.39 0.57 0.03 0.68 0.25 0.32 0.01 0.25 0.03 6.91
Heart Disease 1.40 0.19 0.34 0.17 0.25 0.01 0.30 0.11 0.14 0.00 0.11 0.01 3.04

One Standard Deviation Increase in Pollution
Asthma 4.80 0.52 4.00 1.37 5.96 0.18 5.13 1.98 5.92 0.18 6.45 0.15 36.63
Acute Respiratory 9.82 1.06 8.17 2.80 12.18 0.36 10.49 4.04 12.10 0.36 13.19 0.30 74.87
All Respiratory 12.78 1.38 10.63 3.64 15.85 0.47 13.65 5.26 15.75 0.47 17.17 0.40 97.44
Heart Disease 5.61 0.61 4.67 1.60 6.96 0.21 5.99 2.31 6.92 0.21 7.54 0.17 42.79

Panel B: Linear Probability Model - Ages 5 and Below
Population 54 11 33 32 68 4 58 35 55 3 65 6 424

One Standard Deviation Increase in Taxi Time
Asthma 0.27 0.03 0.06 0.03 0.05 0.00 0.06 0.02 0.03 0.00 0.02 0.00 0.59
Acute Respiratory 0.87 0.11 0.19 0.11 0.17 0.01 0.20 0.08 0.09 0.00 0.08 0.01 1.91
All Respiratory 1.00 0.13 0.22 0.13 0.20 0.01 0.23 0.09 0.10 0.00 0.09 0.01 2.20
Heart Disease 0.03 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.07

One Standard Deviation Increase in Pollution
Asthma 1.14 0.11 0.84 0.33 1.54 0.06 1.24 0.53 1.42 0.03 1.68 0.03 8.96
Acute Respiratory 3.69 0.37 2.73 1.08 4.98 0.19 4.03 1.73 4.59 0.09 5.43 0.10 28.99
All Respiratory 4.25 0.42 3.14 1.24 5.74 0.22 4.63 1.99 5.28 0.11 6.25 0.11 33.37
Heart Disease 0.13 0.01 0.09 0.04 0.17 0.01 0.14 0.06 0.16 0.00 0.19 0.00 1.00

Panel C: Linear Probability Model - Ages 65 and Above
Population 82 26 54 51 88 3 79 34 79 12 89 18 615

One Standard Deviation Increase in Taxi Time
Asthma 0.30 0.06 0.07 0.04 0.05 0.00 0.06 0.02 0.03 0.00 0.02 0.01 0.67
Acute Respiratory 0.43 0.08 0.10 0.06 0.07 0.00 0.09 0.03 0.04 0.00 0.03 0.01 0.94
All Respiratory 0.87 0.17 0.21 0.12 0.15 0.00 0.18 0.05 0.09 0.01 0.07 0.02 1.93
Heart Disease 1.19 0.23 0.29 0.16 0.20 0.01 0.24 0.07 0.12 0.01 0.10 0.02 2.63

One Standard Deviation Increase in Pollution
Asthma 1.23 0.19 1.02 0.39 1.46 0.03 1.28 0.38 1.51 0.09 1.69 0.08 9.33
Acute Respiratory 1.73 0.26 1.44 0.55 2.06 0.04 1.80 0.54 2.13 0.13 2.38 0.11 13.15
All Respiratory 3.54 0.54 2.94 1.14 4.21 0.08 3.68 1.10 4.36 0.26 4.87 0.22 26.93
Heart Disease 4.82 0.74 4.00 1.54 5.73 0.11 5.01 1.49 5.93 0.35 6.62 0.29 36.63

Panel D: Poisson Model - All Ages
One Standard Deviation Increase in Taxi Time

Asthma 1.41 0.21 0.35 0.24 0.16 0.01 0.16 0.09 0.11 0.00 0.11 0.01 2.87
Acute Respiratory 2.62 0.40 0.61 0.42 0.34 0.02 0.43 0.20 0.26 0.00 0.23 0.03 5.55
All Respiratory 3.44 0.53 0.81 0.54 0.45 0.02 0.55 0.26 0.34 0.01 0.31 0.04 7.30
Heart Disease 1.59 0.28 0.40 0.23 0.22 0.01 0.26 0.11 0.16 0.00 0.14 0.02 3.42

One Standard Deviation Increase in Pollution
Asthma 6.35 0.67 5.29 2.29 5.02 0.22 3.60 2.00 6.22 0.09 8.54 0.14 40.41
Acute Respiratory 11.47 1.35 8.93 3.98 10.22 0.33 9.09 4.48 13.99 0.19 16.81 0.39 81.24
All Respiratory 15.00 1.76 12.01 5.07 13.26 0.41 11.79 5.91 18.16 0.28 22.70 0.57 106.93
Heart Disease 6.72 0.87 5.85 2.13 6.30 0.16 5.62 2.48 8.62 0.23 10.03 0.30 49.31

Panel E: Baseline Average - All Ages
Asthma 33.1 7.9 22.3 25.4 24.2 1.6 18.1 14.9 26.0 0.9 36.0 3.0 213.6
Acute Respiratory 87.4 21.7 55.2 63.2 71.8 3.6 66.9 48.0 85.8 3.1 104.3 11.8 623.0
All Respiratory 121.3 30.3 78.2 85.2 98.7 4.7 91.6 67.2 117.9 4.6 149.0 18.0 866.8
Heart Disease 72.8 20.3 50.0 46.4 61.7 2.4 56.9 36.9 73.4 5.0 86.1 12.3 524.2

Notes: Table gives population as well as daily hospital admissions for all zip codes that are within 10km (6.2miles)

of one of the 12 major California airports. Panels A-D give predicted changes in sickness counts, while Panel E

gives baseline averages. Panels A-C use the linear probability model 1 for CO from Table 4, while panel D uses

the Poisson model 1 for CO from Table 7. Panel E gives average daily sickness counts in the data. The first 12

columns give impacts by airport, while the last column gives the total for all 12 airports. Population is in thousand.

Predicted changes in hospitalization are for both inpatient as well as outpatient admissions.
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A1 Online Appendix

Figure A1: Location of Airports in Study
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Notes: Figure displays the location of the 12 airports in California as well as the three Eastern airports used in the

baseline regressions to instrument taxi time in California.
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Figure A2: Boxplots of Taxi Time By Hour and Airport
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Notes: Boxplots of taxi time by hour of day 2005-2007. The box spans the 25%-75% range, while the median is

shown as black solid line. Whiskers extend to the minimum and maximum.
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Figure A3: Seasonality of Pollution
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Notes: Figure displays average pollution readings over 2005-2007 in our data for CO, NO2 and O3, respectively. CO

and NO2 are highest during the winter, while O3 is highest during summer.
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Figure A4: Histogram of Observed Average Daily CO Exposure
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Notes: Histogram shows the observed average daily CO pollution readings in our data set. Red lines indicate the 2.5

and 97.5 percentiles.
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Table A1: Summary Statistics - Airports

Airports in Southern California
LAX SAN SNA ONT BUR SBA LGB PSP

Average Flight Time (min) 125.60 108.55 102.74 80.28 77.45 56.70 185.16 79.27
[s.e.] [4.40] [4.15] [3.22] [4.83] [6.02] [2.50] [58.32] [12.41]

Average Flight Distance (miles) 974 815 748 562 520 303 1256 537
[s.e.] [26] [26] [18] [36] [36] [11] [181] [109]

Arrival Delays (min) 6.48 6.27 4.81 6.79 7.49 4.27 3.93 8.22
[s.e.] [7.09] [6.89] [5.85] [7.02] [7.77] [7.90] [11.10] [8.45]

Average Departure Delays (min) 7.77 6.64 6.12 6.89 7.78 4.89 4.70 6.49
[s.e.] [5.19] [5.77] [5.59] [5.78] [7.42] [8.13] [8.49] [8.44]

Average Taxi Time after Landing (min) 8.09 3.73 6.26 4.37 2.78 4.12 4.87 4.34
[s.e.] [1.06] [0.40] [0.82] [0.37] [0.46] [0.43] [0.91] [0.51]

Average Taxi Time to Takeoff (min) 15.00 13.50 13.28 10.63 11.61 9.75 14.34 10.68
[s.e.] [1.47] [1.83] [1.32] [1.27] [1.21] [1.44] [1.94] [1.51]

Daily Number of Arrivals 641.60 255.02 139.76 104.07 86.09 37.80 35.00 34.21
[s.e.] [31.58] [17.29] [13.58] [11.67] [8.63] [3.75] [3.91] [7.86]

Daily Number of Departures 641.33 255.13 139.77 104.02 86.07 37.84 34.99 34.18
[s.e.] [32.59] [17.48] [12.53] [11.74] [8.50] [3.78] [3.89] [7.88]

Daily Taxi Time All Flights (min) 14691 4369 2712 1553 1231 519 673 515
[s.e.] [1852] [666] [399] [266] [193] [83] [140] [151]

Northern California Eastern United States
SFO OAK SJC SMF ATL ORD JFK

Average Flight Time (min) 135.10 104.54 95.11 94.22 88.00 101.95 164.18
[s.e.] [5.08] [6.38] [3.74] [2.71] [11.14] [4.28] [11.56]

Average Flight Distance (miles) 1061 749 678 687 649 719 1212
[s.e.] [40] [35] [21] [19] [14] [30] [80]

Arrival Delays (min) 11.40 5.68 5.84 7.78 10.73 14.71 15.25
[s.e.] [14.44] [7.51] [6.79] [7.14] [16.62] [24.17] [19.29]

Average Departure Delays (min) 10.38 8.50 6.44 8.27 14.27 17.11 13.81
[s.e.] [9.81] [6.33] [5.77] [6.08] [12.98] [16.72] [16.08]

Average Taxi Time after Landing (min) 5.64 5.37 4.06 4.31 9.80 8.58 9.98
[s.e.] [0.49] [0.74] [0.31] [0.40] [1.55] [1.65] [2.66]

Average Taxi Time to Takeoff (min) 16.46 10.84 11.64 10.33 19.44 19.73 32.88
[s.e.] [1.73] [1.15] [0.93] [0.86] [3.48] [4.74] [9.99]

Daily Number of Arrivals 364.58 201.03 167.78 148.47 1140.18 992.96 309.53
[s.e.] [24.04] [14.24] [13.52] [13.74] [85.16] [75.09] [35.32]

Daily Number of Departures 364.66 201.01 167.73 148.43 1146.63 992.92 309.48
[s.e.] [24.46] [14.09] [13.61] [13.74] [90.51] [75.93] [34.51]

Daily Taxi Time All Flights (min) 7979 3235 2614 2166 33081 27170 13059
[s.e.] [1061] [409] [298] [324] [5743] [4735] [3804]

Notes: Table lists average flight characteristics by airport in 2005-2007. Airports are ordered by geographic area

and then by decreasing number of flights. The first six variables in each panel are characteristics per flight, while

the last three variables are average characteristics per day.
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Table A3: Summary Statistics - Sickness Rates by Distance From Airport

Within [0,10]km of Airport Within [0,5]km of Airport Within (5,10]km of Airport
Mean (Std) Min Max Mean (Std) Min Max Mean (Std) Min Max
(1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d) (3a) (3b) (3c) (3d)

Panel A1: Outpatient Sickness Rates - All Ages
Asthma 184 (268) 0 4162 170 (265) 0 3185 189 (270) 0 4162
Acute Respiratory 608 (568) 0 6243 594 (586) 0 5843 614 (561) 0 6243
All Respiratory 756 (653) 0 7012 748 (680) 0 7012 760 (641) 0 6243
Heart Disease 168 (254) 0 3396 172 (267) 0 3396 166 (247) 0 2775
Stroke 23 (90) 0 1456 22 (92) 0 1454 23 (89) 0 1456
Bone Fracture 208 (273) 0 2909 208 (282) 0 2909 208 (269) 0 2775
Appendicitis 2 (26) 0 903 2 (27) 0 903 2 (26) 0 875

Panel A2: Inpatient Sickness Rates - All Ages
Asthma 155 (237) 0 2775 153 (241) 0 2547 156 (235) 0 2775
Acute Respiratory 373 (379) 0 4377 372 (387) 0 3396 373 (376) 0 4377
All Respiratory 626 (522) 0 5253 635 (538) 0 5224 622 (514) 0 5253
Heart Disease 728 (589) 0 7879 747 (612) 0 5214 720 (579) 0 7879
Stroke 149 (235) 0 4183 151 (242) 0 2709 148 (231) 0 4183
Bone Fracture 92 (181) 0 2510 95 (189) 0 1829 90 (177) 0 2510
Appendicitis 32 (103) 0 1806 32 (105) 0 1806 32 (101) 0 1751

Panel B1: Outpatient Sickness Rates - Ages Below 5
Asthma 413 (1503) 0 33178 383 (1575) 0 33036 425 (1471) 0 33178
Acute Respiratory 2739 (4262) 0 90992 2777 (4621) 0 90992 2724 (4104) 0 66357
All Respiratory 3084 (4567) 0 90992 3113 (4930) 0 90992 3072 (4407) 0 66357
Heart Disease 12 (263) 0 21358 11 (255) 0 15165 12 (266) 0 21358
Stroke 1 (63) 0 10860 1 (74) 0 7651 1 (57) 0 10860
Bone Fracture 165 (963) 0 33036 160 (1031) 0 33036 166 (933) 0 27785
Appendicitis 2 (81) 0 13148 2 (75) 0 7651 2 (84) 0 13148

Panel B2: Inpatient Sickness Rates - Ages Below 5
Asthma 147 (883) 0 23697 138 (922) 0 23697 150 (866) 0 21358
Acute Respiratory 404 (1485) 0 25562 403 (1572) 0 24155 405 (1447) 0 25562
All Respiratory 483 (1635) 0 33036 483 (1734) 0 33036 483 (1592) 0 26810
Heart Disease 55 (568) 0 22701 54 (592) 0 22701 56 (557) 0 21358
Stroke 6 (186) 0 21834 7 (225) 0 21834 5 (168) 0 16589
Bone Fracture 31 (415) 0 23697 29 (420) 0 23697 31 (412) 0 21358
Appendicitis 7 (177) 0 15684 7 (181) 0 12077 7 (175) 0 15684

Panel C1: Outpatient Sickness Rates - Ages 65 and Above
Asthma 142 (696) 0 20730 127 (675) 0 12358 148 (705) 0 20730
Acute Respiratory 349 (1109) 0 38168 332 (1117) 0 38168 356 (1106) 0 20730
All Respiratory 752 (1636) 0 41459 736 (1655) 0 38168 759 (1628) 0 41459
Heart Disease 910 (1803) 0 41459 889 (1816) 0 38168 919 (1797) 0 41459
Stroke 136 (684) 0 20730 129 (686) 0 15108 138 (683) 0 20730
Bone Fracture 289 (1004) 0 38168 284 (1053) 0 38168 291 (984) 0 20730
Appendicitis 1 (46) 0 9705 1 (45) 0 4950 1 (46) 0 9705

Panel C2: Inpatient Sickness Rates - Ages 65 and Above
Asthma 488 (1342) 0 41459 496 (1426) 0 38168 485 (1305) 0 41459
Acute Respiratory 1579 (2406) 0 41459 1582 (2530) 0 38168 1578 (2353) 0 41459
All Respiratory 3143 (3472) 0 76336 3170 (3654) 0 76336 3132 (3395) 0 62189
Heart Disease 4696 (4257) 0 76336 4746 (4502) 0 76336 4675 (4152) 0 41543
Stroke 1018 (1895) 0 41459 1013 (1973) 0 38168 1020 (1861) 0 41459
Bone Fracture 392 (1151) 0 38168 402 (1183) 0 38168 387 (1138) 0 29721
Appendicitis 22 (283) 0 38168 23 (323) 0 38168 21 (265) 0 20730

Notes: Table lists summary statistics (mean, standard deviation, minimum, and maximum) of variables in the

data set. Admissions are counted if either the primary or one of the 24 other diagnosis codes include the ICD-9

classification for an illness. Sickness rates are measured in cases per 10 million people. The first four columns

(1a)-(1d) use all zip codes in our baseline regression, while columns (2a)-(2d) only use zip codes within 5km of an

airport, and columns (3a)-(3d) use zip codes 5-10km from an airport.
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Table A8: Taxi Time Regressed on Weather at Airport

Taxi Time Taxi Time Taxi Time Taxi Time Taxi Time
at LAX at SFO at ATL at ORD at JFK

Weather at LAX [1.3e-33]∗∗∗ [0.011]∗∗ [0.321] [0.594] [0.484]
Weather at SFO [0.272] [7.2e-21]∗∗∗ [0.357] [0.113] [0.730]
Weather at ATL [3.1e-04]∗∗∗ [7.1e-05]∗∗∗ [2.0e-09]∗∗∗ [0.002]∗∗∗ [0.338]
Weather at ORD [0.538] [3.8e-04]∗∗∗ [7.9e-06]∗∗∗ [2.0e-25]∗∗∗ [0.275]
Weather at JFK [0.123] [0.013]∗∗ [0.048]∗∗ [0.709] [5.5e-09]∗∗∗

Notes: Table gives p-values of the joint significance of the eight weather variables (a quadratic in minimum and

maximum temperature, precipitation and wind speed) used to explain taxi time at an airport. Each entry in the

Table is from a separate regression. The taxi time is from the airport given in the column heading while the weather

variables are from the airport given in the row heading. Regressions that include weather from another airport also

control for local weather measures (not included in joint p-value). P-values are obtained using robust standard errors.

All regressions include temporal controls (year, month, weekday, and holiday fixed effects). Significance levels are

indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A9: Sickness Rates Regressed On Instrumented Pollution - Ages 5-64

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A: Ages 5 - 19

Model 1: CO -0.020 0.030 0.107 0.013 -0.000 -0.127 -0.002
(0.114) (0.289) (0.304) (0.033) (0.012) (0.143) (0.031)

Model 2: CO -0.018 0.052 0.134 0.012 0.002 -0.091 -0.004
(0.105) (0.266) (0.282) (0.031) (0.011) (0.145) (0.030)

Model 3: CO -0.010 -0.012 -0.032 0.001 -0.004 -0.066 0.019
(0.090) (0.199) (0.221) (0.028) (0.011) (0.083) (0.023)

Model 1: NO2 -1.4 2.1 7.7 0.9 -0.0 -9.1 -0.2
(8.2) (20.9) (22.4) (2.4) (0.9) (11.0) (2.2)

Model 2: NO2 -1.3 3.4 9.2 0.9 0.1 -7.2 -0.3
(7.7) (19.8) (21.3) (2.3) (0.8) (11.1) (2.2)

Model 3: NO2 -5.1 -8.6 -10.6 -0.6 -0.8 -2.4 0.8
(7.7) (15.8) (17.1) (1.9) (0.8) (6.4) (1.7)

Panel B: Ages 20 - 64
Model 1: CO 0.264∗∗∗ 0.279∗∗ 0.341∗∗ 0.069 0.001 -0.085∗ 0.007

(0.073) (0.120) (0.166) (0.088) (0.029) (0.049) (0.021)
Model 2: CO 0.262∗∗∗ 0.275∗∗ 0.337∗∗ 0.062 -0.004 -0.086∗ 0.005

(0.070) (0.117) (0.164) (0.086) (0.028) (0.049) (0.020)
Model 3: CO 0.127∗∗ 0.158∗ 0.181∗ 0.052 0.007 -0.065∗ 0.004

(0.050) (0.081) (0.109) (0.057) (0.023) (0.033) (0.012)
Model 1: NO2 21.5∗∗∗ 22.8∗∗ 27.8∗∗ 5.7 0.1 -6.9 0.6

(6.1) (9.7) (13.1) (6.9) (2.3) (4.5) (1.7)
Model 2: NO2 21.5∗∗∗ 22.6∗∗ 27.6∗∗ 5.3 -0.2 -7.0 0.5

(6.1) (9.5) (13.0) (6.8) (2.3) (4.6) (1.7)
Model 3: NO2 10.2∗∗ 10.0 9.3 5.1 1.1 -3.4 0.4

(4.0) (7.0) (9.4) (4.8) (1.6) (2.3) (1.0)
Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates Table 4 for the two remaining age groups: 5-19 and 20-64. Table regresses zip-code level

sickness rates (counts for primary and secondary diagnosis codes per 10 million people) on daily instrumented

pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is instrumented on airport

congestion (taxi time) that is caused by network delays (taxi time at three major airports in the Eastern United

States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes surrounding an airport,

while model 2 adds an interaction with the distance to the airport, and model 3 furthermore adds interactions

with wind direction and speed (columns (a)-(c) in Table 1). All regressions include weather controls (quadratic in

minimum and maximum temperature, precipitation and wind speed as well as controls for wind direction), temporal

controls (year, month, weekday, and holiday fixed effects), and zip code fixed effects. Regressions are weighted by the

total population in a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated

by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A10: Illness Regressed On Instrumented Pollution - Hospital and Residence Zip Codes

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A: Baseline - Residence within 10km of Airport

Model 1: CO 0.311∗∗∗ 0.556∗∗∗ 0.761∗∗∗ 0.434∗∗∗ 0.057 -0.030 0.006
(0.065) (0.162) (0.207) (0.134) (0.039) (0.063) (0.015)

Model 2: CO 0.307∗∗∗ 0.550∗∗∗ 0.755∗∗∗ 0.419∗∗∗ 0.050 -0.030 0.003
(0.062) (0.163) (0.210) (0.128) (0.038) (0.064) (0.015)

Model 3: CO 0.194∗∗∗ 0.396∗∗∗ 0.515∗∗∗ 0.226∗∗∗ 0.020 -0.039 0.002
(0.047) (0.125) (0.165) (0.079) (0.030) (0.040) (0.011)
Panel B1: Both Hospital and Residence within 10km of Airport

Model 1: CO 0.165∗∗∗ 0.521∗∗∗ 0.728∗∗∗ 0.147∗ -0.019 -0.035 -0.015∗∗

(0.046) (0.156) (0.212) (0.080) (0.024) (0.026) (0.007)
Model 2: CO 0.165∗∗∗ 0.498∗∗∗ 0.698∗∗∗ 0.142∗ -0.023 -0.038 -0.016∗∗

(0.044) (0.158) (0.216) (0.077) (0.024) (0.027) (0.007)
Model 3: CO 0.148∗∗∗ 0.463∗∗∗ 0.628∗∗∗ 0.114∗∗ -0.024 -0.033∗ -0.006

(0.036) (0.117) (0.160) (0.049) (0.019) (0.018) (0.006)
Panel B2: Residence Within 10km of Airport / Hospital Outside 10km of Any Airport

Model 1: CO 0.131∗∗∗ 0.027 0.030 0.287∗∗∗ 0.077∗∗ -0.004 0.018
(0.047) (0.098) (0.134) (0.096) (0.031) (0.057) (0.012)

Model 2: CO 0.127∗∗∗ 0.045 0.055 0.277∗∗∗ 0.074∗∗ -0.001 0.016
(0.045) (0.099) (0.133) (0.093) (0.029) (0.058) (0.011)

Model 3: CO 0.037 -0.070 -0.107 0.113∗∗ 0.045∗∗ -0.014 0.009
(0.034) (0.081) (0.107) (0.057) (0.023) (0.037) (0.008)

Panel B3: Residence Within 10km of Airport / Hospital Within 10km of Another Airport
Model 1: CO 0.014 0.006 -0.000 -0.000 -0.000 0.009 0.003

(0.010) (0.018) (0.022) (0.012) (0.004) (0.007) (0.002)
Model 2: CO 0.014 0.005 -0.001 -0.001 -0.001 0.009 0.003

(0.009) (0.017) (0.022) (0.011) (0.004) (0.007) (0.002)
Model 3: CO 0.009 0.003 -0.006 -0.001 -0.001 0.007∗ -0.001

(0.006) (0.011) (0.013) (0.008) (0.003) (0.004) (0.002)
Panel C1: Hospital Within 10km of Airport / Residence Outside 10km of Any Airport

Model 1: CO -0.035 0.078 0.157 -0.208∗∗ 0.005 -0.014 -0.013
(0.082) (0.354) (0.452) (0.101) (0.036) (0.063) (0.008)

Model 2: CO -0.032 0.083 0.163 -0.192∗ 0.004 -0.024 -0.014∗

(0.086) (0.382) (0.486) (0.105) (0.034) (0.060) (0.008)
Model 3: CO 0.001 0.120 0.214 -0.098∗ -0.003 -0.016 -0.003

(0.057) (0.284) (0.369) (0.056) (0.023) (0.034) (0.005)
Panel C2: Hospital Within 10km of Airport / Residence Within 10km of Another Airport

Model 1: CO 0.003 0.015 0.017 0.009 0.001 -0.006 -0.001
(0.006) (0.012) (0.013) (0.012) (0.003) (0.007) (0.001)

Model 2: CO 0.003 0.016 0.017 0.009 0.000 -0.006 -0.001
(0.006) (0.012) (0.012) (0.012) (0.003) (0.006) (0.001)

Model 3: CO 0.003 0.011 0.013 0.007 0.002 -0.005 -0.001
(0.004) (0.010) (0.011) (0.007) (0.002) (0.004) (0.001)

Notes: Table replicates the results for CO in Table 4 but further distinguishes between zip codes of the residence

and hospital. Each regression is run on a sample of 179580 observations, consisting of 164 unique zip codes and 1095

days. Panel A replicates the baseline where patients are assigned the zip code of their residence. Panels B1-B3 still

assign patients to zip codes based on their residence, but split the data: Panel B1 only includes patients where the

hospital was within the same 10km around an airport as the residence. Panel B2 only includes patients that went

to a hospital that was outside of all 10km circles around the 12 airports in the study. Finally, panel B3 includes

patients that went to a hospital that was within 10km of the other 11 airports. Panels C1-C2 assign patients based

on the zip code of the hospital. Panel C1 looks at patients that went to a hospital that was within 10km of an

airport but whose residence was outside all 10km circles around the 12 airports in the study. Panel C2 looks at

patients that went to a hospital that was within 10km of an airport but whose residence was within 10km of one of

the other 11 airports in the study. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A11: Sickness Rates Regressed On Instrumented Pollution - LIML

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A: All Ages

Model 2: CO 0.307∗∗∗ 0.550∗∗∗ 0.756∗∗∗ 0.420∗∗∗ 0.051 -0.030 0.003
(0.062) (0.163) (0.210) (0.128) (0.038) (0.064) (0.015)

Model 3: CO 0.197∗∗∗ 0.404∗∗∗ 0.529∗∗∗ 0.229∗∗∗ 0.020 -0.039 0.002
(0.048) (0.128) (0.171) (0.081) (0.030) (0.041) (0.011)

Model 2: NO2 24.3∗∗∗ 43.6∗∗∗ 59.8∗∗∗ 33.8∗∗∗ 4.2 -2.4 0.3
(6.1) (16.3) (20.8) (10.5) (3.1) (5.2) (1.2)

Model 3: NO2 13.3∗∗∗ 21.3∗ 28.0 17.9∗∗ 0.8 -1.0 0.3
(4.4) (12.8) (17.0) (7.5) (2.2) (3.0) (0.9)

Panel B: Ages Below 5
Model 2: CO 0.579∗∗ 1.930∗ 2.625∗ 0.127 0.020 0.064 -0.013

(0.235) (1.111) (1.357) (0.078) (0.023) (0.132) (0.034)
Model 3: CO 0.674∗∗∗ 2.196∗∗∗ 2.529∗∗ 0.075 0.023 -0.012 -0.009

(0.172) (0.809) (0.995) (0.058) (0.015) (0.123) (0.022)
Model 2: NO2 43.2∗∗ 144.1 196.1∗ 9.6 1.5 4.8 -0.9

(20.2) (94.3) (117.8) (6.3) (1.7) (9.7) (2.5)
Model 3: NO2 45.1∗∗∗ 130.7∗ 151.3∗ 4.6 2.9∗∗ 3.8 0.6

(15.6) (73.8) (90.3) (4.8) (1.3) (9.5) (2.1)

Panel C: Ages 65 and Older
Model 2: CO 0.817∗∗∗ 1.416∗∗∗ 2.276∗∗∗ 3.533∗∗∗ 0.502∗ 0.409∗ 0.016

(0.288) (0.423) (0.638) (0.972) (0.302) (0.242) (0.028)
Model 3: CO 0.497∗∗ 0.703∗∗ 1.432∗∗∗ 1.966∗∗∗ 0.199 0.189 -0.025

(0.206) (0.313) (0.514) (0.631) (0.251) (0.162) (0.026)
Model 2: NO2 66.8∗∗∗ 115.6∗∗∗ 181.4∗∗∗ 282.5∗∗∗ 41.3∗ 34.6∗ 1.4

(22.9) (34.5) (52.3) (76.3) (24.3) (18.3) (2.2)
Model 3: NO2 36.2∗∗ 40.5 77.9∗ 138.6∗∗∗ 3.7 12.4 -0.8

(14.6) (25.6) (42.7) (50.7) (16.8) (12.2) (1.7)
Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates models 2 and 3 of Table 4 except that the IV regression is done using limited information

maximum likelihood instead of 2-stage least squares. Model 1 is dropped as it is exactly identified, in which case

LIML is identical to two-stage least squares. Table regresses zip-code level sickness rates (counts for primary and

secondary diagnosis codes per 10 million people) on daily instrumented pollution levels (ppb) in 2005-2007. Each

entry is a separate regression. Pollution is instrumented on airport congestion (taxi time) that is caused by network

delays (taxi time at three major airports in the Eastern United States). Model 1 assumes a uniform impact of

congestion on pollution levels at all zip codes surrounding an airport, while model 2 adds an interaction with the

distance to the airport, and model 3 furthermore adds interactions with wind direction and speed (columns (a)-(c) in

Table 1). All regressions include weather controls (quadratic in minimum and maximum temperature, precipitation

and wind speed as well as controls for wind direction), temporal controls (year, month, weekday, and holiday fixed

effects), and zip code fixed effects. Regressions are weighted by the total population in a zip code. Errors are

two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A12: Sickness Rates (Primary Diagnosis Code) Regressed On Instrumented Pollution

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A: All Ages

Model 1: CO 0.039 0.245∗ 0.433∗∗ 0.078 0.006 -0.070 0.007
(0.039) (0.135) (0.185) (0.052) (0.023) (0.058) (0.015)

Model 2: CO 0.046 0.254∗ 0.445∗∗ 0.075 0.002 -0.069 0.005
(0.037) (0.133) (0.184) (0.054) (0.022) (0.059) (0.015)

Model 3: CO 0.041 0.197∗ 0.327∗∗ 0.047 0.009 -0.059 0.003
(0.030) (0.105) (0.142) (0.033) (0.017) (0.036) (0.010)

Model 1: NO2 3.1 19.3 34.1∗∗ 6.1 0.5 -5.5 0.6
(3.2) (11.9) (17.0) (4.2) (1.8) (5.0) (1.2)

Model 2: NO2 3.5 19.8∗ 34.8∗∗ 6.0 0.3 -5.5 0.4
(3.2) (11.8) (17.0) (4.3) (1.8) (5.1) (1.2)

Model 3: NO2 0.3 4.2 10.4 6.5∗∗ 0.8 -2.4 0.2
(2.4) (8.2) (11.5) (3.0) (1.3) (2.9) (0.9)

Panel B: Ages Below 5
Model 1: CO 0.370∗∗ 2.087∗∗ 2.669∗∗ 0.001 0.005 -0.009 0.001

(0.159) (0.867) (1.141) (0.037) (0.012) (0.135) (0.030)
Model 2: CO 0.400∗∗∗ 2.139∗∗ 2.673∗∗ -0.001 0.007 0.006 -0.004

(0.153) (0.853) (1.139) (0.037) (0.013) (0.130) (0.032)
Model 3: CO 0.359∗∗∗ 1.812∗∗∗ 2.113∗∗ -0.022 0.003 -0.043 0.001

(0.107) (0.627) (0.852) (0.027) (0.009) (0.117) (0.021)
Model 1: NO2 27.6∗∗ 155.7∗∗ 199.1∗∗ 0.1 0.3 -0.7 0.1

(13.0) (73.6) (99.2) (2.8) (0.9) (10.1) (2.3)
Model 2: NO2 29.9∗∗ 159.7∗∗ 199.6∗∗ -0.1 0.5 0.4 -0.3

(12.6) (72.2) (99.1) (2.7) (1.0) (9.7) (2.4)
Model 3: NO2 19.7∗∗ 100.7∗ 118.8∗ -2.3 0.4 0.7 1.2

(7.8) (52.9) (71.9) (2.2) (0.9) (8.9) (2.0)
Panel C: Ages 65 and Older

Model 1: CO 0.176∗ 0.459∗∗ 1.241∗∗∗ 0.995∗∗∗ 0.103 0.253 0.005
(0.098) (0.232) (0.383) (0.367) (0.184) (0.228) (0.027)

Model 2: CO 0.173∗ 0.445∗∗ 1.251∗∗∗ 0.998∗∗∗ 0.069 0.226 0.001
(0.097) (0.224) (0.375) (0.370) (0.184) (0.226) (0.026)

Model 3: CO 0.109∗ 0.309∗∗ 0.939∗∗∗ 0.503∗ 0.115 0.092 -0.024
(0.061) (0.139) (0.284) (0.272) (0.139) (0.148) (0.022)

Model 1: NO2 13.7∗ 35.9∗∗ 97.1∗∗∗ 77.9∗∗ 8.1 19.8 0.4
(7.4) (17.3) (32.1) (30.5) (14.6) (17.3) (2.1)

Model 2: NO2 13.7∗ 35.9∗∗ 97.2∗∗∗ 77.9∗∗ 8.1 19.8 0.4
(7.4) (17.3) (32.1) (30.5) (14.6) (17.3) (2.1)

Model 3: NO2 8.5∗∗ 20.2∗∗ 53.5∗∗ 55.5∗∗∗ 5.2 3.7 -0.6
(4.2) (10.1) (22.5) (20.5) (9.8) (11.2) (1.5)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates Table 4 except that sickness counts are based on primary diagnosis codes only. Table

regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10 million people) on

daily instrumented pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is instrumented

on airport congestion (taxi time) that is caused by network delays (taxi time at three major airports in the Eastern

United States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes surrounding

an airport, while model 2 adds an interaction with the distance to the airport, and model 3 furthermore adds

interactions with wind direction and speed (columns (a)-(c) in Table 1). All regressions include weather controls

(quadratic in minimum and maximum temperature, precipitation and wind speed as well as controls for wind

direction), temporal controls (year, month, weekday, and holiday fixed effects), and zip code fixed effects. Regressions

are weighted by the total population in a zip code. Errors are two-way clustered by zip code and day. Significance

levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A13: Sickness Rates of All Ages Regressed On Instrumented Pollution - Sensitivity of IV

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A: Baseline: Tax Time at Eastern Airports

Model 1: CO 0.311∗∗∗ 0.556∗∗∗ 0.761∗∗∗ 0.434∗∗∗ 0.057 -0.030 0.006
(0.065) (0.162) (0.207) (0.134) (0.039) (0.063) (0.015)

Model 2: CO 0.307∗∗∗ 0.550∗∗∗ 0.755∗∗∗ 0.419∗∗∗ 0.050 -0.030 0.003
(0.062) (0.163) (0.210) (0.128) (0.038) (0.064) (0.015)

Model 3: CO 0.194∗∗∗ 0.396∗∗∗ 0.515∗∗∗ 0.226∗∗∗ 0.020 -0.039 0.002
(0.047) (0.125) (0.165) (0.079) (0.030) (0.040) (0.011)

Model 1: NO2 24.5∗∗∗ 43.8∗∗∗ 59.9∗∗∗ 34.2∗∗∗ 4.5 -2.4 0.5
(6.2) (16.2) (20.5) (10.5) (3.1) (5.2) (1.2)

Model 2: NO2 24.3∗∗∗ 43.6∗∗∗ 59.8∗∗∗ 33.5∗∗∗ 4.2 -2.4 0.3
(6.1) (16.3) (20.8) (10.4) (3.1) (5.2) (1.2)

Model 3: NO2 12.4∗∗∗ 18.9∗ 24.2∗ 17.1∗∗ 0.7 -1.0 0.3
(4.0) (11.0) (14.2) (7.1) (2.2) (3.0) (0.9)

Panel B: Tax Time 5am to noon at Eastern Airports
Model 1: CO 0.358∗∗∗ 0.532∗∗∗ 0.656∗∗∗ 0.491∗∗∗ 0.044 -0.052 0.013

(0.097) (0.165) (0.210) (0.166) (0.043) (0.064) (0.015)
Model 2: CO 0.346∗∗∗ 0.514∗∗∗ 0.634∗∗∗ 0.474∗∗∗ 0.039 -0.056 0.011

(0.092) (0.162) (0.209) (0.158) (0.043) (0.065) (0.015)
Model 3: CO 0.200∗∗∗ 0.372∗∗∗ 0.450∗∗∗ 0.225∗∗∗ 0.006 -0.050 0.004

(0.054) (0.116) (0.149) (0.082) (0.029) (0.036) (0.010)
Model 1: NO2 27.3∗∗∗ 40.6∗∗∗ 50.1∗∗∗ 37.5∗∗∗ 3.4 -4.0 1.0

(7.6) (13.8) (17.2) (12.9) (3.3) (5.1) (1.2)
Model 2: NO2 27.0∗∗∗ 40.1∗∗∗ 49.4∗∗∗ 37.0∗∗∗ 3.2 -4.1 0.9

(7.5) (13.8) (17.3) (12.7) (3.3) (5.2) (1.2)
Model 3: NO2 13.4∗∗∗ 18.5∗ 20.9 17.2∗∗ -0.2 -2.0 0.4

(4.6) (10.2) (12.7) (7.4) (2.2) (2.8) (0.8)
Panel C: Weather at Eastern Airports

Model 1: CO 0.346∗ 1.009∗ 1.362∗ 0.530∗ 0.173∗ 0.265∗ -0.002
(0.181) (0.580) (0.755) (0.313) (0.095) (0.154) (0.029)

Model 2: CO 0.396∗∗ 1.096∗ 1.501∗ 0.541∗ 0.134 0.232 -0.016
(0.192) (0.606) (0.800) (0.323) (0.089) (0.145) (0.029)

Model 1: NO2 24.9∗ 72.9 98.3 38.3∗ 12.5 19.2∗ -0.1
(14.5) (48.0) (62.0) (23.2) (7.7) (11.1) (2.1)

Model 2: NO2 29.4∗ 78.3∗ 108.4∗ 35.7 6.2 12.6 -2.0
(15.6) (47.0) (61.8) (22.0) (5.6) (8.4) (2.1)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table lists the results for all ages from Table 4 in Panel A. Panel B instruments taxi time at California

airports on the taxi time between 5am and noon of each day at the three Eastern Airports. Panel C uses the

weather at each of the three Eastern airports as instrument (quadratic in minimum and maximum temperature,

precipitation and wind speed). We do not estimate model 3 in panel C as it would include 3456 instruments.

Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10 million

people) on daily instrumented pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is

instrumented on airport congestion (taxi time) that is caused by network delays (taxi time at three major airports

in the Eastern United States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes

surrounding an airport, while model 2 adds an interaction with the distance to the airport, and model 3 furthermore

adds interactions with wind direction and speed (columns (a)-(c) in Table 1). All regressions include weather

controls (quadratic in minimum and maximum temperature, precipitation and wind speed as well as controls for

wind direction), temporal controls (year, month, weekday, and holiday fixed effects), and zip code fixed effects.

Regressions are weighted by the total population in a zip code. Errors are two-way clustered by zip code and day.

Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A14: Sickness Rates Regressed On Instrumented CO Pollution - by Season

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A: All Ages

M1: CO Summer 0.273∗∗ 0.076 0.310 0.402∗∗ 0.092 0.060 0.001
(0.116) (0.231) (0.284) (0.168) (0.070) (0.123) (0.029)

M1: CO Winter 0.355∗∗∗ 0.660∗∗∗ 0.763∗∗∗ 0.527∗∗∗ 0.040 -0.139∗∗ 0.021
(0.106) (0.181) (0.223) (0.201) (0.043) (0.059) (0.019)

PSummer=Winter 0.548 0.028∗∗ 0.127 0.516 0.449 0.063∗ 0.529

M2: CO Summer 0.276∗∗ 0.077 0.317 0.394∗∗ 0.090 0.064 -0.000
(0.114) (0.231) (0.287) (0.169) (0.069) (0.125) (0.029)

M2: CO Winter 0.328∗∗∗ 0.622∗∗∗ 0.714∗∗∗ 0.500∗∗∗ 0.031 -0.139∗∗ 0.016
(0.096) (0.172) (0.212) (0.179) (0.042) (0.059) (0.019)

PSummer=Winter 0.688 0.033∗∗ 0.158 0.557 0.394 0.062∗ 0.618

M3: CO Summer 0.247∗∗ -0.003 0.151 0.302∗ 0.091 0.049 0.008
(0.102) (0.200) (0.257) (0.163) (0.065) (0.108) (0.028)

M3: CO Winter 0.154∗∗∗ 0.254∗∗ 0.247∗ 0.210∗∗ -0.009 -0.082∗∗ 0.004
(0.059) (0.101) (0.141) (0.098) (0.034) (0.036) (0.012)

PSummer=Winter 0.376 0.154 0.665 0.574 0.168 0.193 0.872

Panel B: Ages Below 5
M1: CO Summer 0.137 -2.182 -1.617 0.325∗ 0.051 0.536 0.003

(0.348) (1.336) (1.599) (0.182) (0.054) (0.331) (0.056)
M1: CO Winter 0.782∗∗ 2.621∗∗ 3.184∗∗ 0.085 -0.013 -0.239 -0.014

(0.334) (1.168) (1.403) (0.093) (0.025) (0.157) (0.044)
PSummer=Winter 0.162 0.001∗∗∗ 0.003∗∗∗ 0.215 0.344 0.033∗∗ 0.819

M2: CO Summer 0.160 -2.063 -1.473 0.279 0.053 0.547 0.002
(0.331) (1.341) (1.640) (0.179) (0.058) (0.334) (0.057)

M2: CO Winter 0.732∗∗ 2.438∗∗ 2.919∗∗ 0.061 -0.011 -0.204 -0.023
(0.317) (1.140) (1.371) (0.092) (0.026) (0.157) (0.045)

PSummer=Winter 0.172 0.001∗∗∗ 0.006∗∗∗ 0.263 0.370 0.047∗∗ 0.725

M3: CO Summer 0.101 -2.195∗ -1.923 0.299∗ 0.072 0.369 -0.012
(0.293) (1.216) (1.500) (0.166) (0.056) (0.287) (0.055)

M3: CO Winter 0.568∗∗ 1.457∗∗ 1.530∗ -0.004 -0.009 -0.086 -0.015
(0.244) (0.723) (0.850) (0.068) (0.016) (0.156) (0.029)

PSummer=Winter 0.211 0.002∗∗∗ 0.013∗∗ 0.091∗ 0.218 0.129 0.969
Observations 179580 179580 179580 179580 179580 179580 179580
Zips x Season 328 328 328 328 328 328 328
Days 549 549 549 549 549 549 549

Notes: Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10 million

people) on daily instrumented CO pollution levels (ppb) in 2005-2007. Regressions include separate coefficients for

summer (April-September) and winter (October-March), where all controls are also allowed to differ by season.

The p-value for the test whether the coefficients on pollution are the same for both seasons is added below each

regression. Pollution is instrumented on airport congestion (taxi time) that is caused by network delays (taxi time

at three major airports in the Eastern United States). Model 1 assumes a uniform impact of congestion on pollution

levels at all zip codes surrounding an airport, while model 2 adds an interaction with the distance to the airport, and

model 3 furthermore adds interactions with wind direction and speed (columns (a)-(c) in Table 1). All regressions

include weather controls (quadratic in minimum and maximum temperature, precipitation and wind speed as well

as controls for wind direction), temporal controls (year, month, weekday, and holiday fixed effects), and zip code

fixed effects. Regressions are weighted by the total population in a zip code. Errors are two-way clustered by zip

code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A15: Sickness Rates Regressed On Instrumented Pollution (Controlling for Ozone, All Ages)

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A: All Ages

Model 1: CO 0.311∗∗∗ 0.556∗∗∗ 0.761∗∗∗ 0.435∗∗∗ 0.057 -0.030 0.006
(0.064) (0.163) (0.207) (0.133) (0.039) (0.063) (0.015)

Model 2: CO 0.306∗∗∗ 0.550∗∗∗ 0.755∗∗∗ 0.418∗∗∗ 0.050 -0.030 0.002
(0.061) (0.163) (0.211) (0.126) (0.038) (0.064) (0.015)

Model 3: CO 0.198∗∗∗ 0.412∗∗∗ 0.538∗∗∗ 0.235∗∗∗ 0.021 -0.037 0.002
(0.048) (0.128) (0.169) (0.080) (0.030) (0.041) (0.011)

Model 1: NO2 24.5∗∗∗ 43.9∗∗∗ 60.0∗∗∗ 34.3∗∗∗ 4.5 -2.4 0.5
(6.3) (16.5) (20.9) (10.5) (3.2) (5.2) (1.2)

Model 2: NO2 24.3∗∗∗ 43.6∗∗∗ 59.8∗∗∗ 33.3∗∗∗ 4.1 -2.4 0.2
(6.1) (16.6) (21.2) (10.3) (3.1) (5.3) (1.2)

Model 3: NO2 13.0∗∗∗ 21.1∗ 27.5∗ 18.7∗∗∗ 0.9 -0.5 0.3
(4.3) (11.8) (15.1) (7.1) (2.2) (3.1) (0.9)

Observations 179580 179580 179580 179580 179580 179580 179580
Zip Codes 164 164 164 164 164 164 164
Days 1095 1095 1095 1095 1095 1095 1095

Notes: Table replicates Panel A of Table 4 except that it also controls for ozone. It regresses zip-code level sickness

rates (counts for primary and secondary diagnosis codes per 10 million people) on daily instrumented pollution levels

(ppb) in 2005-2007. Each entry is a separate regression. Pollution is instrumented on airport congestion (taxi time)

that is caused by network delays (taxi time at three major airports in the Eastern United States). Model 1 assumes

a uniform impact of congestion on pollution levels at all zip codes surrounding an airport, while model 2 adds an

interaction with the distance to the airport, and model 3 furthermore adds interactions with wind direction and

speed (columns (a)-(c) in Table 1). All regressions include weather controls (quadratic in minimum and maximum

temperature, precipitation and wind speed as well as controls for wind direction), temporal controls (year, month,

weekday, and holiday fixed effects), and zip code fixed effects. Regressions are weighted by the total population in

a zip code. Errors are two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗

10%.
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Table A16: Sickness Rates Regressed On Instrumented Particulate Pollution, All Ages - LIML

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Model 1: PM2.5 20.1 -76.3 -64.5 34.9 -1.6 -14.8 -1.6

(34.5) (126.6) (138.1) (42.9) (13.2) (18.6) (4.1)
FFirst Stage 0.89 0.89 0.89 0.89 0.89 0.89 0.89

Model 2: PM2.5 26.4 -81.9 50.2 65.5 -1.0 -9.5 0.6
(18.4) (2086.4) (276.3) (46.5) (9.9) (10.7) (3.6)

FFirst Stage 3.49 3.49 3.49 3.49 3.49 3.49 3.49

Model 3: PM2.5 -4.9 -5.3 -10.7 15.5 3.3 1.3 0.7
(3.2) (15.5) (17.7) (11.2) (3.4) (4.9) (1.5)

FFirst Stage 4.90 4.90 4.90 4.90 4.90 4.90 4.90
Observations 41926 41926 41926 41926 41926 41926 41926
Zip Codes 53 53 53 53 53 53 53
Days 1091 1091 1091 1091 1091 1091 1091

Notes: Table regresses zip-code level sickness rates (counts for primary and secondary diagnosis codes per 10 million

people) on daily instrumented pollution levels (ppb) in 2005-2007. Each entry is a separate regression. Pollution is

instrumented on airport congestion (taxi time) that is caused by network delays (taxi time at three major airports

in the Eastern United States). Model 1 assumes a uniform impact of congestion on pollution levels at all zip codes

surrounding an airport, while model 2 adds an interaction with the distance to the airport, and model 3 furthermore

adds interactions with wind direction and speed. All regressions include weather controls (quadratic in minimum

and maximum temperature, precipitation, precipitation and wind speed as well as controls for wind direction),

temporal controls (year, month, weekday, and holiday fixed effects), and zip code fixed effects. Regressions are

weighted by the total population in a zip code. Errors are two-way clustered by zip code and day. Significance levels

are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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Table A17: Sickness Rates Regressed On Instrumented Pollution - Inpatient vs Outpatient Data

Acute All Heart Bone Appen-
Asthma Respiratory Respiratory Problems Stroke Fractures dicitis

(1a) (1b) (1c) (2) (3) (4) (5)
Panel A1: All Ages - Inpatient Data

Model 1: CO 0.041 0.116∗ 0.122 0.163∗ 0.021 0.040 0.007
(0.041) (0.060) (0.089) (0.092) (0.030) (0.029) (0.015)

Model 2: CO 0.039 0.112∗ 0.119 0.154∗ 0.016 0.040 0.004
(0.039) (0.059) (0.090) (0.092) (0.030) (0.030) (0.015)

Model 3: CO 0.020 0.069 0.059 0.074 -0.008 0.001 0.003
(0.027) (0.042) (0.069) (0.055) (0.025) (0.022) (0.010)

Panel B1: Ages Below 5 - Inpatient Data
Model 1: CO 0.013 0.224 0.082 0.093 0.013 -0.028 -0.012

(0.146) (0.285) (0.366) (0.069) (0.019) (0.053) (0.024)
Model 2: CO 0.020 0.224 0.069 0.071 0.014 -0.017 -0.016

(0.140) (0.277) (0.361) (0.064) (0.021) (0.053) (0.025)
Model 3: CO 0.112 0.326∗ 0.172 0.062 0.017 -0.019 -0.005

(0.094) (0.188) (0.265) (0.046) (0.014) (0.041) (0.017)
Panel C1: Ages 65 and Older - Inpatient Data

Model 1: CO 0.324 0.771∗∗ 0.903∗ 1.873∗∗ 0.248 0.240 0.015
(0.211) (0.349) (0.498) (0.764) (0.253) (0.156) (0.028)

Model 2: CO 0.299 0.738∗∗ 0.912∗ 1.848∗∗ 0.225 0.224 0.013
(0.197) (0.349) (0.509) (0.763) (0.256) (0.155) (0.027)

Model 3: CO 0.150 0.234 0.474 0.953∗ 0.010 -0.006 -0.029
(0.138) (0.250) (0.400) (0.490) (0.209) (0.119) (0.026)

Panel A2: All Ages - Outpatient Data
Model 1: CO 0.269∗∗∗ 0.440∗∗∗ 0.639∗∗∗ 0.271∗∗∗ 0.037∗∗ -0.070 -0.002

(0.053) (0.135) (0.167) (0.069) (0.015) (0.046) (0.004)
Model 2: CO 0.268∗∗∗ 0.438∗∗∗ 0.637∗∗∗ 0.264∗∗∗ 0.035∗∗ -0.070 -0.002

(0.053) (0.135) (0.168) (0.064) (0.014) (0.046) (0.004)
Model 3: CO 0.174∗∗∗ 0.327∗∗∗ 0.456∗∗∗ 0.153∗∗∗ 0.028∗∗∗ -0.040 -0.001

(0.041) (0.108) (0.135) (0.047) (0.010) (0.027) (0.002)
Panel B2: Ages Below 5 - Outpatient Data

Model 1: CO 0.552∗∗∗ 1.724∗ 2.601∗∗ 0.060∗ 0.006 0.078 0.006
(0.189) (0.957) (1.115) (0.034) (0.006) (0.120) (0.017)

Model 2: CO 0.559∗∗∗ 1.706∗ 2.555∗∗ 0.055∗ 0.006 0.081 0.004
(0.189) (0.953) (1.123) (0.033) (0.005) (0.116) (0.018)

Model 3: CO 0.557∗∗∗ 1.840∗∗∗ 2.321∗∗∗ 0.013 0.006∗ 0.006 -0.004
(0.159) (0.692) (0.814) (0.024) (0.003) (0.107) (0.011)

Panel C2: Ages 65 and Older - Outpatient Data
Model 1: CO 0.525∗∗∗ 0.698∗∗∗ 1.411∗∗∗ 1.731∗∗∗ 0.278∗∗ 0.200 0.002

(0.148) (0.225) (0.321) (0.403) (0.108) (0.144) (0.004)
Model 2: CO 0.517∗∗∗ 0.675∗∗∗ 1.364∗∗∗ 1.681∗∗∗ 0.277∗∗ 0.185 0.002

(0.140) (0.216) (0.308) (0.381) (0.110) (0.143) (0.004)
Model 3: CO 0.343∗∗∗ 0.462∗∗∗ 0.950∗∗∗ 0.984∗∗∗ 0.188∗∗ 0.193∗∗ 0.004

(0.106) (0.151) (0.222) (0.295) (0.087) (0.088) (0.004)

Notes: Table replicates Table 4 except that sickness counts only use Inpatient Data (patients stay overnight) or

Outpatient Data (patients do not stay overnight). Table regresses zip-code level sickness rates (counts for primary

and secondary diagnosis codes per 10 million people) on daily instrumented pollution levels (ppb) in 2005-2007.

Each entry is a separate regression. Pollution is instrumented on airport congestion (taxi time) that is caused by

network delays (taxi time at three major airports in the Eastern United States). Model 1 assumes a uniform impact

of congestion on pollution levels at all zip codes surrounding an airport, while model 2 adds an interaction with

the distance to the airport, and model 3 furthermore adds interactions with wind direction and speed (columns

(a)-(c) in Table 1). All regressions include weather controls (quadratic in minimum and maximum temperature,

precipitation and wind speed as well as controls for wind direction), temporal controls (year, month, weekday, and

holiday fixed effects), and zip code fixed effects. Regressions are weighted by the total population in a zip code.

Errors are two-way clustered by zip code and day. Significance levels are indicated by ∗∗∗ 1%, ∗∗ 5%, ∗ 10%.
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