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Abstract

We consider a general framework to study the evolution of wage and earnings residuals that
incorporates features highlighted by two influential but distinct literatures in economics: (i)
unobserved skills with changing non-linear pricing functions and (ii) idiosyncratic shocks that
follow a rich stochastic process. Specifically, we consider residuals for individual i in period t
of the form: Wi,t = µt(θi) + εi,t, where θi represents an unobserved permanent ability or skill,
µt(·) a pricing function for unobserved skills, and εi,t idiosyncratic shocks with both permanent
and transitory components.

We first provide nonparametric identification conditions for the distribution of unobserved
skills, all µt(·) skill pricing functions, and (nearly) all distributions for both permanent and
MA(q) transitory shocks. We then discuss identification and estimation using a moment-based
approach, restricting µt(·) to be polynomial functions. Using data on log earnings for men
ages 30-59 in the PSID, we estimate the evolution of unobserved skill pricing functions and the
distributions of unobserved skills, transitory, and permanent shocks from 1970 to 2008. We
highlight five main findings: (i) The returns to unobserved skill rose over the 1970s and early
1980s, fell over the late 1980s and early 1990s, and then remained quite stable through the end of
our sample period. Since the mid-1990s, we observe some evidence of polarization: the returns
to unobserved skill declined at the bottom of the distribution while they remained relatively
constant over the top half. (ii) The variance of unobserved skill changed very little across most
cohorts in our sample (those born between 1925 and 1955). (iii) The variance of transitory
shocks jumped up considerably in the early 1980s but shows little long-run trend otherwise over
the more than thirty year period we study. (iv) The variance of permanent shocks declined very
slightly over the 1970s, then rose systematically through the end of our sample by 15 to 20 log
points. The increase in this variance over the 1980s and 1990s was strongest for workers with
low unobserved ability. (v) In most years, the distribution of µt(θ) is positively skewed, while
the distributions of permanent and (especially) transitory shocks are negatively skewed.
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1 Introduction

Sustained growth in economic inequality over the past few decades (most notably in the U.S. but

also in many other developed countries) has generated widespread interest in both its causes and

consequences, spurring large bodies of research in labor economics, macroeconomics, and growth

economics.1 Perhaps, the greatest efforts have been devoted to understanding the role of skills,

observed and unobserved, in accounting for the evolution of wage and earnings inequality. There

is widespread agreement that the returns to observable measures of skill like education and labor

market experience have increased dramatically since the early 1980s (Card, 1999; Katz and Autor,

1999; Heckman, Lochner, and Todd, 2006, 2008). There is greater disagreement about the evolution

of returns to unobserved abilities and skills (e.g., see Card and DiNardo (2002); Lemieux (2006);

Autor, Katz, and Kearney (2008)).2 More generally, the literature has yet to reach a consensus on

the factors underlying changes in residual wage and earnings inequality (i.e. inequality conditional

on observable measures of skill like educational attainment and age/experience).

Figure 1 shows that the evolution of total inequality in log weekly wages and earnings for 30-59

year-old American men is closely mirrored by the evolution of residual inequality, and while the

variance of log earnings is always greater than that for weekly wages, both sets of variances follow

nearly identical time patterns.3 This paper focuses on the evolution of residual earnings inequality

in the U.S. from 1970 to 2008.

Two large and influential empirical literatures study the rise in residual inequality through very

different lenses. Beginning with Katz and Murphy (1992) and Juhn, Murphy, and Pierce (1993), a

literature based primarily on data from the Current Population Survey (CPS) has equated changes

in residual inequality with changes in returns to unobserved abilities or skills.4 According to this

literature, the increase in residual inequality beginning in the early 1980s reflects an increase in the

value of unobserved skill in the labor market.5 This interpretation has fostered the development

1For example, see surveys by Katz and Autor (1999), Acemoglu (2002), and Aghion (2002).
2Taber (2001) argues that increasing returns to unobserved skill in recent decades may be the main driver for

the increase in measured returns to college, since individuals with higher unobserved skills are more likely to attend
college.

3Residuals are based on year-specific regressions of log earnings on age, education, race and their interactions. See
Section 4 for a detailed description of the residual regressions and sample used in creating this figure.

4More recently, see Card and DiNardo (2002); Lemieux (2006); Autor, Katz, and Kearney (2008). In a com-
plementary literature, Heckman and Vytlacil (2001) and Murnane, Willett, and Levy (1995) directly estimate the
changing effects of cognitive ability on wages over the 1980s and early 1990s using observable test scores.

5Lemieux (2006) argues that the composition of unobserved ‘skills’ has also changed over time as baby boomers
have aged and the population has become more educated. Below, we explore differences in the distribution of
unobserved ability across cohorts. Chay and Lee (2000) distinguish between changes in unobserved skill pricing
and changes in the variance of transitory shocks over the 1980s by assuming that blacks and whites have different
unobserved skill distributions but identical (time-varying) variances in transitory shocks.
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Figure 1: Variance of Log Earnings and Weekly Wages and Residuals (Men Ages 30-59, PSID)
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of new theories of skill-biased technical change as explanations for the increase in demand for skill

(Acemoglu, 1999; Caselli, 1999; Galor and Moav, 2000; Gould, Moav, and Weinberg, 2001; Violante,

2002). Other studies have emphasized institutional changes like the declining minimum wage or

de-unionization as causes for the declining wages paid to low-skilled workers (Card and DiNardo,

2002; Lemieux, 2006). Most recently, Autor, Levy, and Murnane (2003), Acemoglu and Autor

(2011) and Autor and Dorn (2012) offer a more nuanced view of technological change, arguing

that the mechanization of many routine tasks in recent decades has led to polarization in both

employment and wages by skill.

A second, equally important literature studies the evolution of residual inequality with the aim of

quantifying the relative importance of transitory and permanent shocks over time (Gottschalk and

Moffitt, 1994; Blundell and Preston, 1998; Haider, 2001; Moffitt and Gottschalk, 2002; Meghir and

Pistaferri, 2004; Gottschalk and Moffitt, 2009; Bonhomme and Robin, 2010; Heathcote, Storesletten,

and Violante, 2010; Heathcote, Perri, and Violante, 2010; Moffitt and Gottschalk, 2012).6 These

studies examine the same type of wage or earnings residuals of the CPS-based literature, only

6A large related literature estimates earnings dynamics over the lifecycle without attempting to explain changes
in residual inequality over time. See, e.g., Lillard and Weiss (1979); MaCurdy (1982); Abowd and Card (1989); Baker
(1997); Guvenen (2007); Hryshko (2012).
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they decompose the residuals into different idiosyncratic stochastic shocks (typically, permanent

martingale shocks, autoregressive and/or moving average processes), estimating the variances of

these shocks over time. Decompositions of this type are of economic interest, because the persistence

of income shocks has important implications for lifetime inequality as well as consumption and

savings behavior at the individual and aggregate levels.7 Studies using the Panel Study of Income

Dynamics (PSID) typically find that growth in the variance of transitory shocks accounts for about

one-third to one-half of the increase in total residual variance in the U.S. since the early 1970s. As

Gottschalk and Moffitt (1994) point out, this growth in the variance of transitory shocks suggests

that changes in the pricing of unobserved skills are unlikely to fully account for the observed

rise in residual inequality. While this literature considers a rich structure for stochastic shocks,

it typically neglects potential changes in the pricing of unobserved skills as emphasized by the

CPS-based literature.8

In this paper, we consider a general framework for wage and earnings residuals that incorporates

the features highlighted by both of these literatures: (i) unobserved skills with changing non-

linear pricing functions and (ii) idiosyncratic shocks that follow a rich stochastic process including

permanent and transitory components. Specifically, we consider log wage and earnings residuals

for individual i in period t of the form:9

Wi,t = µt(θi) + εi,t, (1)

where θi represents an unobserved permanent ability or skill, µt(·) a pricing function for unobserved

skills, and εi,t idiosyncratic shocks. We allow for a rich stochastic process for εi,t as in much of the

literature on earnings dynamics and assume that εi,t is mean independent of θi.

Economic shifts in the demand for or supply of unobserved skills are likely to be reflected in

µt(·). To the extent that unobserved skills are important, the wages and earnings of workers at

similar points in the wage distribution should co-move over time as the labor market rewards their

7The co-movement of consumption with permanent and transitory income shocks is also of interest to economists
studying the structure of capital/insurance markets (Blundell, Pistaferri, and Preston, 2008; Krueger and Perri, 2006).

8A few exceptions are noteworthy. The model estimated by Moffitt and Gottschalk (2012) is most similar to ours,
so we discuss it in some detail in Section 5.1.1. Haider (2001) estimates the evolution of lifetime earnings inequality
allowing for changing observable and unobservable skill prices as well as an ARMA(1, 1) process for stochastic shocks.
In their study of black – white wage inequality in the early 1980s, Card and Lemieux (1994) estimate the evolution
of observed and unobserved skill prices accounting for AR(1) stochastic shocks to unobserved skills.

9This specification is consistent with wage/earnings functions that are multiplicatively separable in observable
factors (like education and experience), unobserved skills, and idiosyncratic wage/earnings shocks. More generally,
observed and unobserved skills may be non-separable in wage or earnings functions. For example, in the case of fixed
observable differences Xi (e.g. cohort of birth, race/ethnicity, or educational attainment prior to labor market entry),
we could write µt(θi, Xi) where the distribution of εi,t may depend on Xi. Our theoretical and empirical analyses
below could all be conditioned on Xi in this case.
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skill set more or less. The recent literature on ‘polarization’ in the U.S. labor market (Autor, Levy,

and Murnane, 2003; Acemoglu and Autor, 2011; Autor and Dorn, 2012) suggests that these skill

pricing functions have become more convex in recent years, rewarding skill more and more at the

top of the distribution but not at the bottom. This motivates our emphasis on flexible non-linear

µt(·) pricing functions.

Permanent and transitory shocks embodied in εi,t are idiosyncratic and unrelated across workers

regardless of how close they may be within the skill distribution. We consider a process for εi,t

that is general enough to account for permanent shocks that produce lasting changes in a worker’s

earnings (e.g. job displacement, moving from a low- to high-paying firm, or a permanent disability)

as well as those more short-term in nature (e.g. temporary illness, family disruption, or a good/bad

year for the worker’s employer).10 In our analysis, the sizeable increase in the variance of wages

across firms (within industries and geographic regions) documented by Dunne et al. (2004) and

Barth et al. (2011) is likely to manifest itself in a rise in the variance of permanent shocks, since

most workers switch firms over the lifecycle but switches are infrequent. For similar reasons, any

increase in the variance of wages due to increased occupational switching over time (Kambourov

and Manovskii, 2009) is also likely to show up as an increase in the variance of permanent shocks.

Distinguishing between changes in the variance of shocks and in skill pricing can be useful for

understanding household consumption and savings behavior, since household decisions are likely to

respond quite differently to an increase in the price of skill than they would to an increase in the

variance of permanent or transitory shocks. Transitory shocks have little effect on consumption

behavior, while an increase in the variance of permanent shocks should lead to increases in con-

sumption inequality over time within and across cohorts. Changes in skill prices, µt(·), are likely

to be more predictable and smooth over time, since they are largely driven by economic changes

in the supply of and demand for skills or by major policy changes. To the extent that they are

well-anticipated, changes in µt(·) are likely to have little effect on consumption inequality over time

for a given cohort; however, growth in the return to unobserved skill should raise consumption

inequality across successive cohorts. Furthermore, changes in the variance of permanent shocks

affect precautionary savings motives, while changes in skill prices should not (regardless of their

predictability).11

10A growing literature studies the implications for wage dynamics of different assumptions about wage setting in
markets with search frictions and worker productivity shocks (Flinn, 1986; Postel-Vinay and Turon, 2010; Yamaguchi,
2010; Burdett, Carrillo-Tudela, and Coles, 2011; Bagger, Fontaine, Postel-Vinay, and Robin, 2011). This literature
incorporates unobserved worker human capital or productivity differences but does not account for changing market
demands for human capital, implicitly assuming µt(θ) = µ(θ).

11Changes in the underlying uncertainty of skill prices should affect precautionary savings motives in the same way
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Workers of different ability/skill levels may face different levels of labor market risk, which may

evolve differently over time. For example, the diffusion of new skill-biased technology in the presence

of labor market frictions can produce different trends in the variance of permanent shocks by ability,

since more able workers may adopt these technologies first (Violante, 2002). To account for this

possibility, our analysis explicitly accounts for heteroskedasticity in permanent shocks, allowing the

relationship between unobserved ability and the variance of permanent shocks to change freely over

time.

An important question is whether all of these earnings components can be separately identified

using standard panel data sets on wages/earnings without making strong distributional or functional

form assumptions. We, therefore, begin with a formal analysis of nonparametric identification,

drawing on insights from the measurement error literature (especially, Hu and Schennach (2008);

Schennach and Hu (2013)) and the analysis of Cunha, Heckman, and Schennach (2010). We focus

on the case where εit contains a permanent (Martingale) shock κit and a shock characterized by

a moving average process νit, allowing the distributions for these shocks to vary over time.12 We

derive conditions necessary for nonparametric identification of the distribution for θ and all µt(·)

pricing functions, as well as (nearly) all distributions and parameters characterizing the stochastic

process for idiosyncratic shocks.

Assuming νt follows a MA(q) process, our main theoretical result establishes that a panel of

length T ≥ 6 + 3q time periods is needed for full nonparametric identification. For modest q, this

is easily satisfied with common panel data sets like the PSID or National Longitudinal Surveys of

Youth (NLSY). Intuitively, identification of the distribution of θ and the µt(·) pricing functions

derives from the fact that correlations in wage residual changes far enough apart in time are due

the unobserved component θ and not idiosyncratic permanent or transitory shocks. Once these

are identified, the distributions of permanent and transitory shocks can be identified from joint

distributions of residuals closer together in time. These results apply to any cohort, so we can also

identify changes in the distribution of unobserved ability/skill across any cohorts we observe for

enough time periods.

We next briefly discuss identification and estimation using a moment-based approach standard

in the literature on earnings dynamics. Here, we restrict µt(·) to be polynomial functions and

discuss minimal data and moment requirements for identification of µt(·) and moments of the

as changes in the variance of permanent shocks.
12Assumptions on εit of this nature are often employed in the literature (Abowd and Card, 1989; Blundell and

Preston, 1998; Haider, 2001; Gourinchas and Parker, 2002; Meghir and Pistaferri, 2004; Blundell, Pistaferri, and
Preston, 2008; Heathcote, Perri, and Violante, 2010).
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distributions for unobserved ability, transitory and permanent shocks. We use minimum distance

estimation with second- and third-order residual moments to estimate our model with linear and

cubic µt(·) functions, considering different assumptions about the process for transitory shocks νt.

We first show that allowing for time-varying unobserved skill pricing functions significantly

improves the model’s fit to the data relative to the standard assumption that µt(·) are fixed. Ac-

counting for unobserved skills is important for understanding the evolution of log earnings residuals.

Our results also demonstrate the importance of accounting for permanent and transitory shocks

when estimating the pricing of unobserved skills. Time patterns for the distribution of log earnings

residuals are quite different from the patterns estimated for the pricing of unobserved skills.13

We decompose the variance of residuals into components for (i) unobserved skill prices, (ii) per-

manent shocks, and (iii) transitory shocks. We also examine changes in µt(θ) at the top and bottom

of its distribution over time as well as potential changes in the distribution of θ across cohorts. We

highlight five main findings. (i) The returns to unobserved skills rose over the 1970s and early

1980s, fell over the late 1980s and early 1990s, and then remained quite stable through the end of

our sample period. Since the mid-1990s, we observe some evidence of polarization: the returns to

skill have declined at the bottom of the distribution while they have remained relatively constant

over the top half. (ii) The variance of unobserved skill changed very little across most cohorts in

our sample (those born between 1925 and 1955). (iii) The variance of transitory shocks jumped up

considerably in the early 1980s but shows little long-run trend otherwise over the more than thirty

year period we study. (iv) The variance of permanent shocks declined very slightly over the 1970s,

then rose systematically through the end of our sample by 15 to 20 log points. The increase in this

variance over the 1980s and 1990s was strongest for workers with low unobserved ability. (v) In

most years, the distribution of µt(θ) is positively skewed, while the distributions of permanent and

(especially) transitory shocks are negatively skewed.

This paper proceeds as follows. In Section 2, we provide nonparametric identification results

for our model with unobserved ability/skills, permanent shocks, and transitory shocks following

an MA(q) process. Section 3 briefly discusses identification and estimation using a moment-based

approach, assuming polynomial µt(·) pricing functions. We describe the PSID data used to estimate

earnings dynamics for American men in Section 4 and report our empirical findings in Section 5.

We offer concluding thoughts in Section 6.

13Key findings also hold for log weekly wage residuals as shown in Appendix B.
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2 Nonparametric Identification

In this section, we provide nonparametric identification results for our model. The baseline

model is the following factor model:

Wi,t = µt(θi) + εi,t for t = 1, . . . , T, and i = 1, . . . , n, (2)

where the distributions of unobserved factors θi and εi,t are unspecified, the functional form of µt(·)

is also unspecified but strictly monotonic, and we only observe {Wi,t} (earnings or wage residuals

in our empirical context). We consider a short time panel, i.e. n is large and T is (relatively) small

and fixed. For notational simplicity, we drop the cross-sectional subscript i except where there may

otherwise be some confusion. First, we discuss identification when εt is independent over t. Then,

we generalize this result to account for serial correlation in εt.

2.1 Case 1: Serially Independent εt

From the model in Equation (2), we want to identify the following objects: (i) the distribution

of θ, (ii) the distributions of εt for all t, and (iii) the functions µt(·) for all t. We first define some

notation. For generic random variables A and B, let fA(·) and fA|B(·|·) denote the probability

density function of A and the conditional probability density function of A given B, respectively.

Similarly, FA(·) and FA|B(·|·) denote their cumulative distribution functions, and φA,B(·) denotes

the joint characteristic function. We want to identify fθ(·), fεt(·), and µt(·) for all t.

Since all components are nonparametric, we need some normalization. Throughout this section,

we impose µ1(θ) = θ. The following regularity conditions ensure identification:

Assumption 1. The following conditions hold in equation (2) for T = 3:

(i) The joint density of θ, W1, W2, and W3 is bounded and continuous, and so are all their

marginal and conditional densities.

(ii) W1, W2, and W3 are mutually independent conditional on θ.

(iii) fW1|W2
(W1|W2) and fθ|W1

(θ|W1) form a bounded complete family of distributions indexed by

W2 and W1, respectively.

(iv) For all θ̄, θ̃ ∈ Θ, the set {w3 : fW3|θ(w3|θ̄) 6= fW3|θ(w3|θ̃)} has positive probability whenever

θ̄ 6= θ̃.

(v) We normalize µ1(θ) = θ and E[εt|θ] = 0 for all t.
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Assumption 1 is adopted from Hu and Schennach (2008) and is also used in Cunha, Heckman,

and Schennach (2010). Condition (i) assumes a well-defined joint density of the persistent factor

θ and observed residuals. In our empirical setup, they are all continuous random variables, and

this condition holds naturally. Condition (ii) is the mutual independence assumption commonly

imposed in linear factor models. Note that εt may be heteroskedastic, since this condition only

requires conditional independence given θ. Conditions (iii) and (iv) are the key requirements for

identification. Heuristically speaking, condition (iii) requires enough variation for each conditional

density given different values of the conditioning variable. For example, exponential families sat-

isfy this condition. Newey and Powell (2003) apply it to identification of nonparametric models

with instrumental variables, and it is standard in many nonparametric analyses. Condition (iv)

holds when µ3(·) is strictly monotonic, which is natural in our empirical context. Conditional het-

eroskedasticity can also ensure condition (iv) (see Hu and Schennach (2008)). Condition (v) is a

standard location and scale normalization.

The following lemma establishes identification for T = 3, so a panel with 3 (or more) periods is

necessary for nonparametric identification of the full model.

Lemma 1. Under Assumption 1, fθ(·), fεt(·), and µt(·) are identified for all t.

The proof for this (and subsequent results) is provided in Appendix A. Here, we sketch its

key steps. The spectral decomposition result in Theorem 1 of Hu and Schennach (2008) gives

identification of fW1|θ(·|·), fW2|θ(·|·), and fW3,θ(·, ·) from fW1,W2,W3(·, ·, ·), which is already known

from data. As in Theorem 2 in Cunha, Heckman, and Schennach (2010), fθ(·) can be recovered

from fW3,θ(·, ·) by integrating out θ. Next, for t = 2, 3, we can identify µt(·) from the conditional

density fWt|θ(·, ·), since we know that E[Wt|θ] = µt(θ) from E[εt|θ] = E[εt] = 0. Finally, we can

identify fεt|θ(·|·) by applying the standard variable transformation given Wt = µt(θ) + εt with

known fWt|θ(·|·) and µt(·), from which fεt(·) is recovered immediately.

2.2 Case 2: Serially Correlated εt

We now generalize the model to allow for serial correlation in εt for our main identification

result. Specifically, we decompose the idiosyncratic error εt = κt + νt into two components: a

persistent shock, κt, and a transitory shock, νt. The persistent shock follows a martingale/unit

root process with κt = κt−1 + ηt, and the transitory shock has serial dependence only over q

periods, i.e. fνt,νt+s(ν1, ν2) = fνt(ν1) · fνt+s(ν2) for s > q. With this, the model can be written as

Wt = µt(θ) + κt + νt. (3)
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As discussed below, it is possible to identify both fθ(·) and µt(·) under this general structure if a

long enough time panel is available, i.e. T ≥ 6 + 3q.

To further identify the processes for permanent and transitory shocks, we impose the following

structure for κt and νt:

κt = κt−1 + ηt = κt−1 + σt(θ)ζt (4)

νt = ξt +

q∑
j=1

βjξt−j (5)

where ζt and ξt are mean zero processes whose distributions can vary over time. The persistent

shock ηt is conditional heteroskedastic through σt(θ), and the transitory shock follows a MA(q)

process. For simplicity, we analyze the case of q = 1 in detail; however, the results can be readily

extended to any finite q as we discuss below. For q = 1, equation (3) becomes

Wt = µt(θ) +

t∑
j=1

σj(θ)ζj + (ξt + βtξt−1) . (6)

In addition to fθ(·) and all µt(·), we identify σt(·), fζt(·), fξt(·), and βt for all but the last two

periods under the following assumption. (Define ∆At ≡ At −At−1 and θt ≡ µt(θ).)

Assumption 2. The following conditions hold in equation (6) for T = 9:

(i) The joint density of θ, W1,W2,W3, ∆W4, . . . ,∆W9 is bounded and continuous, and so are

all their marginal and conditional densities.

(ii) Unobserved components ζt, ξt, and θ are mutually independent for all t = 1, . . . , 9.

(iii) fW1|∆W4
(w1|∆w4) and fθ|W1

(θ|w1) form a bounded complete family of distributions indexed by

∆W4 and W1, respectively. The same condition holds for (W2,∆W5, θ2) and (W3,∆W6, θ3).

(iv) For all θ̄, θ̃ ∈ Θ, the set {w : f∆W7|θ(w|θ̄) 6= f∆W7|θ(w|θ̃)} has positive probability whenever

θ̄ 6= θ̃. The same condition holds for f∆W8|θ and f∆W9|θ.

(v) We impose the following normalization: κ0 = ξ0 = 0, µ1(θ) = θ,E[ζt] = E[ξt] = 0, E[ζ2
t ] = 1,

and σt(·) > 0 for all t.

(vi) Let mζt,n =
∫∞
−∞ ζ

ndFζt(ζ) and mξt,n =
∫∞
−∞ ξ

ndFξt(ξ). For all t, the following Carleman’s

condition holds for ζt and ξt:

∞∑
n=1

(mζt,2n)−
1
2n =∞ and

∞∑
n=1

(mξt,2n)−
1
2n =∞.
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The conditions in Assumption 2 mainly extend those in Assumption 1 to a longer time period

and to include some differences in {Wt}. Differencing is required to cancel out the persistent

shock κt, which helps to map this problem into that of Lemma 1. Unless ∆Wt is degenerate

on an interval, these conditions hold in a similar situation to that described for Assumption 1.

Condition (ii) implies similar mutual independence among W1,W2,W3,∆W4, . . . ,∆W9 conditional

on θ. Condition (vi) is a technical assumption that assures the equivalence between the sequence

of moments and the distribution. We now state the main identification result.

Theorem 1. Under Assumption 2, fθ(·), {fζt(·), fξt(·), βt}7t=1, {σt(·)}7t=1, and {µt(·)}9t=1 are iden-

tified.

The proof provided in Appendix A.2 proceeds in three main steps. First, we jointly consider

distributions of (Wt,∆Wt+3,∆Wt+6) for t = 1, 2, 3. For example, consider:

W1 = θ + ε1 = θ + η1 + ν1 = θ + σ1(θ)ζ1 + ν1

∆W4 = ∆µ4(θ) + ∆ε4 = ∆µ4(θ) + η4 + ∆ν4 = ∆µ4(θ) + σ4(θ)ζ4 + ∆ν4

∆W7 = ∆µ7(θ) + ∆ε7 = ∆µ7(θ) + η7 + ∆ν7 = ∆µ7(θ) + σ7(θ)ζ7 + ∆ν7.

These triplets are mutually independent conditional on θ. The differences ∆W4 and ∆W7 are

analogous to W2 and W3 in the simpler model with serially independent εt. We can simply apply

Lemma 1 to identify fθ(·) and both ∆µ4(·) and ∆µ7(·) functions. A similar approach can be

taken for triplets (W2,∆W5,∆W8) and (W3,∆W6,∆W9); however, these cases are slightly more

complicated since W2 and W3 depend on µ2(·) and µ3(·), respectively. Still, monotonicity of the

functions µt(·) for t = 2, 3 and knowledge of fθ(·) enables identification of µt(·), ∆µt+3(·), and

∆µt+6(·) for t = 2, 3. Altogether, we identify fθ(·) and all µt(·) functions from these three sets of

triplets.14 Notice that we actually identify fWt|θ(·|·) in this step, which will be used in the next

steps.

In a second step, we establish identification of E[ξ2
t ], βt, and σt(·) for t = 1, . . . , 7 using various

second moments between W1, . . . ,W9. For example, consider the triplet (W1,W2,W3). From

E[W1W3], E[W 2
1 ], and E[W1,W2], we can identify E[σ2

1(θ)], E[ξ2
1 ], and β1, respectively. With these,

σ1(·) is identified from E[W 2
1 |θ], which can be calculated from fW1|θ(·|·). We can apply this same

argument to triplets {(Wt,Wt+1,Wt+2)}7t=2 to identify analogous elements up through t = 7.

14This step does not rely on the MA(q) structure for νt. Only serial independence νt ⊥⊥ νt+s for s > q is needed
to establish identification of fθ(·) and all µt(·).

11



In a third step, we identify fηt(·) and fξt(·) for t = 1, . . . , 7. In this step, we first identify

the infinite sequence of moments {(E[ηkt ], E[ξkt ])}∞k=1 by mathematical induction. Then, the Car-

leman’s condition in Assumption 2 (vi) enables us to apply Hamburger’s Theorem to determine

{fηt(·), fξt(·)}7t=1 uniquely.

2.3 Identification under Homoskedasticity

When ηt ⊥⊥ θ so εt is homoskedastic, condition (iv) of Assumption 2 requires strict monotonicity

of ∆µt(·) for t = 7, 8, 9. This is quite strong, especially in light of recent discussions of polarization

in the demand for skill. Fortunately, this assumption can be relaxed. In Appendix A.3, we show

that the model is still fully identified by replacing condition (iv) with the following lower level

assumption on µt(·) (along with some minor additional technical conditions):

For t = 7, 8, 9, the functions ∆µt(θ) are continuously differentiable with ∆µ′t(θ
∗) = 0 for at

most a finite number of θ∗.

This condition allows ∆µt(·) to be non-monotonic. However, it does not allow the marginal value

of unobserved skill µ′t(·) to be time invariant over an interval of θ in later years. The complete set

of assumptions and identification proof can be found in Appendix A.3.

2.4 Some General Comments on Identification

For panels of length T ≥ 9, the same general strategy as above can be used to identify fθ(·),

{µt(·)}Tt=1 and {fηt(·), fξt(·), βt}T−2
t=1 . While not surprising, the fact that distributions of transitory

and permanent shocks cannot be separately identified for the final two periods is useful to keep in

mind during estimation.

Our identification strategy can also be used for more general MA(q) processes. In this case, we

need to consider triplets of the form (Wt,∆Wt+q+2,∆Wt+2q+4) to ensure independence across the

three observations. As q increases, we also need to include additional sets of triplets to ‘roll’ over

in step 1 of our proof. Thus, a panel of length T ≥ 6 + 3q is needed, so the required panel length

increases with persistence in the moving average shock at the rate of 3q. We can still identify µt(·)

for all T periods; however, we can only identify fηt(·), fξt(·), and βt up through period T − q − 1.

Finally, our approach rules out any stochastic process that does not eventually die out, including

an AR(1) process. Independence across some subsets of observations is crucial at a number of points

in our identification proof, so accommodating these type of errors would require a very different

approach. Still, our results generalize to an arbitrarily long MA(q) process provided q is finite.
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Of course, the data demands grow quickly with q making it impractical to estimate models with q

much larger than five in typical panel survey data sets.15

3 A Moment-Based Approach

We next consider a moment-based estimation approach that simultaneously uses data from all

time periods; however, we restrict our analysis to the case where

µt(θ) = m0,t +m1,tθ + ...+mp,tθ
p (7)

are pth order polynomials. Because our data contain multiple cohorts with the age distribution

changing over time, it is useful to explicitly incorporate age, a in the current discussion:

Wi,a,t = µt(θi) + κi,a,t + νi,a,t (8)

κi,a,t = κi,a−1,t−1 + ηi,a,t (9)

νi,a,t = ξi,a,t + β1,tξi,a−1,t−1 + β2,tξi,a−2,t−2 + ...+ βq,tξi,a−q,t−q. (10)

As above, we normalize µ1(θ) = θ and continue to assume all residual components are mean zero

in each period (for each age group/cohort): E[µt(θi)] = E[κi,a,t] = E[νi,a,t] = 0 for all a, t.

In this section, we describe residual moment conditions as well as minimum data and moment

requirements for identification. In particular, we discuss the residual moments and data needed

to identify various moments of shock and unobserved skill distributions as well as different order

polynomials for the µt(·) functions. In Section 5, we use these moments to estimate our model.

We focus on the evolution of skill pricing functions over time and decompose the variance in log

earnings residuals over time into components related to: (i) the pricing of unobserved skills µt(θ),

(ii) permanent shocks κi,a,t, and (iii) transitory shocks νi,a,t. We further extend our analysis to

examine the evolution of higher moments of distributions related to these three components.

3.1 Moments, Parameters and Identification

We assume individuals begin receiving shocks ηi,a,t and ξi,a,t when they enter the labor market

at age a = 1. Thus, κi,0,t = νi,0,t = 0 and ηi,a,t = ξi,a,t = 0 for all a ≤ 0. We also assume that

the distributions of ηi,a,t and ξi,a,t shocks are age-invariant, changing only with time. Importantly,

the distributions of κi,a,t will depend on age as older individuals will have experienced a longer

history of shocks over their working lives. Define the following moments: σkηt ≡ E[ηki,a,t] = E[σkt (θ)]

15Models with q as large as 10 might feasibly be estimated in administrative data sets that effectively contain
lifetime earnings records.
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and σkξt ≡ E[ξki,a,t] for all a, t. Due to mutual independence between ηi,a,t and ξi,a,t and their

independence across time, these assumptions imply that

σkκa,t ≡ E[κki,a,t] =
a−1∑
j=0

σkηt−j

σkνa,t ≡ E[νki,a,t] = σkξt +

min{q,a−1}∑
j=1

βkj,tσ
k
ξt−j .

Because all shocks are assumed to be mean zero, these moments are equivalent to central moments.

With these assumptions, we have the following residual variances for individuals age a in time t:

E[W 2
i,a,t|a, t] =

p∑
j=0

p∑
j′=0

mj,tmj′,tE[θj+j
′
] +

a−1∑
j=0

σ2
ηt−j + σ2

ξt +

min{q,a−1}∑
j=1

β2
j,tσ

2
ξt−j (11)

and covariances:

E[Wi,a,tWi,a+l,t+l|a, t, l] =

p∑
j=0

p∑
j′=0

mj,tmj′,t+lE[θj+j
′
]+

a−1∑
j=0

σ2
ηt−j +E(νi,a,tνi,a+l,t+l) for l ≥ 1. (12)

The last term, E(νi,a,tνi,a+l,t+l), reflects the covariance of transitory shocks and is straightforward

to determine for any q. These covariances are generally non-zero for l ≤ q and zero otherwise. For

q = 1, we have E(νi,a,tνi,a+1,t+1) = β1,t+1σ
2
ξt

and E(νi,a,tνi,a+l,t+l) = 0,∀l ≥ 2.

As equation (11) makes clear, the variance of earnings residuals can change over time for three

reasons: (i) unobserved skills may become more or less valuable (i.e. µt(·) may change), (ii) perma-

nent shocks accumulate, and (iii) transitory shocks may become more or less variable. Covariances

across time are key to sorting out these three potential factors. Holding t constant in equation (12)

but varying l, the second term due to permanent shocks remains constant, while the final term

disappears altogether for l > q. As emphasised in our nonparametric identification results above,

we can learn about the µt(·) functions and the distribution of θ by looking at covariances between

residuals in some period t and changes in residuals more than q periods later.

3.1.1 A Single Cohort

How many periods of data do we need if residual variances and covariances are used in estima-

tion? It is useful to begin our analysis with a single cohort (normalizing a = t), following them over

time for t = 1, ..., T where T ≥ 3. For simplicity, consider an MA(1) process for νt and homoskedas-

ticity in ηt (i.e. σt(θ) = σt, ∀θ). In this case, we need to identify/estimate a total of (4 +p)T +p−9

parameters.16 For T periods of data, we have a total of T (T +1)/2+T −1 moments, which includes

16The parameters include 2p− 1 parameters for E[θ2], ..., E[θ2p]; (T − 1)(p+ 1) parameters for µt(θ) polynomials
for t = 2, ..., T ; 2(T − 2) parameters for σ2

ηt and σ2
ξt for t = 1, ..., T − 2; and T − 3 parameters for β1,t, t = 2, ..., T − 2.
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T (T + 1)/2 unique variance/covariance terms and T − 1 moments coming from E[µt(θi)] = 0 for

t = 2, ..., T . A necessary condition for identification is, therefore, (4+p)T+p−9 ≤ T (T+1)/2+T−1.

Re-arranging this inequality, identification requires

p ≤ T 2 − 5T + 16

2(T + 1)

as well as T ≥ 3. Using only variances and covariances in estimation, identification with cubic µt(·)

functions requires a panel of length T ≥ 10, while quadratic µt(·) functions require T ≥ 8. Despite

the data requirements implied by Theorem 1, we require more than nine periods of data when µt(·)

is a high order polynomial if we only use second order moments to estimate the model.

Using higher order moments can reduce the required panel length. For example, Hausman

et al. (1991) show the value of adding the moments E[W k
1 Wt] for k = 2, ..., p. Incorporating these

moments adds 2(p − 1) additional parameters
(
σ3
η1 , ..., σ

p+1
η1 , σ3

ξ1
, ..., σp+1

ξ1

)
. While the number of

additional parameters does not depend on T , the number of moments increases by (T − 1)(p− 1).

These extra moments provide relatively direct information about mj,t parameters (and higher

moments of the distribution of θ) as t varies.

More generally, we could incorporate a broader set of higher moments in estimation. Indeed,

if we want to identify moments for the distribution of shocks up to order k (e.g. σkηt and σkξt)

for all t = 1, ..., T , we need to incorporate up to kth order moments for residuals in all periods.

Including E[W j
t ] for j = 3, ..., k adds (k−2)T new moments (relative to variance/covariances only),

but it adds 2(k − 2)(T − 2) new parameters for higher moments of ηt and ξt as well as (k − 2)p

new parameters for higher moments of θ. Thus, higher order cross-product terms should also be

incorporated.17 In practice, it may be difficult to precisely estimate higher order residual moments

given the sample sizes of typical panel data sets.

3.1.2 Multiple Cohorts

In many applications, it is common to follow multiple cohorts at once. If the distribution of

cohorts changes over time (e.g. new cohorts enter the data at later dates while older ones age out

of the sample), then it is important to account for this directly as in equations (11) and (12).

Although the distributions for ηit and ξit are assumed to depend only on time and not age or

These parameter counts incorporate the normalization µ1(θ) = θ. The normalization ξi,0,0 = 0 means that we are
unable to identify β1,1. Furthermore, as in Theorem 1, (β1,t, σ

2
ηt , σ

2
ξt) are unidentified for t = T − 1, T for q = 1.

17Including all cross-product moments from order 2, ..., k yields a total of
∑k
j=2

(
T + j − 1

j

)
moments plus T −1

moments for E[µt(θ)] = 0.
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cohort, the distribution of κi,a,t will vary with age since older cohorts have accumulated a longer

history of permanent shocks.18

Our identification results above can be applied separately for each cohort; however, differences

in the variance and covariance terms across age/cohort for the same time periods in equations (11)

and (12) can be used to help identify the effects of permanent and transitory shocks. The fact that

market-based skill pricing functions µt(·) vary only with time and not age/cohort is particularly

helpful. To see why, consider equation (12) for l > q. In this case, the final term due to transitory

shocks disappears, while the first term is the same for all cohorts. The second term reflects the

sum of all permanent shocks from the time of labor market entry to year t for each cohort. By

comparing these covariances across cohorts for fixed t, we can recover the variances of permanent

shocks from time zero through t− 1. Of course, this very simple identification strategy for σ2
ηt can

no longer be used if the distributions of permanent shocks varies freely with age or cohort. Allowing

for cohort differences in the distribution of θ also reduces the value of additional cohorts, since any

terms related to unobserved skills would then become cohort-specific. Still, as long as skill pricing

functions are independent of age and cohort, the inclusion of multiple cohorts provides additional

variation that can be useful for identification and estimation even if the distributions of shocks are

allowed to vary by age/cohort and the distribution of skills varies across cohorts.

4 PSID Data

The PSID is a longitudinal survey of a representative sample of individuals and families in the

U.S. beginning in 1968. The survey was conducted annually through 1997 and biennially since. We

use data collected from 1971 through 2009. Since earnings and weeks of work were collected for

the year prior to each survey, our analysis considers earnings and weekly wages from 1970-2008.

Our sample is restricted to male heads of households from the core (SRC) sample.19 We use

earnings from any year these men were ages 30-59, had positive wage and salary income, worked at

least one week, and were not enrolled as a student. Our earnings measure reflects total wage and

salary earnings (excluding farm and business income) and is denominated in 1996 dollars using the

18This variation adds new parameters to be identified/estimated for each additional cohort. In particular, we must
identify/estimate separate σkκa(0),0

for each cohort, where a(0) reflects their age at date t = 0. At very young ages

(i.e. a < q), the distribution of νi,a,t also varies with age.
19We exclude those from any PSID oversamples (SEO, Latino) as well as those with non-zero individual weights.

The earnings questions we use are asked only of household heads. We also restrict our sample to those who were
heads of household and not students during the survey year of the observation of interest as well as two years earlier.
Our sampling scheme is very similar to that of Gottschalk and Moffitt (2012), except that we do not include earnings
measures before age 30.
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CPI-U-RS. We trim the top and bottom 1% of all earnings measures within year by ten-year age

cells. The resulting sample contains 3,302 men and 33,207 person-year observations – roughly ten

observations for each individual.

Our sample is composed of 92% whites, 6% blacks and 1% hispanics with an average age of 47

years old. We create seven education categories based on current years of completed schooling: 1-5

years, 6-8 years, 9-11 years, 12 years, 13-15 years, 16 years, and 17 or more years. In our sample,

16% of respondents finished less than 12 years of schooling, 34% had exactly 12 years of completed

schooling, 20% completed some college (13-15 years), 21% completed college (16 years), and 10%

had more than 16 years of schooling.

Our analysis focuses on log earnings residuals after controlling for differences in educational

attainment, race, and age. (Log weekly wage residuals are considered in Appendix B.) Residuals

are derived from year-specific regressions of log earnings (or weekly wages) on age, race, and edu-

cation indicators, along with interactions between race and education indicators and a third order

polynomial in age. Figure 2 shows selected quantiles of the log earnings residual distribution from

1970 through 2008 for our sample, while Figure 3 displays changes in the commonly reported ratio

of log earnings residuals at the 90th percentile over residuals at the 10th percentile (the ‘90-10

ratio’), as well as analogous results for the 90-50 and 50-10 ratios. This figure reports changes in

these ratios from 1970 to the reported year. The 90-10 ratio exhibits a modest increase over the

1970s, a sharp increase in the early 1980s, followed by ten years of modest decline from 1985-95,

and then an increase from 1995 through 2008. Over the full time period, the 90-10 log earnings

residual ratio increased more than 0.5, with nearly two-thirds of that increase coming between 1980

and 1985. The figure further shows that changes in inequality were quite different at the top and

bottom of the residual distribution. While the 90-50 ratio shows a steady increase of about 0.25

over the 38 years of our sample, changes in the 50-10 ratio largely mirror changes in the 90-10 ratio.

Thus, the sharp increase in residual inequality in the early 1980s is largely driven by sharp declines

in log earnings at the bottom of the distribution. Similarly, declines in residual inequality over the

late 1980s and early 1990s come from increases in earnings at the bottom relative to the middle of

the residual distribution.
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Figure 2: Selected Log Earnings Residual Quantiles, 1970–2008
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Figure 3: Changes in 90-10, 90-50, and 50-10 Ratios for Log Earnings Residuals, 1970–2008
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5 Estimates of Unobserved Skill Pricing Functions and Earnings
Dynamics over Time

We use minimum distance estimation and the residual moments described above to estimate the

model for men using the PSID. We discuss results for log earnings residuals in the text; however,

conclusions are quite similar for log weekly wages as reported in Appendix B. Because some age cells

have few observations when calculating residual variances and covariances (or higher moments),

we aggregate within three broad age groupings corresponding to ages 30-39, 40-49 and 50-59.

Specifically, for variances/covariances we use the following moments:

1

nA,t,l

∑
i:a∈A

Wi,a,tWi,a−l,t−l
p→ E[Wi,a,tWi,a−l,t−l|a ∈ A, t, l]

=
∑
a∈A

ωa,t,lE[Wi,a,tWi,a−l,t−l|a, t, l]

where A reflects one of our three age categories, nA,t,l is the total number of observations used in

calculating this moment, and ωa,t,l is the fraction of observations used in calculating this moment

that are of age a in period t. We weight each moment by the share of observations used for that

sample moment (i.e. nA,t,l/
∑
A

∑
t

∑
l

nA,t,l). Higher moments are treated analogously.20

We impose a few restrictions to reduce the dimension of the problem given our modest sample

sizes. First, we assume that the MA(q) stochastic process remains the same over our sample period,

so βj,t = βj for all j = 1, ..., q and t = 2, ..., T . Second, we assume that σ2
ητ = σ2

η0 and σ2
ξτ

= σ2
ξ0

for

all τ years prior to our sample period. These assumptions are useful in accounting for differences

in residual variances and covariances across cohorts observed in our initial survey year without

substantially increasing the number of parameters to be estimated.21

We decompose the variance of log residual earnings into three components:

1. pricing of unobserved skills: V ar[µt(θ)];

2. permanent shocks: σ2
κt =

∑
a
ϕa,t

[
a−1∑
j=0

σ2
ηt−j

]
where ϕa,t is the fraction of persons in period t

that are age a;

3. transitory shocks: σ2
νt = σ2

ξt
+

q∑
j=1

β2
jtσ

2
ξt−j

.

20See the Online Appendix for additional estimation details.
21More generally, we could estimate separate variances for these shocks going back to the year of labor market entry

for the oldest cohort in our initial sample period. Without observing earnings in those earlier years, these variances
would need to be identified from cross-cohort differences in the variances and covariances we do observe. We have
explored different assumptions about these pre-survey year variances (e.g. linear time trends); however, the results
we discuss are robust across all assumptions.
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We also discuss the evolution of different quantiles in the distributions of µt(θ) over time when we

consider cubic µt(·) pricing functions.

5.1 Linear µt(·)

We begin with the case of linear µt(·), assuming homoskedasticity of all shocks. No distri-

butional assumptions on θ or the permanent and transitory shocks are needed to decompose the

residual variances. Table 1 reports the minimum values of the objective function and key parameter

estimates determining the process for νt under different assumptions about µt(·) and the stochastic

process for νt. The first three columns report results when µt(θ) is restricted to be time invariant.

This is equivalent to including individual fixed effects, as in most of the PSID-based literature. The

remaining columns allow µt(·) to vary freely over time. A few lessons emerge from this table. First,

comparing columns 1-3 with their counterparts in columns 4-6 shows that allowing for changes in

the pricing of unobserved skills significantly improves the fit to the data. This is generally true

for any MA(q) specification for νt.
22 We strongly reject the restriction of constant µt(·) functions

at 5% significance levels. Second, the stochastic process for νt has a modest degree of persistence.

We can reject q = 1 in favor of q = 2; however, we cannot reject that q = 2 and q = 3 fit equally

well at 5% significance levels.23 We also report results for an MA(5) for comparison. Third, the

estimated serial correlation in transitory shocks is weaker when µt(·) is allowed to vary over time

(e.g. β1 estimates are more than 10% lower).

Unless otherwise noted, the rest of our analysis focuses on the case with time-varying µt(·)

and an MA(3) process for νt; however, other MA(q) processes and an ARMA(1, 1) yield very

similar conclusions (see Appendix B). Figure 4 reports the estimated variances (and standard

errors) for µt(θ), ηt, and ξt over time.24 Figure 5 decomposes the total residual variance into

its three components: unobserved skills µt(θ), permanent shocks κt, and transitory shocks νt. All

three components are important for understanding the evolution of earnings inequality in the PSID;

however, they contribute in very different ways over time. Initially quite low, the variance of returns

to unobserved ability/skills rises more than 10 percentage points over the 1970s and early 1980s,

then falls back to its original level by the late 1990s. It remains fairly constant thereafter. The

22As shown in Appendix B, allowing for time-varying µt(·) functions also substantially improves the fit when νt is
assumed to be ARMA(1, 1).

23These tests for q values are based on a comparison of the minimized objective functions (reported in the first row
of the table), which are distributed χ2(1).

24In some years, the variance of ηt is estimated to be zero; we do not report its standard errors for these years.
As shown in Section 2, distributions for transitory and permanent shocks are not identified for the last few years
of our panel; however, µt(·) is identified for all periods. Our figures report variances for permanent and transitory
components through 2002 and variances for µt(θ) through 2008.
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Table 1: Estimates Assuming νt ∼MA(q) using Variances/Covariances (Linear µt(·))

Constant µt(·) Time-Varying µt(·)
MA(1) MA(2) MA(3) MA(1) MA(2) MA(3) MA(5)

Min. Obj. Function 194.89 179.74 168.27 130.73 124.16 121.10 116.93

β1 0.361 0.320 0.326 0.297 0.281 0.288 0.299
(0.036) (0.025) (0.027) (0.033) (0.026) (0.027) (0.027)

β2 · 0.257 0.222 · 0.186 0.172 0.194
· (0.030) (0.025) · (0.025) (0.021) (0.020)

β3 · · 0.246 · · 0.141 0.137
· · (0.034) · · (0.025) (0.022)

β4 · · · · · · 0.126
· · · · · · (0.020)

β5 · · · · · · 0.084
· · · · · · (0.024)

variance of the transitory component rises sharply (5-10 percentage points) in the early 1980s, then

fluctuates up and down for about ten years before it stabilizes in the late 1990s. The variance of the

permanent component declines slightly over the 1970s, then rises continuously and at roughly the

same rate over the rest of the sample period. Between 1980 and 2002, the variance of permanent

shocks increases by nearly 20 percentage points, more than the increase in total residual variance.

As a share of the total variance in log earnings residuals, the transitory component plays the largest

role until the mid-1990s, after which the permanent shocks dominate. Inequality due to variation

in the returns to unobserved skills reaches its peak of more than 40% of the total residual variance

around 1980.

The time patterns in Figure 5 differ from the conclusions reached in both the PSID- and

CPS-based literatures on log wage/earnings dynamics and inequality. The CPS-based literature

implicitly ignores the roles of permanent and transitory shocks, equating changes in the total

variance of log earnings/weekly wage residuals with changes in the returns to unobserved skills.

This need not be the case in our model. Figure 5 suggests very different time patterns for the

returns to unobserved skills compared to the total variance of log earnings residuals. (Similar

patterns are estimated for log weekly wage residuals as reported in Appendix B.) While the total

variance of log earnings residuals mainly increased in the early 1980s and the late 1990s and 2000s,

variation in the returns to unobserved skills increased smoothly from 1970 to the mid-1980s before

declining over the next 15-20 years. Variation in the returns to unobserved skill is quite stable after
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Figure 4: Variances of µt(θ), ηt, and ξt
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Figure 5: Variance Decomposition and Shares of Each Component
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1995, in sharp contrast with the rapid increase in total residual variance.

The PSID-based literature explores the relative importance of permanent and transitory shocks;

however, it typically ignores variation in the pricing of unobserved skills (i.e. assumes µt(·) = µ(·)).25

Figure 6 shows that this is not innocuous, even if one is only interested in the relative importance of

permanent and transitory components. This figure decomposes the total variance into ‘permanent’

and ‘transitory’ components based on a model that assumes µt(·) = µ(·) is time invariant. Here,

the ‘permanent’ component is given by the variance of µ(θ) + κt. These estimates suggest more

modest increases in the permanent component and stronger increases in the transitory component

over the early 1980s relative to estimates from our more general model that allows for variation in

unobserved skill prices (Figure 5).

In Appendix B, we explore the robustness of our main variance decomposition results (Figure 5)

to a few alternative specifications. First, we show that different assumptions about the transitory

component yield very similar results. Specifically, the dynamics and relative importance of all

three variance components are quite similar to those shown in Figure 5 if νt follows an MA(1),

MA(5), or ARMA(1, 1) process. Second, we consider the possibility that the variance of transitory

25There are a few notable exceptions in the literature (e.g. Haider 2001, Moffitt and Gottschalk 2012); however,
these studies abstract from other important features of the problem. Haider (2001) abstracts from permanent shocks,
ηt. Moffitt and Gottschalk (2012) assume that the variance of permanent shocks remains constant over time, but
they multiply both θ and κt by the same time-varying ‘price’. We consider this specification below.
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Figure 6: Variance Decomposition with Time-Invariant µt(θ)
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and permanent shocks may vary with age. Using rich administrative data from Norway, Blundell,

Graber, and Mogstad (2013) estimate declines in the variance of both permanent and transitory

shocks prior to age 35, with remarkable stability thereafter. We, therefore, estimate our model

allowing the variances of both ηi,a,t and ξi,a,t to be linear functions of age over ages 20-35 and

constant thereafter. Our estimates suggest that the variances of both permanent and transitory

shocks decline by roughly 25% over these first fifteen years of workers’ careers; however, the variance

decompositions from this more general specification are nearly identical to that of Figure 5 (see

Figure 16 in Appendix B).

5.1.1 Permanent Shocks to Skills

In our baseline model of earnings dynamics, shocks are distinct from ability or skills and, there-

fore, do not appear inside the pricing function µt(·). Alternatively, one might treat permanent

shocks ηt as shocks to unobserved skills, specifying log earnings residuals as Wt = µ̃t(θ + κt) + νt.

Assuming κ0 = 0, θ reflects initial skill levels. Moffitt and Gottschalk (2012) estimate this alterna-

tive model where µ̃t(·) is linear and the variance of permanent shocks, ηt, is constant over time.26

The assumption of linearity implies that µ̃t(·) = m̃0,t + m̃1,tθ + m̃1,tκt, so it is still possible to

decompose the residual variance into three components: variation due to initial skill differences θ,

26Moffitt and Gottschalk (2012) also allow for heterogeneous growth rates in unobserved ability/skill; however, the
estimated variance of these growth rates is insignificantly different from zero. Hryshko (2012) also finds no evidence
of heterogenous growth rates when Martingale/unit root shocks are included.
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Figure 7: Variance Decomposition with Permanent Shocks to Skills
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variation due to permanent innovations in unobserved skills κt, and variation due to transitory

shocks νt. Assuming the variance of ηt remains constant over time effectively restricts the variance

contribution due to initial skills to perfectly co-move over time with the contribution due to inno-

vations in skill as seen in Figure 7(a).27 This alternative model yields a slightly greater increase in

the transitory component when compared with our baseline model (Figure 5), but its time pattern

is quite similar. The time patterns for components related to θ and κt are quite different from their

counterparts in Figure 5, with the value of skills increasing slowly but continually over the entire

sample period in Figure 7(a).

Figure 7(b) reveals that much of the discrepancy between these results and those of our base-

line model is due to the time-invariance assumption that σ2
ηt = σ2

η. Relaxing this assumption,

Figure 7(b) shows that the return to unobserved skill rose and then fell over time (peaking in the

early 1980s) as observed in Figure 5. While this rise and fall is noticeably more muted in Fig-

ure 7(b), the transitory and permanent components show fairly similar time patterns across the

two figures.

Although, both our baseline model in equations (8)-(10) and this alternative specification (with

time-varying σ2
ηt) produce a very similar fit to the data, we focus on our baseline specification

27The co-movement of the first two components is not exactly the same due to changes in the age distribution over
time, which affects the variance of κt across the entire population.
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in the rest of the paper for two primary reasons. First, our nonparametric identification results

of Section 2 directly apply to the baseline model, and we are interested in more general µt(·)

pricing functions. Analogous nonparametric identification results for the alternative model with

permanent ability/skill shocks would require a different approach. Second, recent studies document

large increases in the variance of wages across firms/plants for similar workers (Dunne et al., 2004;

Barth et al., 2011). Barth et al. (2011) show that this increase is not caused by changes in the

sorting of workers across establishments by skill, arguing instead that it is the result of a widening

in the dispersion of productivity across plants. This is consistent with an increase in the variance

of permanent shocks in our baseline model, where those shocks (at least partially) incorporate

differences in wage payments across firms.28

5.1.2 Cohort Differences in the Distribution of Unobserved Ability

Thus far, we have assumed that all cohorts have the same distribution of unobserved ability.

Our identification results can be applied separately for each cohort (assuming they appear in the

data for at least 9 years), so it is possible, in theory, to estimate everything separately for each

cohort. Given sample sizes in the PSID, this is impractical. Instead, we allow the variance of θ

to vary across cohorts, assuming the skill pricing functions and stochastic processes for all shocks

depend only on calendar time.29 We re-estimate our baseline model assuming the path for σθ,c

across cohorts can be represented by a cubic spline (with two interior knots). Figure 8(a) reports

the estimated variance of θ across cohorts along with 95% confidence bands. These results suggest

very similar variation in unobserved ability across most of the cohorts in our sample. The variance

of θ for cohorts born between 1925 and 1955 ranges between 0.1 and 0.15. The point estimates

suggest a sizeable increase in the variance for later cohorts; however, these estimates are very

imprecise as evident from the growing standard errors. These later cohorts do not appear in our

data for many years, since we first start following them when they turn age 30 (and the PSID moves

to a biennial survey in 1997). Importantly, Figure 8(b) shows that allowing for cohort variation in

the variance of θ has little effect on our baseline variance decomposition results.

28It would be interesting to exploit worker-firm matched panel data to further decompose the variances of shocks
into worker- and firm-specific components.

29Given linear skill pricing functions µt(·), our first stage log earnings regressions absorb any mean differences
in the distribution of θ across cohorts. Controlling for unrestricted year-specific age effects makes it impossible to
separately identify mean differences across cohorts in this case.
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Figure 8: Accounting for Cohort Differences in the Variance of Unobserved Ability
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5.2 Cubic µt(·) and Third Order Moments

We next estimate our baseline model assuming µt(θ) is a cubic function (normalizing µ1985(θ) =

θ). We do not impose monotonicity on the µt(·) functions; however, the results are quite similar if

we do. In addition to variances and covariances, we also incorporate third-order residual moments

in estimation.30 This aids in identification of µt(·) pricing functions and allows for estimation of

third-order moments for permanent and transitory shocks. We continue to assume that shocks are

homoskedastic for now, relaxing this assumption below.

Our third-order moment conditions contain moments of θ up to E(θ9). While we could estimate

these higher moments directly along with all other parameters of the model, we instead assume

that fθ is a mixture of two normal distributions. Figure 9(a) shows the estimated distribution for

θ.31 Figure 9(b) performs the same type of variance decomposition as above. The results are quite

similar to those assuming linear µt(·) functions.

Figure 10 shows the evolution of estimated µt(·) pricing functions for each decade. These

30Specifically, we include all E[Wa,t,Wa−l,t−l,Wa−l−k,t−l−k] moments along with all variances/covariances. In
aggregating across cohorts, we calculate these third-order moments in the same way we calculate variance/covariance
terms. See the Online Appendix for additional details.

31The first mixture component has a mean of .013 and standard deviation of 0.366, while the second has a mean of
-1.290 and standard deviation of 1.870. The mixing probability places a weight of 99% on the first distribution and
1% on the second.
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Figure 9: Estimates Assuming Cubic µt(·) Functions
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functions are quite flat in the early 1970s, consistent with very low variance of µt(θ) in that period.

The increased importance of unobserved skills throughout the 1970s and early 1980s is reflected in

the steepening of the µt(θ) functions over this period. This is followed by declining inequality and

a flattening in the µt(θ) pricing functions over the late 1980s and early 1990s. Beginning in the

mid-1990s, the µt(θ) functions start to flatten at the bottom of the θ distribution, such that there

is little difference in the reward to skill at the low end. The last few µt(θ) functions actually appear

to decline slightly in θ for very low values.32 At the same time, the µt(θ) functions are quite stable

or even steepening slightly at the top of the distribution.

These patterns are more simply summarized in Figure 11, which shows the evolution of selected

quantiles and the 90-10, 90-50, and 50-10 ratios for the distribution for µt(θ) (the latter are relative

to their 1970 values). The 90-10 ratio follows a similar pattern to that observed for the variance

of µt(θ) reported in Figure 9. The 50-10 ratio evolves much like the 90-10 ratio, increasing from

1970-1985, then falling fairly systematically ever since (except for a brief but sharp increase in the

early 1990s). The 90-50 ratio shows a similar pattern through the mid-1990s, rising and falling over

that period. Interestingly, while the 50-10 ratio falls rapidly over the late 1990s and early 2000s,

the 90-50 ratio is relatively flat over that period. Since the mid-1990s, unobserved skill prices have

32It should be noted that standard errors are sizeable for µt(θ) at very low and high values of θ, especially in the
last few years.
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Figure 10: Estimated Cubic µt(θ) functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

1970
1972
1974
1976
1978

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

1980
1982
1984
1986
1988

(a) 1970s (b) 1980s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

1990
1992
1994
1996
1998

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

2000
2002
2004
2006
2008

(c) 1990s (d) 2000s

29



Figure 11: Evolution of µt(θ) distribution (Cubic µt(·) functions)
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become more compressed over the bottom of the distribution while they have remained stable at

the top. These patterns differ markedly from those observed for total log earnings residuals as

reported in Figures 2 and 3.

The patterns for µt(·) imply an increasing (more positive) skewness over the 1990s. Figure 12

shows the skewness of total log earnings residuals along with the skewness for the permanent and

transitory components of earnings over time. All are typically negatively skewed, in contrast to

the skewness for µt(θ), which is positive in all years except a few in the mid-1980s. The skewness

of permanent shocks is generally declining except for a dramatic one-year jump in the early 1980s.

Over the entire period, the skewness goes from slightly less than zero to around -2. There is no

obvious trend to the skewness of transitory shocks, which hovers between -2 and -4 in most years.

5.2.1 Heteroskedasticity in Permanent Shocks

Thus far, we have assumed that the distributions of all shocks are independent of unobserved

ability. We next examine whether the variance of permanent shocks depends on θ as in equation (4),

assuming σt(θ) is linear in θ for all t.

Figure 13(a) shows the variance of κt for three different quantiles of the θ distribution. In-

terestingly, our estimates imply notable differences in the variability of permanent shocks (and

their time patterns) for workers of different ability levels. Among low-ability workers at the 10th

percentile, the the variance of permanent shocks increased rapidly in the 1980s and early 1990s
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Figure 12: Skewness of Each Component over Time (Cubic µt(·) functions)
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(from less than 0.03 in 1980 to nearly 0.20 by the mid-1990s). The increase in variability over the

1980s and early 1990s was much more modest for high ability types (at the 90th percentile) and

followed a decade of declining variability. Near the end of our sample period in the late 1990s, the

variability of permanent shocks jumps up, such that the total increase in the variance from 1970

to 2000 was quite similar across the entire distribution of unobserved ability. Figure 13(b) shows

that the overall variance decomposition when accounting for heteroskedasticity is quite similar to

our results in Figure 9(b) that assume all workers face the same distribution of shocks.

6 Conclusions

Studies that estimate the changing role of unobserved skills generally abstract from the changing

dynamics of earnings shocks, attributing changes in log earnings/wage residual distributions to the

evolution of unobserved skill pricing over time. A separate literature in labor and macroeconomics

estimates important changes in the variance of transitory and permanent shocks over the past few

decades; however, this literature typically neglects changes in unobserved skill prices.

We show that the distribution of unobserved skills and the evolution of skill pricing functions

can be separately identified from changing distributions of idiosyncratic permanent and transitory

shocks using panel data. Specifically, a panel of length T ≥ 6 + 3q is needed for full nonparametric

identification in the presence of permanent Martingale shocks and transitory shocks that follow
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Figure 13: Estimates Allowing for Heteroskedasticity in Permanent Shocks (Cubic µt(·) Functions)
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an MA(q) process. We then discuss a moment-based approach to estimating the distribution

of unobserved skills, changes in unobserved skill pricing functions, and the changing nature of

permanent and transitory shocks over time.

Using panel data from the PSID on male earnings in the U.S. from 1970-2008, we show that

accounting for time-varying unobserved skill prices is important for explaining the variances and

autocovariances of log earnings residuals over this period. Furthermore, accounting for variation

in the distributions of transitory and permanent shocks is important for identifying the evolution

of skill pricing functions. Using our estimates, we decompose the variance of log earnings residuals

over time into three components: the pricing of unobserved skills, permanent and transitory shocks.

Our results suggest little change in the variance of unobserved skills across cohorts born between

1925 and 1955; however, the pricing of unobserved skills changed substantially over time. There

was a sizeable increase in the returns to unobserved skill over the 1970s and early 1980s, but this

trend reversed itself in the late 1980s and 1990s, with the pricing of unobserved skills falling back

to what it was in 1970. From 1995 onward, unobserved skill prices were fairly stable (especially at

the top of the skill distribution). These patterns contrast sharply with time trends for the variance

of log earnings residuals, which rose sharply in the early 1980s, remained relatively stable over the

late 1980s and early 1990s, and then began rising again. The differences are due to important

changes in the variance of permanent and transitory shocks. In particular, the variance of earnings

residuals rose much more sharply in the early 1980s than the variance of unobserved skill prices due
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to sizeable increases in the variance of both transitory and permanent shocks. While the variance

of transitory skills fluctuated up and down afterwards (without any obvious long-run trend), the

variance of permanent shocks continued to rise at a steady pace through the end of our sample

(especially for workers with low unobserved skill). Over the late 1980s and early 1990s, this increase

largely offset declines in the price of unobserved skills, leaving the total residual variance relatively

unchanged over a ten to fifteen year period. When the pricing of unobserved skills stabilized (at

least at the top of the skill distribution) in the mid-1990s, residual inequality rose along with the

variance of permanent shocks.

Our estimates of flexible skill pricing functions allow us to identify changes in the returns to

unobserved skill at different points in the distribution. Over the 1970s, 1980s and early 1990s,

the returns to unobserved skill rose and fell by similar amounts throughout the skill distribution;

however, this was no longer true beginning in the mid-1990s. From 1995 on, we estimate very

little change in unobserved skill pricing functions over the top half of the distribution; however, the

value of unobserved skill declined over the bottom half of the distribution as earnings differences

between middle- and low-skilled workers narrowed. By the mid-2000s, skill pricing functions were

essentially flat over the entire bottom half of the distribution. These changes at the bottom are

broadly consistent with the skill polarization phenomenon emphasized by Acemoglu and Autor

(2011) and Autor and Dorn (2012); however, we find no evidence of an increase in the returns to

skill at the top of the distribution (as one would infer from looking at residuals themselves). An

important lesson from these findings is that changes in the distribution of log earnings residuals

are not necessarily informative about the evolution of unobserved skill pricing functions, especially

in recent decades.

It is difficult to reconcile current theories of skill-biased technical change with the broad trends

we estimate for the pricing of unobserved skills and the variance of permanent shocks. Many theo-

ries, motivated largely by CPS-based evidence, have sought to explain a long-run rise in unobserved

skill prices, but they offer little insight into the subsequent decline we observe. Theories based on

the slow diffusion of skill-biased technology in frictional labor markets are helpful for understand-

ing the simultaneous increase in unobserved skill prices and in the variance of permanent shocks

(Violante, 2002), since skilled workers are more likely to adopt new technologies when they are

lucky enough to find employment at a firm that has upgraded. Yet, this suggests that an increase

in the variance of permanent shocks (i.e. the luck of matching with more cutting edge firms) should

be seen among higher skilled workers first, in contrast with our findings. Our results are likely to
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be more consistent with a theory based on the introduction of new technologies that are adopted

broadly by skilled workers early on (i.e. the 1970s and early 1980s) but which then diffuse more

slowly (and randomly) to low-skilled workers (i.e. the late 1980s and 1990s). The faster rise in per-

manent shocks for less-skilled workers from the early 1980s on suggests that it may have taken time

for many of these workers to match with firms adopting newer technologies (due to labor market

frictions). This theory would also be consistent with the rising variance of wages paid across firms

as observed in Dunne et al. (2004) and Barth et al. (2011).
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A Technical Results

A.1 Proof of Lemma 1

Without loss of generality, we set T = 3. Assumption 1 implies Assumptions 1–5 in Hu and

Schennach (2008). The completeness assumption in condition (iii) is sufficient for injectivity. There-

fore, we can apply their Theorem 1 by setting x∗ = θ, x = W1, z = W2, and y = W3. The same

strategy is also adopted in Cunha, Heckman, and Schennach (2010) for identifying fθ(·). Given

additive separability in the model, we show that fεt(·) and µt(·) are also identified.

Theorem 1 in Hu and Schennach (2008) implies that when we have the joint density of (W1,W2,W3),

the equation

fW3,W1,W2(w3, w1, w2) =

∫
Θ
fW1|θ(w1|θ)fW3,θ(w3, θ)fW2|θ(w2|θ) dθ for all wt ∈ Wt (13)

admits a unique solution (fW1|θ, fW3,θ, fW2|θ). Since we already know the marginal distribution

fW3 , we can first identify fθ by integrating fW3,θ over W3. Next, the functions µt(·) for t = 2, 3

are identified from conditional densities fWt|θ since we know that E[Wt|θ] = µt(θ) from E[εt|θ] =

E[εt] = 0 . Finally, fεt is identified from fεt|θ(ε|θ) = fWt|θ(µt(θ) + ε) since both fWt|θ and µt(·) are

already known. 2

A.2 Proof of Theorem 1

Step 1: Identification of fθ(·) and µt(·) for all t.

In this step, we jointly consider distributions of (Wt,∆Wt+3,∆Wt+6) for t = 1, 2, 3. Begin with the

following subset of equations:

W1 = θ + ε1 = θ + η1 + ν1 = θ + σ1(θ)ζ1 + ν1

∆W4 = ∆µ4(θ) + ∆ε4 = ∆µ4(θ) + η4 + ∆ν4 = ∆µ4(θ) + σ4(θ)ζ4 + ∆ν4

∆W7 = ∆µ7(θ) + ∆ε7 = ∆µ7(θ) + η7 + ∆ν7 = ∆µ7(θ) + σ7(θ)ζ7 + ∆ν7.

Assumption 2 (ii) implies that these triplets are mutually independent conditional on θ. Thus, the

problem simplifies to that of the serially independent case of Lemma 1. Therefore, we can identify

fθ(·), ∆µ4(·), and ∆µ7(·) from Lemma 1. As a by-product, we can also identify conditional density

functions fW1|θ(·|·), f∆W4|θ(·|·), and f∆W7|θ(·|·), which will be used in Step 2.
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Next we consider the second subset of equations:

W2 = µ2(θ) + ε2 = θ2 + η1 + η2 + ν2

∆W5 = ∆µ5(θ) + ∆ε5 = g5(θ2) + η5 + ∆ν5

∆W8 = ∆µ8(θ) + ∆ε8 = g8(θ2) + η8 + ∆ν8.

where θt ≡ µt(θ) and gt(θ2) is implicitly defined as ∆µt(θ) = gt(µ2(θ)). We apply Lemma 1 again

to identify fθ2(·), g5(·), and g8(·). Given monotonicity of all µt(·), we can recover the function µ2(·)

by µ2(θ) = F−1
θ2

(Fθ (θ)). Once we identify µ2(·), ∆µt(·) for t = 5, 8 are identified from ∆µt(θ) =

gt(µ2(θ)). We apply the same argument to the set of equations composed of (W3,∆W6,∆W9)

and identify µ3(·),∆µ6(·), and ∆µ9(·). Finally, we can recover all µt(·) sequentially from µt(·) =

∆µt(·) + µt−1(·) for t = 4, . . . , 9.

Step 2: Identification of E[ξ2
t ], βt, and σt(·) for t = 1, . . . , 7.

Consider the following three equations:

W1 = θ + κ1 + ν1 = θ + σ1(θ)ζ1 + ν1

W2 = µ2(θ) + κ2 + ν2 = µ2(θ) +
2∑
j=1

σj(θ)ζj + ν2

W3 = µ3(θ) + κ3 + ν3 = µ3(θ) +

3∑
j=1

σj(θ)ζj + ν3.

Recall that we already know fθ(·), µt(·), and fWt|θ(·|·) for all t = 1, . . . , 7. First, by looking at

E [W1W3] = E[θµ3(θ)] + E[σ2
1(θ)],

we can recover E[σ2
1(θ)]. Second, we look at

E
[
W 2

1

]
= E[θ2] + E[σ2

1(θ)] + E[ξ2
1 ],

to identify E[ξ2
1 ]. Third, we focus on

E [W1W2] = E[θµ2(θ)] + E[σ2
1(θ)] + β1E[ξ2

1 ],

which identifies β1. Finally, σ1(·) is identified from

E
[
W 2

1 |θ
]

= θ2 + σ2
1(θ) + E[ξ2

1 ].

Under the sign normalization, it is given by σ1(θ) =
(
E
[
W 2

1 |θ
]
− θ2 − E[ξ2

1 ]
)1/2

. Applying the

same logic to triplets {Wt,Wt+1,Wt+2}7t=2, we can identify E[ξ2
t ], βt, and σt(·) for all t = 2, . . . , 7.
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Step 3: Identification of fηt(·) and fξt(·) for t = 1, . . . , 7.

Under the Carleman’s condition in Assumption 2 (vi), the infinite sequence of moments
{(
E[ηkt ], E[ξkt ]

)}∞
k=1

for t = 1, . . . , 7 determines {fηt(·), fξt(·)}
7
t=1 uniquely.33 We show that the infinite sequence of mo-

ments are identified by mathematical induction. Since we already know
{(
E[ζ2

t ], E[ξ2
t ]
)}7

t=1
by the

normalization and Step 2, we now suppose that E[ζkt ] and E[ξkt ] are known for some k ≥ 2. It

remains to show that E[ζk+1
t ] and E[ξk+1

t ] are identified.

Consider the case of t = 1. We look at the following two moment conditions: E[W k+1
1 ] and

E
[
W k

1 W3

]
:

E[W k+1
1 ] = E[σk+1

1 (θ)]E[ζk+1
1 ] + E[ξk+1

1 ] + C1

E[W k
1 W3] = E[σk+1

1 (θ)]E[ζk+1
1 ] + C2,

where two constants C1 and C2 can be calculated from known moments up to k. Also, note that

E[σk+1
1 (θ)] is known from σ1(·) and fθ(·) and that E[σk+1

1 (θ)] is bounded above zero. Solving these

linear equation, we have

E[ζk+1
1 ] =

E[W k
1 W3]− C2

E[σk+1
1 (θ)]

E[ξk+1
1 ] = E[W k+1

1 ]− E[W k
1 W3]− (C1 − C2).

By applying the same arguments over
{
E[W k+1

t ], E[W k
t Wt+2]

}
for t = 2, . . . , 7, we can identify

E[ζk+1
t ] and E[ξk+1

t ] for t = 2, . . . , 7.

The infinite sequence of moments
{(
E[ηkt ], E[ξkt ]

)}∞
k=1

is recovered by mathematical induction.

2

A.3 Identification under Homoskedasticity

We next provide our identification result under homoskedasticity without requiring strict mono-

tonicity of ∆µt(·). The model is given by equation (3) with κt = κt−1 + ηt, νt = ξt + β1ξt−1, and

ηt and ξt independent of θ for all t. We assume the following conditions similar to Assumption 2.

Assumption 3. The following conditions hold for T = 9:

(i) The joint density of θ, W1, W2, W3, ∆W4, . . . ,∆W9 is bounded and continuous, and so are

all their marginal and conditional densities.

(ii) All unobserved components ηt, ξt, and θ are mutually independent for all t.

33This is known as the Hamburger moment problem, and the Carleman’s condition is a sufficient condition for
identification of the distributions, e.g. see Shiryaev (1995), pp. 295–296.

37



(iii) fW1|∆W4
(W1|∆W4) and fθ|W1

(θ|W1) form a bounded complete family of distributions indexed

by ∆W4 and W1, respectively. The same condition holds for (W2,∆W5, θ2) and (W3,∆W6, θ3).

(iv) For t = 7, 8, 9, the functions ∆µt(θ) are continuously differentiable with ∆µ′t(θ
∗) = 0 for at

most a finite number of θ∗. The density of θ, fθ(·), does not vanish in the neighborhood of θ∗.

(v) We impose the following normalization: κ0 = ξ0 = 0, µ1(θ) = θ, and E[ηt] = E[ξt] = 0, for

all t.

(vi) The characteristic functions of {Wt}9t=1 and {∆Wt}9t=4 do not vanish.

Conditions (i) and (iii) are the same as in Assumption 2. Condition (ii) assumes full inde-

pendence of permanent and transitory shocks with θ, ruling out heteroskedasticity. Condition

(iv) allows for non-monotonic changes in unobserved skill pricing functions ∆µt(·), but it requires

that µt(·) is changing in later periods for all but a finite number of θ values. Condition (vi) is

a standard technical assumption. This alternative set of assumptions ensures identification under

homoskedasticity of the shocks.

Theorem 2. Under Assumption 3, fθ(·), {µt(·)}9t=1, {fηt(·), fξt(·), βt}7t=1 are identified.

Proof of Theorem 2

We again prove this identification result in three steps.

Step 1: Identification of fθ(·) and µt(·) for all t.

In this step, we jointly consider distributions of (Wt,∆Wt+3,∆Wt+6) for t = 1, 2, 3. These triplets

are mutually independent under Assumption 3 (ii). Begin with the following subset of equations:

W1 = θ + ε1 = θ + η1 + ν1

∆W4 = ∆µ4(θ) + ∆ε4 = ∆µ4(θ) + η4 + ∆ν4

∆W7 = ∆µ7(θ) + ∆ε7 = ∆µ7(θ) + η7 + ∆ν7.

Note that, different from the baseline model (Lemma 1), Assumption 4 in Hu and Schennach (2008)

described above may not hold since the difference of two monotone functions, ∆µ7(·), is not always

monotone. We consider two cases depending on the functional form of ∆µ7(·).

First, consider the case of ∆µ7(θ) = a+ b ln(ecθ +d) for a, b, c( 6= 0), d ∈ R. Then, for any θ̄ 6= θ̃,

we have ∆µ7(θ̄) 6= ∆µ7(θ̃) because both the logarithmic and exponential functions are strictly

monotone. Therefore, f∆W7|θ(w|θ̄) 6= f∆W7|θ(w|θ̃) for some w with positive probability, and we can

apply Lemma 1 to identify fθ, ∆µ4(·) and ∆µ7(·) as before.
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Second, consider the case of ∆µ7(θ) 6= a + b ln(ecθ + d). Then, we first apply Theorem 1 in

Schennach and Hu (2013) to the following pair of equations:

W1 = θ + ε1

∆W7 = ∆µ7(θ) + ∆ε7.

Notice that Assumptions 1–6 in their paper are implied by Assumption 3 (i), (ii), (iv), and (v).

Therefore, we can identify the function ∆µ7(·) and densities fθ(·), fε1(·), f∆ε7(·). To identify ∆µ4(·),

we need some additional notation. Let LA|B be a linear operator defined as

LA|B : G(B) 7→ G(A) with [LA|Bg](·) ≡
∫
fA|B(·|b)g(b)db,

where A is the support of a random variable A, and G(A) is the space of all bounded and absolutely

integrable functions supported on A. Simlarly, B and G(B) are defined. For any given ∆W7 = w7,

we also define

L∆W7;W1|∆W4
: G(W4) 7→ G(W1) with

[
L∆W7;W1|∆W4

g
]

(·) ≡
∫
f∆W7,W1|∆W4

(w7, ·|w4)g(w4)dw4

Λ∆W7;θ : G(Θ) 7→ G(Θ) with [Λ∆W7;θg] (·) ≡ f∆W7|θ(w7, ·)g(·).

Using Assumption 3 (ii), we can rewrite the conditional density f∆W7,W1|∆W4
as follows

f∆W7,W1|∆W4
(w7, w1|w4) =

∫
fW1|θ(w1|θ)f∆W7|θ(w7|θ)fθ|∆W4

(θ|w4)dθ,

which is equivalent to

L∆W7;W1|∆W4
= LW1|θΛ∆W7;θLθ|∆W4

.

By integrating over w7, we have

LW1|∆W4
= LW1|θLθ|∆W4

(14)

Lθ|∆W4
= L−1

W1|θLW1|∆W4
, (15)

where equation (15) is made possible from Assumption 3 (iii). Since we have already identified fε1

and ε1 is independent of θ, the conditional density fW1|θ is identified from fW1|θ(w1|θ) = fε1(w1−θ).

Therefore, we know both terms on the right hand side of equation (15) and identify the density

fθ|∆W4
. Applying Bayes’ rule with known fθ and f∆W4 , we can identify f∆W4|θ. Finally, ∆µ4(·) is

recovered from f∆W4|θ and E[∆ε4|θ] = E[∆ε4] = 0.
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Next, we consider the second subset of equations:

W2 = µ2(θ) + ε2 = θ2 + η1 + η2 + ν2

∆W5 = ∆µ5(θ) + ∆ε5 = g5(θ2) + η5 + ∆ν5

∆W8 = ∆µ8(θ) + ∆ε8 = g8(θ2) + η8 + ∆ν8.

where gt(θ2) is implicitly defined as ∆µt(θ) = gt(µ2(θ)). We apply the same method described above

to identify fθ2(·), g5(·), and g8(·). Then, we can recover the function µ2(·) by µ2(θ) = F−1
θ2

(Fθ (θ)).

Once we identify µ2(·), ∆µt(·) for t = 5, 8 are identified from ∆µt(θ) = gt(µ2(θ)). We apply the

same argument to the set of equations composed of (W3,∆W6,∆W9) and identify µ3(·),∆µ6(·), and

∆µ9(·). Finally, we can recover all µt(·) sequentially from µt(·) = ∆µt(·) + µt−1(·) for t = 4, . . . , 9.

Step 2: Identification of fηt(·) and fνt(·) for t = 1, . . . , 7.

Consider the following two equations:

W1 = θ + ε1 = θ + η1 + ν1

W3 = µ3(θ) + ε3 = µ3(θ) + η1 + η2 + η3 + ν3 ≡ µ3(θ) + η1 + ν ′3

where ν ′3 = η2 + η3 + ν3. Rearrange these equations as follows

W1 − θ = ε1 = η1 + ν1

W3 − µ3(θ) = ε3 = η1 + ν ′3.

We first show that the joint density of (ε1, ε3) is identified. Note that

φW1,W3(τ1, τ3) = E
[
e−i(τ1W1+τ3W3)

]
= E

[
e−i(τ1(θ+ε1)+τ3(µ3(θ)+ε3)

]
= E

[
e−i(τ1ε1+τ3ε3)e−i(τ1θ+τ3µ3(θ))

]
= E

[
e−i(τ1ε1+τ3ε3)

]
E
[
e−i(τ1θ+τ3µ3(θ))

]
= φε1,ε3(τ1, τ3)φθ,µ3(θ)(τ1, τ3).

The second to the last equality exploits the independence between (ε1, ε3) and θ. Since both

φW1,W3(τ1, τ3) and φθ,µ3(θ)(τ1, τ3) are already identified, we can identify the joint density of (ε1, ε3)

from

φε1,ε3(τ1, τ3) =
φW1,W3(τ1, τ3)

φθ,µ3(θ)(τ1, τ3)
.
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Next, η1, ν1, and ν ′3 are mutually independent. Therefore, we can identify fη1(·) and fν1(·), and

fν′3(·) by applying Lemma 1 in Kotlarski (1967). Applying this argument to (W2,W4), . . . , (W7,W9)

sequentially, we can identify fηt(·) and fνt(·) for all t = 1, . . . , 7.

Step 3: Identification of fξt(·) and βt for t = 1, . . . , 7.

Finally, we identify all components of the transitory shock, νt = ξt + βtξt−1. Because of the

normalization ν1 = ξ1, the distribution fξ1(·) is identified by fξ1(·) = fν1(·) in Step 2. Next, we

identify β2 from

Cov(W1,W2) = Cov (θ, µ2(θ)) + V ar(η1) + β1V ar(ξ1),

since we know all other terms except β1. Therefore, unless V ar(ξ1) = 0, we can identify β1. In

the above equation, note that all cross moments between unobservables are zero because of the

conditional mean zero assumption. For example,

Cov(µ2(θ), η1) = E[µ2(θ)η1] = Eθ [E[µ2(θ)η1|θ]] = Eθ [µ2(θ)E[η1|θ]] = 0

We next identify the distribution of ξ2 using the standard deconvolution method as

φξ2(τ) =
φν2(τ)

φβ1ξ1(τ)
,

where φν2(·) and φβ1ξ1(·) are identified. In the same way, we expand Cov(Wt,Wt+1) and identify

βt and fξt(·) sequentially for t = 2, . . . , 7. Again, we cannot identify the components of ν8 and ν9

unless we have additional observations.

Combining results from Steps 1–3, we establish the identification of fθ(·), {fηt(·), fξt(·), βt}7t=1,

and {µt(·)}9t=1. 2

B Additional Estimates

In this appendix, we report results from a number of alternative specifications, all assuming

linear µt(·). Unless otherwise noted, model assumptions are the same as those of subsection 5.1.

Consistent with the results of that subsection, we also use only variance and covariance moments

in estimation. We begin with an examination of the robustness of our results for log earnings

residuals, then consider results from our baseline specification for log weekly wage residuals.

B.1 Additional Specifications for Log Earnings Residuals

B.1.1 Different Processes for νt

We first consider estimates when νa,t follows a MA(1) or MA(5) process. See Figure 14. The

MA(1) model slightly over-predicts the relative importance of permanent shocks, since some of
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Figure 14: Variance Decomposition Assuming νt is MA(1) or MA(5) (Linear µt(·))
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the persistence attributed to ‘transitory’ shocks in the more general MA(3) and MA(5) models

effectively gets allocated to the permanent shock in the MA(1) specification. Estimated patterns

for the variance in unobserved skills prices are remarkably robust to assumptions about the process

for transitory shocks.

We next consider the case when νa,t follows anARMA(1, 1) stochastic process: νa,t = ρνa−1,t−1+

ξa,t + βtξa−1,t−1. With this assumption,

E[νka,t] = σkξt +
a−2∑
j=0

ρkj(ρ+ βt−j)
kσkξt−j−1

due to the mutual independence of ξi,a,t across time. For k = 2, this expression defines the variance

of the ‘transitory’ component in our variance decompositions. Other variance components are

unchanged, so

E[W 2
a,t|a, t] =

p∑
j=0

p∑
j′=0

mj,tmj′,tE[θj+j
′
] +

a−1∑
j=0

σ2
ηt−j + σ2

ξt +
a−2∑
j=0

ρ2j(ρ+ βt−j)
2σ2
ξt−j−1

and

E[Wa,tWa+l,t+l|a, t, l] =

p∑
j=0

p∑
j′=0

mj,tmj′,t+lE[θj+j
′
]+

a−1∑
j=0

σ2
ηt−j+ρ

l−1(ρ+βt+1)σ2
ξt+ρ

l
a−2∑
j=0

ρ2j(ρ+βt−j)
2σ2
ξt−j−1

for l ≥ 1.
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Table 2: Estimates Assuming νt ∼ ARMA(1, 1) using Variances/Covariances (Linear µt(·))

µt(·) constant µt varying

Min. Obj. Function 144.2 114.4

ρ 0.861 0.804
(0.031) (0.056)

β -0.529 -0.496
(0.037) (0.058)

Figure 15: Variance Decomposition Assuming νt ∼ ARMA(1, 1) (Linear µt(·))
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Using variance/covariance moments and assuming linear µt(·), we estimate this model assuming

βt = β for all t. Results from this model are reported in Table 2 along with analogous results

assuming time invariant pricing functions (i.e. µt(θ) = θ for all t).34 Figure 15 shows the variance

decomposition associated with these estimates (for time-varying µt(·)). As with the MA(1) and

MA(5) cases, the decomposition results are quite similar to those in Figure 5 of the paper.

B.1.2 Age-Dependent Variances of Permanent and Transitory Shocks

We next consider the possibility that the variance of transitory and permanent shocks may vary

with age. Specifically, we allow the variances of both ηa,t and ξa,t to be linear functions of age over

34Notice that the ARMA(1, 1) specification has a slightly lower minimized objective function than does our baseline
MA(3) model. However, we cannot reject that adding an autoregressive component to the MA(5) model improves
the fit (at the 5% significance level). The minimized objective function for an ARMA(1, 5) is 114.1.
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Figure 16: Variance Decomposition with Age-Dependent Variances of ηa,t and ξa,t (Linear µt(·))
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ages 20-35 and constant thereafter. Estimates imply that the variance of permanent shocks declines

by a total of 26% over these fifteen years, while the variance of transitory shocks declines by 24%.

The minimized objective function improves (insignificantly) to 118.5. The variance decomposition

shown in Figure 16 is quite similar to that of Figure 5 in the text.

B.2 Log Weekly Wage Residuals

Figure 17 shows the estimated variance decomposition for log weekly wage residuals using our

baseline specification with linear time-varying µt(·), an MA(3) process for νa,t, and homoskedastic

permanent shocks. This figure is quite similar to the analogous figure for log earnings residuals

(Figure 5). Estimated persistence of transitory shocks are also quite similar to those in column 6 of

Table 1 with β̂1 = 0.282 (0.028), β̂2 = 0.162 (0.021) and β̂3 = 0.124 (0.028). As with log earnings

residuals, accounting for time-varying µt(·) functions substantially improves the fit to the data.35

35The minimized objective function is 85.65 for time varying µt(·) compared to 110.12 for time invariant µt(·).
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Figure 17: Variance Decomposition for Log Weekly Wage Residuals (Baseline Specification)
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