ECO 209Y Macroeconomic Theory and Policy

Lecture 5: The IS-LM Model

InTRODUCTION OF THE INTEREST RATE

- We introduce the rate of interest (i) in three stages
- First, we take i as an exogenous variable and see how it affects aggregate expenditure as it changes
$>$ Here, we examine the determination of Y in the goods market for each level of \mathbf{i}
- Second, we take \mathbf{Y} as an exogenous variable and see how it affects the demand for money as it changes
$>$ Here, we examine the determination of \mathbf{i} in the money market for each level of Y
- Finally, we combine both frameworks to examine the simultaneous determination of \mathbf{Y} and i in the economy

The Consumption Function

- I would argue that the rate of interest does not affect households' inter-temporal consumption decisions
- It is not that consumers decide to save more when the rate of interest is high in order to be able to consume even more in the future
- Changes in the rate of interest affect the timing of purchasing those consumer goods usually purchased by credit
$>$ It affects the timing of the purchase of the good but not necessarily the actual consumption of the good
- Changes in the rate of interest affect the level of dissavings, and thus indirectly the level of savings

Savings and the Rate of Interest

- Does the level of savings decrease when the rate of interest falls?
- Consider a model with three types of individuals: 1) savers; 2) borrowers; and 3) neither savers nor borrowers
$>$ The total savings in the economy is the sum of the amount saved by the savers minus the amount dissaved by the borrowers
- All else equal, when the rate of interest falls:
$>$ Savers will continue saving more or less the same amount
$>$ But borrowers will borrow (dissave) a greater amount
> Therefore, total savings will fall

The Consumption Function (cont’d)

- The consumption functions becomes of the following form:
$\Rightarrow \mathrm{C}=(\overline{\mathrm{C}}+\mathrm{c} \overline{\mathrm{TR}}-\mathrm{c} \overline{\mathrm{T}})+\mathrm{c}(1-\mathrm{t}) \mathrm{Y}-\mathrm{di}$
$>$ Where \mathbf{d} describes the rate of change of planned consumption as the rate of interest changes

■ For simplicity, however, we will assume that consumption expenditure does not depend on the rate of interest

The Investment Function

■ Up to now, investment has been considered an exogenous variable $\rightarrow \mathbf{I}=\overline{\mathbf{I}}$

■ Now we will consider investment as an endogenous variable

- We will assume that planned investment depends negatively on the interest rate:

$$
I=\bar{l}-\mathbf{b i}
$$

where $\overline{1}$ is autonomous investment (from both income and the rate of interest), \mathbf{i} is the nominal rate of interest, and \mathbf{b} measures the interest sensitivity of investment

- Note that investment depends on the real rate of interest (\mathbf{r}), but since \mathbf{P} is assumed fixed then $\mathbf{i}=\mathbf{r}$

The Investment Function (cont’d)

- We can express the equation $\mathbf{I}=\overline{\mathbf{I}}-\mathbf{b i}$ in the following way:

$$
i=\overline{1} / b-(1 / b) I
$$

■ The position of the I curve is determined by the level of autonomous investment spending ($\overline{\mathrm{I}}$), and by the interest sensitivity of investment (b)

- The constant $\overline{\mathbf{l}} / \mathbf{b}$ is the vertical intercept of the curve, and the constant $1 / b$ is the absolute value of its slope

The Investment Curve

The Interest Rate and the Aggregate Expenditure Function

- Since the investment function (\mathbf{I}) is now $\mathbf{I}=\overline{\mathbf{I}}-\mathbf{b i}$, the aggregate expenditure function (AE) becomes:

$$
\begin{aligned}
& A E=C+I+G \\
&=[\overline{\mathrm{C}}-\mathrm{c} \overline{\mathbf{T}}+c \overline{\mathrm{TR}}+c(1-t) Y]+(\overline{\mathrm{I}}-\mathrm{bi})+\overline{\mathrm{G}} \\
&=\overline{\mathrm{AE}}-\mathrm{bi}+\mathrm{c}(1-\mathrm{t}) \mathrm{Y} \\
& \text { where } \overline{\mathrm{AE}}=\overline{\mathrm{C}}-\mathrm{c} \overline{\mathrm{~T}}+\mathrm{c} \overline{\mathrm{TR}}+\overline{\mathrm{I}}+\overline{\mathrm{G}}
\end{aligned}
$$

- The slope of the $\mathbf{A E}$ curve is, as before, $\mathbf{c}(\mathbf{1}-\mathbf{t})$; but the intercept has changed: before it was equal to $\overline{\operatorname{AE}}$ and now it is equal to $\overline{\mathbf{A E}}-\mathbf{b i}$
- Therefore, there is a particular AE curve for each level of the interest rate

The Aggregate Expenditure Curve

The Algebraic Determination of EQUILIBRIUM INCOME

- Since there is one AE curve for each level of interest rate, there will be also one equilibrium income for each level of interest rate
- Since in equilibrium $\mathbf{Y}=\mathbf{A E}$, then

$$
\begin{aligned}
& Y=\overline{A E}-b i+c(1-t) Y \\
& {[1-c(1-t)] Y=\overline{A E}-b i}
\end{aligned}
$$

and

The Derivation of the IS Curve

- The relationship between the rate of interest and equilibrium income in the goods market is called the IS curve
- The IS curve shows combinations of interests rates (i) and levels of income (\mathbf{Y}) such that planned spending (AE) equals output/income (Y)
- We can write the equation for the IS curve differently, placing the rate of interest by itself on the left-hand side of the equation

The Derivation of the IS Curve (cont’d)

$$
A E=\overline{A E}-b i+c(1-t) Y
$$

- We have seen that in equilibrium $Y=\mathbf{A E}$, and then

$$
\begin{aligned}
& Y=\overline{A E}-b i+c(1-t) Y \\
& {[1-c(1-t)] Y=\overline{A E}-b i} \\
& b i=\overline{A E}-[1-c(1-t)] Y \\
& i=\frac{\overline{A E}}{b}-\frac{1-c(1-t)}{b} Y
\end{aligned}
$$

The Derivation of the IS Curve

$$
A E_{1}=\overline{A E}-b i_{1}+c(1-t) Y
$$

The point $A^{\prime}=\left(Y_{1}, i_{1}\right)$ is one point on the IS curve.

> A decrease in the rate of interest to i_{2} causes the $A E$ curve to shift up to $A E_{2}$.

$$
A E_{2}=\overline{A E}-b i_{2}+c(1-t) Y
$$

The point $B^{\prime}=\left(Y_{2}, i_{2}\right)$ is another point on the IS curve.

The Slope of the IS Curve

- The slope of the IS curve is negative and equal to:

$$
-\frac{1-c(1-t)}{b}=-\frac{1}{b \alpha_{A E}}
$$

where $\alpha_{A E}=1 /[1-c(1-t)]$ is the autonomous expenditure multiplier

- Therefore, the slope of the IS curve depends on the interest sensitivity of investment (b) and on the autonomous expenditure multiplier ($\boldsymbol{\alpha}_{\mathrm{AE}}$)
- Since $\mathbf{A E}=\overline{\mathrm{AE}}-\mathbf{b i}+\mathbf{c}(\mathbf{1}-\mathbf{t}) \mathbf{Y}$, the steeper the $\mathbf{A E}$ curve the flatter the IS curve (and vice versa)

The Vertical Intercept of the IS Curve

- The intercept of the IS curve is $\overline{\mathbf{A E} / \mathbf{b}}$
$>$ Therefore, both changes in $\overline{\mathbf{A E}}$ and \mathbf{b} affect the intercept
- Let's consider only how changes in $\overline{\mathbf{A E}}$ affect the position of the IS curve (thus, b will be assumed constant)
- For instance, as $\overline{\mathrm{AE}}$ increases (without any change in the rate of interest), the $\mathbf{A E}$ curve shifts up by exactly $\Delta \overline{\mathbf{A E}}$ and thus equilibrium income increases by $\Delta Y=\alpha_{A E} \Delta \overline{A E}$
$>$ Therefore, the IS curve shifts horizontally by exactly $\alpha_{A E} \Delta \overline{\mathrm{AE}}$
$>$ Note that the vertical shift of the IS curve is equal to $\Delta \overline{\mathrm{AE}} / \mathrm{b}$

The Effect of a Change in $\overline{\mathrm{AE}}$

Points Off the IS Curve

$$
A E_{1}=\overline{\mathrm{AE}}-b i_{1}+c(1-t) Y
$$

$$
A E_{2}=\overline{A E}-b i_{2}+c(1-t) Y
$$

Points $A^{\prime}=\left(Y_{1}, i_{1}\right)$ and $B^{\prime}=\left(Y_{2}, i_{2}\right)$ are two points on the IS curve corresponding to points A and B in the top diagram.

Point $C^{\prime}=\left(Y_{1}, i_{2}\right)$ is off the IS curve and corresponds to point C on the $A E_{2}$ curve. At point $\mathrm{C}, \mathrm{AE}>\mathrm{Y}$ and thus any point below the IS curve represents a situation of excess demand.

Point $D^{\prime}=\left(Y_{2}, i_{1}\right)$ is off the IS curve and corresponds to point D on the $A E_{1}$ curve. At point $\mathrm{D}, \mathrm{AE}<\mathrm{Y}$ and thus any point above the IS curve represents a situation of excess supply.

The Assets Market

- There are different types of assets in the economy:
> Financial assets:
- Money (i.e., currency and demand deposits)
- Interest-bearing assets (saving accounts, bonds, etc.)
- Stocks
$>$ Real assets (machinery, houses, art, etc.)
■ For simplicity, we will assume that there are only two types of financial assets:
> Money
> Interest-bearing assets (which we are going to call bonds)

Nominal Wealth Budget Constraint

- At any time, an individual has a given financial wealth which she has to allocate between money and bonds
- As already indicated, we will assume that money does not pay any return (interest), while bonds do
- Therefore, this is her nominal wealth budget constraint:
WN = NDM + NDB
where WN is nominal financial wealth, NDM is the nominal demand for money, and NDB is the nominal demand for bonds

■ Therefore, an individual has to choose under what type of assets she will hold her total financial wealth

Money and Bonds Markets

WN = NDM + NDB

- Since wealth not held in the form of money is held in the form of bonds, and vice-versa, the analysis of one market also gives us information for the other market
- When the demand for money increases, then the demand for bonds decreases; and when the demand for money decreases, the demand for bonds increases
- Therefore, we will focus our attention on the money market

Cost-Benefit of Holding Money

- If an individual holds more of her financial wealth in the form of bonds, then she will receive more interest on her financial wealth
$>$ This represents the opportunity cost of holding money
- If she holds more of her financial wealth in the form of money, then she will be less likely not to have money available when she needs to make a payment
$>$ This represents the benefit of holding money
- Therefore, there is a trade-off
$>$ An opportunity cost for holding money (the interest forgone)
$>$ A benefit for doing so (the less likely to be caught illiquid)

Real and Nominal Demand FOR MONEY

- The nominal demand for money is the demand for money expressed in a quantity of dollars
- The real demand for money is the demand for money expressed in a quantity of dollars of the base period
$>$ That is, the real demand for money is the nominal demand for money divided by the price level
- The real demand for money is called the demand for real balances
- We will use the symbol L to denote the demand for real balances

Real Wealth Budget Constraint

- The real wealth budget constraint indicates that the demand for real balances (L) plus the demand for real bond holdings (DB) must add up to the real financial wealth (W):

$$
\mathrm{W}=\mathrm{L}+\mathrm{DB}
$$

where $\mathbf{W}=\mathbf{W N} / \mathbf{P}, \mathrm{L}=\mathbf{N D M} / \mathrm{P}$, and $\mathrm{DB}=\mathbf{N D B} / \mathbf{P}$

Assets Market Equilibrium

- In turn, real financial wealth (W) has to be equal to the total real supply of financial assets:

$$
W=M / P+S B
$$

where \mathbf{M} is the nominal money stock, \mathbf{M} / \mathbf{P} is the real money stock, and SB is the real stock of bonds

■ In equilibrium, then, $L+D B=M / P+S B$

$$
(L-M / P)+(D B-S B)=0
$$

- Therefore, if the money market is in equilibrium ($L=M / P$), then the bond market is also in equilibrium ($\mathrm{DB}=\mathbf{S B}$)
$>$ If $L>M / P$, then $D B<S B$ (excess supply of bonds)
$>$ If $L<M / P$, then $D B>S B$ (excess demand for bonds)

What is the Rate of Interest?

- Consider a perpetual bond, which is a promise to pay a fixed amount (coupon, C_{B}) to the holder of the bond every year and forever
$>$ For example, a newly issued bond that costs $\$ 100$ may have a coupon of \$5
- We must first make a distinction between the face value of the bond and its market price
$>$ The face value of the bond is the amount of money that an individual must pay for the bond when it is issued (\$100 in our example)
$>$ The market price of the bond is the amount of money the individual will obtain when she sells her bond

Determination of the Rate of INTEREST (CONT’d)

- The face value of the bond is fixed, it does not depend on market forces (demand and supply)
- The market price of the bond, however, does depend on demand and supply
- The return or yield on the bond (i) is not equal to the coupon $\left(\mathrm{C}_{\mathrm{B}}\right.$) divided by its face value, but to the coupon divided by its market price $\left(\mathbf{P}_{\mathrm{B}}\right)$:

$$
\mathrm{i}=\mathrm{C}_{\mathrm{B}} / \mathrm{P}_{\mathrm{B}}
$$

- In equilibrium, the yield on bonds represents the interest rate or the opportunity cost of holding money

Determination of the Rate of INTEREST (CONT’D)

- Suppose that there is an excess supply of bonds in the bonds market and the price of bonds falls
$>$ For instance, the bond with a face value of $\$ \mathbf{1 0 0}$ and a coupon of $\$ 5$ now has a lower market price, say $\$ 80$
$>$ Hence, at the present time the yield on this bond is:

$$
i=\$ 5 / \$ 80=6.25 \%
$$

- Therefore, when the bond market is in disequilibrium (and thus the money market is also in disequilibrium), adjustments in the price of bonds restore equilibrium in both markets
$>$ For instance, if DB < SB (excess supply of bonds) and thus L > M/P (excess demand for money), the price of bonds falls and the interest rate rises to restore equilibrium

The Demand for Money

- The demand for money is the demand for real money balances (or real balances)
- The demand for real balances is assumed to depend on the nominal interest rate and the level of real income
- The demand for real balances depends on the opportunity cost of holding money, that is, on the interest forgone
$>$ In equilibrium, this forgone interest is equal to the nominal yield on bonds
- The higher the interest rate, the higher the opportunity cost of holding real money balances, and therefore the lower the demand for real balances \rightarrow negative relationship

The Demand for Money (cont’d)

■ The demand for real balances also depends on the level of real income (Y)
> Money balances are used to pay for transactions, and transactions increase with $\mathrm{Y} \rightarrow$ positive relationship

- We can write the equation for the demand for real balances (L) as follows:

$$
\mathrm{L}=\mathbf{k Y}-\mathrm{hi}
$$

where $\mathbf{k} \boldsymbol{>} \mathbf{0}$ represents the income-sensitivity and $\mathbf{h} \boldsymbol{>} \mathbf{0}$ the interest-sensitivity of the demand for real balances

- We can rewrite this function in the following way:

$$
i=\frac{k Y}{h}-\frac{1}{h} L
$$

The Liquidity Preference Curve

If $Y=Y_{1}$, then the expression for the liquidity preference curve is:

$$
i=(k / h) Y_{1}-(1 / h) L
$$

As Y increases to Y_{2}, the liquidity preference curve shifts up to $L\left(Y_{2}\right)$.

L

$$
L=k Y-h i
$$

The Real Supply of Money

- The nominal money supply (\mathbf{M}) is assumed to be exogenously determined by the Bank of Canada and thus we will take it as given ($\overline{\mathbf{M}}$)
- Since the price level (\mathbf{P}) is also assumed fixed, then the real money supply (M/P) is assumed to be fixed at $\overline{\mathbf{M}} / \overline{\mathbf{P}}$
- Therefore, the real money supply is assumed to be independent of both the rate of interest and the level of income
$>$ The real supply of money is assumed to be an exogenous variable

Equilibrium in the Money Market

Money Market Equilibrium

- The money market is in equilibrium when the real demand for money (L) is equal to the real supply of money (M/P)
- And since $\mathbf{L}=\mathbf{k Y}-\mathbf{h i}$, and $\mathbf{M} / \mathbf{P}=\overline{\mathbf{M}} / \overline{\mathbf{P}}$, equilibrium is determined when

$$
\overline{\mathrm{M}} / \overline{\mathrm{P}}=\mathrm{kY}-\mathrm{hi}
$$

- Therefore, the money market is in equilibrium when:

$$
i=-\frac{\bar{M} / \bar{P}}{h}+\frac{k}{h} Y
$$

- This function indicates the relationship between the \mathbf{i} and the level of \mathbf{Y} when the money market is in equilibrium
$>$ This is the expression for the LM curve

Equilibrium in the Money Market and the LM Curve

The LM Curve

- $i=-(\bar{M} / \overline{\mathrm{P}}) / \mathrm{h}+(\mathrm{k} / \mathrm{h}) \mathrm{Y}$

> Liquidity Preference:
> $\mathrm{i}=(\mathrm{k} / \mathrm{h}) \mathrm{Y}_{1}-(1 / \mathrm{h}) \mathrm{L}$

- The slope of the LM curve is positive and equal to k / h
$>$ Recall that the slope of the liquidity preference curve is $-1 / h$
$>$ Therefore, the larger the interest sensitivity of demand for real balances, the flatter both the \mathbf{L} and the LM curves
- The vertical intercept of the LM curve is - ($\overline{\mathbf{M}} / \overline{\mathrm{P}}) / \mathrm{h}$
$>$ Therefore, the position of the LM curve depends on the values of both h and $\bar{M} / \overline{\mathbf{P}}$
> That is, a change in $\overline{\mathbf{M}} / \overline{\mathbf{P}}$ will cause the LM curve to shift

Exogenous Increase in Money Supply

$$
i=-(\bar{M} / \bar{P}) / h+(k / h) Y
$$

© Gustavo Indart

Points Off the LM Curve

Point C in diagram (1) corresponds to point C^{\prime} in diagram (2). At point C there is an excess demand in the money market.

Point D in diagram (1) corresponds to

 point D^{\prime} in diagram (2). At point D there is an excess supply in the money market.

Equilibrium in the Goods and Assets (Money) Markets

- We have determined equilibrium in the goods market and the money market independently of each other
$>$ That is, we have derived a whole range of combinations of interest rate and income for which each market was in equilibrium
- Now we will derive a unique combination of the rate of interest and the level of income such that the goods market and the money market are both simultaneously in equilibrium
- In order to find this unique equilibrium, we must equate the IS curve and the LM curve
$>$ That is, equilibrium is achieved where the IS curve and the LM curve intersect

Goods and Money Markets Equilibrium

Points on the IS curve show combinations of \mathbf{i} and Y for which the goods market is in equilibrium.

Points on the LM curve show combinations of \mathbf{i} and \mathbf{Y} for which the money market is in equilibrium.

Only at point ($\mathbf{Y}_{1}, \mathbf{i}_{1}$) are both the goods market and the money market simultaneously in equilibrium.

IS

Y

Determination of Income and Interest Rate Equilibrium

$$
\begin{aligned}
& \frac{\overline{A E}}{b}-\frac{1-c(1-t)}{b} Y=\frac{-\bar{M} / \bar{P}}{h}+\frac{k}{h} Y \\
& h \overline{A E}-h[1-c(1-t)] Y=-b(\bar{M} / \bar{P})+b k Y
\end{aligned}
$$

$$
h \overline{A E}+b(\bar{M} / \bar{P})=\{h[1-c(1-t)]+b k\} Y
$$

$$
Y^{*}=\frac{h}{h[1-c(1-t)]+b k} \overline{A E}+\frac{b}{h[1-c(1-t)]+b k} \bar{M} / \bar{P}
$$

$$
=\frac{1}{1-c(1-t)+b k / h} \overline{A E}+\frac{1}{(h / b)[1-c(1-t)]+k} \bar{M} / \bar{P}
$$

Determination of Income and Interest Rate Equilibrium (contod)

- To obtain now the equilibrium rate of interest we must plug the value for \mathbf{Y}^{*} in the expression for either the IS or the LM curve

$$
\begin{aligned}
& \text { IS: } i^{*}=\frac{\overline{A E}}{b}-\frac{1-c(1-t)}{b} Y^{*} \\
& L M: i^{*}=\frac{-\bar{M} / \bar{P}}{h}+\frac{k}{h} Y^{*}
\end{aligned}
$$

Changes in Equilibrium Income and Rate of Interest

$$
I S: i=\frac{\overline{A E}}{b}-\frac{1-c(1-t)}{b} Y
$$

- The equilibrium levels of income and interest rate change whenever the IS curve and the LM curve shift
- Therefore, any change in the position and/or slope of the IS curve ($\Delta \overline{\mathbf{A E}}, \Delta \mathbf{b}, \Delta \boldsymbol{\alpha}_{\mathrm{AE}}$) or any change in the position and/or slope of the $\mathbf{L M}$ curve ($\Delta(\overline{\mathbf{M}} / \overline{\mathbf{P}}), \Delta \mathbf{k}, \Delta \mathbf{h}$) will also change the income and interest rate equilibrium

The Impact of an Increase in Autonomous Expenditure

The Adjustment Mechanism in the Goods Market

- We have seen that points off the IS curve indicate situations of disequilibrium in the goods market
> Points above the IS curve indicate situations of excess supply in the goods market (ESG)
> Points below the IS curve indicate situation of excess demand in the goods market (EDG)
- Recall that we are assuming that demand (or aggregate expenditure) determines output
> Whenever there is an excess supply in the goods market, \mathbf{Y} decreases to restore equilibrium
$>$ Whenever there is an excess demand in the goods market, \mathbf{Y} increases to restore equilibrium

The Adjustment Mechanism in the Money Market

■ We have also seen that points off the LM curve indicate situations of disequilibrium in the money market
$>$ Point above the LM curve indicates situation of excess supply (ESM) in the money market
$>$ Points below the LM curve indicate situations of excess demand (EDM) in the money market

- Recall that changes in the rate of interest restore equilibrium in the money market
$>$ Whenever there is an excess supply in the money market, i decreases to restore equilibrium
$>$ Whenever there is an excess demand in the money market, i increases to restore equilibrium

The Adjustment Mechanism

■ Note that the money market adjusts very quickly since the interest rate changes rapidly as bonds are bought and sold
$>$ Therefore, we are going to assume that the money market is always in equilibrium

- On the other hand, the goods market adjusts relatively slowly because firms have to change their levels of production which takes time

Changes in Equilibrium

