
ECO 209Y MACROECONOMIC THEORY AND POLICY

LECTURE 3: AGGREGATE EXPENDITURE AND EQUILIBRIUM INCOME

ASSUMPTIONS

- We will assume that:
 - > There is no *depreciation*
 - > There are no *indirect taxes*
 - > Net payment to foreign factors of production is nil
- Therefore, GDP, Net Domestic Income, and Gross National Product are all equal
- In other words, the values of *output* and *income* are assumed to be equal and we will use the notation Y to refer to both

GRAPHICAL REPRESENTATION OF GDP = NATIONAL INCOME (Y)

ASSUMPTIONS (CONT'D)

We will also assume that the *price level* (P) is fixed

Therefore, this model applies to a situation where the economy is in a *deep recession* characterized by *excess capacity* and *high unemployment*

That is, we will consider the so-called short-run Keynesian model

Aggregate Expenditure

 Aggregate Expenditure (AE) is the total desired or planned expenditure on goods and services in the economy, that is:

AE = C + I + G + NX

 Using the expenditure approach, we have seen that GDP was equal to:

 $\mathbf{Y} = \mathbf{C} + \mathbf{I} + \mathbf{G} + \mathbf{N}\mathbf{X}$

- GDP is equal to the *actual* expenditure on domestically produced goods and services
 - Therefore, actual expenditure on domestically produced goods and services is equal to income (Y) since GDP is equal to income by assumption

AGGREGATE EXPENDITURE (CONT'D)

- The Aggregate Expenditure function indicates the desired level of expenditure at each level of income (Y)
 - The Aggregate Expenditure function is an increasing function of Y
- Therefore, there must be a level of income at which *desired* aggregate expenditure (AE) is equal to *actual* aggregate expenditure (GDP = Y)
- This level of income at which Y = AE is the *equilibrium* level of output or income (Y*)
 - At Y* the goods market is in equilibrium
 - Economic agents are purchasing (Y) exactly what they had planned to purchase (AE)

AGGREGATE EXPENDITURE (CONT'D)

- If Y ≠ AE, then the economy is not in equilibrium
 If Y > AE → excess supply in the goods market
 If Y < AE → excess demand in the goods market
- Since P is assumed fixed, then the implicit assumption is that aggregate expenditure determines the amount of goods produced in the economy
- That is, Y must change in order to match AE and restore equilibrium in the economy
 - Y must increase to eliminate an excess demand
 - Y must decrease to eliminate an excess supply

A SIMPLE MODEL

- Consider a simple model of an economy without government sector (G = 0) and without external sector (X = Q = 0)
- Therefore, **AE** = **C** + **I**
- How is equilibrium income (Y*) determined in this economy?

THE PLANNED (OR DESIRED) CONSUMPTION FUNCTION

- The *planned consumption function* is a description of the total planned personal consumption expenditure by all households in the economy
- Planned consumption expenditure depends on variables such as:
 - > Disposable income
 - > Wealth
 - Interest rates
 - Expectations about the future

THE PLANNED CONSUMPTION FUNCTION

- Assumption: With the exception of disposable income, all the variables that determine planned consumption will be assumed constant
- Assumption: Therefore, planned consumption will be assumed to be a function of disposable income (YD):

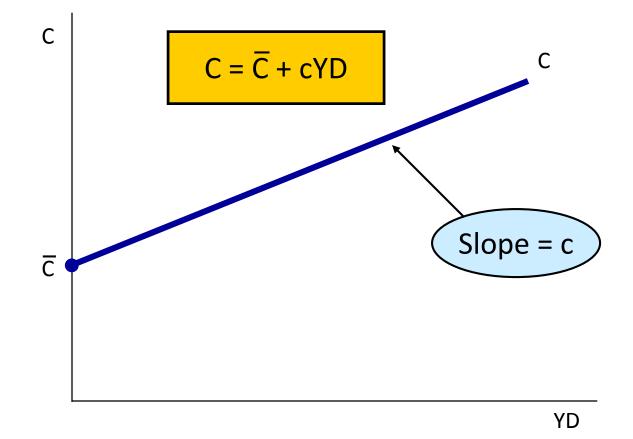
 $\mathbf{C} = \overline{\mathbf{C}} + \mathbf{c} \mathbf{Y} \mathbf{D}$

This equation indicates that *planned consumption* is equal to some constant (C) plus another constant (C) times disposable income (YD)

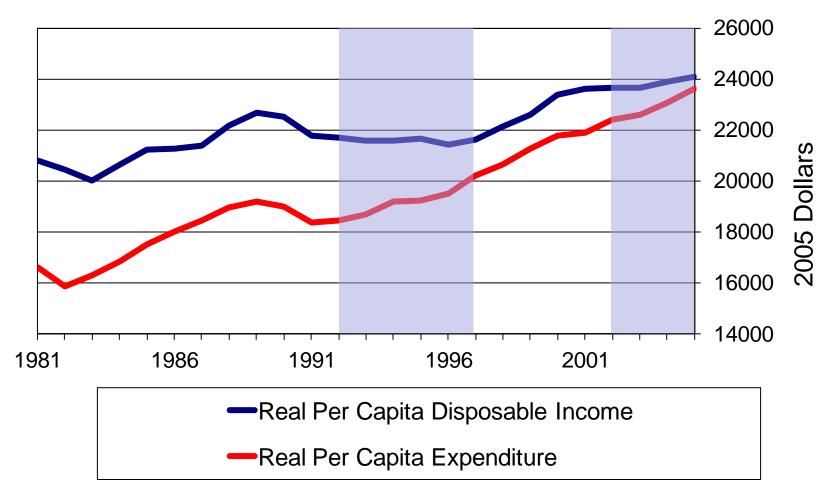
THE CONSUMPTION FUNCTION (CONT'D)

- The constant C describes the elements of consumption which are *independent* of disposable income
 - The constant C is called *autonomous consumption* and captures the impact on C of all the constant variables
- The constant c describes the rate of change of consumption as disposable income changes, that is, it indicates the increase in consumption per unit increase in disposable income:

The constant c is called the marginal propensity to consume out of disposable income (MPC_{YD})


MARGINAL PROPENSITY TO CONSUME

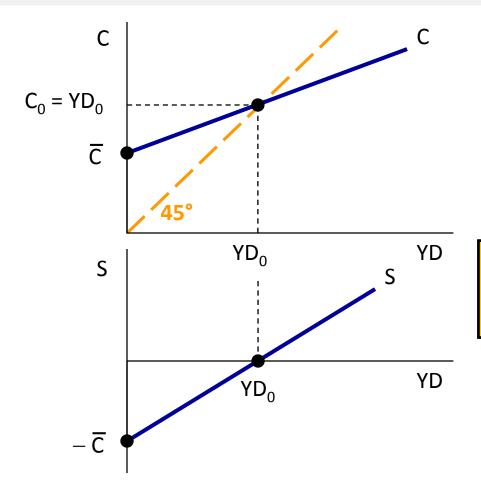
- Since we are assuming that there is no government sector, taxes (TA) and transfer payments (TR) are nil
 - Therefore, YD = Y
 - This means that consumption is assumed to depend on income (Y) alone:


$$C = \overline{C} + cY$$

- Note that since Y = YD, then MPC_Y = MPC_{YD}
- However, as we will soon see, when YD differs from Y, MPC_Y also differs from MPC_{YD}

THE CONSUMPTION CURVE

CANADA: PER CAPITA CONSUMPTION AND DISPOSABLE INCOME (1981-2005)


MARGINAL PROPENSITY TO SAVE

- The MPC_{YD} is positive but less than 1, thus implying that a \$1 increase in *disposable income* does *not* increase *consumption* by \$1
- A fraction c is spent on consumption and the rest is saved (i.e., a fraction s = 1 - c is saved)
- The constant s is the marginal propensity to save out of disposable income (MPS_{YD})
- Therefore, c + s = 1

THE PLANNED SAVINGS FUNCTION

- Since YD = C + S, the savings function is given by: S = YD - C $= YD - (\overline{C} + cYD)$ $= -\overline{C} + (1 - c)YD$ $= -\overline{C} + sYD$
- Note that the MPS_{YD} is also positive and less than 1 since
 s = 1 c
- The savings function is sort of the mirror image of the consumption function

CONSUMPTION AND SAVINGS FUNCTIONS

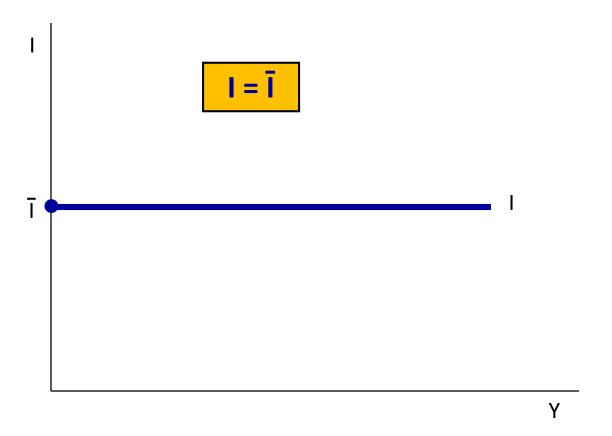
$$C = \overline{C} + c YD$$
$$S = -\overline{C} + (1 - c) YD$$

When YD = 0, then C = \overline{C} and S = $-\overline{C}$

At the level of YD at which the C curve intersects the 45° line, C = YD and thus S = 0.

For $YD < YD_0$, C > YD and thus S < 0. For $YD > YD_0$, C < YD and thus S > 0.

THE PLANNED INVESTMENT FUNCTION


- The *investment function* is a description of the total (desired or planned) investment expenditure by all private economic agents in the economy
- In general, planned investment expenditure depends on:
 - > The *real* rate of interest
 - The level of economic activity (Y)
 - Businesses' expectations about the behaviour of these variables during the lifetime of the investment
- I would argue that *expectation* about Y (and therefore about *future demand*) is the most relevant variable determining investment

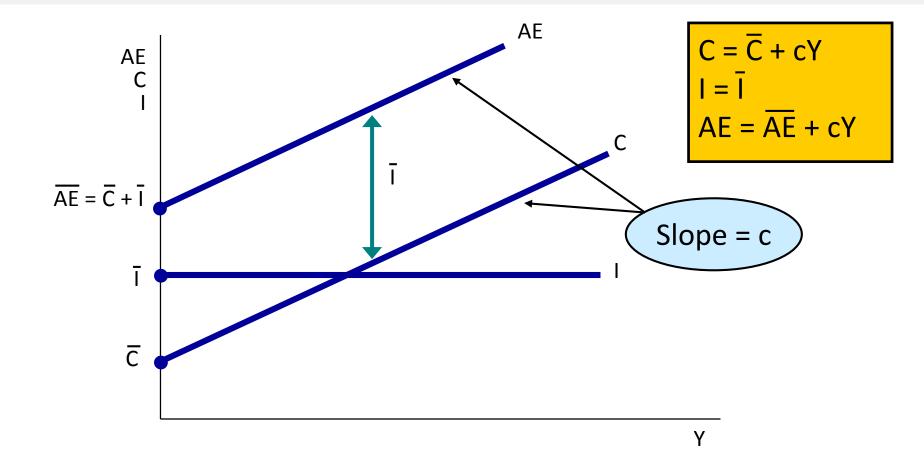
THE PLANNED INVESTMENT FUNCTION

- Assumption: For simplicity, we will assume that the rate of interest and expectations about the future are constant
- Assumption: For simplicity, we will further assume that planned investment is independent of the level of income (Y)
- Assumption: Therefore, planned investment will not change as the level of income (Y) changes

I is equal to autonomous investment: I = Ī

THE INVESTMENT CURVE

THE AGGREGATE EXPENDITURE FUNCTION


In this very simple model, the aggregate expenditure function is:

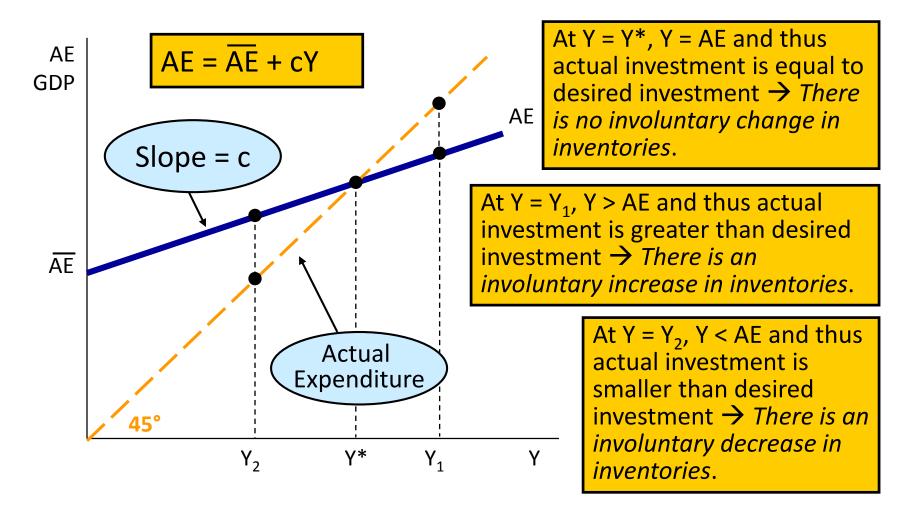
```
AE = C + I
= (\overline{C} + cY) + \overline{I}
= (\overline{C} + \overline{I}) + cY
= \overline{AE} + cY
```

where $\overline{AE} = \overline{C} + \overline{I}$ is *autonomous* aggregate expenditure and cY is *induced* aggregate expenditure

AE is the vertical intercept of the AE function, and c is the slope of the AE function (or the marginal propensity to spend)

AGGREGATE EXPENDITURE FUNCTION

EQUILIBRIUM INCOME AND OUTPUT


We have seen that in *equilibrium, output* (GDP) or *income* (Y) is equal to *aggregate expenditure* (AE):

Y = AE $= \overline{AE} + cY$

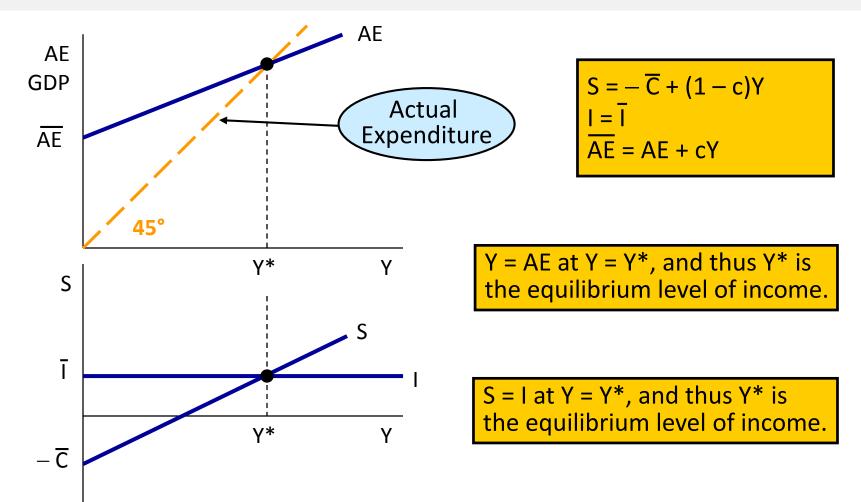
and *equilibrium income* is:

$$Y^* = \frac{1}{1-c} \overline{AE}$$

AGGREGATE EXPENDITURE FUNCTION

CONSUMPTION AND SAVING

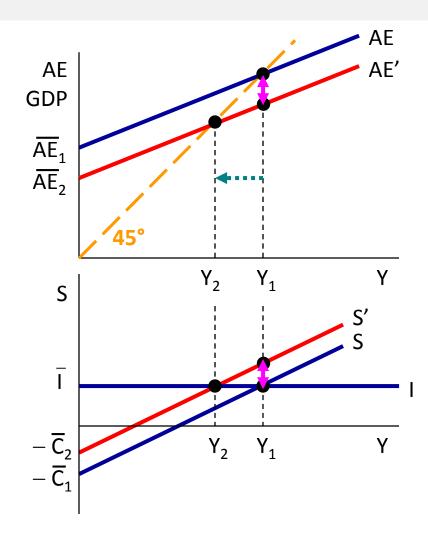
- The implicit assumption is that actual consumption is always equal to desired consumption as a result of involuntary changes in inventory
 - If AE > Y, there is an *involuntary* decrease in inventory to satisfy the level of desired consumption
 - If AE < Y, there is an *involuntary* increase in inventory because desired consumption is not enough (i.e., saving is too large)
- Therefore, since *actual* consumption and *desired* consumption are always equal, then *actual* saving and *desired* saving are always equal as well


SAVINGS AND INVESTMENT

- By definition, *savings* is equal to *actual investment*
 - Output (GDP) is equal to income (Y) by assumption
 - Income not spend on consumption is saved
 - Output not used for consumption is used for investment
- Y = C + S and $Y = C + actual I \rightarrow S = actual I$
- In equilibrium, when Y = AE, there is no involuntary change in inventory
 - Therefore, desired and actual investment are equal
- Therefore, in a closed economy with no government sector,

If Y = AE, then S = desired I

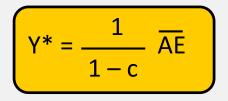
- If Y < AE, then S < desired I</p>
- If Y > AE, then S > desired I


TWO WAS OF EXPRESSING EQUILIBRIUM INCOME IN THE ECONOMY

SAVINGS AND INVESTMENT

- By definition, savings is always equal to actual investment
- Question: If high rates of *investment* are desirable, are high rates of *savings* also desirable?
 - If savings determine *productive* investment, then high rates of savings might be desirable
- But high desired savings is the result of low desired consumption expenditure
 - Therefore, actual investment is large because firms are experiencing involuntary increases in inventory
- Therefore, higher desired savings does not translate into higher productive capacity of the economy
 - But higher desired investment does translate into higher Y and thus into higher desired savings

SAVINGS AND INVESTMENT (CONT'D)



$$S = -\overline{C} + (1 - c)Y$$

I = \overline{I}
AE = $\overline{AE} + cY$

Initially the economy is in equilibrium at Y_1 .

As desired savings increases to S' and aggregate expenditure decreases to AE', Y > AE and Y falls.

THE MULTIPLIER

- How does a change in *autonomous expenditure* (AE) affect *equilibrium income* (Y*)?
- The equation for equilibrium income shows that a ΔAE will affect Y* in the following way:

$$\Delta Y^* = \frac{1}{1-c} \Delta \overline{AE}$$

The expression

$$\alpha_{AE} = \frac{\Delta Y^*}{\Delta \overline{AE}} = \frac{1}{1-c} = \frac{1}{1-slope of AE curve}$$

is called the *autonomous expenditure multiplier* or just the *multiplier*

THE MULTIPLIER (CONT'D)

- A change in autonomous expenditure (ΔAE) causes equilibrium income (Y*) to change by the initial change in AE times the multiplier (α_{AE})
- This change in Y*, α_{AE} ΔAE, is the *final result* and does not show the *process* leading to it
- Let's have a look at the process leading to this final outcome
- Suppose that autonomous expenditure increases by $\Delta \overline{AE}$

PROCESS OF ADJUSTMENT

Round	ΔAE this round	ΔY this round	Accumulated ΔY
1	ΔĀĒ	ΔĀĒ	ΔΑΕ
2	c Δ ΑΕ	c Δ ΑΕ	(1+c) Δ ΑΕ
3	$c^2 \Delta \overline{AE}$	$c^2 \Delta \overline{AE}$	(1+c+c²) Δ <mark>ΑΕ</mark>
4	$c^3 \Delta \overline{AE}$	$c^3 \Delta \overline{AE}$	$(1+c+c^2+c^3)\Delta\overline{AE}$
n	c ⁿ⁻¹ ΔΑΕ	c ⁿ⁻¹ ΔΑΕ	[1/(1 – c)] Δ ΑΕ

PROCESS OF ADJUSTMENT (CONT'D)

- After **n** rounds, the series $1 + c + c^2 + c^3 + ...$ converges to $\alpha_{AE} = 1/(1 c)$
- Let's call **a** = **1** + **c** + **c**² + **c**³ + ...
- Multiply a by $c \rightarrow ca = c + c^2 + c^3 + ...$
- Now subtract ca from a: a - ca = (1 + c + c² + c³ +...) - (c + c² + c³ +...) = 1

■ Therefore, a
$$(1 - c) = 1 \rightarrow a = 1/(1 - c)$$

INTRODUCTION OF THE GOVERNMENT SECTOR

- Disposable income (YD) changes:
 - Households pay taxes
 - Households receive transfer payments
- Equation for AE changes:

 \rightarrow AE = C + I + G

We will assume that *government expenditure* on goods and services is *independent* of the level of income, that is, G is *fixed* → G = G

DISPOSABLE INCOME AND THE CONSUMPTION FUNCTION

We have seen that consumption is a function of disposable income (YD):

$C = \overline{C} + cYD$

where \overline{C} is autonomous consumption and c is the *marginal* propensity to consume out of disposable income (MPC_{YD})

Disposable income (YD) is equal to:

YD = Y + TR - TA

where TR are *government transfer payments* and TA are *direct taxes*

DISPOSABLE INCOME AND THE CONSUMPTION FUNCTION (CONT'D)

- Let's assume that taxes are a function of income and that transfer payments are independent of income:
 TA = T + tY
 - \succ TR = TR
- Therefore, disposable income is equal to:

 $YD = Y + \overline{TR} - (\overline{T} + tY)$ $= \overline{TR} - \overline{T} + (1 - t)Y$

THE CONSUMPTION FUNCTION AS A FUNCTION OF INCOME

As a function of *income*, the consumption function is: $C = \overline{C} + cYD$ $YD = \overline{TR} - \overline{T} + (1 - t)Y$ $= \overline{C} + c[\overline{TR} - \overline{T} + (1 - t)Y]$

$$= (\overline{C} + c\overline{TR} - c\overline{T}) + c(1 - t)Y$$

- That is, (C + cTR cT) is the vertical intercept and c(1 t) is the slope
- Note that c(1 t) is the marginal propensity to consume out of income (MPC_y)
- Also note that MPC_Y < MPC_{YD} if t > 0

THE AGGREGATE EXPENDITURE FUNCTION

The aggregate expenditure function is: AE = C + I + G $= [\overline{C} + c\overline{TR} - c\overline{T} + c(1 - t)Y] + \overline{I} + \overline{G}$ $= \overline{AE} + c(1 - t)Y$ where $\overline{AE} = \overline{C} + c\overline{TR} - c\overline{T} + \overline{I} + \overline{G}$

The vertical intercept is AE and the slope is c(1 – t)

Recall that the slope of the AE curve is the marginal propensity to spend

EQUILIBRIUM OUTPUT AND INCOME

• Equilibrium income is determined where Y = AE: $Y = \overline{AE} + c (1 - t)Y$ $[1 - c (1 - t)]Y = \overline{AE}$

Therefore,

$$Y^* = \frac{1}{1-c(1-t)} \overline{AE}$$

THE MULTIPLIER

The autonomous expenditure multiplier becomes:

$$\alpha_{AE} = \frac{1}{1 - c(1 - t)}$$

- Note that as before, the multiplier is equal to 1 over 1 minus the slope of the AE curve
- Also note that, as t increases, α_{AE} becomes smaller (the AE curve becomes flatter)

THE INTRODUCTION OF THE FOREIGN SECTOR

We will assume that the equations for *exports* (X) and *imports* (Q) are as follows:

 $X = \overline{X}$ $Q = \overline{Q} + mY$

where **m** is the *marginal propensity to import*

Therefore, the equation for *net exports* (NX) is: NX = X - Q $= \overline{X} - \overline{Q} - mY$

THE EQUATION FOR THE AE CURVE

 $NX = \overline{X} - \overline{Q} - mY$

• In a closed economy, the equation for AE was: AE = C + I + G $= \overline{AE} + c(1 - t)Y$ where $\overline{AE} = \overline{C} - c\overline{T} + c\overline{TR} + \overline{I} + \overline{G}$

In an open economy, the equation for AE is: AE = C + I + G + NX $= \overline{AE} + [c(1 - t) - m]Y$ where $\overline{AE} = \overline{C} - c\overline{T} + c\overline{TR} + \overline{I} + \overline{G} + \overline{X} - \overline{Q}$

EQUILIBRIUM INCOME

• Therefore, equilibrium income is:

$$Y^* = \frac{1}{1 - c(1 - t) + m} \overline{AE}$$

where $\overline{AE} = \overline{C} - c\overline{T} + c\overline{TR} + \overline{I} + \overline{G} + \overline{X} - \overline{Q}$

THE MULTIPLIER

• The multiplier is:

$$\alpha_{AE} = \frac{1}{1 - c(1 - t) + m}$$
$$= \frac{1}{1 - slope of the AE curve}$$

Where the slope of the AE curve (i.e., the marginal propensity to spend) is the fraction of each additional dollar of income which is spent on domestically produced goods