# ECO100: Introductory Economics Supply, Demand & Equilibrium

Robert Gazzale, PhD

Department of Economics University of Toronto robert.gazzale@utoronto.ca

# (perfectly) competitive market: the assumptions

- Each seller's good is exactly the same as any other seller's
- Each buyer is small relative to the entire market
  - Any 1 buyer can buy as much as he wants at the market price without affecting the market price
  - Implication for buyer:

- Each seller is small relative to the entire market
  - Any 1 seller can sell as much as she wants at the market price without affecting the market price
  - Implication for seller:

# So, how much coffee gets demanded?

in a particular "market", over a particular time frame ...

- Current price of coffee
- 2 Prices of related goods
- 3 Expected prices in future time frames
- 4 Income
- 5 Number of consumers in "market"
- 6 Tastes and preferences

Let's hold 2-6 constant (for now) and look only at the relationship between price and quantity ...

# insight from Observo, master of the bleeding obvious

#### the unobjectionable(?) insight

As the price of something decreases, the quantity demanded of that something increases

### Why?

## demand: a graph & its interpretation

from previous notes: Marginal Willingness to Pay = MWTP = Item Value - Implicit Cost



# two ways of characterizing the P, $Q^d$ relationship First way: $Q^d$ as a function of P. Example: $Q^d(P) = 22 - 4P$

#### demand

# Graphically characterizing the P, $Q^d$ relationship $Q^d(P) = 22 - 4P$

Price/\$



### market demand curve: summary

- Relationship between market price (P) and market quantity demanded (Q<sup>d</sup>), everything else constant
  - We are not saying any particular (*P*) is going to happen ...
- Reasonably assumed to be a negative relationship: "Law of Demand"
- 2 interpretations for  $(\hat{Q}, \hat{P})$ , a point on the curve
  - 1 If a price  $(\hat{P})$  does happen, what is quantity demanded?  $\hat{Q}$
  - 2 At what price are exactly  $\hat{Q}$  units demanded?  $\hat{P}$
- 2 caveats:

# So, how much coffee gets demanded?

in a particular "market", over a particular time frame ...

#### Current price of coffee

- 2 Prices of related goods
- 3 Expected prices in future time frames
- 4 Income
- 5 Number of consumers in "market"
- 6 Tastes and preferences

For each item in 2-6, how does a particular change affect the relationship between *P* and *Q*?

# a trick question

#### Is $D_2$ a shift up of $D_0$ or a shift out (right) of $D_0$ ?



# shifts in demand

#### up/out versus in/down



# changes in the price of related goods

consider ↑ Prelated

#### Complements

If more value from *A* if *B* consumed as well, then *A* and *B* are complements

#### Substitutes

If A and C are substitutes, then A and C are substitutes



# expected future prices

consider  $\uparrow P_{tomorrow}$ 

- For those items where "buying today" and "buying tomorrow" are substitutes ...
  - Difference between a pound of coffee beans and a cup of coffee.

# changes in income (or wealth)

consider  $\uparrow$  *income* 

#### Normal Good

Income and demand move in same direction (positively related) Inferior Good

Income and demand move in opposite direction



# changes in number of consumers in market

consider  $\uparrow$  number of consumers

Straightforward ...



... but be careful: number in market versus number who purchase because of price change

# individual demands into market demand Q(P) = 10 - P and Q(P) = 15 - 3P/2



# a note on demand semantics

#### **Change in quantity demanded**: movement along the curve

- Only changes in price move us along demand curve
- Change in demand: shift of the curve
  - A (relevant) change in anything but price shifts the curve

# insight from Observo, master of the bleeding obvious

#### another unobjectionable(?) insight

As the price of something increases, the quantity supplied (i.e., offered for sale) of that something increases

### Why?

# supply: a graph & its interpretation



### two ways of characterizing the P, $Q^s$ relationship First way: $Q^s$ as a function of P. Example: $Q^s(P) = 24P - 48$

#### supply

# graphically characterizing the P, $Q^s$ relationship $Q^s(P) = 24P - 48$

Price/\$ 5 4 3 2 1 2 3 4 5 6 7<sup>9</sup>10 <sup>19</sup>20 29 30 Quantity 24

### market supply curve: summary

- Relationship between market price (P) and market quantity supplied (Q<sup>s</sup>), everything else constant
  - We are not saying any particular (P) is going to happen ...
- Reasonably assumed to be positive relationship: "Law of Supply"
- **2** interpretations for  $(\hat{Q}, \hat{P})$ , a point on the curve
  - 1 If a price  $(\hat{P})$  does happen, what is quantity supplied?  $\hat{Q}$
  - 2 At what price are exactly  $\hat{Q}$  units supplied?  $\hat{P}$



# a note on supply semantics

#### Change in quantity supplied: movement along the curve

- Only changes in price move us along supply curve
- **Change in supply**: shift of the curve
  - A (relevant) change in anything but price shifts the curve

# what we want our model to provide: a prediction

given assumptions about market, what is expected outcome

#### **Equilibrium, loosely:** Stability.

Ideally there is some force moving from disequilibrium to equilibrium.

- Market clearing condition: when the quantity supplied equals the quantity demanded
  - Intersection of Supply and Demand Curves
- Algebraically: 2 unknowns, need 2 equations

Solve for price 
$$(P^*)$$
:  $Q^s(P^*) = Q^d(P^*)$  (1)

Find quantity 
$$(Q^*)$$
:  $Q^* = Q^d(P^*) (= Q^s(P^*))$  (2)

# equilibrium in (perfectly) competitive markets: example $Q^{d}(P) = 22 - 4P; Q^{s}(P) = 24P - 48$



# what we want our model to provide: a prediction

given assumptions about market, what is expected outcome

#### **Equilibrium, loosely:** Stability.

- Ideally there is some force moving from disequilibrium to equilibrium.
- Market clearing condition: when the quantity supplied equals the quantity demanded
  - Intersection of Supply and Demand Curves
- Algebraically: 2 unknowns, need 2 equations

Solve for price 
$$(P^*)$$
:  $Q^s(P^*) = Q^d(P^*)$  (1)

Find quantity 
$$(Q^*)$$
:  $Q^* = Q^d(P^*) (= Q^s(P^*))$  (2)

equilibrium in perfectly competitive markets: example  $Q^{d}(P) = 22 - 4P; Q^{s}(P) = 24P - 48$ 

# effects of shifts in supply and demand

After a shift in one or both curves, need to find new equilibriumLet's do some examples ...

# example: shift up/out of demand curve

e.g., increase in the price of a substitute



# example: shift down/out of supply curve

#### e.g., improvement in technology



# shifting both curves

- If both curves shift
  - 1 We know the direction of change of either P or Q
  - 2 The direction of change in the other outcome is ambiguous

#### Proof by example:

- Shift Up/Out of Demand Curve
- Shift Down/Out of Supply Curve

# shifting both curves: an example

shift up/out of demand curve; shift down/out of supply curve



Which is consistent with evolution of personal computer market (at least before tablets)?

#### summary

- The 2 interpretations of supply and demand curves
- Scarce resources are often allocated by markets
- We started with one type of market: perfectly competitive
  - Made some very strong assumption
- Equilibrium as a prediction of what is going to happen
  - **Positive Claim:** The decentralized, perfectly competitive market finds the price *P*\* that equilibrates supply and demand
- Price as a signal of value and scarcity

## a real-world example

empirical facts (U.S. Office of National Drug Control Policy)

- 1990 U.S. Marijuana Purchases: \$15 billion
- 2000 U.S. Marijuana Purchases: \$10.5 billion (inflation adjusted)
- Increased consumption from 1990 to 2000
- Implication: Price decreased: Price decrease relatively larger than quantity increase

#### The Questions

- If we limit ourselves to shifting one curve, what shift is consistent with ↑ Q, ↓ P?
- 2 What does  $\downarrow \downarrow P, \uparrow Q$  tell us about steepness of curves?

# the U.S. marijuana market, graphically

