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When Does Learning in Games

Generate Convergence to Nash Equilibria?

The Role of Supermodularity in an Experimental Setting

Abstract

This study clarifies the conditions under which learning in games produces convergence to Nash equi-

libria in practice. Previous work has identified theoretical conditions under which various stylized learning

processes achieve convergence. One technical condition issupermodularity, which is closely related to

the more familiar concept of strategic complementarities. We experimentally investigate the role of super-

modularity in achieving convergence through learning. Using a game from the literature on solutions to

externalities, we systematically vary a free parameter below, close to, at and beyond the threshold of super-

modularity to assess its effects on convergence. We find that supermodular and “near-supermodular” games

converge significantly better than those far below the threshold. From a little below the threshold to the

threshold, the improvement is statistically insignificant. Within the class of supermodular games, increasing

the parameter far beyond the threshold does not significantly improve convergence. Simulation shows that

while most experimental results persist in the long run, some become more pronounced.

Keywords: learning, supermodular games

JEL Classification: C90; D70
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1 Introduction

When do players learn to play Nash equilibria? The answer to this important question will help us identify

when the outcomes predicted by theory will be realized in competitive environments involving real people.

This question has been examined both theoretically (see Fudenberg and Levine (1998) for a survey) and

experimentally (see Camerer (2003) for a survey).

According to the theoretical literature, games with strategic complementarities (Milgrom and Roberts

1991, Milgrom and Shannon 1994) have robust dynamic stability properties: under numerous learning dy-

namics, they converge to the set of Nash equilibria that bound the serially-undominated set. The learning

dynamics include Bayesian learning, fictitious play, adaptive learning, Cournot best reply and many oth-

ers. These games include the supermodular games of Topkis (1979), Vives (1985, 1990), Cooper and John

(1988), and Milgrom and Roberts (1990). In supermodular games, each player’s marginal utility of increas-

ing her strategy rises with increases in her rival’s strategies, so that (roughly) the players’ strategies are

“strategic complements.”

Existing literature recognizes that games with strategic complementarities encompass important eco-

nomic applications of noncooperative game theory, for example, macroeconomics under imperfect compe-

tition (Cooper and John 1988), search (Diamond 1982), bank runs (Diamond and Dybvig 1983, Postlewaite

and Vives 1987), network and adoption externalities (Dybvig and Spatt 1983), and mechanism design (Chen

2002).

Past experimental studies of learning and mechanism design suggest that, in addition to equilibrium

efficiency, mechanism choice should depend on whether players learn to play the equilibrium and the na-

ture of play on the path to equilibrium. In reviewing the experimental literature on incentive-compatible

mechanisms for pure public goods, Chen (forthcoming) finds that mechanisms with strategic complemen-

tarities, such as the Groves-Ledyard mechanism under a high punishment parameter, converge robustly to

the efficient equilibrium (Chen and Plott 1996, Chen and Tang 1998). Conversely, those far away from

the threshold of strategic complementarities do not seem to converge (Smith 1979, Harstad and Marrese

1982). In previous experiments, parameters are set either far away from the threshold for strategic com-

plementarities (e.g., Chen and Tang (1998)) or very close to the threshold (e.g., Falkinger, Fehr, Gächter

and Winter-Ebmer (2000)).1 However, these experiments do not systematically set the parameters below,

close to, at and above the threshold to assess the effect of strategic complementarities on convergence. This

is the first such systematic experimental study of games with strategic complementarities.2 Consequently,

1Proofs of supermodularity of the Groves-Ledyard and the Falkinger mechanisms are presented in Chen (1997).
2By systematically varying the free parameter in the Groves-Ledyard mechanism, Arifovic and Ledyard (2001) study learning
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this study answers three important questions that the theory on games with strategic complementarities does

not address. First, as the parameters approach the threshold of strategic complementarities, will play con-

verge to equilibrium gradually or abruptly? Second, is there a clear performance ranking among games

with strategic complementarities? Third, how important is strategic complementarity compared to other

factors? The answer to the first question can help us assess,a priori, whether a game “close” to being super-

modular, such as the Falkinger mechanism (Falkinger 1996), might also have good convergence properties.

The answer to the second question will help us choose the best parameters within the class of games with

strategic complementarities. The answer to the third question will help us assess the importance of strategic

complementarities in learning and convergence.

To address these questions, this study adopts an experimental game from the literature on solutions to ex-

ternalities. Varian (1994) proposes a simple class of two-stage mechanisms, the compensation mechanisms,

whose subgame-perfect equilibria implement efficient allocations. In a generalized version of Varian’s

mechanism (Cheng 1998), one can vary, without altering the equilibrium, a parameter which determines

whether the condition for strategic complementarities is satisfied.

There have been two experimental studies of the compensation mechanisms, neither of which adopts a

version with strategic complementarities. Andreoni and Varian (1999) study the mechanism in the context of

the Prisoners’ Dilemma. They find that adding a commitment stage to the standard Prisoners’ Dilemma game

nearly doubles the amount of cooperation to two-thirds. Hamaguchi, Mitani and Saijo (2003) investigate a

version with a larger strategy space and find 20% Nash equilibrium play.

In this paper, we examine the compensation mechanism in an economic environment with a much larger

strategy space. Furthermore, we choose various versions to study systematically the effect of strategic

complementarities on convergence.

The rest of the paper is organized as follows. Section 2 introduces games with strategic complemen-

tarities and presents theoretical properties of the compensation mechanisms. Section 3 presents the exper-

imental design. Section 4 introduces the set of hypotheses. Section 5 presents experimental results on the

level and speed of convergence, as well as efficiency. Section 6 presents the calibration of three learning

models, validation of the models on a hold-out sample, and simulation of performance in the long run using

a calibrated learning model. Section 7 discusses our findings. Section 8 concludes.

dynamics and mechanism convergence using genetic algorithms compared with experimental data.
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2 Strategic Complementarity and the Compensation Mechanisms

Games with strategic complementarities (Milgrom and Shannon 1994) need an order structure on strategy

spaces (e.g., subsets of the real line), a weak continuity requirement on payoffs, and satisfaction of the

single-crossing property.3 These games include supermodular games, first introduced by Topkis (1979), and

further studied by Vives (1985, 1990), Cooper and John (1988), and Milgrom and Roberts (1990).

Supermodular games are games in which the incremental return to any player from increasing her strat-

egy is a nondecreasing function of the strategy choices of other players (increasing differences). Further-

more, if a player’s strategy space has more than one dimension, components of a player’s strategy are

complements (supermodularity). Membership in this class of games is easy to check. Indeed, for smooth

functions in IRn, letting Pi be the strategy space andπi be the payoff function of playeri, the following

theorem characterizes increasing differences and supermodularity.

THEOREM 1 (Topkis (1978)) Let πi be twice continuously differentiable onPi. Thenπi has increasing

differences in(pi, pj) if and only if∂2πi/∂pih∂pjl ≥ 0 for all i 6= j and all1 ≤ h ≤ ki and all1 ≤ l ≤ kj ;

andπi is supermodular inpi if and only if∂2πi/∂pih∂pil ≥ 0 for all i and all1 ≤ h < l ≤ ki;

Increasing differences means that an increase in the strategy of playeri’s rivals raises her marginal

utility of playing a high strategy. The supermodularity requirement ensures complementarity among com-

ponents of a player’s strategies and is automatically satisfied in a one-dimensional strategy space. Note that

a supermodular game is a game with strategic complementarities, but the converse is not true.

Supermodular games have interesting theoretical properties. In particular, they are robustly stable. Mil-

grom and Roberts (1990) prove that, in these games, learning algorithms consistent with adaptive learning

converge to the set bounded by the largest and the smallest Nash equilibrium strategy profiles. Intuitively,

a sequence is consistent with adaptive learning if players “eventually abandon strategies that perform con-

sistently badly in the sense that there exists some other strategy that performs strictly and uniformly better

against every combination of what the competitors have played in the not too distant past” (Milgrom and

Roberts 1990). This includes numerous learning dynamics, such as Bayesian learning, fictitious play, adap-

tive learning, Cournot best reply. While strategic complementarity is sufficient for convergence, it is not

a necessary condition. Thus, while games with strategic complementarities ought to converge robustly to

the Nash equilibrium, games without strategic complementarities may also converge under specific learning

3Let P be the strategy space andπi be the payoff function of playeri. For allz, y ∈ P with z ≥ y, the following single-crossing

conditions hold:[πi(zi, y−i) ≥ πi(yi, y−i)] ⇒ [πi(zi, z−i) ≥ πi(yi, z−i)] and[πi(zi, y−i) > πi(yi, y−i)] ⇒ [πi(zi, z−i) >

πi(yi, z−i)].
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algorithms. Whether these specific learning algorithms are a realistic description of human learning is an

empirical question.

While the theory on games with strategic complementarities predicts convergence to equilibrium, it

does not address four practical issues. First, as the parameters of a game approach the threshold of strategic

complementarities, does play converge gradually or abruptly? Second, is convergence faster further past the

threshold? Third, how important is strategic complementarity compared to other features of a game which

might also induce convergence to equilibrium? Last, for supermodular games with multiple Nash equilibria,

will players learn to coordinate on a particular equilibrium? We choose a game which allows us to answer

the first three questions. The fourth question has been addressed by Van Huyck, Battalio and Beil (1990)

and Cox and Walker (1998).4

Specifically, we use the compensation mechanism to study the role of strategic complementarities in

learning and convergence to equilibrium play. In the mechanism, each of two players offers to compensate

the other for the “costs” of the efficient choice. Assume that when player 1’s production equalsx, her net

profit is rx − c(x), wherer is the market price andc(·) is a differentiable, positive, increasing and convex

cost function. Production causes an externality on player 2, whose payoff is−e(x), also assumed to be

differentiable, positive, increasing and convex. The mechanism is a two-staged game where the unique

subgame-perfect Nash equilibrium induces the Pareto efficient outcome ofx such thatr = e′(x) + c′(x).

In the first stage (the announcement stage), player 1 announcesp1, a per unit subsidy to be paid to player

2, while player 2 simultaneously announcesp2, a per unit tax to be paid by player 1. Announcements are

revealed to both players. In the second stage (the production stage), player 1 chooses a production levelx.

The payoff to player 1 isπ1 = rx−c(x)−p2x−α(p1−p2)2, while the payoff to player 2 isπ2 = p1x−e(x),

whereα > 0 is a free punishment parameter chosen by the designer.

We study a generalized version of the compensation mechanism (Cheng 1998), which adds a punishment

term,−β(p1 − p2)2, to player 2’s payoff function, thus making the payoff functions:

π1 = rx− c(x)− p2x− α(p1 − p2)2, and π2 = p1x− e(x)− β(p1 − p2)2. (1)

4Cox and Walker (1998) study whether subjects can learn to play Cournot duopoly strategies in games with two kinds of interior

Nash equilibrium. Their type I duopoly has a stable interior Nash equilibrium under Cournot best-reply dynamics and therefore is

dominance solvable (Moulin 1984). Their type II duopoly has an unstable interior Nash equilibrium and two boundary equilibria

under Cournot best-reply dynamics, and therefore is not dominance solvable. They found that after a few periods subjects did play

stable interior, dominance solvable equilibria, but they did not play the unstable interior equilibria nor the boundary equilibria.

It is interesting to note that these duopoly games are submodular games. Being two-player games, they are also supermodular

(Amir 1996). Results of Cox and Walker (1998) illustrate the importance of uniqueness together with supermodularity in inducing

convergence.
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Using the generalized version, we solve the game by backwards induction. In the production stage,

player 1 chooses the quantity that solves the following problem:

max
x

rx− c(x)− p2x− α(p1 − p2)2.

The first order condition is

r − c′(x)− p2 = 0,

which characterizes the best response in the second stage,x(p2). In the announcement stage, player 1 solves

max
p1

rx− c(x)− p2x− α(p1 − p2)2.

The first order condition is
∂π1

∂p1
= −2α(p1 − p2) = 0, (2)

which yields the best response function for player 1 asp1 = p2. Player 2 simultaneously solves

max
p2

p1x(p2)− e(x(p2))− β(p1 − p2)2.

The first order condition is

∂π2

∂p2
= p1x

′(p2)− e′(x)x′(p2) + 2β(p1 − p2) = 0, (3)

which characterizes player 2’s best response function.

The unique subgame-perfect equilibrium hasp1 = p2 = p∗, wherep∗ is the Pigovian tax which induces

the efficient quantity,x∗. As the equilibrium does not depend on the value ofβ, it holds for the original

version whereβ = 0. However, whenβ is set appropriately, the generalized version is a supermodular

mechanism. The following proposition characterizes the necessary and sufficient condition for supermodu-

larity.

PROPOSITION 1 (Cheng (1998))The generalized version of the compensation mechanism is supermod-

ular if and only ifα > 0 andβ ≥ −1
2x

′
(p2).

The proof is simple. First, as the strategy space is one-dimensional, the supermodularity condition

is automatically satisfied. Second, we use Theorem 1 to check for increasing differences. For player 1,

from Equation (2), we have∂2π1
∂p1∂p2

= 2α > 0, while for player 2, from Equation (3), we have∂
2π2

∂p1∂p2
=

x′(p2) + 2β. Therefore, ∂2π2
∂p1∂p2

≥ 0 if and only if β ≥ −1
2x

′
(p2).

To obtain analytical solutions, we use a quadratic cost functionc(x) = cx2, wherec > 0, and a quadratic

externality functione(x) = ex2, wheree > 0. We now summarize the best response functions, equilibrium

solutions and stability analysis in this environment.
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PROPOSITION 2 Quadratic cost and externality functions yield the following characterizations:

1. The best response functions for players 1 and 2 are:

p1 = p2; (4)

p2 =
β − 1

4c

β + e
4c2

p1 +
er
4c2

β + e
4c2

; and (5)

x = max{0,
r − p2

2c
}.

2. The subgame-perfect Nash equilibrium is characterized as

(p∗1, p
∗
2, x

∗) =
(

er

e + c
,

er

e + c
,

r

2(e + c)

)
.

3. If players follow Cournot best-reply dynamics,(p∗1, p∗2) is a globally asymptotically stable equilibrium

of the continuous time dynamical system for anyα > 0 andβ ≥ 0.

4. The game is supermodular if and only ifα > 0 andβ ≥ 1
4c .

Proof: See Appendix A.

The best-response functions presented in Part 1 of Proposition 2 reveal interesting incentives. While

player 1 has an incentive to always match player 2’s price, player 2 has an incentive to matchonly when

player 1 plays the equilibrium strategy. Also, at the threshold for strategic complementarity,β = 1
4c , player

2 has a dominant strategy,p2 = er
e+c = p∗2. Part 3 of Proposition 2 extends Cheng (1998), who shows that the

original version of the compensation mechanism (β = 0) is globally stable under continuous time Cournot

best-reply dynamics.5 However, Cournot best-reply is a relatively poor description of human learning, e.g.,

Boylan and El-Gamal (1993). Therefore, global stability under Cournot best reply for anyβ ≥ 0 does

not imply equilibrium convergence among human subjects. Part 4 characterizes the threshold for strategic

complementarity in our experiment, a more robust stability criterion than that characterized by Part 3.

An intuition for how strategic complementarities affect the outcome of adaptive learning can be gained

from analysis of the best response functions, Equations (4) and (5). While player 1’s best response function

is always upward sloping, player 2’s best response function, Equation (5), is nondecreasing if and only if

β ≥ 1
4c , i.e., when the game is supermodular. Beyond the threshold for strategic complementarity, both best

response functions are upward sloping and they intersect at the equilibrium. It is easy to verify (graphically)

that adaptive learners, e.g., Cournot best reply, will converge to the equilibrium regardless of where they

start.
5Cheng (1998) also shows that the original mechanism is locally stable under discrete time Cournot best-reply dynamics.
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To examine howα, which is unrelated to strategic complementarity, might affect behavior, we observe

that when player 1 deviates from the best response byε, i.e.,p1 = p2 + ε, his profit loss is∆π1 = −αε2.

This profit loss, which is proportional to the magnitude ofα, is the deviation cost for player 1. Based on

previous experimental evidence, the incentive to deviate from best response decreases when the deviation

cost increases. Chen and Plott (1996) call it the General Incentive Hypothesis, i.e., the error of game

theoretic models decreases as the level of incentive increases. We therefore expect that an increase inα

improves player 1’s convergence to equilibrium. When player 1 plays equilibrium strategy, player 2’s best

response is to play equilibrium strategy as well. Therefore, we expect that an increase inα might improve

player 2’s convergence to equilibrium as well. It is not clear, however, whether theα-effects systematically

change the effects of the supermodularity parameterβ. We rely on experimental data to test the interaction

of theα-effects onβ-effects.

3 Experimental Design

Our experimental design reflects both theoretical and technical considerations. Specifically, we chose an

environment that allows significant latitude in varying the free parameters to better assess the performance

of the compensation mechanism around the threshold of strategic complementarity. We describe this envi-

ronment and the experimental procedures below.

3.1 The Economic Environment

We use the general payoff functions presented in Equation (1) with quadratic cost and externality functions

to obtain analytical solutions:c(x) = cx2 ande(x) = ex2. We use the following parameters:c = 1/80, e =

1/40, r = 24. From Proposition 2, the subgame perfect Nash equilibrium is(p∗1, p∗2, x∗) = (16, 16, 320)

and the threshold for strategic complementarity isβ = 1
4c = 20.

In the experiment, each player choosespi ∈ {0, 1, · · · , 40}. Without the compensation mechanism,

the profit-maximizing production level isx = 960, three times higher than the efficient level. To reduce

the complexity of player 1’s problem, we use a grid size of 10 for the quantity and truncate the strategy

space, i.e., player 1 choosesX ∈ {0, 1, · · · , 50}, whereX = x/10. The payoff functions presented to

the subjects are adjusted accordingly (see Appendix B). Truncating the strategy space toX ≤ 50 also

reduces the possibility of player 2’s bankruptcy. To reduce payoff asymmetry, we give player 1 a lump sum

payment of 250 points each round. Therefore, the equilibrium payoffs for the two players areπ1 = 1530

andπ2 = 2560.
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The functional forms and specific parameter values are chosen for several reasons. First, equilibrium

solutions are integers. Second, equilibrium prices and quantities do not lie in the center of the strategy space,

thus avoiding equilibrium convergence as a result of focal points. Third, there is a salient gap between

efficiency with and without the mechanism. Without the mechanism, the profit-maximizing production

level isX = 50, resulting in an efficiency level of 68.4%. With the mechanism, the system achieves 100%

efficiency in equilibrium. Finally, since the threshold for strategic complementarity isβ = 20, there are a

large number ofβ values to choose from both below and above the threshold.

To study how strategic complementarity affects equilibrium convergence, we keepα = 20, and vary

β = 0, 18, 20, and40. To study whetherα affects convergence, we also keepα = 10, and varyβ = 0, 20.

3.2 Experimental Procedures

Our experiment involves 12 players per session — six player 1’s (called Red players in the instructions)

and six player 2’s (Blue players). Each player remains the same type throughout the experiment. At the

beginning of each session, subjects randomly draw a PC terminal number. Each then sits in front of the

corresponding terminal, and is given printed instructions. After the instructions are read aloud, subjects are

encouraged to ask questions. The instruction period varies between fifteen to thirty minutes.

Each round a player 1 is randomly matched with a player 2. Subjects are randomly re-matched each

round to minimize repeated game effects. The random re-matching protocol also minimizes the possibility

that players collude on a high subsidy and low tax outcome.6 Each session consists of 60 rounds. As we are

interested in learning, there are no practice rounds. Each round consists of two stages:

1. Announcement Stage: Each player simultaneously and independently chooses a price,pi ∈ {0, 1, · · · , 40}.

2. Production Stage: After(p1, p2) are chosen, player 1’s computer displays player 2’s price and a payoff

table showing her payoff for eachX ∈ {0, 1, · · · , 50}. Player 1 then chooses a quantity,X. The server

calculates payoffs and sends each player his payoff, the quantity chosen, and the prices submitted by

him and his match.

To summarize, each subject knows both payoff functions, the choices made each round by himself and

his match, as well as his per period and cumulative payoffs. At any point, subjects have ready access to all

of this information. The mechanism is thus implemented as a game of complete information. However, we

6If the players could commit to maximizing joint profits, they would choose, by Equation (1),(p1, p2, x) =(
4(α+β)er

4(α+β)(e+c)−1
, r(4e(α+β)−1)

4(α+β)(e+c)−1
, 2r(α+β)

4(α+β)(e+c)−1

)
. With our choice of parameters, we get:p1 = 24, p2 = 12 for α = 20

andβ = 0; p1 = 19.2, p2 = 14.4 for α = 20 andβ = 20; andp1 = 18, p2 = 15 for α = 20 andβ = 40; etc.
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do not know how subjects processed this information, nor do we know their beliefs about the rationality of

others. Both of these factors introduce uncertainty in the environment.

[Table 1 about here.]

Table 1 presents features of the experimental sessions, including parameters, number of independent

sessions in each treatment, whether the mechanism is supermodular in that treatment and equilibrium prices

and quantities. Overall, 27 independent computerized sessions were conducted in the RCGD lab at the Uni-

versity of Michigan from April to July, 2001, and in April 2003. We used zTree to program our experiments.

Our subjects were students from the University of Michigan. No subject was used in more than one session,

yielding 324 subjects. Each session lasted approximately one-and-a-half hours. The exchange rate for all

treatments was one dollar for 4250 points. The average earning was $22.82. Experimental instructions are

included in Appendix B. Data are available from the authors upon request.

4 Hypotheses

Given the above design, we next identify our hypotheses. To do so, we first define and discuss two measures

of convergence: the level and speed of convergence.7 In theory, convergence implies that all players play

the stage game equilibrium and no deviation is observed. However, this is not realistic in an experimental

setting. Therefore, we define the following measures.

DEFINITION 1 The level of convergence at roundt, L(t), is measured by the proportion of Nash equilib-

rium play in that round. The level of convergence for a block of rounds,Lb(t1, t2), measures the average

proportion of Nash equilibrium play between roundst1 andt2, i.e.,Lb(t1, t2) =
∑t2

t=t1 L(t)/(t2 − t1 + 1),

where0 ≤ t1 ≤ t2 ≤ T andT is the total number of rounds.

We define the level of convergence for both a round and a block of rounds. The block convergence

measure smooths out inter-round variation. However, a particular convergence level does not capture the

change in equilibrium play over time. The following definition captures the change in equilibrium play

induced by the mechanism and reduces cohort effects.

DEFINITION 2 The convergence-level change,∆L(τ) is measured by the difference in the proportion of

Nash equilibrium play in the last and firstτ rounds, i.e.,∆L(τ) = Lb(T − τ + 1, T ) − Lb(1, τ), where

0 < τ < T/2, andT is the total number of rounds.

7We thank anonymous referees for suggesting this separation and appropriate measures.
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Ideally, the speed of convergence should measure how quickly all players converge to equilibrium strate-

gies. However, in our experimental setting, we never observe perfect convergence. We therefore use a more

general definition for the speed of convergence.

DEFINITION 3 For a given level of convergence,L∗ ∈ (0, 1], the speed of convergence is measured by

the first round in which the level of convergence reachesL∗ and does not subsequently drop below this level,

i.e., τ such thatL(t) ≥ L∗ for any t ≥ τ . Alternatively, we measure the speed of convergence by the first

block in which the level of convergence reachesL∗ and does not subsequently drop below this level, i.e.,

τ1 ≤ τ2 such thatLb(t1, t2) ≥ L∗ for anyt1 ≥ τ1, t2 ≥ τ2 andt2 − t1 = (τ2 − τ1)n, wheren is a positive

integer.

We sometimes use the slope ofL(t) as a measure of the speed of convergence for computational ease.

We now relate the slope ofL(t) and the initial level of convergenceL(1) to the speed of convergence.

AssumingLy(t) is differentiable, wherey is a treatment, we establish the following observation.

OBSERVATION 1 If L1(1) ≥ L2(1) and dL1(t)/dt > dL2(t)/dt for all t ∈ [1, T ], then, given any

L∗ ∈ (0, 1], the first treatment converges more quickly than the second treatment, i.e.,τ1 < τ2.

Based on theories presented in Section 2, we now form our hypotheses about the level and speed of

convergence. While theories of strategic complementarities do not make any predictions about the speed of

convergence, we form our hypotheses based on previous experiments that incidentally address games with

strategic complementarities.

HYPOTHESIS 1 Whenα = 20, increasingβ from 0 to 20 significantly increases (a) the level and (b) the

speed of convergence.

Hypothesis 1 is based on the theoretical prediction that games with strategic complementarities converge to

the unique Nash equilibrium, as well as on previous experimental findings that supermodular games perform

robustly better than their non-supermodular counterparts.

HYPOTHESIS 2 Whenα = 20, increasingβ from 0 to 18 significantly increases (a) the level and (b) the

speed of convergence.

Hypothesis 2 is based on the findings of Falkinger et al. (2000), that average play is close to equilibrium

when the free parameter is slightly below the supermodular threshold.
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HYPOTHESIS 3 Whenα = 20, increasingβ from 18 to 20 significantly increases (a) the level and (b) the

speed of convergence.

Since we have not found any previous experimental studies which compare the performance of games with

strategic complementarities with those near the threshold, Hypothesis 3 is pure speculation.

HYPOTHESIS 4 Whenα = 20, increasingβ from 20 to 40 does not significantly increase either (a) the

level or (b) the speed of convergence.

Since we have not found any previous experimental studies within the class of games with strategic comple-

mentarities, Hypotheses 4 is again our speculation.

HYPOTHESIS 5 Whenβ = 0 or 20, increasingα from 10 to 20 significantly increases (a) the level and

(b) the speed of convergence.

HYPOTHESIS 6 Changingα from 10 to 20 significantly increases the improvement in (a) the level and

(b) the speed of convergence that results from increasingβ from 0 to 20.

Hypothesis 5 is based on experimental findings supporting the General Incentive Hypothesis. Hypothesis 6

is our speculation.

Hypotheses 1 to 6 are concerned with only one measure of performance, convergence to equilibrium.

Other measures, such as efficiency and budget balance, can be largely derived from convergence patterns.

Therefore, although we omit the formal hypotheses, we present results regarding these measures in Sections

5 and 6.

5 Experimental Results

In this section, we compare the performance of the mechanism as we varyα andβ. At the individual level,

we look at both the level and speed of convergence to subgame-perfect equilibrium and near-equilibrium in

each of the six different treatments. At the aggregate level, we examine the efficiency and budget imbalance

generated by each treatment. In the following discussion, we focus on prices rather than on quantity. Recall

that player 1’s best response in the production stage is uniquely determined byp2, and that player 1 has all

of the information needed to select this best response. In our experiment, deviations in the production stage

tend to be small (the average absolute deviation is less than one in 23 of 27 sessions) and does not differ
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significantly among treatments. Therefore, it is not surprising that, in all of our analyses, the results for

quantities largely mirror the results for player 2’s price.8

Recall that subgame perfect Nash equilibrium for a stage game is(p∗1, p∗2, X∗) = (16, 16, 32). Since the

strategy space in this experiment is rather large and the payoff function is relatively flat near equilibrium,

a small deviation from equilibrium is not very costly. For example, in theα20β20 treatment, a one-unit

unilateral deviation from equilibrium prices costs player 1 $0.005 and player 2 $0.014. Therefore, we check

the ε-equilibrium play by looking at the proportion of price announcements within±1 of the equilibrium

price, and the quantity announcement within±4 of the equilibrium quantity, since a one-unit price change

results in a four-unit best-response quantity change. Therefore, theε-equilibrium prediction is(ε-p∗1, ε-p∗2, ε-

x∗) = ({15, 16, 17}, {15, 16, 17}, {28, · · · , 32, · · · , 36}).

[Figure 1 about here.]

[Figure 2 about here.]

Figures 1 and 2 contain box and whiskers plots for the prices for each treatment for all 60 rounds by

players 1 and 2, respectively. The box represents the ranges of the 25th and 75th percentiles of prices, while

the whiskers extend to the minimum and maximum prices in each round. The horizontal line within each

box represents the median price. Compared with theβ = 0 treatments, equilibrium price convergence is

clearly more pronounced in the supermodular and near-supermodular treatments.

[Table 2 about here.]

To analyze the performance of the compensation mechanism, we first compare the convergence level

achieved in the last 20 rounds of each treatment. Table 2 reports the level of convergence (Lb(41, 60)) to

subgame-perfect Nash equilibrium (top two panels) andε-Nash equilibrium (bottom two panels) for each

session under each of the six different treatments, as well as the alternative hypotheses and the corresponding

p-values of one-tailed permutation tests9 under the null hypothesis that the convergence level in the two

treatments are the same. While the proportion ofε-equilibrium play is much higher than the proportion

8Tables are available from the authors upon request.
9The permutation test, also known as the Fisher randomization test, is a nonparametric version of a difference of two means

t-test. (See, e.g., Siegel and Castellan (1988), p.95-100.) The idea is simple and intuitive: by pooling all independent observations,

the p-value is the exact probability of observing a separation between the two treatments as the one observed when the pooled

observations are randomly divided into two equal-sized groups. This test uses all of the information in the sample, and thus has

100% power-efficiency. It is among the most powerful of all statistical tests.
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of equilibrium play, the results of the permutation tests largely follow similar patterns. We now formally

test our hypotheses regarding convergence level. Parts 1-3 of Result 1 present the effects of the degree of

strategic complementarity (β-effects). Parts 4 and 5 present effects due to changes inα (α-effects).

RESULT 1 (Level of Convergence in the Last 20 Rounds):

1. Whenα = 20, increasingβ from 0 to 18 and from0 to 20 significantly10 increases the level of

convergence inp∗1, p∗2 andε-p∗2.

2. Whenα = 20, increasingβ from18 to 20 does not change the level of convergence significantly.

3. Whenα = 20, increasingβ from20 to 40 does not change the level of convergence significantly.

4. Whenβ = 0, increasingα from10 to 20 weakly increases the level of convergence inp∗2, and signifi-

cantly increases the level of convergence inε-p∗2, but has no significant effects onp∗1 or ε-p∗1.

5. Whenβ = 20, increasingα from 10 to 20 weakly increases the level of convergence inp∗1, but not in

ε-p∗1, p∗2, or ε-p∗2.

SUPPORT: The last two columns of Table 2 report the corresponding alternative hypotheses and permuta-

tion test results.

By Part 1 of Result 1, we accept Hypotheses 1(a) and 2(a). Part 1 also confirms previous experimen-

tal findings that supermodular games perform significantly better than those far from the supermodular

threshold. Furthermore, near-supermodular games also perform significantly better than those far from the

threshold.

However, by Part 2, we reject Hypothesis 3(a). This is the first experimental result which shows that,

from a little below the supermodular threshold (β = 18) to the threshold (β = 20), improvement in con-

vergence level is statistically insignificant. In other words, we do not see a dramatic improvement at the

threshold. This implies that the performance of near-supermodular games, such as the Falkinger mecha-

nism, ought to be comparable to that of supermodular games.

By contrast, we accept Hypothesis 4(a) by Part 3. This is the first experimental result systematically

comparing convergence levels of supermodular games, where theory is silent. The convergence level does

not significantly improve asβ increases from the threshold, 20, to 40. Therefore, the marginal returns for

being “more supermodular” diminish once the payoffs become supermodular.

10When presenting results throughout the paper, we follow the convention that a significance level of 5% or less issignificant,

while a significance level between 5% and 10% isweakly significant.
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Proposition 2 predicts convergence under Cournot best reply for anyβ ≥ 0. However, there is a signifi-

cant difference in convergence level asβ increases from 0 to 18, 20 and beyond. We investigate in Section

6 whether this difference persists in the long run.

While Parts 1-3 present theβ-effects, Parts 4 and 5 examine theα-effects and we partially accept Hy-

pothesis 5(a). Recall from Equation (5) and subsequent discussions that, at the threshold of strategic com-

plementarityβ = 20, player 2’s Nash equilibrium strategy is also a dominant strategy. The finding of no

α-effect on player 2’s equilibrium play whenβ = 20 is consistent with this observation.

The above results highlight the convergence level achieved towards the end of the game. However,

these results do not indicate whether players have learned equilibrium strategies. Therefore, we now look

at the improvement in convergence over time as we change the parameters. Our measure,∆L(20) =

Lb(41, 60)− Lb(1, 20), is the difference in convergence level between the first and last twenty rounds.

[Table 3 about here.]

Table 3 reports the convergence-level change between the first and last 20 rounds,∆L(20), to subgame-

perfect Nash equilibrium (top two panels) andε-Nash equilibrium (bottom two panels) for each session

under each of the six different treatments, as well as the alternative hypotheses and the corresponding p-

values of one-tailed permutation tests. Comparing the permutation test results of Table 3 to those of Table

2, we notice that theβ-effects in Result 1 persist (although sometimes they are only weakly significant).

However, theα-effects disappear, as higherα weakly increases the level of convergence in the first 20

rounds as well.11

[Table 4 about here.]

To determine the effects of strategic complementarities and other factors on convergence level and speed,

we use logit models with clustering at the individual level. The results from these models are presented in

Table 4. The dependent variable isε-p∗1 in specifications (1) and (3), andε-p∗2 in specifications (2) and (4).

In specifications (1) and (2), the independent variables are: treatment dummies,Dy, wherey = α10β00,

α20β00, β18, α10β20 andβ40; ln(Round); and a constant. We omit the dummy forα20β20. Therefore, in

these two specifications, restricting learning speed to be the same across treatments, the estimated coefficient

of Dy captures the difference in the convergence level between treatmentsy andα20β20. We use dummies

for different values ofα andβ, rather than direct parameter values, to avoid assuming a linear relationship

11For example, the permutation test of the null hypothesis of equal proportion againstH1: α10β20<α20β20 yields a p-value

of 0.091.
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of parameter effects. Results from these specifications are largely consistent with Result 1 which uses a

more conservative test. The coefficients ofln(Round) are both positive and highly significant, indicating

that players learn to play equilibrium strategies over time. The concave functional form,ln(Round), which

yields a better log-likelihood than either the linear or quadratic functional form, indicates that learning is

rapid at the beginning and decreases over time. We will examine learning in more detail in Section 6.

In specifications (3) and (4), we useln(Round), interaction of each of the treatment dummies with

ln(Round), and a constant12 as dependent variables. The interaction term allows different slopes for dif-

ferent treatments. Compared with the coefficient ofln(Round), the coefficient for the interaction term,

Dy ln(Round), captures the slope differences between treatmenty andα20β20. By Observation 1, we use

the slope of each treatment as a measure for the convergence speed.

RESULT 2 (Speed of Convergence):

1. Whenα = 20, increasingβ from0 to 18 and from0 to 20 significantly increases the speed of conver-

gence inε-p∗1 andε-p∗2.

2. Whenα = 20, increasingβ from18 to 20 has no significant effect on convergence speed.

3. Whenα = 20, increasingβ from20 to 40 has no significant effect on convergence speed.

4. Whenβ = 0, increasingα from10 to 20 has no significant effects on convergence speed.

5. Whenβ = 20, increasingα from10 to 20 has no significant effects on convergence speed.

SUPPORT: Models (3) and (4) in Table 4 report analyses on convergence speed. For each independent

variable, the coefficients, standard errors (in parentheses) and significance levels are reported. The second

Wald test looks at whether the coefficient ofDα10β00 ln(Round) equals that ofDα20β00 ln(Round).

Part 1 of Result 2 supports Hypotheses 1(b) and 2(b), while by Part 2 we reject Hypothesis 3(b). Part 3

supports Hypothesis 4(b). Parts 4 and 5 reject Hypothesis 5(b). Result 2 provides the first empirical evidence

on the role of strategic complementarity and the speed of convergence.

Although Part 2 indicates that increasingβ from 18 to 20 does not significantly change convergence

speed, we now investigate whether there are any differences betweenβ18 and the supermodular treatments.

12This specification restricts the same intercept across all treatments, i.e., initial round proportion of equilibrium play is assumed

to be the same. When including treatment dummies, Wald tests on the hypothesis that the treatment dummy coefficients are all zero

yield p-values of 0.2703 forε-p∗1, and 0.3383 forε-p∗2.
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In particular we compareα20β18 with α20β20 andα20β40.13 In Result 1, we show that these treatments

achieve the same convergence level. Also, we cannot reject the hypothesis that round one prices for each

player are drawn for the same distribution for each treatment.14 As the treatments all start and converge to

similar levels of equilibrium play, we use a more flexible functional form to look for differences in speed.

[Table 5 about here.]

In Table 5, we report the results of logit regressions comparingα20β18 with the twoα20 supermodular

treatments. We use Round, ln(Round), and their interactions withα20β18 as independent variables to allow

different convergence speeds to the same level of convergence. In model (1), the dependent variable is player

1 ε-equilibrium play. There is no significant difference betweenα20β18 and theα20 supermodular treat-

ments. In model (2), the dependent variable is player 2ε-equilibrium play. There are significant differences

between the near-supermodular andα20 supermodular treatments. In early rounds, ln(Round) is large rela-

tive to Round. The negative and weakly significant coefficient onDα20β18ln(Round) implies a lower proba-

bility of early-round equilibrium play inα20β18 relative to the supermodular treatments. Theβ18 treatment

does catch up to these treatments, which is reflected in the positive and significant coefficient onDα20β18

interacted with Round. This result suggest a difference between supermodular and near-supermodular treat-

ments: while they achieve similar convergence levels, the supermodular treatments perform better in early

rounds and thus might reach certain convergence levels faster than their near-supermodular counterparts.

The previous discussion examines the separate effects of strategic complementarity (β-effects) andα (α-

effects) on convergence. However, varyingα allows us to test the importance of strategic complementarity

relative to other features of mechanism design. Having a full factorial design in the parametersα = 10, 20

andβ = 0, 20, we can study whetherα affects the role of strategic complementarity. In particular, asβ

increases from 0 to 20, we expect improvement in convergence level and speed. We study whether this

improvement changes whenα increases from 10 to 20.

The last two Wald tests in the bottom panel of Table 4 separately examine theα-effects on convergence

level and speed resulting from increasingβ from 0 to 20 (α-effects onβ-effects). Changingα from 10 to

20 does not significantly change either the level or speed of convergence. This is the first empirical result

examining the effects of other factors on the role of strategic complementarity.

So far, we have discussed the performance of the mechanism relative to equilibrium predictions and in-

dividual behavior. We now turn to group-level welfare results. Since the compensation mechanism balances

13We omit α10β20 from this analysis. First, it does not achieve the sameε-p∗1 convergence level as the other supermodular

treatments. Second, omitting it avoids the possibility of anα-effect.
14Kolmogorov-Smirnov test result tables are available by request.
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the budget only in equilibrium, total payoffs off the equilibrium path can be only weakly related to efficient

payoffs. Therefore, we use two separate measures to capture welfare implications, an efficiency measure

and a measure of budget imbalance.

We first define the per-round efficiency measure which includes neither the tax/subsidy nor the penalty

terms, i.e.,

e(t) =
rx(t)− c(x(t))− e(x(t))

rx∗ − c(x∗)− e(x∗)
,

wherex∗ is the efficient quantity. The efficiency achieved in a block,e(t1, t2), where0 ≤ t1 ≤ t2 ≤ 60, is

then defined as:

e(t1, t2) =
t2∑

t=t1

e(t)
t2 − t1 + 1

.

RESULT 3 (Efficiency in the Last 20 Rounds) :

1. Whenα = 20, increasingβ from 0 to 18 significantly improves efficiency, while increasingβ from 0

to 20 weakly improves efficiency.

2. Whenα = 20, increasingβ from18 to 20 has no significant effect on efficiency.

3. Whenα = 20, increasingβ from20 to 40 weakly improves efficiency.

4. Whenβ = 0, increasingα from10 to 20 weakly improves efficiency.

5. Whenβ = 20, increasingα from10 to 20 has no significant effect on efficiency.

[Table 6 about here.]

SUPPORT:Table 6 presents the efficiency measure for each session in each treatment in the last 20 rounds

(top panel) and the change in efficiency between the first and last 20 rounds (bottom panel), the alternative

hypotheses and the results of one-tailed permutation tests.

Result 3 is largely consistent with Result 1, indicating that supermodular and near-supermodular mecha-

nisms induce a significantly higher proportion of equilibrium play than mechanisms far from the supermod-

ular threshold. The new finding is that increasingβ from the threshold20 to 40 weakly improves efficiency.

We note that the efficiency change between the first and last 20 rounds is not significantly different across

treatments.

Second, the budget surplus at roundt is the sum of the penalty terms, plus tax, minus subsidy in that

round, i.e.,s(t) = (α + β)(p1(t) − p2(t))2 + p2(t)x(t) − p1(t)x(t). Examining the session-level budget

surplus across all rounds, we find the following results. First, 22 out of 27 sessions result in a budget
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surplus. This comes from a combination of our choice of parameters and the dynamics of play. Second,

the only significant difference across treatments is that budget surpluses underα20β18 andα20β20 are

significantly lower than those underα20β40 (p-values= 0.029 and0.024 respectively). This finding points

to a potential cost of driving up the punishment parameter,β. In other words, before the system equilibrates,

a high punishment parameter can worsen the budget imbalance problem inherent in the mechanism.

Overall, Results 1 through 3 suggest the following observations regarding games with strategic com-

plementarities. First, in terms of convergence level and speed, supermodular and near-supermodular games

perform significantly better than those far under the threshold. Second, while there is no significant differ-

ence between supermodular and near-supermodular games in terms of convergence level, early performance

differences may lead to supermodular treatments reaching lower convergence levels more quickly. Third,

beyond the threshold, increasingβ has no significant effect on either the level or the speed of convergence.

Last, For a givenβ, increasingα has partial effects on convergence level, but no significant effect on con-

vergence speed. To check the persistence of these experimental results in the long run, we use simulations

in Section 6.

6 Simulation Results: Continued Dynamics

Our experiment examines the relationship between strategic complementarity and convergence to equilib-

rium. Learning theory predicts long-run convergence. Figures 1 and 2 show that convergence continues to

improve in later rounds for several treatments, suggesting continued dynamics. Due to time, attention and

resource constraints, it was not feasible to run the experiment for much longer than 60 rounds. Therefore,

we rely on simulations to study continued convergence beyond 60 rounds.

To do so, we look for a learning algorithm which, when calibrated, closely approximates the observed

dynamic paths over 60 rounds. The large empirical literature on learning in games (see, e.g., Camerer (2003),

for a survey) suggests many models. Our interest here is not to compare the performance of various learning

models. We look for learning models that match two criteria. First, we require a model that performs well

in a variety of experimental games. Second, given that our experiment has complete information about the

payoff structure, the model needs to incorporate this information. In the following subsections, we first

introduce three learning models which meet our criteria. We then look at how well the learning models

predict the experimental data by calibrating each algorithm on a subset of the experimental data, and then

validating the models on a hold-out sample. We then report the forecasting results using one of the calibrated

algorithms.
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6.1 Three Learning Models

The models we examine are stochastic fictitious play with discounting (hereafter shortened assFP) (Cheung

and Friedman (1997) and Fudenberg and Levine (1998)), functional EWA (fEWA ) (Ho, Camerer and Chong

2001) and the payoff assessment learning model (PA) (Sarin and Vahid 1999). We now give a brief overview

of each model. Interested readers are referred to the originals for complete descriptions.

The particular version of sFP that we use is logistic fictitious play (see, e.g., Fudenberg and Levine

(1998) p.199). A player predicts the her match’s price in the next round,p−i(t + 1) according to,

p−i(t + 1) =
p−i(t) +

∑t−1
τ=1 rτp−i(t− τ)

1 +
∑t−1

τ=1 rτ
, (6)

for some discount factor,r ∈ [0, 1]. Noter = 0 corresponds to theCournot best replyassessment,p−i(t +

1) = p−i(t). Whenr = 1, it yields the standardfictitious playassessment. The usualadaptive learning

modelassumes0 < r < 1. All observations influence the expected state but more recent observations have

greater weight.

As opposed to standard fictitious play, stochastic fictitious play allows decision randomization and thus

better captures the human learning process. Omitting time subscripts, the probability that a player announces

pricepi is given by:

Prob(pi|p−i) =
exp(λπ(pi, p−i))∑40

j=0 exp(λπ(pj , p−j))
. (7)

Given a predicted price, a player is thus more likely to play strategies that yield higher payoffs. How much

more likely is determined byλ, the sensitivity parameter. Asλ increases, the probability of a best response

to p−i increases.

The second model we consider, fEWA, is a one-parameter variant of the experience weighted attrac-

tion model (EWA, Camerer and Ho (1999)). In this model, strategy probabilities are determined by logit

probabilities similar to Equation (7) with actual payoffs (π(pi, p−i)) replaced by strategyattraction. In both

variants, strategy attraction,Aj
i (t), and an experience weight,N(t), are updated after every period. The

experience weight is updated according toN(t) = φ(1−κ) ·N(t− 1)+1, whereφ is the change-detection

parameter andκ controls exploration (lowκ) versus exploitation. Attractions are updated according to the

following rule:

Aj
i (t) =

φN(t− 1)Aj
i (t− 1) + [δ + (1− δ)I(pj

i , pi(t))]πi(pj , p−i(t))
N(t)

, (8)

where the indicator functionI(pj
i , pi(t)) equals one ifpj

i = pi(t) and zero otherwise, andδ ∈ [0, 1] is the

imagination weight. In EWA, all parameters are estimated, whereas in fEWA these parameters (except for
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λ) are endogenously determined by the following functions. The change-detector function,φi(t), is given

by:

φi(t)=1− .5




m−i∑

j=1

[
I(pj

−i, p−i(t))
1

−
∑t

τ=1 I(pj
−i, p−i(t))
t

]2

 . (9)

This function will be close to 1 when recent history resembles previous history. The imagination weightδi(t)

equalsφi(t), while κ equals the Gini coefficient of previous choice frequencies. EWA models encompass a

variety of familiar learning models: cumulative reinforcement learning (δ = 0, κ = 1, N(0) = 1), weighted

reinforcement learning (δ = 0, κ = 0, N(0) = 1), weighted fictitious play (δ = 1, κ = 0), standard

fictitious play (δ = φ = 1, κ = 0), and Cournot best reply (φ = κ = 1, δ = 1).

Finally, we introduce the main components of the PA model. For simplicity, we omit all subscripts which

represent playeri, and letπj(t) represent the actual payoff of strategyj in roundt. Since the game has a

large strategy space, we incorporate similarity functions into the model to represent agent use of strategy

similarity. As strategies in this game are naturally ordered by their labels, we use the Bartlett similarity

function,fjk(h, t), to denote the similarity between the played strategy,k, and an unplayed strategy,j, at

periodt:

fjk(h, t) =





1− |j − k|/h if |j − k| < h,

0 otherwise.

In this function, the parameterh determines theh−1 unplayed strategies on either side of the played strategy

to be updated. Whenh = 1, fjk(1, t) degenerates into an indicator function equal to one if strategyj is

chosen in roundt and zero otherwise.

The PA model assumes that a player is a myopic subjective maximizer. That is, she chooses strategies

based on assessed payoffs, and does not explicitly take into account the likelihood of alternate states. Let

uj(t) denote the subjective assessment of strategypj at timet, andr the discount factor. Payoff assessments

are updated through a weighted average of his previous assessments and the payoff he actually obtains at

time t. If strategyk is chosen at timet, then:

uj(t + 1) = (1− rfjk(h, t))uj(t) + rfjk(h, t)πk(t),∀j. (10)

Each period, the assessed strategy payoffs are subject to zero-mean, symmetrically distributed shocks,

zj(t). The decision maker chooses on the basis of his shock-distorted subjective assessments,ũj(t) =

uj(t) + zj(t). At time t he chooses strategypk if:

ũk(t)− ũj(t) > 0, ∀pj 6= pk. (11)
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Note that mood shocks affect only his choices and not the manner in which assessments are updated.

6.2 Calibration

Literature assessing the performance of learning models contains two approaches to calibration and valida-

tion. The first approach calibrates the model on the firstt rounds and validates on the remaining rounds. The

second approach uses half of the sessions in each treatment to calibrate and the other half to validate. We

choose the latter approach for two reasons. First, this approach is feasible as we have multiple independent

sessions for each treatment. Second, we need not assume that the parameters of later rounds are the same

as those in earlier rounds. We thus calibrate the parameters of each model in blocks of 15 rounds using the

experimental data from the first two sessions of each treatment. We then evaluate each model by measuring

how well the parameterized model predicts play in the remaining two or three sessions.

For parameter estimation, we conduct Monte Carlo simulations designed to replicate the characteristics

of the experimental settings. In all calibrations, we exclude the last two rounds (59 and 60) to avoid any end-

of-game effects. We then compare the simulated paths with the experimental data to find those parameters

which minimize the mean-squared deviation (MSD) scores. Since the final outcome distributions of our data

are unimodal, the simulated mean is an informative statistic and is well captured by MSD (Haruvy and Stahl

2000). In all simulations, we use thek-period-ahead rather than the one-period-ahead approach15 because we

are interested in forecasting the long-run mechanism performance. In doing so, we choosek = 10, 15, 20, 30

and58. We look at blocks of 10, 15, 20 and 30 rounds because as players gain information and experience,

information use may change over time. We usek = 15 rather than the other values because it best captures

the actual dynamics in the experimental data.

Each simulation consists of 1,500 games (18,000 players) and the following steps:

1. Simulated players are randomly matched into pairs at the beginning of each round.

2. Simulated players select price announcements.

(a) Initial round: Based on Kolmogorov-Smirnov tests on the actual round-one price distribution,

we reject the null hypotheses of uniform distribution (d = 0.250, p-value = 0.000) and normal

distribution (d = 0.381, p-value = 0.000). We thus follow the convention (e.g., Ho et al. (2001))

and use the actual first-round empirical distribution of choices to generate the first round choices.

[Figure 3 about here.]

15Erev and Haruvy (2000) discuss the tradeoffs of the two approaches.
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Figure 3 presents the actual first round empirical distribution of choices for players 1 and 2,

respectively.

(b) Subsequent rounds: Simulated player strategies are determined via Equation (7) for sFP and

fEWA, and (11) for PA.

3. Simulated player 1’s quantity choice is based on the following steps:

(a) Determine each player 1’s best response top2.

(b) Determine whether player 1 will deviate from the best response via the actual probability of

errors for each block.

(c) If yes, deviate via the actual mean and standard deviation for the block. Otherwise, play the best

response.

4. Payoffs are determined by the payoff function of the compensation mechanism, Equation (1), for each

treatment.

5. Assessments are updated according to Equation (8) for fEWA and (10) for PA.

6. Proceed to the next round.

The discount factor,r ∈ [0, 1], is searched at a grid size of 0.1. The parameterλ is searched at a grid

size of 0.1 in the interval[1.5, 10.5] for fEWA, and [1.5, 25.0] for sFP. The size of the similarity window,

h ∈ [1, 10], is searched at a grid size of 1. Mood shocks,z, are drawn from a uniform distribution16 on an

interval[−a, a], wherea is searched on[0, 500] with a step size of 50. For all parameters, intervals and grid

sizes are determined by payoff magnitude.

[Table 7 about here.]

Table 7 reports the calibrated parameters (discount factor, sensitivity parameter, mood shock interval

and similarity window size) for the first two sessions of each treatment in 15-round blocks.17 Estimated

parameters for the supermodular and near-supermodular treatments are consistent with the increased level

of convergence over time, while theβ00 treatments are not. The second column (sFP) reports the best-fit

16Chen and Khoroshilov (2003) compare three versions of PA models where shocks were drawn from uniform, logistic and

double exponential distributions on two sets of experimental data and find that the performance of the three versions of PA were

statistically indistinguishable.
17We also calibrate all parameters for the entire 60 rounds, but do not report results due to space limitations.
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parameters for the stochastic fictitious play model. With the exception of treatmentα20β00, the discount

factor is close to 1.0, indicating that players keep track of all past play when forming beliefs about opponent’s

next move.18 Given these beliefs, the increasing sensitivity parameter,λ, for all treatments exceptα10β00

indicates that the likelihood of best response increases over time. The third column reports calibration

results for the fEWA model. Again, with the exception of treatmentα10β00, the parameterλ increases

over time. The final column reports calibration of parameters in the PA model. For each treatment except

α10β00, a middle block has the highest discount factor, indicating more weight on new information about

a strategy’s performance. The second parameter in the PA model represents the upper bound of the interval

from which shocks are drawn,a. Experimentation should decrease in the final rounds. Indeed, for all

treatments, the estimated mood-shock ranges (weakly) decrease from the third to the last block. Finally, the

decreasing similarity windows from the third to final block indicate decreasing strategy spill-over. Relatively

large discount factors in the third block, combined with relatively large similarity windows, flatten the

payoff assessments around the most recently played strategies, consistent with the local experimentation (or

relatively stabilized play) observed in the data.

6.3 Validation

Using the parameters calibrated on the first two sessions of each treatment, we next compare the performance

of the three learning models in predicting play in the hold-out sample. For comparison, we also present the

performance of two static models. Therandom choice modelassumes that each player randomly chooses

any strategy with equal probability for all rounds. This model only incorporates number of strategies, and

thus provides a minimum standard for a dynamic learning model. Theequilibrium model assumes that each

player plays the subgame perfect Nash equilibrium every round. This model conveys the same information

as the proportion of equilibrium play presented in Section 5, but with a different metric (MSD).

[Table 8 about here.]

Table 8 presents each model’s MSD scores for each hold-out session. Recall that two of each treatment’s

four or five independent sessions are used for calibration, and the rest for validation. The results indicate

that all three learning models perform significantly better than the random choice model (p-value< 0.01,

one-sided permutation tests) and, by a larger margin, significantly better than the equilibrium model (p-value

< 0.01, one-sided permutation tests). While the equilibrium model does a poor job of explaining overall ex-

18As the discount factor is zero in Cournot best reply, we can reject this model based on our estimation of the discount factors.
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perimental data, its performance improvement over time19 justifies the use of learning models to explain the

dynamics of play. Within each of the top three panels (i.e., learning models), session-level MSD scores are

lower for the supermodular and near-supermodular treatments, indicating that each learning model does a

better job explaining behavior in those treatments. Indeed, in the empirical learning literature learning mod-

els fit better in experiments with better equilibrium convergence (see, e.g., Chen and Khoroshilov (2003)).

RESULT 4 (Comparison of Learning Models) The performance of PA is weakly better than that of fEWA

and strictly better than that of sFP. The performances of fEWA and sFP are not significantly different.

SUPPORT:Table 8 reports the MSD scores for each independent session in the hold-out sample under each

model. The Wilcoxon signed-ranks tests show that the MSD scores under PA are weakly lower than those

under fEWA (z = −0.085, p-value= 0.068), and strictly lower than those under sFP (z = −0.028, p-value

= 0.023). Using the same test, we cannot reject the hypothesis that fEWA and sFP yield the same MSD

scores (z = 0.662, p-value= 0.508).

Although the the performance of PA is only weakly better than that of fEWA, the overall MSD scores

for PA are lower than those for fEWA for every treatment. Therefore, we use PA for forecasting beyond 60

rounds.

[Figure 4 about here.]

Figure 4 presents the simulated path of the calibrated PA model and compares it with the actual data in

the hold-out sample by superimposing the simulated mean (black line) plus and minus one standard deviation

(grey lines) on the actual mean (black box) and standard deviation (error bars). The simulation does a good

job of tracking both the mean and the standard deviation of the actual data. However, in treatmentsα10β00

andα20β40, the reduction in variance lags that seen in the middle rounds of the experiment.

6.4 Forecasting

We now report the results from the PA model. As the strategic complementarity predictions concern long-

run performance, we use the calibrated parameters for the first 58 rounds to simulate play in later rounds.

This exercise allows us to study convergence and efficiency in long but finite horizons.

In all forecasting exercises we base all post-58 round parameters on those from the last block (calibrated

from rounds 46–58). Since we do not know how these parameters might change beyond 60 rounds, we use

19We omit the table to show the performance of the equilibrium model in blocks of 15 rounds, as the information is repetitive

with Figures 1 and 2.
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three different specifications. First, we retain all final-block parameters. Second, we exponentially decay in

subsequent blocks the probability of deviation from the best response in the production stage.20 Third, we

exponentially decay the shock interval in subsequent blocks. As all three specifications yield qualitatively

similar results, we report results from only the third specification due to space limitations.21 In presenting

the results, we use the shorthand notationx > y to denote a measure under treatmentx is significantly

higher than that under treatmenty at the 5% level or less, andx ∼ y to denote that the measures are not

significantly different at the 5% level.

[Figure 5 about here.]

The top and bottom rows of Figure 5 report the simulated and actual proportion ofε-equilibrium play,

respectively. We report only the results for the first 500 rounds since the dynamics do not change much

thereafter. In our simulation, all treatments reach higher convergence levels than those achieved in the 60

rounds of the experiment. Since the simulated variance reduction lags that of the experiment, round 60 re-

sults are not achieved until approximately 90 rounds of simulation. We further note that these improvements

slow down after 200 rounds. The proportion ofε-equilibrium play is bounded by 72% for player 1 and 93%

for player 2. We now outline the simulation results.

RESULT 5 (Level of Convergence in Round 500): In the simulated data for player 1, at round 500, we

have the following level of convergence ranking in:

1. p∗1: α20β18 ∼ α20β40 > α20β20 > α10β20 > α20β00 > α10β00,

2. ε-p∗1: α20β18 > α20β40 > α20β20 > α10β20 > α20β00 > α10β00,

3. p∗2: α20β40 > α20β18 ∼ α10β20 > α20β20 > α20β00 > α10β00, and

4. ε-p∗2: α20β40 > α20β18 > α10β20 > α20β20 > α20β00 > α10β00.

[Table 9 about here.]

20In block k > 4, we use the probability of deviation,Probk = min{ Prob4
(k−4)2

, 10−8}. We set a lower bound of10−8 to avoid

the division by zero problem.
21Different sequences of random numbers produce slightly different parameters estimates. While the convergence level of a

given treatment for a given set of parameter estimates is not affected by the sequence of random numbers, this convergence level

is somewhat sensitive to the exact parameter calibration. We therefore conduct four different calibrations for each treatment, and

select the parameters which yield the highest level. The relative rankings of treatments are quite robust with respect to which ordinal

selected.
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SUPPORT:The fourth and seventh columns of Table 9 report p-values for t-tests of the preceding alternative

hypotheses for players 1 and 2 respectively.

Comparing Results 1 and 5, we first note that the four supermodular and near-supermodular treatments

continue to dominate theβ00 treatments. In fact, the simulations suggest that the gap remains constant

compared withα20β00, and actually increases compared withα10β00. Unlike Result 1, however, the four

dominant treatments differ. In particular,α20β18 performs better in terms of player 1’s convergence, and

α20β40 in terms of player 2’s , although the differences within the top four treatments are smaller than the

differences between these four and theβ00 treatments. In addition, an increase inα significantly improves

convergence by a large margin (40-80%) for both players whenβ = 0.

It is instructive to compare these results with those concerning the speed of convergence in our experi-

mental treatments. In terms of convergence toε-p2, our regression results (Table 5) indicate thatα20β18’s

performance in later rounds enables it to achieve the same convergence level as the supermodular treatments.

This trend continues in our simulations, asα20β18 performs robustly well compared to the supermodular

treatments. Likewise, in our analysis of the experimental results, the convergence speed ofα20β40 was

not significantly different than those of the other dominant treatments. However, in our simulations, this

treatment dominates all treatments in player 2 equilibrium play.

In our simulations, the convergence improvement due to increasingβ from 0 to 20 does depend onα

(α-effect onβ-effect). An increase inα significantly decreases the improvement in convergence level (all

p-values for one-sided t-tests are less than0.01). Due to the relatively poor performance ofα10β00 in our

simulations, increasingα from 10 to 20 whenβ = 0 improves convergence more dramatically in round 500

than in rounds 40-60. In the long run, an increase inα is a partial substitute for an increase inβ.

[Table 10 about here.]

We now use Definition 3 to examine the convergence speed in the long run. Table 10 presents results

for the first time a treatment reaches the level of convergence,L∗. We omit the twoβ00 treatments since

they do not converge to the same levels as the other treatments. In terms of player 1,α20β18 achieves the

fastest convergence for all levelsL∗. However, the picture for player 2 convergence is more subtle. First,

for theβ20 andβ18 treatments, the speeds of convergence to allL∗ are remarkably similar. Whileα20β40

lags the other treatments in terms of achieving 80%ε-equilibrium play for player 2, it is the only treatment

to achieveL∗ = 90%.

Apart from convergence to equilibrium, it is also important to look at long-run welfare properties. We

evaluate mechanism performance using the measures presented in Section 5.
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[Figure 6 about here.]

Figure 6 summarizes the short-run and long-run efficiency achieved by each of the treatments. The top

panel reports simulated results, while the bottom row reports the actual data. In the long run, supermodular

and near-supermodular treatments continue to differ from theβ00 treatments, withα20 superior toα10 in

theβ00 treatments. We now present our efficiency results.

RESULT 6 (Efficiency in Round 500) :

1. In the simulated data, the following relative efficiency ranking of the treatments in round 500 is sig-

nificant:

α20β40 > α20β18 > α10β20 > α20β20 > α20β00 > α10β00.

2. At round 500, efficiency of treatmentα10β00 is approximately 78%, that ofα20β00 approaches 93%,

while that of other four treatments is over 98%.

[Table 11 about here.]

SUPPORT:Table 11 reports results of t-tests comparing efficiency in different treatments.

Efficiency is determined solely by the quantity produced, which in turn is a function ofp2. Therefore,

efficiency rankings match those forp2-convergence (Result 5). Another interesting welfare result is the

overall budget balance. After 500 rounds, the magnitude of budget imbalance is significantly closer to zero

for all treatments except forα10β00. In fact, decreasingα from 20 to 10 significantly increases the deficit

for bothβ00 andβ20. Finally, α20β40 is the only treatment that has an overall budget surplus after 500

rounds, although this surplus is approaching zero.

7 Interpretation and Discussion

The underlying force for convergence in games with strategic complementarities is the combination of the

slope of the best-response functions and adaptive learning by players. In the compensation mechanisms,

the slope of player 2’s best response function is determined byβ. As α and β determine the penalty

for mismatched prices, we seriously consider the possibility that convergence in supermodular and near-

supermodular treatments to an equilibrium where both players announce the same price is not due to strate-

gic complementarities, but rather is due to increases inα andβ making the penalty terms more prominent

and matching strategies more focal.22 We thus have two hypotheses to explain the observed improvement

22We thank an anonymous referee and the co-editor for pointing this out.
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in convergence to equilibrium play in supermodular and near-supermodular treatments: a best-response

hypothesis and a matching hypothesis. In this section, we present evidence that the improvement in conver-

gence is due to payoff-relevant changes to best responses and not due to matching becoming more focal.

While the focal point hypothesis suggests that players converge to a match, it does not specify the price

at which they match. In the first round of our experiments (Figure 3), almost50% of all prices were 20, and

less than 10% were in theε-equilibrium range of[15, 17]. In the final rounds of our experiments, play in the

four supermodular or near-supermodular treatments converges strongly to this range, suggesting more than

simple matching.

By Equation (4), player 1’s best response is always to match regardless ofp2. By the General Incentive

Hypothesis, we expect more matching behavior by player 1 asα increases. However, by Equation (5),

matching is a best response for player 2 only in equilibrium. Therefore, player 2 data can help us separate

the best-response and matching hypotheses.

We first investigate which model better explains our experimental data. We operationalize the the best

response hypothesis by the stochastic fictitious play model of Section 6 and the matching hypothesis with

a stochastic matching model.23 In both models, the predicted player 1 price is specified by Equation (6).

In the matching model, player 2 plays this price with probability1 − ε, and one of the other 40 prices with

probability ε/40. We estimateε using the first two sessions of each treatment.24 We then compare the

performance of the matching model with the sFP model using the hold-out sample. Using the Wilcoxon

signed-rank tests to compare the MSD scores in the hold-out sample, we conclude that sFP explains player

2’s behavior significantly better than the matching model (p-value = 0.006). We conclude that best response

to a predicted price explains behavior significantly better than the matching model.

We next investigate whether differences in the cost of matching, defined as the difference between match-

ing and best-response profits, can explain all of the differences in matching behavior among treatments, or

whether there exists additional matching behavior that cannot be explained by payoff-relevant factors.

We examine the probability that player 2 tries to match the anticipated player 1 price. We do not know

what price player 2 anticipates. To estimate how players weigh history, we calibrate a matching model in a

manner similar to that outlined in Section 6.2. We assume a player matches the price he anticipates, given

by Equation (6), and we find the discount rate for each treatment that minimizes MSD.25 This gives us the

23We do not report the results of the deterministic matching model as it performs significantly worse than its stochastic counter-

part.
24Estimated ε in each block are as follows:α10β00 = {1.0, .7, .6, .8}; α20β00 = {.7, .6, .5, .4}; α20β18 =

{.7, .2, .3, .3}; α10β20 = {.5, .3, .3, .2}; α20β20 = {.1, 0, 0, 0}; α20β40 = {.2, 0, 0, .1}.
25In all treatments, the calibrated discount rate isr = 0.1.
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anticipated price that best explains the matching hypothesis. Using this discount rate, we calculate, for each

t > 1, an anticipated player 1 price,p̄1, for each player 2. We also calculate the opportunity cost of matching

p̄1, equal to the difference between best-response and matching profits. This opportunity cost captures the

payoff relevant effects ofβ and also depends on the price to be matched.

We next regress the probability that player 2 matches the anticipated price, Prob(p2 = p̄1), onln(Round),

treatment dummies, and treatment dummies interacted withln(Round). In one specification, we include

the cost of matching as a regressor. If parameter changes make matching more focal, then changes in the

cost of matching will not explain all of the changes in probability of matching.

[Table 12 about here.]

Table 12 presents the results of two random-effects probit models. In the first specification, we do not

include the cost of matching as a regressor. In this specification, the coefficient forβ = 0 is negative and

significant; thus reducingβ from 20 to 0 decreases the probability that player 2 will try to match player

1’s price. Including the cost of matching in the regression, however, we find that neither the dummies nor

their interactions are significant, while the coeffecient on the cost of matching is significant and negative.

This finding suggests that the rise in matching that occurs when we increaseβ from 0 to 20 is not because

matching is more focal, but rather because an increase ofβ decreases the cost of matching.26

8 Concluding Remarks

The appeal of games with strategic complementarities is simple: as long as players are adaptive learners, the

game will, in the limit, converge to the set bounded by the largest and smallest Nash equilibria. This conver-

gence depends on neither initial conditions nor the assumption of a particular learning model. Unfortunately,

while many competitive environments are supermodular,27 many are not. In this study, we examine whether

there are non-supermodular games which have the same convergence properties as supermodular ones. We

also study whether there exists a clear convergence ranking among games with strategic complementarities.

Our results confirm the findings of previous experimental studies that supermodular games perform

significantly better than games far below the supermodular threshold. However, from a little below the

threshold to the threshold, the change in convergence level is statistically insignificant. This results suggests

26We consider other specifications of anticipated price, including the averages of the last 1, 2, 3 and 4 prices seen. In only one

specification was a dummy or its interaction withln(Round) significant. In that specification, the coefficientβ = 18 is positive,

and its interaction withln(Round) is negative, a finding which is not consistent with a focal point hypothesis.
27Milgrom and Roberts (1990) and Topkis (1998) both present numerous examples of games with strategic complementarities.
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that in the context of mechanism design, the designer need not be overly concerned with setting parameters

that are firmly above the supermodular threshold—close is just as good. It also enlarges the set of robustly

stable games. For example, the Falkinger mechanism (Falkinger 1996) is not supermodular, but close. This

results suggest that near-supermodular games perform like supermodular ones.

Our next result concerns convergence performance within the class of games with strategic complemen-

tarities. Variations in the degree of complementarities have no significant effect on performance within the

60 experimental rounds. However, our simulations suggest an increased degree of strategic complementari-

ties leads to improved convergence in the long run.

Finally the generalized compensation mechanism we use to study convergence issues has a parameter

unrelated to the degree of complementarities. We use this parameter to study the effects factors not related

to strategic complementarities on the performance of supermodular games. For a given level of strategic

complementarity, the factors have partial effects on convergence level and speed, but the effects of strategic

complementarities are largely robust to variations in these other factors. In the long run, these effects persist,

and we find evidence that strengthening the strategic complementarities in one player’s strategy can partially

substitute for the lack of strategic complementarities in the other’s.

A word of caution is in order. In a single experimental setting, it is infeasible to study a large number

of games in a wide range of complex environments. While this is the first systematic experimental study of

the role of strategic complementarities in equilibrium convergence, the applicability of our results to other

games needs to be verified in future experiments. In the only other study of this kind, Arifovic and Ledyard

(2001) study similar questions using the Groves-Ledyard mechanism. Their results are encouraging, as their

results are consistent with ours.
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Appendix A. Proof of Proposition 2

Proof of Proposition 2:We omit the proofs of Parts 1, 2 and 4, as they follow directly from the previous

analysis and Proposition 1. We now present the proof for Part 3. If players follow Cournot best reply

dynamics, we can rewrite Equations (4) and (5) as

p1(t + 1) = p2(t);

p2(t + 1) = mp1(t) + n,

wherem = β− 1
4c

β+ e
4c2

andn =
er
4c2

β+ e
4c2

. This is equivalent to

p1(t + 1)− p1(t) = p2(t)− p1(t);

p2(t + 1)− p2(t) = mp1(t)− p2(t) + n.

The analogous differential equation system is

ṗ1 = p2 − p1;

ṗ2 = mp1 − p2 + n. (12)

We now use the Lyapunov second method to show that system (12) is globally asymptotically stable. Define

V (p1, p2) ≡ (p1 − p2)2

2
+

∫ p1

p0

(p−mp− n)dp,

wherep0 ≥ 0 is a constant. We now show thatV (p1, p2) is the Lyapunov function of system (12).

DefineG(p1) ≡
∫ p1
p0

(p−mp− n)dp. We get

G(p1) =
1
2
(1−m)p2

1 − np1 − 1
2
(1−m)p2

0 + np0.

As c > 0 ande > 0, for anyβ ≥ 0, we always havem < 1. Therefore, the functionG(p1) has a global

minimum, which is characterized by the following first order condition:

dG(p1)
dp1

= (1−m)p1 − n = 0.

Therefore,p1 = n
1−m = er

e+c ≡ p∗ is the global minimum. Whenp1 = p2 = p∗, (p1−p2)2

2 also reaches its

global minimum. Therefore,V (p1, p2) is at its global minimum whenp1 = p2 = p∗.

Next we show thaṫV ≤ 0.

V̇ =
∂V

∂p1
ṗ1 +

∂V

∂p2
ṗ2

= (p1 − p2 + (1−m)p1 − n)(p2 − p1) + (p2 − p1)(mp1 − p2 + n)

= (p2 − p1)(2p1 − 2p2)

= −2(p1 − p2)2 ≤ 0
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Let B be an open ball about(p∗1, p∗2) in the plane. For all(p1, p2) 6= (p∗1, p∗2), V̇ < 0. Therefore,(p∗1, p∗2) is

an globally asymptotically stable equilibrium of (12).

Appendix B. Experiment Instructions

Instructions for theα20β20 treatment is attached. Instructions for other treatments are identical except

for the parameters involvingα andβ.

Experiment Instructions – Mechanism A20 B20

Introduction

• You are about to participate in a decision process in which one of numerous alternatives is selected

in each of 60 rounds. This is part of a study intended to provide insight into certain features of

decision processes. If you follow the instructions carefully and make good decisions you may earn a

considerable amount of money. You will be paid in cash at the end of the experiment.

• During the experiment, we ask that you please do not talk to each other.If you have a question, please

raise your hand and an experimenter will assist you.

Procedure

• You will be randomly assigned to one of two groups: the Blue group or the Red Group. There will be

6 players in each group. You will stay in the same group for the entire experiment.

• In each of 60 rounds, you will be randomly matched with a player from the other group. You will not

know the identity of your Match. Your payoff each round depends only on the decisions made by you

and your Match.

• In each of 60 rounds, Red will produce a quantity,Q. Red gets a revenue of240 ·Q + 250 and pays

the production cost of54 ·Q2. Red’s production imposes a loss of5
2 ·Q2 on Blue.

• In order to compensate Blue’s loss, prior to production, Blue and Red simultaneously announce a

price,PBlue andPRed, respectively. Red will pay a tax of10 · PBlue ·Q. Blue will receive a compen-

sation of10 · PRed ·Q. Note that Blue’s announcement,PBlue, determines Red’s tax rate; and Red’s

announcement,PRed, determines Blue’s compensation rate.

• If PBlue andPRed are not the same, each will pay a penalty proportional to(PBlue − PRed)2.
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• Each round consists of two stages: the Announcement Stage and the Production Stage.

– Announcement Stage: Blue selectsPBlue, an integer between 0 and 40. At the same time, Red

selectsPRed, also an integer between 0 and 40.

– Production Stage: Red then selects the quantity for that period,Q, an integer between 0 and 50.

This quantity is affected byPBlue. When Red choosesQ, Red’s terminal will display a payoff

table listing Red’s payoff for eachQ.

Payoffs

• Per Round Payoffs: Red

PayoffRed = 240 ·Q + 250︸ ︷︷ ︸ −
5
4
·Q2

︸ ︷︷ ︸
− 10 · PBlue ·Q︸ ︷︷ ︸ − 20 · (PBlue − PRed)2︸ ︷︷ ︸

Revenue Production Cost Tax Penalty

Revenue: Red receives 240 points for each unit Red produces plus 250 points.

Production Cost: This term represents the cost of producing Q units.

Tax: Red pays a tax to compensate Blue. The tax rate,PBlue, is announced by Blue.

Penalty: Red is penalized for any difference betweenPBlue andPRed.

• Per Round Payoffs: Blue

PayoffBlue = 10 · PRed ·Q︸ ︷︷ ︸ − 5
2
·Q2

︸ ︷︷ ︸
− 20 · (PBlue − PRed)2︸ ︷︷ ︸

Compensation Loss Penalty

Compensation: Blue receives a compensation. The compensation rate,PRed, is announced by Red.

Loss: This term represents Blue’s loss due to Red’s production.

Penalty: Blue is penalized for any difference betweenPBlue andPRed.

• There will be 60 rounds. There will be no practice rounds. From the first round, you will be paid for

each decision you make.

• Your total payoff is the sum of your payoffs in all rounds.

• The exchange rate is $1 for points.
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Information At the end of eachround, you are informed of your result of the round:

• Your Price

• The Price of your Match for that round

• The Quantity selected that round

• Your Payoff

We encourage you to earn as much cash as you can. Are there any questions?

39



Parameters and Treatments Properties Equilibrium

α

10 20 Supermodular (p∗1, p∗2, X∗)

α10β00 α20β00

0 (4 sessions) (5 sessions)

α20β18

β 18 (4 sessions) No (16, 16, 32)

α10β20 α20β20

20 (5 sessions) (5 sessions)

α20β40

40 (4 sessions) Yes (16, 16, 32)

Table 1: Features of Experimental Sessions
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Proportion of Nash Price 1 (p∗1) Permutation Tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

α10β00 0.000 0.008 0.158 0.008 0.044 α10β00<α20β00 0.397

α20β00 0.000 0.083 0.083 0.042 0.058 0.053α20β00<α20β20 0.008∗∗∗

α20β18 0.125 0.117 0.100 0.192 0.133 α20β00<α20β18 0.008∗∗∗

α10β20 0.242 0.067 0.067 0.067 0.208 0.130α10β20<α20β20 0.064∗

α20β20 0.325 0.267 0.208 0.058 0.367 0.245α20β18<α20β20 0.064∗

α20β40 0.175 0.400 0.158 0.133 0.217 α20β20<α20β40 0.643

Proportion of Nash Price 2 (p∗2) Permutation Tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

α10β00 0.025 0.042 0.025 0.067 0.040 α10β00<α20β00 0.056∗

α20β00 0.067 0.083 0.033 0.075 0.050 0.062α20β00<α20β20 0.032∗∗

α20β18 0.133 0.292 0.108 0.258 0.198 α20β00<α20β18 0.008∗∗∗

α10β20 0.392 0.108 0.175 0.067 0.667 0.282α10β20<α20β20 0.504

α20β20 0.308 0.117 0.483 0.017 0.450 0.275α20β18<α20β20 0.238

α20β40 0.325 0.492 0.233 0.233 0.321 α20β20<α20β40 0.365

Proportion ofε-Nash Price 1 (ε-p∗1) Permutation Tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

α10β00 0.108 0.200 0.350 0.158 0.204 α10β00<α20β00 0.183

α20β00 0.067 0.458 0.358 0.183 0.425 0.298α20β00<α20β20 0.087∗

α20β18 0.317 0.625 0.300 0.583 0.456 α20β00<α20β18 0.103

α10β20 0.475 0.200 0.300 0.375 0.492 0.368α10β20<α20β20 0.194

α20β20 0.450 0.558 0.475 0.133 0.775 0.478α20β18<α20β20 0.444

α20β40 0.458 0.492 0.375 0.442 0.442 α20β20<α20β40 0.643

Proportion ofε-Nash Price 2 (ε-p∗2) Permutation Tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

α10β00 0.133 0.200 0.242 0.225 0.200 α10β00<α20β00 0.016∗∗

α20β00 0.300 0.400 0.200 0.275 0.333 0.302α20β00<α20β20 0.016∗∗

α20β18 0.717 0.667 0.342 0.700 0.606 α20β00<α20β18 0.016∗∗

α10β20 0.650 0.517 0.542 0.400 0.892 0.600α10β20<α20β20 0.564

α20β20 0.533 0.592 0.642 0.225 0.900 0.578α20β18<α20β20 0.556

α20β40 0.825 0.792 0.467 0.517 0.650 α20β20<α20β40 0.294

Note: Significant at: * 10% level; ** 5% level; *** 1% level.

Table 2: Level of Convergence in the Last 20 Rounds
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Change in Proportion of Nash Price 1 (p∗1) Permutation Tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

α10β00 -0.025 -0.017 0.083 -0.017 0.006 α10β00<α20β00 0.302

α20β00 0.000 0.050 0.000 0.042 0.000 0.018α20β00<α20β20 0.004∗∗∗

α20β18 0.100 0.083 0.050 0.092 0.081 α20β00<α20β18 0.016∗∗

α10β20 0.242 0.017 0.050 -0.067 0.192 0.087α10β20<α20β20 0.155

α20β20 0.225 0.192 0.083 0.042 0.233 0.155α20β18<α20β20 0.103

α20β40 0.100 0.383 0.158 0.092 0.183 α20β20<α20β40 0.381

Change in Proportion of Nash Price 2 (p∗2) Permutation Tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

α10β00 0.000 0.017 0.017 0.008 0.010 α10β00<α20β00 0.183

α20β00 0.033 0.067 -0.042 0.042 0.050 0.030α20β00<α20β20 0.044∗∗

α20β18 0.108 0.250 0.000 0.167 0.131 α20β00<α20β18 0.054∗

α10β20 0.275 0.025 0.100 0.017 0.592 0.202α10β20<α20β20 0.492

α20β20 0.217 0.058 0.333 0.008 0.400 0.203α20β18<α20β20 0.238

α20β40 0.208 0.467 0.208 0.117 0.250 α20β20<α20β40 0.349

Change in Proportion ofε-Nash Price 1 (ε-p∗1) Permutation Tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

α10β00 -0.058 0.058 0.167 0.075 0.060 α10β00<α20β00 0.222

α20β00 -0.025 0.300 0.067 0.042 0.233 0.123α20β00<α20β20 0.099∗

α20β18 0.192 0.425 0.150 0.267 0.258 α20β00<α20β18 0.087∗

α10β20 0.367 0.033 0.142 0.092 0.433 0.213α10β20<α20β20 0.349

α20β20 0.283 0.333 0.183 0.033 0.442 0.255α20β18<α20β20 0.492

α20β40 0.158 0.300 0.283 -0.017 0.181 α20β20<α20β40 0.779

Change in Proportion ofε-Nash Price 2 (ε-p∗2) Permutation Tests

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

α10β00 0.000 0.092 0.050 0.092 0.058 α10β00<α20β00 0.183

α20β00 0.200 0.217 -0.100 0.117 0.183 0.123α20β00<α20β20 0.032∗∗

α20β18 0.483 0.492 0.025 0.333 0.333 α20β00<α20β18 0.064∗

α10β20 0.425 0.142 0.192 0.083 0.583 0.285α10β20<α20β20 0.508

α20β20 0.283 0.192 0.333 0.142 0.450 0.280α20β18<α20β20 0.683

α20β40 0.308 0.583 0.317 0.033 0.310 α20β20<α20β40 0.373

Note: Significant at: * 10% level; ** 5% level; *** 1% level.

Table 3: Level-of-Convergence Change: Last 20 Rounds-First 20 Rounds
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Model (1) (2) (3) (4)

Dependent Variable ε-p∗1 ε-p∗2 ε-p∗1 ε-p∗2

Dα10β00 -0.826 -1.405

(0.310)*** (0.325)***

Dα20β00 -0.485 -1.065

(0.326) (0.297)***

Dβ18 -0.021 0.019

(0.334) (0.287)

Dα10β20 -0.421 0.108

(0.313) (0.301)

Dβ40 -0.004 0.332

(0.316) (0.322)

ln(Round) 0.599 0.752 0.676 0.807

(0.067)*** (0.072)*** (0.095)*** (0.092)***

Dα10β00 ln(Round) -0.248 -0.416

(0.092)*** (0.097)***

Dα20β00 ln(Round) -0.151 -0.317

(0.097) (0.089)***

Dβ18 ln(Round) -0.003 0.018

(0.099) (0.088)

Dα10β20(Round) -0.119 0.035

(0.093) (0.093)

Dβ40 ln(Round) -0.011 0.100

(0.094) (0.101)

Constant -2.614 -2.635 -2.865 -2.820

(0.298)*** (0.293)*** (0.212)*** (0.208)***

Observations 9720 9720 9720 9720

Number of groups 162 162 162 162

Log Likelihood -4588.718 -4807.181 -4564.832 -4750.630

Dα10β00 = Dα20β00 1.46 1.27

Dα10β00 ln(Round)=Dα20β00 ln(Round) 1.32 1.21

Dα10β20 −Dα10β00 = −Dα20β00

0.04 1.11

Dα10β20 ln(Round)−Dα10β00 ln(Round) = −Dα20β00 ln(Round) 0.03 1.06

Notes:

1. Robust standard errors in parentheses are adjusted for clustering at the individual level.

2. Significant at: * 10% level; ** 5% level; *** 1% level.

3. Dy is the dummy variable for treatmenty.

4. The bottom panel presents null hypotheses and Waldχ2(1) test statistics.

Table 4: Speed of Convergence: Logit Models with Clustering43



Model (1) (2)

Dependent Variable ε-p∗1 ε-p∗2

ln(Round) 0.2682 0.9289

(0.1826) (0.1851)***

Round 0.0170 -0.0052

(0.0100)* (0.0079)

Dα20β18ln(Round) -0.0529 -0.2688

(0.1496) (0.1445)*

Dα20β18Round 0.0053 0.0239

(0.0107) (0.0121)**

Constant -2.0785 -2.9053

(0.3179)*** (0.3789)***

Observations 4680 4680

Log Likelihood -2879.15 -2994.20

Notes:

1. Standard errors in parentheses.

2. Significant at: * 10% level; ** 5% level; *** 1% level.

3. Dy is the dummy variable for treatmenty.

Table 5: Convergence Speed: Logit models with individulal-level clustering comparingα20β18 with the

α20 supermodular treatments achieving similar convergence levels.
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Efficiency Induced: Last 20 Rounds

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

α10β00 0.600 0.671 0.804 0.858 0.733 α10β00<α20β00 0.087∗

α20β00 0.650 0.870 0.907 0.873 0.825 0.825α20β00<α20β20 0.095∗

α20β18 0.963 0.952 0.889 0.959 0.941 α20β00<α20β18 0.016∗∗

α10β20 0.958 0.919 0.905 0.881 0.984 0.929α10β20<α20β20 0.714

α20β20 0.888 0.937 0.939 0.780 0.971 0.903α20β18<α20β20 0.833

α20β40 0.973 0.962 0.943 0.949 0.957 α20β20<α20β40 0.064∗

Change in Efficiency Induced: Last 20 Rounds-First 20 Rounds

Treatment Session 1 Session 2 Session 3 Session 4 Session 5 Overall H1 p-value

α10β00 0.024 0.045 0.126 0.256 0.113 α10β00<α20β00 0.198

α20β00 0.181 0.295 0.105 0.194 0.083 0.171α20β00<α20β20 0.333

α20β18 0.323 0.286 0.111 0.173 0.223 α20β00<α20β18 0.214

α10β20 0.238 0.147 0.194 0.018 0.220 0.163α10β20<α20β20 0.397

α20β20 0.204 0.188 0.173 0.177 0.212 0.191α20β18<α20β20 0.793

α20β40 0.119 0.316 0.417 0.127 0.245 α20β20<α20β40 0.222

Note: Significant at: * 10% level; ** 5% level; *** 1% level.

Table 6: Efficiency measure

45



Model: sFP fEWA PA

Block: 1 2 3 4 1 2 3 4 1 2 3 4

Discount Rate (r) Discount Rate (r)

α10β00 1.0 0.7 0.9 1.0 0.1 0.0 0.9 1.0

α20β00 0.7 0.6 0.1 0.1 0.5 1.0 0.2 0.1

α20β18 1.0 1.0 0.9 0.9 0.2 1.0 0.3 0.2

α10β20 1.0 1.0 1.0 0.9 0.1 0.3 0.6 0.3

α20β20 1.0 1.0 1.0 0.9 0.2 0.1 0.5 0.2

α20β40 1.0 1.0 1.0 0.7 0.1 1.0 0.4 0.3

Sensitivity (λ) Sensitivity (λ) Shock Interval (a)

α10β00 1.5 4.4 4.5 2.8 1.6 4.5 4.4 3.7 500 500 250 50

α20β00 1.5 4.3 14.0 18.0 1.7 4.0 5.1 7.4 50 100 150 50

α20β18 1.6 8.0 11.5 18.3 1.5 5.3 6.2 9.5 50 300 500 150

α10β20 1.9 5.9 8.6 13.8 1.8 4.7 6.2 8.2 100 500 450 300

α20β20 2.8 5.6 8.1 11.2 2.4 3.8 6.1 6.7 200 300 350 350

α20β40 3.4 6.5 14.0 20.5 3.2 4.9 6.7 9.9 150 50 150 50

Similarity Window ( h)

α10β00 1 1 10 9

α20β00 10 10 9 6

α20β18 5 4 6 1

α10β20 1 1 8 3

α20β20 2 2 7 1

α20β40 1 3 2 2

Table 7: Calibration of Three Learning Models in Fifteen-Round Blocks
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Stochastic Fictitious Play

Session α10β00 α20β00 α20β18 α10β20 α20β20 α20β40

1 0.955 0.934 0.940 0.930 0.888 0.940

2 0.960 0.946 0.890 0.917 0.973 0.878

3 0.948 0.883 0.873

Overall 0.957 0.943 0.915 0.910 0.912 0.909

fEWA

1 0.956 0.934 0.942 0.928 0.887 0.948

2 0.960 0.946 0.890 0.922 0.978 0.886

3 0.946 0.879 0.871

Overall 0.958 0.942 0.916 0.910 0.912 0.917

Payoff Assessment

1 0.952 0.933 0.914 0.941 0.888 0.916

2 0.957 0.944 0.899 0.922 0.917 0.898

3 0.947 0.894 0.903

Overall 0.955 0.941 0.907 0.919 0.902 0.907

Equilibrium Play

1 1.867 1.853 1.833 1.833 1.489 1.792

2 1.889 1.919 1.606 1.839 1.953 1.669

3 1.917 1.447 1.539

Overall 1.878 1.896 1.719 1.706 1.660 1.731

Random Play

Overall 0.976 0.976 0.976 0.976 0.976 0.976

Table 8: Validation on Hold-out Sessions
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Player 1 Equilibrium Price Player 2 Equilibrium Price

Treatment Probability H1 p-value Probability H1 p-value

α10β00 0.073 0.082

α20β00 0.188 α20β00>α10β00 0.000*** 0.213 α20β00>α10β00 0.000***

α20β18 0.265 α20β18>α20β40 0.187 0.381 α20β18>α10β20 0.264

α10β20 0.211 α10β20>α20β00 0.000*** 0.376 α10β20>α20β20 0.001***

α20β20 0.243 α20β20>α10β20 0.000*** 0.353 α20β20>α20β00 0.000***

α20β40 0.259 α20β40>α20β20 0.007*** 0.442 α20β40>α20β18 0.000***

Player 1ε-Equilibrium Price Player 2ε-Equilibrium Price

Treatment Probability H1 p-value Probability H1 p-value

α10β00 0.216 0.232

α20β00 0.519 α20β00>α10β00 0.000*** 0.573 α20β00>α10β00 0.000***

α20β18 0.713 α20β18>α20β40 0.045** 0.870 α20β18>α10β20 0.008***

α10β20 0.584 α10β20>α20β00 0.000*** 0.857 α10β20>α20β20 0.000***

α20β20 0.662 α20β20>α10β20 0.000*** 0.834 α20β20>α20β00 0.000***

α20β40 0.701 α20β40>α20β20 0.000*** 0.925 α20β40>α20β18 0.000***

Table 9: Results of t-tests comparing level of convergence of simulations of experimental treatments. Values

are for round 500 and based on 1500 simulated games.

Player1 Player 2

Threshold: 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7 0.8 0.9

α20β18 54 83 126 316 38 52 62 87 127 -

α10β20 129 221 - - 36 48 63 91 148 -

α20β20 61 91 149 - 39 51 61 84 137 -

α20β40 101 166 263 496 30 38 56 94 166 339

Table 10: Speed of Convergence in Simulated Data: Threshold is the percent of players playing epsilon-

equilibrium strategy. Entry indicates round in which went over threshold for good, where “-” indicates that

treatment never achieved threshold.
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Treatment Efficiency H1 p-value

α10β00 0.7804

α20β00 0.9280 α20β00>α10β00 0.000***

α20β18 0.9831 α20β18>α10β20 0.000***

α10β20 0.9813 α10β20>α20β20 0.003***

α20β20 0.9800 α20β20>α20β00 0.000***

α20β40 0.9862 α20β40>α20β18 0.000***

Table 11: Results of t-tests comparing efficiency in simulations of experimental treatments. Values are for

round 500 and based on 1500 simulated games.
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Model (1) (2)

Dependent Variable Prob(p2 = p̄1) Prob(p2 = p̄1)

Dα10 0.0684 0.1538

(0.4750) (0.4830)

Dβ00 -1.0744 -0.6576

(0.4898)** (0.5048)

Dβ18 -0.6428 -0.4973

(0.7929) (0.8156)

Dβ40 0.0862 -0.6319

(0.6322) (0.6560)

ln(Round) 0.4256 0.3166

(0.1216)*** (0.1210)***

Match Cost -0.0004

(0.0000)***

ln(Round)Dα10 -0.1255 -0.1227

(0.1390) (0.1396)

ln(Round)Dβ00 0.0775 0.0350

(0.1473) (0.1498)

ln(Round)Dβ18 0.0929 0.0515

(0.2308) (0.2371)

ln(Round)Dβ40 0.0085 0.1888

(0.1858) (0.1890)

Constant -3.1366 -2.5983

(0.4154)*** (0.4140)***

Observations 9588 9588

Log Likelihood -3243.55 -3178.81

H0 : Dα10 = Dβ00 = Dβ18 = Dβ40 = 0

χ2(4) 6.16 3.11

p-value 0.19 0.54

H0 : ln(Round)Dα10 = ln(Round)Dβ00 = ln(Round)Dβ18 = ln(Round)Dβ40 = 0

χ2(4) 1.75 3.38

p-value 0.78 0.50

H0 : ln(Round)Dα10 = ln(Round)Dβ00 = ln(Round)Dβ18 = ln(Round)Dβ40 =

Dα10 = Dβ00 = Dβ18 = Dβ40 = 0

χ2(8) 62.74 28.38

p-value 0.00 0.00

Note: Significant at: * 10% level; ** 5% level; *** 1% level.

Table 12: Probability that player 2 announces a price equal to the anticipated player 1 price.
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Figure 1: Distribution of Announced Prices in Experimental Treatments: Player 1
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Figure 2: Distribution of Announced Prices in Experimental Treatments: Player 2
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Figure 3: Distribution of first round choices
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Alpha20 Beta00: Player 1
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Figure 4: Simulated dynamic path vs. actual data
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Figure 5: Simulated and actualε-equilibrium play
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Figure 6: Efficiency in the simulated and actual data
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