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Abstract

We explore a scenario in which a monopolist producer
of information goods seeks to maximize its profits in a
market where consumer demand shifts frequently and
unpredictably. The producer is free to set an arbitrarily
complex price schedule—a function that maps the set of
purchased items to a price—but without direct knowl-
edge of consumer demand it cannot compute the opti-
mal schedule. Instead, it must employ a form of opti-
mization based on trial and error. By means of a simple
model of consumer demand and a modified version of a
simple nonlinear optimization routine, we study a vari-
ety of parametrizations of the price schedule and quan-
tify some of the relationships among learnability, com-
plexity, and profitability. In particular, we show that
fixed pricing or simple two-parameter dynamic pricing
schedules are preferred when consumer demand shifts
frequently, but that dynamic pricing based on more
complex schedules tends to be most profitable when
consumer demand shifts very infrequently.

1 Introduction

The relatively low cost of creating customized bundles
of information goods opens up the potential for digi-
tal information providers to explore a richer and more
complex set of pricing schemes than are traditionally
applied to physical goods. For example, consider a per-
sonalized electronic journal. Rather than simply offer-
ing a single price per article, or a single price for a fixed
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set of articles (such as an issue or a subscription), the
publisher could offer a variety of arbitrarily complex vol-
ume discounts, or even more complex pricing schemes
that take article categories into account.

While it seems natural that flexibly configurable sets
of information goods should be priced in a comparably
flexible manner, complex pricing schemes are only likely
to come into widespread use if they are acceptable to
purchasers. We anticipate that purchasers will receive
assistance from software agents that will help analyze
and respond to dynamic and complex pricing schemes.

Prior authors [4, 2, 13] have studied the benefit of
various pricing schemes, based on the assumption that
the producer knows the distribution of consumer prefer-
ences. Typically, however, producers do not have com-
plete knowledge of all relevant parameters of this dis-
tribution. Instead, they are likely to refine an initial
estimate of the mapping between prices and profits via
trial and error. A trial price schedule yields, not just a
profit, but also incremental information about the un-
derlying consumer preferences, which could be valuable
if the producer can capitalize on this information to
attain higher profits in the future. Given the potential
value of this information, a good pricing strategy will be
a dynamic balance between exploitation of prices that
are known from experience to be among the most prof-
itable and ezploration [12] of new prices in a quest for
greater profitability.

Further complicating the challenge of developing a
good dynamic pricing strategy is the fact that con-
sumers’ preferences may vary over time. This may stem
from mass entry and exit of individual consumers, or
from evolution of individual consumer tastes, and may
be a particularly strong effect if those tastes are corre-
lated, i.e. the consumers are susceptible to fads. Shift-
ing (and, again, correlated) consumer preferences may
also reflect an underlying change in the nature of the
goods being offered by the producer, or in the way that
they are combined with one another. Shifts in demand
could also result from other changes in the market, such
as the entry and exit of competitors offering similar or



partially substitutable goods.

Previously [3], we studied a scenario in which a pro-
ducer learns more or less complex price schedules while
facing a static population. From the learning transient,
we inferred that the time scale on which preferences
changed was likely to have an effect on the relative prof-
itability of various price schedules.

In this paper, we focus directly on the question of
how a monopolist might dynamically price information
bundles in an environment in which demand shifts fre-
quently and unpredictably. Following a brief account of
related work in Section 2, we introduce a model that
captures the essence of this problem in Section 3. We
introduce several price schedules that range in complex-
ity from 1 to 100 parameters, and describe a simple
nonlinear optimization algorithm that exploits and ex-
plores the space of price parameters. In Section 4 we
characterize the underlying profit landscapes pertain-
ing to each type of schedule. We derive the optimal
settings of the parameters, which could be obtained by
a fully-informed producer; this serves as a useful base-
line. Then, in Section 5, we present several simula-
tions that establish relationships among the complex-
ity, learnability, and profitability of the various price
schedules, and identify the conditions under which par-
ticular price schedules are favored over others. In gen-
eral, we find that, when consumer demand shifts fre-
quently, fixed pricing based on complex schedules or
dynamic pricing based on simpler schedules is preferred,
but dynamic pricing based on complex schedules is ad-
vantageous when consumer demand shifts very infre-
quently. We conclude in Section 6 with a summary of
our findings and some thoughts about challenges that
lie ahead.

2 Related work

Most of the bundling literature assumes that the pro-
ducer knows the consumer demand a priori. However,
there have been some previous studies of how a firm
can use price experimentation to learn consumer pref-
erences. Grossman, Kihlstrom and Mirman [7] were
among the first to quantify the extent to which a firm
may experiment with prices that are not myopically op-
timal, thus giving up short-run profits, in order to learn
the slope of the demand curve it faces. Subsequent
authors have attempted to generalize the problem and
identify the conditions under which “complete” learning
will occur in the long run in stationary environments.
For example, Aghion, Bolton, Harris and Jullien [1] de-
termine such conditions, which include payoff functions
that are smooth and quasi-concave, but note that nei-
ther adequate nor inadequate learning is generic.

The existing literature almost universally assumes
that the preferences to be learned are stationary. In a

rare exception, Keller and Rady [8] identify the path
of optimal actions for a monopolist facing an unknown
demand curve that alternates between two states ac-
cording to a continuous time Markov process. They
find that for a given level of noise and a given discount
rate, low rates of state changes will lead to “extreme”
experimentation where the monopolist tracks the true
state rather well, while higher rates of state changes will
lead to “moderate” experimentation where the monop-
olist chooses actions near the action associated with the
long-run average state and thus learns very little of the
current true state of the world. They find that the tran-
sition from one experimentation regime to the other is
discontinuous.

The machine learning community has addressed the
problem of learning nonstationary functions. Early ex-
amples of this include reinforcement learning algorithms
such as Q-learning and TD-learning [11], which can
track a nonstationary function, and signal-processing
algorithms such as Parzen windows [5], which can learn
a changing probability distribution without the use of
a parametric model. While these methods are able
to successfully learn a nonstationary function in the
limit, they require a large amount of data (a problem
when data collection is costly), and neither explicitly
addresses the exploration/exploitation tradeoff. Strate-
gies for exploring optimally have also been examined in
machine learning [12] and optimal control [6]. Typically
these approaches either use a different definition of op-
timality (e.g., each data point is equally costly) or more
restrictive assumptions about the nature of the problem
to be optimized, such as stationarity.

3 Model

In this section we describe our model of a monopolist
producer offering information goods to a population of
C consumers. During each of a large number of discrete
time steps, the producer has N new and unique infor-
mation items, called articles, that it can offer to each
consumer. At the beginning of each period, the pro-
ducer announces a price schedule P(n) (also denoted
15) that defines the price that any consumer must pay
for n articles, where 0 < n < N.!' Each consumer ¢
purchases a number of articles n. that maximizes the
surplus S.(n.) = Ve(n.)—P(n.), where V.(n) represents
¢’s valuation for n articles. The producer then receives
a profit 7, which is a function of the price schedule P
and the consumers’ valuations. More specifically, we
assume (as is customary for information goods) that
the marginal cost of duplicating, bundling, and deliver-

1We assume that the producer charges the same price to all con-
sumers because it is unable to charge customer-specific prices, either
for legal or technical reasons (i.e., it may be unable to track individual
consumers across transactions, or unable to capitalize on observations
of individual behavior).



ing articleg is zero, so the producer’s marginal profit is
simply 7(P) = <, P(n.).

An experimental run consists of running this cycle
for (typically) millions of time steps, after having cho-
sen a particular set of conditions, such as the number of
consumers C, a set of parameters describing their pref-
erences, the type of price schedule, etc. The producer
may experiment continually with P(n) in an effort to
optimize m. Continual experimentation is encouraged
by periodic shocks in the consumer demand, which oc-
cur at an interval T'. Typically, 10,000 to 100,000 shocks
occur during a given run. For each run, we observe
the sequence of P and 7. Of particular interest is the
process of profit recovery that occurs after each shock,
which we gauge by computing the average profit at time
T after a shock. In other words, we overlay and average
the recovery periods to get an understanding of how
successfully the producer can recuperate from a sudden
shift in the aggregate consumer demand.

Having given this brief synopsis of the model, we
now provide further details on the price schedule 13,
the model of consumer preferences and their variation
in time, and the process by which the producer attempts
to optimize its profit in this dynamic environment.

3.1 Price schedules

In general, the price schedule P(n) may be an arbitrary
nonlinear relation between n and P. In practice, it is
often convenient and efficient to parametrize P(n) in
terms of a small number of variables.? In this work we
examine five such functional forms, ranging in complex-
ity from 1 to N parameters:

e Pure Bundling. Consumers pay a fixed price b for
access to all N articles.

e Linear Pricing. Consumers pay a fixed price p for
each article purchased.

e Two Part Tariff. Consumers pay a subscription
fee f, along with a fixed price p for each article.

e Mixed Bundling. Consumers have a choice be-
tween a per-article price p and a bundle price b.

e Nonlinear Pricing. Consumers pay a price P; for
i articles. An alternative representation is the in-
cremental price vector p; = P; — P;_1, with Py
defined to be zero.

3.2 Consumer preferences and demand shocks

We model consumers’ preferences using a simple two-
parameter model introduced by Chuang and Sirbu [4].

20f course, P(0) is always taken to be 0, to ensure that consumers
are not charged unless they purchase at least one article.

In this model, consumer ¢’s valuation of its most pre-
ferred article is w., and the value of its ith most pre-
ferred article, v.;, decreases linearly with ¢, as follows:

U'_{wc(l—;j,) ifi —1<k.N 1)
“700 ifi —1>k.N.

Thus consumer ¢ places a positive value on |k.N| +
1 articles®, unless k. > 1, in which case the number
of articles with positive valuation is capped at N. By
summing the incremental valuations in Eq. 1, we obtain
the overall valuation for n articles:

Ve(n) = év = w,n (1 - Zk_]\lf) . 2)

As would be expected, V,(0) is zero, signifying that con-
sumers ascribe zero value to zero articles. The number
of articles n. purchased by consumer ¢ therefore de-
pends simply on the price schedule P(n) and ¢’s valu-
ation function V.(n). Specifically, n. is the number of
articles that maximizes Vq(n) — P(n).

For purposes of analytic tractability, we assume that
w, is fixed at a universal value w for all consumers,
but we allow k. to be both heterogeneous and time-
varying. Specifically, w is fixed at 10, and k. is drawn
uniformly from between 0 and k = 0.7. Every T time
steps, all of the consumers’ valuations are redrawn from
this distribution, resulting in the aforementioned shock
in the aggregate consumer demand.

3.3 Dynamic optimization of the price schedule

If the producer knew the consumer demand at all times,
then it could simply respond to a demand shock by im-
mediately recomputing and announcing the new opti-
mal price schedule P(n). However, it is unrealistic to
assume that the producer is so well informed. In this
paper, we are primarily interested in how a producer
can re-learn the mapping between price and profit, and
use this as a basis for resetting P(n) to yield more (if
not optimal) profit.

We model the producer’s ignorance of aggregate con-
sumer demand by assuming that the producer does not
know the distributions of w. and k.; in fact, it does
not even know about the Chuang-Sirbu structure of the
consumer demand. Instead, the producer is limited to
observing its own history of price schedules P and corre-
sponding profits 7r(13), and from this it tries to learn as
profitable a price schedule as possible. Inherent in this
task is a tradeoff between exploration and exploitation:
the producer needs to explore the function m(P) in an
effort to find better schedules than it has yet found, but
it also wishes to capitalize on schedules that are already
known to be among the most profitable.

3Here |z] denotes the integer just less than or equal to z.



To model the producer’s process of relearning and
reoptimizing, we employ a modification of the amoeba
algorithm, a variant of the simplex algorithm [10] for un-
contrained nonlinear optimization problems.? At each
time step, the amoeba algorithm maintains a nondegen-
erate simplex, an n-dimensional convex hull of n+1 ver-
tices, %g,%1,.-.,%n, and their respective function val-
ues. In our application, each vector ¥ represents a set-
ting of the price parameters appropriate for the given
price schedule, observed at an earlier time, and it is as-
sociated with a profit 7(#) that was obtained for that
setting of the price parameters. Amoeba alternately re-
flects, contracts, and expands the simplex in an attempt
to locate an optimum in a function’s landscape. At
each time step, amoeba chooses a new point Z, which is
translated into P(n), and the corresponding profit 7 (Z)
is determined.?

An attractive feature of amoeba for our application
is that, unlike many other nonlinear optimization al-
gorithms, it does not require any gradient information.
Without access to the underlying consumer demand, or
even a knowledge of its functional form, a producer can
only sample the profit landscape directly.

An unattractive feature of amoeba is its implicit as-
sumption that the landscape is static. This can cause it
to fail spectacularly when the landscape is dynamic [9].
The problem begins with amoeba’s failure to detect
changes in the landscape f(Z). For example, suppose
that, in some neighborhood including the current best
point Zp, with functional value f(£g) = 2o, there is a
sudden general depression in f such that all points are
shifted down by a constant ¢. Then amoeba will see this
depression for newly sampled points near g, but will
steadfastly continue to believe that f(2y) = 2o rather
than zg —¢. Amoeba will continue to search in progres-
sively smaller neighborhoods around z(, and will reach
the conclusion that there is an arbitrarily sharp discon-
tinuity there. Another problem is that convergence of
the simplex around the optimum, while useful in static
environments, makes amoeba extremely unresponsive
in dynamic situations because it takes too long for the
simplex to re-expand to a size that permits efficient ex-
ploration of the changed landscape.

We circumvent the problem of detecting changes in
the landscape by directly resetting the simplex when-
ever such changes occur. While this is admittedly arti-
ficial, essentially the same effect could be achieved more
naturally by modifying the amoeba algorithm to include
occasional resampling. To counteract overconvergence
of the simplex, we reset it as follows whenever the land-
scape changes. For each component z;; of the vertex 7,
choose a new value z}; at random from the uniform dis-
tribution U[(1 — ¢)z;j, (1 + ¢)x;;]. Thus, the parameter

“This simplex algorithm should not be confused with the simplex
algorithm for linear programming.
5For a detailed survey on amoeba refer to Wright [14].

¢ governs the amount of exploration that takes place
immediately after a demand shock. Appropriate values
for ¢ must be determined by experiment. If ¢ is too
small, the simplex is more susceptible to entrapment in
local optima that are significantly lower than the global
optimum. On the other hand, if ¢ is too large, amoeba,
will have to start from scratch, and may not converge
as quickly as it would have had it started from a point
relatively close to the new global optimum.

We have made one additional modification to avoid
the occasional problem of ending up in a zero-profit
plateau. This happens when all of the simplex vertices
have price parameters that are set so high that no con-
sumers wish to purchase any articles. To prevent this
from occurring, we divide all price parameters by two
whenever this condition is detected, repeating the pro-
cedure until a positive profit is obtained.

4 Price schedules and profit landscapes

In this section, we compute the optimal profit for each
of the five price schedules introduced in Section 3. For
population sizes C' = 1 and C' — 0o, we derive a good
analytic approximation; for finite C' > 1 we compute
the optimal profits numerically via simulation.

Next, to gain insight into the learning and optimiza-
tion task faced by a producer who lacks a priori knowl-
edge of consumer demand, we illustrate typical profit
landscapes. (A profit landscape is the functional depen-
dence of the profit upon the price parameters of a given
type of price schedule.) The computed optimal profits
are the global optima of these landscapes, and there-
fore establish an upper limit on the profit that can be
attained by a producer, regardless of how well-informed
it is about consumer demand.

4.1 Optimal profits
4.1.1 (C =1 (perfectly correlated consumers)

First, consider the case C' = 1. It is useful to think of
C =1 as representing, not just a single consumer, but a
cluster of many consumers that share exactly the same
value of k. When a shock occurs, a new value of £ is
chosen and adopted by all of the consumers in unison.
Analytic expressions for the resulting optimal price pa-
rameters P* (as a function of k) and the optimal profits
7* (averaged over the uniform distribution U[0, k]) are
summarized in the first two columns of Table 1.

We find that, for all of the price schedules except
linear pricing, the producer can set its price param-
eters to extract all of the social surplus. The maxi-
mal social surplus is obtained when the consumer re-
ceives all articles for which she has a positive valua-
tion. According to Eq. 1, the number of such articles is
n=|kN]+1= kN + 1, to within a factor of O(1/N).
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Table 1: Optimal price parameters and profits per article per consumer for 5 selected price schedules; C' = 1 and
C — 0. The profit attainable via perfect quantity-based price discrimination is shown for comparison. For C' =1,
the optimal price parameters P* are expressed as a function of the k-value of the consumer, while the optimal profits
7* pertain to an average over U[0,k]. For C — oo, optimal prices and profits are based on averages over U[0, k].
Formulas are valid as N — oo; finite N corrections are of O(1/N). In the expression for the optimal nonlinear price
parameters for C' = 1, §;; represents the Kronecker delta function, equal to 1 if 4 = 1 and 0 otherwise.

From Eq. 2, the value of these articles is %
a factor of O(1/N).

By setting a bundle price of b = #, the pro-
ducer can extract all of this surplus®, and therefore its
profit per consumer” will also be 7 = 2N Since all
price schedules except linear pricing can express pure
bundling as a degenerate case, they can all implement
this optimal solution, as summarized in Table 1. Only
half as much surplus can be achieved by linear pricing.

In our model of periodic shock and recovery, a per-
fectly informed producer employing any of our set of
price schedules other than linear pricing could use the
above analysis to compute the optimal parameters, ob-
taining a profit of # for the duration of each recovery
period. Given that the value of k shared by all con-
sumers is drawn from a uniform distribution ranging
from 0 to k, the expected time-averaged profit would be

, to within

#. In a time-averaged sense, such a producer would
be practicing perfect quantity-based price discrimina-
tion, always charging just as much as each consumer
would bear. For linear pricing, the time-average profit
would be exactly half this amount.

4.1.2 C — oo (perfectly uncorrelated consumers)

Now suppose that each consumer draws k independently
of all others, and that the number of consumers C' — co.
Then the optimal price parameters and corresponding

6This makes the usual assumption that an indifferent consumer
will purchase the bundle, which conveniently avoids infinitesimal
quantities.

"Henceforth, the profit per consumer will be simply referred to as
the profit.

profits per consumer can be computed to an approxi-
mation accuracy of O(1/N). Table 1 summarizes the
results first derived by Brooks et al. [3]. All results
are normalized by the bundle size N. The formula for
the optimal nonlinear price schedule given by Brooks et
al. [3] is incorrect; the correct form is given by Equa-
tion 3, in the appendix.

4.1.3 Optimal profits for finite N and C

The optimal profits for each price schedule for a range
of values of N and C are tabulated numerically in Ta-
ble 2. Fach consumer is assumed to have Chuang-Sirbu
parameters w = 10 and k drawn from UJ0,0.7]. The
values for infinite bundle size and C = 1 and C' — oo
are computed using the analytic expressions in Table 1.
The values for finite N and C are computed via simu-
lation, as follows. Each of 10,000 landscapes is gener-
ated by drawing C k-values from UJ0,0.7]. An excel-
lent approximation to the absolute peak for each land-
scape is obtained by running the amoeba nonlinear op-
timization algorithm to 10-digit convergence from 100
randomly chosen positions on the landscape (clustered
loosely around the value obtained from Table 1) and
identifying the highest peak found over the 100 runs.
(Experimentation establishes that this is more than suf-
ficient to find the global peak for the two-part tariff
landscape.) The peak profits are then averaged over
the 10,000 landscapes. Finally, the values for vV = 100
and C — oo are computed using two different tech-
niques. For two-part tariff, we developed an exact ana-
lytic expression for the C' — oo landscape as a function



N = o0 N =100 N =100 N =100 N=100 | N =
Schedule cC=1 CcC=1 C=10 C =100 C—ox | C—x
Pure Bundle | 1.7500 (1.0104) | 1.7946 (1.0066) | 1.1220 (0.2839) | 0.9497 (0.0878) | 0.9010 0.8750
Linear 0.8750 (0.5052) | 0.9208 (0.5032) | 0.9103 (0.1608) | 0.9044 (0.0515) | 0.8999 0.8750
Two-Part | 1.7500 (1.0104) | 1.8029 (1.0115) | 1.2322 (0.2732) | 1.1043 (0.0777) | 1.0710 | 1.0370
Mixed 1.7500 (1.0104) | 1.8017 (1.0078) | 1.2402 (0.2647) | 1.1071 (0.0766) | 1.0706 1.0370
Nonlinear 1.7500 (1.0104) | 1.8129 (1.0093) | 1.3934 (0.2716) | 1.2564 (0.0842) | 1.2049 1.1519

Table 2: Optimal profits for each price schedule for various values of bundle size N and consumer population C.
Values are computed assuming that each consumer has Chuang-Sirbu parameters w = 10 and k& drawn randomly
from the uniform distribution U[0,0.7]. In cases where C is finite, numbers in parentheses represent the standard
deviation across different realizations of the profit landscape, as measured across 10,000 landscapes. The last column
represents the theoretical optimal profits for N — 00, = 1. The standard deviation across different realizations
can be computed analytically; it is % for all schedules except linear pricing, where it is half of this value.

of f and p and ran amoeba on it 100 times to 10-digit
convergence. Roughly 30% of the runs yielded the high-
est peak (to 10-digit accuracy), and this was identified
as the optimal value. For other landscapes, we gen-
erated 100 instances of a C' = 108 landscape, running
amoeba multiple times to identify the global optimum.
The variation across landscapes was no more than 0.1%
to 0.2%, and these results were averaged over the 100
landscapes.
Several trends are apparent:

e For all price schedules, the finite size corrections
of O(1/N) always increase the profits above their
analytic values. Experiments have confirmed that
this trend continues for smaller values of N rang-
ing down to N = 10.

e For all price schedules except linear pricing, the
profits vary inversely with C. This is consistent
with the analytic results for C' = 1 and C' — oo,
shown in Columns 7 and 2, respectively. For linear
pricing, the profits are invariant with respect to C'.
Intuitively, as C is reduced towards 1, it becomes
easier for the producer to practice quantity-based
price discrimination, as the consumers are more
uniform in their valuations. Linear pricing fails
to follow this trend because it does not support
quantity-based price discrimination.

e The profit tends to increase with the number of
parameters in the price schedule. Unless C = 1,
however, no price schedule can perform as well as
perfect quantity-based price discrimination.

e For large C, the two one-parameter schedules (pure
bundling and linear) and the two two-parameter
schedules (two-part tariff and mixed bundling) yield
equal profits. As C is reduced, pure bundling
emerges as superior to linear pricing, as has been
noted. However, two-part tariff and mixed bundling

remain essentially equal in profitability through-
out the entire range of C.

4.2 Profit landscapes

The results in Table 2 are obtained by finding the peak
on a landscape defined by the price parameters. Since
the producer does not know the consumers’ valuations,
it must explore this landscape in an effort to find the
peak. The degree to which the producer is successful in
finding the global optimum, or a close approximation
to it, has much to do with the shape of the landscape.
Figure 1 shows representative landscapes for the two-
part tariff and mixed bundling landscapes for C' = 1,
C = 10, and C = 100. The C = 1 landscapes con-
sist of gradual slopes leading up to an infinitely sharp
precipice. This reflects the ability of the producer to
practice perfect quantity-based price discrimination for
two-part tariff and mixed bundling. The optimal pure
bundle price of b & 175 is clearly evident for C =1
for both landscapes. The optimal profit is obtained
when the price is just equal to the consumer’s maximal
willingness-to-pay; if the price is increased beyond this,
the profit will be zero. The mixed bundling landscapes
provide insight into the pure bundling and linear pric-
ing landscapes, which are one-dimensional. In the limit
of high per-article price p, mixed bundling is equivalent
to pure bundling, and therefore the pure bundling land-
scape can be traced horizontally along the upper bound-
aries of the mixed bundling landscapes. In the limit
of high pure bundle price b, mixed bundling reduces
to linear pricing, and therefore this one-dimensional
landscape can be traced vertically along the righthand
boundaries of the mixed bundling landscapes. For C =
1, linear pricing is the only form that lacks a sharp cliff,
and correspondingly it is the only one that does not
support perfect quantity-based price discrimination.
For all of the price schedules, the landscapes for
C > 1 can be understood as a superposition of the
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Figure 1: Contour plots of profit landscapes for two-part tariff and mixed bundling, with N = 100 and various
consumer population sizes C. Lighter coloration indicates higher profits; scales are specific to each plot and therefore
cannot be compared across different plots. Top row, left to right: Two-part tariff landscapes with C = 1, C' = 10,
and C' = 100. Bottom row, left to right: Mixed bundling landscapes with C = 1, C' = 10, and C' = 100. For C =1
landscapes, k = 0.35 (the average of the statistical distribution). For C' = 10 and C' = 100 landscapes, the k values

are drawn at random from the distribution UJ0,0.7].

individual C = 1 landscapes generated by C random
draws from the distribution U[0,0.7]. The resulting
landscapes are peppered with myriad bumps and dis-
continuities. As C increases, the bumps and disconti-
nuities increase in number but decrease in magnitude,
eventually resulting in an arbitrarily smooth surface as
C — o0. For C = 100, the bumps are small, but can
still be hazardous to nonlinear optimizers like amoeba.
Surprisingly, even for C' = 100, the landscapes can shift
substantially from one realization to another. The vari-
ability and bumpiness of the landscapes is illustrated
in Fig. 2, which shows cross sections of two successive
realizations of two-part tariff landscapes with C' = 100.
The peak position shifts substantially, from (f,p) =
(66.658,3.145) to (48.564,3.497). On each landscape,
the position of the optimal peak would be highly non-
optimal on the other landscape.

5 Experimental results

5.1 Two-part tariff experiments

In our first series of experiments, we focus on the two-
part landscape. For a fixed re-expansion radius ¢ and
consumer population C', we set the initial price param-
eters to the theoretical values for C' — o0, as given in
Table 1, and then choose the initial simplex vertices at
random from within the re-expansion radius. Although
these formulas become progressively less accurate as N
and C are reduced, they establish a reasonable starting
point, and moreover all memory of the initial condi-
tions is typically erased after a relatively small number
of shocks. In a real price-setting scenario, a producer
would presumably have a reasonable estimate of the
right parameters, perhaps within a factor of two or so.
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Figure 2: Cross sections of landscapes for N = 100.
Middle curve represents the ideal C' — oo landscape;
curves above and below it represent two realized land-
scapes for C = 100. Cross sections are for values of
per-article parameter p fixed at the values indicated in
the figure, which are chosen to be those at which the
absolute peak in the landscape occurs.

Then, we ran a simulation as described in Section 3,
in which the producer announces a new price parameter
vector (f,p) at each time step, and uses the modified
amoeba algorithm to set (f,p) at the next time step.
Shocks were introduced periodically every T' = 10,000
time steps. This allowed amoeba plenty of time to per-
form its optimization. During the experimental run,
100,000 shocks occurred, i.e. the run continued for 10°
time steps. We measured the average profit as a func-
tion of time since the most recent shock by overlaying
the recovery periods and averaging over them to pro-
duce a single characteristic profit transient.

Results for various values of ¢ and C are depicted in
Figure 3. For C = 1, we find that, for all values of ¢,
the initial effect of a shock is quite severe—on average,
the profit drops to about 1/3 of the global optimum.
This can be attributed to the great disparity between
different realizations of the landscape for C = 1. (Re-
call that, according to the analysis, the peak positions
are linear in k, which is drawn from UJ[0,0.7].) How-
ever, amoeba tends to find the new global optimum af-
ter a few hundred time steps. This is not surprising, as
the C' = 1 landscapes are relatively easy to negotiate,
containing a single well-defined peak. What is surpris-
ing is that the characteristic profit transient, which is
an average over 100,000 shocks, contains significant os-
cillations. One might expect a given individual profit
recovery to exhibit oscillations as the amoeba flexes its
pseudopods and gropes its way toward a new optimum,
but it is surprising that phase cancellation does not
wash out the oscillations when the average over shocks
is performed.

Significantly, the path that amoeba takes to the new
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peak is somewhat dependent on ¢. Very soon after the
shock, within 10 to 25 time steps, the smallest values of
¢ provide the quickest recovery in profit. However, from
25 to 200 time steps after the shock, the larger values
of ¢ provide a somewhat higher profit. This suggests
that ¢ = 0.02 would be preferred if T were very short
(in the range of 10 or so), while ¢ ~ 0.5 would be most
preferred if T were a few hundred or more.

The situation changes somewhat for C' = 10. In this
case, the landscape is a good deal more complex and
craggy, with numerous substantial discontinuities. Even
for the largest values of ¢, and for very long times after
the shock, amoeba attains an average profit of 1.171, as
compared with the theoretical optimum value of 1.232
in Table 2, or about 95% of the optimum on average.
Performance is quite poor for ¢ = 0.02. Asymptoti-
cally, amoeba only reaches 0.857, or less than 70% of the
global optimum, and the initial profit following a shock
is only 0.628, compared with 0.965 for ¢ > 0.25. Early
in the simulation run, just after being launched from
a position near the average position of the global opti-
mum, the performance for small ¢ is quite reasonable,
but with successive shocks the performance degrades as
(f,p) diffuses away from this position towards one in
which the per-article price p is very small, thus approx-
imating pure bundling. One can infer that, regardless
of T', there would never be a reason to use ¢ < 0.3. For
T less than a few hundred time steps, ¢ = 0.3 is the pre-
ferred setting, but the slightly better asymptotic profit
for ¢ = 0.5 favors it when T exceeds a few hundred.

For C' = 100, the larger values of ¢ again provide
the best asymptotic profit, and are therefore favored for
large T'. The initial recovery for large ¢ is poorer than
that for small ¢ because of the larger exploratory move-
ments of the vertices of the simplex. Thus, for smaller
values of T', ¢ = 0.1 appears to be a good compromise,
offering relatively good transient and asymptotic perfor-
mance. This intermediate value of ¢, and smaller values
of ¢ as well, perform better for C' = 100 than they do for
C = 10. One reason is that the landscape is smoother,
making it easier for amoeba to negotiate the landscape.
This is reflected in the fact that smaller values of ¢
are more successful for C = 100 than for C = 10. A
second reason is that individual realizations of the land-
scapes, and therefore the positions of their peaks, are
closer to one another, reducing the need for extensive
exploration. By confining the initial re-expansion to a
smaller region around the old peak, amoeba can expect
to extract higher profits in the short term.

A general trend as C increases is that the gains from
re-learning are reduced. This is a simple consequence
of the law of large numbers: draws of C' different k
values from a distribution become increasingly like one
another as C' grows, and therefore so do the landscapes
based upon them. To see an appreciable learning effect

in such cases, the statistical distribution itself would
need to drift—an interesting topic for future study.

5.2 Other price schedules

Figure 4 shows the profit recovery curves for the other
four price schedules for the intermediate case C' = 10,
which is chosen because the landscapes are the most
challenging.

For pure bundling, the dependence of the profit re-
covery curve on ¢ is similar to that for two-part tariff.
Small values of ¢ are universally inferior up to about
¢ = 0.3. While ¢ = 0.3 offers a quicker recovery,
¢ > 0.5 is preferred a few dozen time steps after the
shock. Mixed bundling behaves similarly. Small values
of ¢ are particularly poor for nonlinear pricing, lead-
ing to asymptotic profits of only about 1/3 of the opti-
mal value, compared with about 94% for ¢ > 0.5. For
nonlinear pricing, the first 101 steps of the amoeba are
simply function evaluations of the newly chosen sim-
plex vertices; these show up as a trough in the profit
recovery curve. Linear pricing, as usual, is anomalous.
Regardless of ¢, amoeba always comes very close to the
global optimum, and does so very quickly, within about
10 time steps after the shock. The reason is that the
linear pricing landscape is much easier to negotiate than
the others, as it consists of a simple broad peak with
small bumps. However, the quick learnability of linear
pricing is not enough to make up for the fact that its
global optimum is significantly lower than that of the
other schedules (except pure bundling when C — oo;
see Table 2). Even at times very soon after the shock,
the other schedules offer greater profits.

5.3 Comparison of price schedules

Analysis of Fig. 4 in the previous subsection suggested
that the best choice of ¢ depended on whether one was
interested in short-term or long-term recovery. To gain
further insight into this, we have run experiments with
smaller values of T', and measured the time-averaged
profit (the profit recovery curve averaged from times 0
to T after the shock).® In each case, we have chosen the
value of ¢ that maximizes this quantity.” The results
are summarized in Table 3.

As was observed previously, larger values of ¢ are
favored when the interval between shocks is greater. In
a fairly broad range, from extremely frequent shocks
(T = 10) to fairly infrequent shocks (7' = 1000), mixed
bundling offers the highest average profit, as it can

81n general, a more appropriate figure of merit would be cumu-
lative future discounted profit with a chosen discount rate; we are
effectively assuming a discount rate of zero.

9The profits are only mildly sensitive to the exact value of ¢; for
example, in the entry for Pure Bundle and T = 10, reducing ¢ from
0.3 to 0.2 reduces m by only 0.1%, while increasing ¢ to 0.4 reduces
7 by only 1.2%.



Schedule T=10 T =100 T =1000 | T =10000 | Optimal | Opt. (fixed)
Pure Bundle | 0.847 (0.30) | 0.955 (0.90) | 1.066 (0.95) | 1.079 (1.00) 1.122 0.901
Linear 0.900 (0.02) | 0.904 (0.02) | 0.905 (0.10) | 0.907 (0.10) 0.910 0.900
Two-Part 0.853 (0.20) | 1.034 (0.50) | 1.144 (0.60) | 1.186 (0.80) 1.232 1.071
Mixed 1.016 (0.10) | 1.090 (0.35) | 1.146 (0.40) | 1.154 (0.40) 1.240 1.071
Nonlinear — — 1.112 (0.50) | 1.312 (0.50) | 1.393 1.205

Table 3: Time-averaged profits for each schedule for several values of shock interval 7', with C' = 10. Optimal ¢ is in
parentheses. Second-to-last column gives the optimal profits for N = 100, C' = 10 from Table 2; this represents the
upper limit on what can be obtained by a responsive, fully-informed producer. Last column gives the optimal profits
for N = 100,C — oo from Table 2; this represents an upper limit on what could be obtained by a non-responsive,

fully-informed producer using a fixed price schedule.

be learned relatively quickly, yet yields good long-term
profits. For extremely infrequent shocks (T is at least
a few thousand time steps), nonlinear pricing offers a
higher average profit than the other price schedules.
This is attributable to the intrinsically higher global op-
timum for nonlinear pricing, combined with the ability
of amoeba (properly tuned) to attain a profit of about
94% of that optimum in a dynamic setting, provided
that plenty of time is given to reach it.

While it is clear from the profit recovery curves in
Figs. 3 and 4 and from the trend towards larger prof-
its for larger shock intervals in Table 3 that re-learning
is both possible and valuable, it is of interest to com-
pare re-learning and re-optimization with an alternative
strategy. Suppose that the producer were to use the
amoeba algorithm as described for a long time, record-
ing the series of price parameters and profits and av-
eraging them to obtain an averaged profit landscape.
Then, after it was satisfied that it had a sufficient un-
derstanding of the average landscape, it could find the
optimal price parameters for this surface. Afterwards,
it would ride out any subsequent shocks with its price
schedule fixed at the optimum for the time-averaged
landscape. How would this strategy compare?

Experimentation has shown that, to within a few
tenths of a percent, the values in Table 2 for NV = 100,
C — oo provide an excellent approximation to the av-
erage profit that could be obtained with a fixed price
schedule. This is reasonable, because the landscape for
C — oo is equivalent to an average over an infinite
ensemble of landscapes with arbitary finite C'. Com-
paring the profits in the last column of Table 3 with
the results for different shock intervals, we find that
non-responsive pricing is a reasonable alternative to re-
sponsive pricing for sufficiently frequent shocks. Specif-
ically, non-responsive pricing is best for 7" < 20 for pure
bundling, T' < 500 for two-part tariff, 7' < 50 for mixed
bundling, and T' < 3000 for nonlinear pricing. The pro-
gression from smaller to larger values of the threshold
in T with increasing complexity of the price schedule
reflects the increased difficulty of learning price sched-

ules with more parameters. All of these thresholds are
very approximate, based on rough interpolation of the
values in Table 3.

Two caveats are worth mentioning. First, the anal-
ysis of this section applies for what is effectively a dis-
count rate of zero; a non-zero discount rate would place
a greater emphasis on quick learnability. Second, while
the values in the last column of Table 3 may seem to
imply that fixed pricing can be very attractive under
the right conditions, it should be recognized that fixed
pricing can fail miserably if the assumption of station-
arity in the distribution of consumer preferences is vi-
olated. The dynamic pricing schemes are not nearly so
vulnerable to such an assumption, and are likely to do
a much better job of tracking nonstationary consumer
preferences.

6 Conclusion

In this paper, we have explored how a monopolist pro-
ducer of information goods can optimize its price sched-
ule without knowing the consumer demand a priori.
Using a modified version of amoeba, a simple nonlin-
ear optimization technique, the producer can track a
shifting profit landscape with a moderate degree of re-
sponsiveness. We have characterized the producer’s re-
sponse to shocks in the aggregate demand, and related
it to the topography of the profit landscape, the de-
gree of exploration, and the frequency of the shocks.
When demand shocks are very infrequent, the nonlinear
pricing scheme is favored, and the producer can reach
profits that come within about 95% of the profit that
it could attain with a priori knowledge of the demand.
As the frequency of shocks is increased, the profitability
of any given schedule decreases, and less complex price
schedules such as two-part tariff or mixed bundling are
favored because they can be learned much more quickly.
We have also established that, if shocks are sufficiently
frequent, fixed pricing based on a learned statistical
average of the landscape can be more profitable than
continual re-learning of individual landscapes. Another
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Figure 4: Learning transient for a) pure bundling, b)
linear, ¢) mixed bundling, and d) nonlinear pricing for
C = 10. Dashed horizontal line indicates optimal profit
as given by Table 2. Note the logarithmic time scale.

finding is that, following the shock, a smaller degree of
initial exploration by amoeba is desired as the frequency
of shocks increases. This helps the producer capitalize
on previous learning, although it can increase the prob-
ability of getting stuck at a less optimal local optimum.

The modified amoeba presented here is certainly not
the best conceivable algorithm for dynamically pricing
information bundles. Amoeba is attractive in that it re-
quires only function evaluations, but despite our modi-
fications it is ill-suited in several other ways. A better
algorithm would detect and handle changing landscapes
more gracefully, and would offer more flexibility in trad-
ing between exploration and exploitation. Nonetheless,
because many of our observations could be attributed
to intrinsic properties of the landscapes, we would ex-
pect many of our observations to hold in a qualitative
sense for more sophisticated algorithms.

Several challenges will have to be met by developers
of more sophisticated dynamic pricing techniques. It
will be important to ensure that the pricing technique
can track a nonstationary distribution of consumer pref-
erences, as this is likely to drift with time. Further-
more, the dimensionality of the space being optimized
may increase as attributes other than number of items
are included in the pricing scheme (such as article cat-
egories, for example). We can expect this to increase
the amount of time needed to learn. Perhaps the most
serious challenge will be to deal with rapid shifts in
the profit landscape driven by competitive interactions
among two or more producers. This alone might neces-
sitate a fundamentally new approach.
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Appendix

The formula for the optimal nonlinear price schedule
given by Brooks et al. [3] is incorrect. The correct form
for the incremental price of the gth article is given by
the following expression:

by = wlq(zxi}N—(l—fc)q)

4kN a 3)

41— k)2kN
E*N~(g, k, N)]

(1—k)

where
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