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C Computational tools

The present section gathers a collection of technical tools used in subsequent calculations.

It includes proofs of the preliminary results stated in Subsection 2.2 of the main paper.

The following notation, not introduced in the main paper, will be useful here and sub-

sequently. For a vector x = (x1, . . . , xr), we will write x−k for the vector of all components

except xk, and x−jk for the vector of all components except xj and xk; and x−ijk similarly.

We will write xj+k for the sum of components xj and xk. Notice that if x−jk and
∑

l xl

are given then xj+k is uniquely determined.

One other useful bit of notation: if f is a function of N and c a constant, we write

f(N)
e∼ c to say that f(N) converges exponentially fast to c, i.e. |f(N) − c| . e−λN for

some λ > 0 (as in the statement of Lemma 2.2(a)).
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Lemma C.1 (Stirling’s approximation) For any positive integer K,

K! =
√
2πK(K/e)Kι with 1 < ι < e1/12K .

We cite this without proof; see e.g. [1, eq. 6.1.38].

Proof of Lemma 2.1: Expand the probability explicitly, and apply Lemma C.1 to

the factorials. Since the ι factors all tend to 1 as N → ∞, we get

P

(
xN

N − xN

∣∣∣∣∣ N ;
βN

1− βN

)
∼

√
2πN

(
N
e

)N · βxN
N (1− βN)

N−xN

√
2πxN

(
xN

e

)xN ·
√
2π(N − xN)

(
N−xN

e

)N−xN

∼
(
βNN

xN

)xN
(
(1− βN)N

N − xN

)N−xN 1√
2πNβN(1− βN)

.

We know βN → β (since |(β − βN)N | < 2c), so the result will follow if we can show

(
βNN

xN

)xN
(
(1− βN)N

N − xN

)N−xN

→ 1. (C.1)

Now, the logarithm of the left-hand side of (C.1) is Nh(xN/N, βN ), where

h(γ, δ) = γ(ln δ − ln γ) + (1− γ)(ln(1− δ)− ln(1− γ)).

The derivative of h with respect to its first argument is

∂h

∂γ
= ln

δ

γ
− ln

1− δ

1− γ
.

In particular, ∂h/∂γ is continuous on (0, 1)× (0, 1) and is zero when γ = δ. We also have

h(βN , βN ) = 0, and so

∣∣∣Nh
(xN
N
, βN

)∣∣∣ ≤ N
∣∣∣xN
N

− βN

∣∣∣ · max
γ∈[xNN ,βN ]

∣∣∣∣
∂h

∂γ
(γ, βN)

∣∣∣∣

< c · max
γ∈[xNN ,βN ]

∣∣∣∣
∂h

∂γ
(γ, βN)

∣∣∣∣

→ c · ∂h
∂γ

(β, β)

= 0.

(The notation assumes xN/N ≤ βN , but of course an identical argument applies when
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βN < xN/N .) Then (C.1) follows. �

Proof of Lemma 2.3: Taking logs and ignoring the constant, we see the problem

is to maximize
∑

i xi lnαi subject to
∑

i αi = 1. This is a concave maximization problem;

the solution is given by the first-order condition xi/αi = λ for all i, where λ is the

Lagrange multiplier on the constraint. Hence the αi must be proportional to the xi at

the maximum. �

Lemma C.2 For 1 ≤ q < r, we have

P




x1
...

xr

∣∣∣∣∣∣∣∣
K;

α1

...

αr


 = P




x1
...

xq

x

∣∣∣∣∣∣∣∣∣∣

K;

α1

...

αq

α




·P




xq+1

...

xr

∣∣∣∣∣∣∣∣
x;

αq+1/α
...

αr/α




where x = xq+1 + · · ·+ xr and α = αq+1 + · · ·+ αr (assuming α > 0).

This is the familiar decomposition property of the multinomial distribution: given

that K − x voters are of the first q types and the remaining x voters are of the re-

maining r − q types, the distribution of types among the last x voters is independent

of the distribution among the first K − x voters (and in particular is again multinomial

M(x;αq+1/α, . . . , αr/α).

Proof: Immediate from the definitions. �

Lemma C.3

∑

x even

P(x,N − x | N ;α, 1− α) = (1 + (1− 2α)N)/2.

Proof: Write the right-hand side as (((1−α)+α)N +((1−α)−α)N)/2; expanding by

the binomial theorem, the terms with odd powers of α cancel and we get
∑

x even

(
N
x

)
(1−

α)N−xαx which is the left-hand side. �

Proof of Lemma 2.2:

(a) Choose ǫ sufficiently small such that if (α1, . . . , αr) ∈ J and |βj − αj| < ǫ for each

index j, then β1, . . . , βr must still satisfy the inequalities I. (We can do this since

J is compact and the inequalities I carve out an open set.) We can find κ < 1 such

that

αβ(1− α)1−β

ββ(1− β)1−β
< κ for all α, β ∈ [0, 1] with |β − α| ≥ ǫ, (C.2)
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where we interpret 00 as 1. Indeed, the denominator of the left side of (C.2) is

bounded away from 0, whereas as α → 0 the numerator is ≤ αǫ and so converges

uniformly to 0 for β ∈ [ǫ, 1]; likewise as α → 1 the numerator is ≤ (1−α)1−ǫ and so

converges uniformly to 0 for β ∈ [0, 1− ǫ]. This shows that for some η > 0, we can

choose κ < 1 to ensure that (C.2) holds when α ≤ η or α ≥ 1−η. Otherwise, use the

fact that the logarithm of the left side of (C.2) is β(lnα− ln β)+(1−β)(ln(1−α)−
ln(1− β)). This expression is continuous on the rectangle [α, β] ∈ [η, 1− η]× [0, 1],

and takes its maximum value of zero only at α = β (by Lemma 2.3), and therefore

is bounded strictly below 0 for |α− β| ≥ ǫ. Statement (C.2) follows.

Now take any (α1, . . . , αr) ∈ J . Consider any given index j, and any value xj with

|xj/N − αj| > ǫ. Let βj = xj/N . The probability that the realized j-th component

is xj is

P

(
xj

N − xj

∣∣∣∣∣ N ;
αj

1− αj

)
= P

(
xj

N − xj

∣∣∣∣∣ N ;
βj

1− βj

)
×

(
α
βj

j (1− αj)
1−βj

β
βj

j (1− βj)1−βj

)N

≤ κN .

There are r possible choices of index j and at most N + 1 values xj to consider for

any given j, so the total probability that some event |xj/N − αj| > ǫ occurs is at

most r(N + 1)κN . This bound still decays exponentially in N , and is independent

of the choice of (α1, . . . , αr) ∈ J .

(b) Fix arbitrarily small ǫ > 0. We will show that

1

2

√
2

π(2αi + ǫ)N
. P(SI

N ∩ Tij,y | N ;α1, . . . , αr) .
1

2

√
2

π(2αi − ǫ)N
(C.3)

and the conclusion will follow by taking ǫ→ 0.

Let S ′
N = {(x1, . . . , xr) | (2αi−ǫ)N < xi+xj < (2αi+ǫ)N}. By (a), the probability

of drawing a profile in SI
N and the probability of drawing a profile in S ′

N both go to

1 exponentially as N → ∞.

Let Spar
N be the set of profiles such that xi−xj−y is even, or equivalently xi+xj−y

is even. Certainly Tij,y ⊆ Spar
N . From Lemma C.2, (xi+xj,

∑
k 6=i,j xk) is multinomial
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with parameters N ;αi +αj , 1− (αi +αj). So the probability of drawing a profile in

Spar
N is (1 ± (1 − 2(αi + αj))

N)/2, by Lemma C.3. This converges exponentially to

1/2 as N → ∞.

Write pN for the probability that P ∈ Tij,y, conditional on P ∈ S ′
N ∩ Spar

N . Be-

cause the probabilities of drawing profiles in SI
N , S

′
N , S

par
N converge exponentially to

1, 1, 1/2 respectively, it suffices to show that pN satisfies

√
2

π(2αi + ǫ)N
< pN <

√
2

π(2αi − ǫ)N
(C.4)

and then (C.3) will follow.

For any given N , fix any value of the subvector x−ij, such that

(1− 2αi − ǫ)N <
∑

k 6=i,j

xk < (1− 2αi + ǫ)N

and

xi+j = N −
∑

k 6=i,j

xk is the same parity as y.

Also write xmax
i+j and xmin

i+j for the maximum and minimum possible values of xi+j

subject to these conditions. Note that whether or not P ∈ S ′
N ∩ Spar

N depends only

on x−ij.

Conditional on the values x−ij , the remaining coordinates (xi, xj) are distributed

M(xi+j; 1/2, 1/2) by Lemma C.2. Moreover x ∈ Tij,y if and only if xi − xj = y, or

equivalently xi = (xi+j + y)/2 (which is an integer). Hence, conditional on x−ij , the

probability that x ∈ Tij,y is

hy(xi+j) = P

(
(xi+j + y)/2

(xi+j − y)/2

∣∣∣∣∣ xi+j;
1/2

1/2

)
.

Applying Lemma 2.1 together with xmin
i+j ∼ (2αi − ǫ)N, xmax

i+j ∼ (2αi + ǫ)N gives

√
2

π(2αi + ǫ)N
. min

xi+j

hy(xi+j) ≤ max
xi+j

hy(xi+j) .

√
2

π(2αi − ǫ)N
,

where the maxima are taken over xi+j ∈ [xmin
i+j , x

max
i+j ]. For each realization of x−ij,

5



the conditional probability of x ∈ Tij,y lies between minhy(xi+j) and maxhy(xi+j),

so the overall probability of x ∈ Tij,y also lies in between these bounds. At this

point (C.4) follows.

As already shown, this in turn implies (C.3), and the proof of part (b) is complete.

�

Proof of Lemma 2.4: For any K, the maximum is attained by α = K/N by

Lemma 2.3. Hence it suffices to study the behavior with respect to K of the expression(
N
K

)
(K/N)K((N−K)/N)N−K , or equivalently of b(K) = KK(N−K)N−K/K!(N−K)!. In

particular, by symmetry it suffices to show that b(K) is strictly increasing for K ≥ N/2.

Put c(K) = KK/K!. Notice that c(K + 1)/c(K) = (1 + 1/K)K which is increasing in

K (this can be verified directly by taking the logarithm and differentiating). Hence for

K ≥ N/2 we have

b(K + 1)

b(K)
=
c(K + 1)c(N −K − 1)

c(K)c(N −K)
=
c(K + 1)

c(K)

/
c(N −K)

c(N −K − 1)
> 1

because K > N −K − 1. �

Next we give a simple bound on the probability of large deviations under multinomial

distributions.

Lemma C.4 For all N,K, α,

P(K,N −K | N ;α, 1− α) ≤ e−N · (α−K/N)2

2 .

(One can obtain a slightly stronger bound from Hoeffding’s Inequality [3], but the

proof here is self-contained.)

Proof: Consider the function h(α) = lnP(K,N −K | N ;α, 1− α), whose maximum

is at α = K/N by Lemma 2.3, and its value there is certainly at most 0. Moreover

d2h/dα2 = −(K/α2 + (N −K)/(1− α)2). Now by Cauchy-Schwarz,

(
K

α2
+

N −K

(1− α)2

)(
α2 + (1− α)2

)
≥ (

√
K +

√
N −K)2 ≥ N.

Then d2h/dα2 ≤ −N so h(α) ≤ −N(α−K/N)2/2. �

The next two results concern the quantity σ∗
N , defined in Subsection 3.1.
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Lemma C.5

e−
1

3(N−1)

√
2

πN
< σ∗

N < e
1

12N

√
2N

π(N2 − 1)
.

Proof: Put α = 1/2 if N is even and (N − 1)/2N if N is odd. By Lemma C.1, write

σ∗
N =

(
N

αN

)
ααN (1− α)(1−α)N

=
ιN(N/e)

N
√
2πN

[ιαN(αN/e)αN
√
2παN ] · [ι(1−α)N((1− α)N/e)(1−α)N

√
2π(1− α)N ]

ααN (1− α)(1−α)N

where the three ιx terms satisfy 1 < ιx < e1/12x. Cancelling common factors reduces to

ιN
ιαN ι(1−α)N

·
√

1

2πNα(1− α)
.

Both αN and (1−α)N are at least (N−1)/2, hence e−1/3(N−1) < ιN/ιαN ι(1−α)N < e1/12N ;

and α(1 − α) ∈ {(N − 1)2/4N2, 1/4}, hence the square-root term is either
√
2/πN or√

2N/π(N2 − 1). �

Corollary C.6 σ∗
N is decreasing in N .

Proof: For N < 15, σ∗
N < σ∗

N−1 can be verified by direct computation. For N ≥ 15,

Lemma C.5 implies that it is sufficient to check that

e
1

12N

√
N

N2 − 1
< e−

1
3(N−2)

√
1

N − 1
(C.5)

or equivalently

e
1

12N
+ 1

3(N−2)

√
N

N + 1
< 1. (C.6)

Since ((N + 1)/N)N+1 > e, we have
√
N/(N + 1) < e−1/2(N+1), so (C.6) follows from the

inequality 1/12N + 1/3(N − 2) < 1/2(N + 1) which holds for N ≥ 15. �

We provide a few more useful bounds.

Lemma C.7 If x, y ≥ K > 0, then for all α we have

P(x, y | x+ y;α, 1− α) ≤ e1/12√
πK

.
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Proof: By Lemma 2.3, the probability is maximized by taking α = x/(x+ y). In this

case, we can write the probability explicitly using Lemma C.1 and simplify as in Lemma

C.5 to obtain

P

(
x

y

∣∣∣∣∣ x+ y;
x/(x+ y)

y/(x+ y)

)
≤ e1/12

√
2π(x+ y)√

2πx
√
2πy

.

Either (x + y)/x ≤ 2 or (x + y)/y ≤ 2, so we can cancel the numerator radical with one

of the denominator radicals and a
√
2 factor, and the result follows. �

Lemma C.8 There exists an absolute constant c > 0 with the following property. For

every positive integer N and every nonempty subset S ⊆ {0, . . . , N}, there exists α ≥
max(S)/N such that

∑

K∈S

[
P

(
K

N −K

∣∣∣∣∣ N ;
α

1− α

)
−P

(
K − 1

N −K + 1

∣∣∣∣∣ N ;
α

1− α

)]
≥ c

N
.

Proof: It suffices to prove the lemma when S = {K}. Indeed, since P(K,N −
K | N ;α, 1−α) is increasing in K when K ≤ α(N +1), every term on the left-hand side

of the inequality in the lemma is nonnegative as long as α ≥ max(S)/N , so it suffices to

show that the term corresponding to K = max(S) is at least c/N .

So let S = {K}. If K = N then take α = 1. If K = 0 then take α = 0. Otherwise,

let L = K + ⌊
√
K(N −K)/N⌋; we will show that α = L/N does the job. (Note that

L ≤ N , i.e. α ≤ 1.) We have

P

(
K

N −K

∣∣∣∣∣ N ;
α

1− α

)
−P

(
K − 1

N −K + 1

∣∣∣∣∣ N ;
α

1− α

)

= P

(
K

N −K

∣∣∣∣∣ N ;
α

1− α

)
·
[
1− K

N −K + 1
· 1− α

α

]

= P

(
L

N − L

∣∣∣∣∣ N ;
α

1− α

)
·

[
L−1∏

k=K

k + 1

N − k

1− α

α

]
·
[
1− K

N −K + 1
· 1− α

α

]
.

Now, the middle bracketed expression is a product consisting of L −K factors, each

of which is greater than

K

N −K
· 1− α

α
=
K(N − L)

L(N −K)
≥ 1− 1

L−K
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(to verify the last inequality, cross-multiply and rearrange terms to find that it is equivalent

to (L−K)2N ≤ L(N −K), which is true). Hence this product is

>

(
1− 1

L−K

)L−K

≥ 1

4

as long as L −K ≥ 2. Otherwise, L −K = 0 and the middle product is empty, or else

L −K = 1 and the middle product equals (N −K − 1)/(N −K) ≥ 1/2 (notice that if

K = N − 1 then L = K). Hence in every case the middle bracketed expression is ≥ 1/4.

It therefore suffices to show that there is some constant c′ such that the bound

P

(
L

N − L

∣∣∣∣∣ N ;
α

1− α

)
·
[
1− K

N −K + 1
· 1− α

α

]
≥ c′

N
(C.7)

always holds. We split into three cases.

• Suppose K ≤ N/2 and L > K. The P(· · · ) factor is bounded below by σ∗
N &√

2/πN , by Lemma 2.4. Also, L−K > 0 implies (1/2)
√
K(N −K)/N ≤ L−K ≤

K, so

1− K

N −K + 1
· 1− α

α
≥ 1− K(N − L)

L(N −K)

=
(L−K)N

L(N −K)

≥ L−K

L

≥ L−K

2K

≥ 1

4

√
N −K

NK

=
1

4

√
1

K
− 1

N

≥ 1

4

√
1

N

where there last step uses the assumption K ≤ N/2. So each of the two factors on

the left side of (C.7) is bounded below by a constant times
√
1/N .

• Suppose K > N/2 and L > K. In this case, we apply Stirling’s approximation (C.1)

as usual to observe that P(L,N − L | N ;α, 1− α) is bounded below by a constant
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times
√
N/L(N − L). Combining with the chain of inequalities from the previous

case, we see that the left side of (C.7) is bounded below by a constant times

√
N

L(N − L)
· 1
4

√
N −K

NK
≥ 1

4

√
N

K(N −K)
·
√
N −K

NK
=

1

4K
≥ 1

4N
.

• Finally suppose L = K. This can only happen for K = 1 or N − 1, or for small N

(which we can ignore since the result is asymptotic), and so we verify (C.7) directly

in these cases. We have P(L,N − L | N ;α, 1 − α) = ((N − 1)/N)N−1 ≥ 1/e, a

constant. If K = 1 then the second factor in (C.7) is 1/N ; if K = N − 1 then this

factor is 1/2.

This verifies that (C.7) holds in every case.

�

Lemma C.9 Fix any positive constant c. If N is taken large enough and α ≤ c/
√
N

then
N∑

K=⌈3c
√
N⌉

P

(
K

N −K

∣∣∣∣∣ N ;
α

1− α

)
≤ 1

N
.

(Actually the left side goes to zero exponentially fast in
√
N , but this very crude bound

is all we will need.)

Proof: Put p(K) = P(K,N −K | N ;α, 1− α). We have

p(K + 1)

p(K)
=
N −K

K + 1
· α

1− α
≤ N −K

K
· α

1− α
≤ 1

2

whenever K ≥ 2Nα. Since p(K) ≤ 1 for K = ⌈2Nα⌉, we have by induction p(K) ≤
1/2K−⌈2Nα⌉ for K ≥ 2Nα, and therefore by the expression in the lemma statement is at

most ∞∑

K=⌈3Nα⌉

1

2K−⌈2Nα⌉ =
1

2⌈3Nα⌉−⌈2Nα⌉−1
≤ 1

2c
√
N−2

.
1

N
.

�

The remaining lemmas in this section are bounds on certain alternating sums of multi-

nomial probabilities. These bounds are useful for the construction in Appendix H.

If S is a set of positive integers, let σ(S) and π(S) denote, respectively, the sum and

the product of elements of S (with σ(∅) = 0, π(∅) = 1). This use of σ of course overlaps

with the notation for susceptibility, but there should be no ambiguity.
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Lemma C.10 Fix ǫ > 0 and α ∈ (0, 1/2), and fix a positive integer d. There exists a

threshold N0 with the following property: For all N > N0, all α ∈ [α, 1 − α], all integers

K, and all sets S of positive integers with |S| = d,

∣∣∣∣∣
∑

T⊆S

(−1)|T |P

(
K − σ(T )

N −K + σ(T )

∣∣∣∣∣ N ;
α

1− α

)∣∣∣∣∣ ≤ π(S)N−d( 1
2
−ǫ).

Proof: The expression inside the absolute value is (up to a sign) the coefficient of zK

in the polynomial

Qα,S(z) =

[
∏

s∈S
(zs − 1)

]
· (αz + (1− α))N .

However, the standard formula for coefficient extraction using complex roots of unity tells

us that this coefficient also equals

1

L

L∑

l=1

ζ−KlQα,S(ζ
l),

where L is any integer greater than the degree of Qα,S and ζ is a primitive Lth root

of unity. Therefore, it suffices to show that for some N0 the following holds: whenever

N > N0, for all choices of S and α and every complex number z with |z| = 1,

|Qα,S(z)| ≤ π(S)N−d( 1
2
−ǫ). (C.8)

We consider two cases for z. Let θ = arg z.

• Suppose |θ| < N−( 1
2
−ǫ). Then |z − 1| < N−( 1

2
−ǫ), from which

|zs − 1| =
∣∣∣∣∣

s−1∑

t=0

zt(z − 1)

∣∣∣∣∣ ≤ s|z − 1| < sN−( 1
2
−ǫ)

and then multiplying across all s ∈ S, together with |αz+(1−α)| ≤ 1, gives (C.8).

• Otherwise, |θ| ≥ N−( 1
2
−ǫ). As long as N is not too small, this implies

|αz + (1− α)|2 = (1− α + α cos θ)2 + (α sin θ)2

= (1− α)2 + α2 + 2(1− α)α cos θ

< (1− α)2 + α2 + 2(1− α)α

√
1− 1

4N1−2ǫ
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(this follows from cos2N−( 1
2
−ǫ) = 1− sin2N−( 1

2
−ǫ) < 1− 1/4N1−2ǫ)

< (1− α)2 + α2 + 2(1− α)α

(
1− 1

8N1−2ǫ

)

= 1− (1− α)α

4N1−2ǫ

≤ 1− c′

N1−2ǫ

where c′ = (1− α)α/4. Hence

|αz + (1− α)|N <
(
1− c′N−(1−2ǫ)

)N/2

=
[(
1− c′N−(1−2ǫ)

)N1−2ǫ/2
]N2ǫ

< [exp(−c′/2)]N2ǫ

≤ N−d( 1
2
−ǫ)/2d

as long as N is larger than some threshold that depends only on α, ǫ, d. Since also

|zs − 1| ≤ 2 for each s ∈ S, the bound (C.8) holds in this case also.

�

The next lemma will depend on the following notation. For N,K integers, α ∈ [0, 1],

and Z a set of integers, put

Σ(α,Z,N,K) =
∑

x∈Z
P

(
K − x

N −K + x

∣∣∣∣∣ N ;
α

1− α

)
.

Lemma C.11 Let d be a given positive integer. For every positive integer h, let Zh

denote the set {0, 1, . . . , 2hd − 1}. Then it is possible to partition each set Zh into 2h

subsets Zh
0 , Z

h
1 , . . . , Z

h
2h−1

, of size 2h(d−1) each, so that the following property is satisfied:

For any ǫ > 0 and α ∈ (0, 1/2), there exists a threshold N0 such that for all N > N0,

all α ∈ [α, 1− α], all h, and all integers K,

∣∣Σ(α,Zh
i , N,K)− Σ(α,Zh

j , N,K)
∣∣ ≤ 2h(d

2+d−1)hN−d( 1
2
−ǫ) (C.9)

for any two sets Zh
i , Z

h
j in the partition of Zh.

Proof: We first describe the partition of Zh. Consider each of the numbers 0, 1, . . . ,

2hd − 1 written out as a binary string with hd digits. We assign each such number x to a

12



subset Zh
i as follows:

• Divide the hd digits of x into h segments of d digits each;

• next, replace each segment with a 0 or a 1, depending whether the number of 1’s in

that segment is even or odd;

• finally, read the resulting h-digit string as a binary number i ∈ {0, 1, . . . , 2h − 1},
and assign x to Zh

i .

It should be clear that each Zh
i consists of exactly 2h(d−1) values x.

Now let N0 be the threshold given by Lemma C.10, with the same ǫ, α, d as in the

current lemma. Clearly this threshold does not depend on h, so henceforth we will consider

any fixed h, and drop the superscripts on the Zi’s. Assume N > N0, and let α ∈ [α, 1−α]
be arbitrary.

It suffices to show that if the binary representations of i and j differ by just one digit,

then for all K,

|Σ(α,Zi, N,K)− Σ(α,Zj , N,K)| ≤ 2h(d
2+d−1)N−d( 1

2
−ǫ). (C.10)

Indeed, since one can get from any i to any j by at most h single-digit changes, applying

(C.10) repeatedly will then imply (C.9).

Without loss of generality, i has a 0 in the (r + 1)th position from the right, while j

has a 1 in that position; all other digits in the binary representations of i and j are the

same. Then define three sets Z ′
∅, Z

′
i, Z

′
j :

• Z ′
∅ consists of all values of x ∈ Zi such that the (dr+1)th, (dr+2)th, . . . , (dr+d)th

digits from the right are all 0;

• Z ′
i consists of all numbers that can be represented as a sum of an even number of

elements of the set {2dr, 2dr+1, . . . , 2dr+d−1};

• Z ′
j consists of all numbers that can be represented as a sum of an odd number of

elements of {2dr, 2dr+1, . . . , 2dr+d−1}.

Then, Zi consists of all numbers that can be represented as a sum of an element of Z ′
∅ and

one of Z ′
i, and for each such number, the representation is unique. Likewise Zj consists of

numbers that can be represented (uniquely) as a sum of an element of Z ′
∅ and one of Z ′

j.

13



Applying the conclusion of Lemma C.10 with S = {2dr, 2dr+1, . . . , 2dr+d−1}, and using

the easy bound π(S) ≤ 2d(dr+d−1), gives the following: for any K,

∣∣∣∣∣∣

∑

x∈Z′
i

P

(
K − x

N −K + x

∣∣∣∣∣ N ;
α

1− α

)
−
∑

x∈Z′
j

P

(
K − x

N −K + x

∣∣∣∣∣ N ;
α

1− α

)∣∣∣∣∣∣

≤ 2d(dr+d−1)N−d( 1
2
−ǫ). (C.11)

Now replace K by K − y for each possible y ∈ Z ′
∅, and sum over all y. We have

∑

y∈Z′
∅

∑

x∈Z′
i

P

(
K − y − x

N −K + y + x

∣∣∣∣∣ N ;
α

1− α

)
=
∑

x∈Zi

P

(
K − x

N −K + x

∣∣∣∣∣ N ;
α

1− α

)
,

and likewise for Z ′
j and Zj. Thus, summing (C.11) over the 2(d−1)(h−1) choices of y ∈ Z ′

∅
and applying the triangle inequality gives

|Σ(α,Zi, N,K)− Σ(α,Zj , N,K)| ≤ 2(d−1)(h−1) · 2d(dr+d−1)N−d( 1
2
−ǫ)

≤ 2(d−1)(h−1)+d(hd−1)N−d( 1
2
−ǫ).

Since (d− 1)(h− 1) + d(hd− 1) ≤ h(d2 + d− 1), (C.10) follows. �

D Assorted shorter proofs

Proof of Proposition 3.2:

(a) The argument is actually slightly more complex than that given in the main text,

because the alphabetical tie-breaking leads to different cases depending on the parity

of N .

If N is even, let the manipulator’s preferences be ACB . . ., and let the opponent-

profile P be distributed according to φ =
(
1
2
B, 1

2
C
)
(only voters’ top choices mat-

ter). Then the manipulator cannot change the outcome unless P =
(
N
2
B, N

2
C
)
,

in which case strategically voting for C instead of A beneficially changes the out-

come from B to C. If N is odd, let the preferences be ABC . . ., and let φ =(
N−1
2N

B, N+1
2N

C
)
. Then the manipulator is pivotal precisely when the opponent-

profile is P =
(
N−1
2

B, N+1
2

C
)
, in which case voting for B changes the outcome

from C to B. In both cases, the probability of being pivotal (2.3) is σ∗
N .
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(b) First we prove the lower bound. Consider any small ǫ > 0. Let the manipulator’s

preference be ABC . . ., and consider a distribution φ ∈ ∆(C) of the other voters’

first-place votes such that B and C are each chosen with probability 1
M

+ ǫ, and

every other candidate is chosen with probability 1
M

− 2ǫ
M−2

.

Consider susceptibility as formulated in (2.3), where the proposed manipulation ≻′

is one that ranks B first, and the set C+ of desirable candidates is {A,B}. Write

the relevant expectation as

σ ≥
∑

P

[
I(f(≻′, P ) ∈ C+)− I(f(≻, P ) ∈ C+)

]
P(P | N ;φ). (D.1)

(We write ≥ rather than =, since we are considering a specific distribution φ rather

than the max.) Say that an opponent-profile P is relevant if B and C both receive

a vote share between 1/M+ǫ/2 and 1/M+3ǫ/2, and every other candidate receives

less than 1/M of the vote. By Lemma 2.2(a), the probability that the realized profile

is relevant is
e∼ 1, so we need only consider the contribution of the relevant profiles

to (D.1). For any such profile (assuming N is large enough), no matter what the

manipulator does, the outcome will be either B or C. The relevant profiles that

contribute to (D.1) are exactly the ones where the manipulator is pivotal in changing

the outcome from C to B — that is, the ones for which B receives exactly one less

vote than C. It follows from Lemma 2.2(b) that the total probability of these profiles

is ∼ (1/2)
√

1/π
(

1
M

+ ǫ
)
N . (Here the lemma applies with B,C corresponding to

the indices i, j, and y = −1. Note that the definition of a relevant profile is a set of

linear inequalities on the vote shares.)

Thus we have

σ &
1

2

√
1

π
(

1
M

+ ǫ
)
N
.

Taking ǫ→ 0 gives the lower bound in Proposition 3.2(b).

Now we prove the upper bound. For each value of N , consider the true preference,

manipulation, and belief φ that attain the maximum in (2.3). (These may vary

depending on N , but we will not bother to make this dependence explicit in the

notation.) Suppose that, for a given N , the manipulator’s true first choice is Ai and

the reported first choice is Aj. This manipulation can be beneficial only if it changes

the outcome from Ak, for some k 6= i, j, to Aj. For each k, let Skj be the set of all

N -profiles P such that f(Ai, P ) = Ak and f(Aj, P ) = Aj; and let S→j = ∪k 6=i,j Skj.
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We wish to show that P(S→j | N ;φ) .
√
M/πN .

Now, consider again any fixed ǫ > 0. For each k 6= i, j, we have

max
φ: φj≥(1+ǫ)φk

P(Skj | N ;φ)
e∼ 0. (D.2)

Indeed, each opponent-profile P = (x1, . . . , xM) ∈ Skj has xj + 1, xk ≥ N/M , and

also xj = xk or xj = xk−1. Consider such a profile P . Let p(x−jk) be the conditional

probability of realizing P , given that the components x−jk are realized. By Lemmas

C.2 and C.4,

p(x−jk) = P

(
xj

xk

∣∣∣∣∣ xj + xk;
φj/(φj + φk)

φk/(φj + φk)

)
≤ e

−(xj+xk)·
(

xj
xj+xk

− φj
φj+φk

)2

/2
.

The squared expression in the exponent is bounded away from zero, while the xj+xk

factor is ≥ N/M , so the upper bound goes to zero exponentially in N . So, given

any value of x−jk, the conditional probability of realizing values of xj and xk for

which the resulting profile is in Skj is bounded above by an expression that decays

exponentially in N . Hence the unconditional probability of Skj satisfies this same

exponential bound, and (D.2) holds.

On the other hand, the worst-case belief φ cannot have P(S→j | N ;φ)
e∼ 0, since

we already proved this probability satisfies a lower bound on the order of
√
1/N .

Thus, as long as N is large enough, there must be some k∗ such that φj < (1+ǫ)φk∗ .

(This k∗ may not be unique, and may vary depending on N .)

Next, we claim that for any value of x−jk∗ there is at most one way of choosing

xj, xk∗ (given the additional constraint
∑

l xl = N) so that the resulting N -profile

lies in S→j. Indeed, suppose for a contradiction that (xj, xk∗ , x−jk∗) ∈ S→j, and also

(xj + s, xk∗ − s, x−jk∗) ∈ S→j for some positive integer s. Then, in particular,

f(xi, xj + 1, xk∗ , x−ijk∗) = Aj; (D.3)

f(xi + 1, xj + s, xk∗ − s, x−ijk∗) = Al 6= Ai, Aj. (D.4)

If s ≥ 2, then the profile in (D.4) gives a (weakly) greater advantage for j relative

to l than the profile in (D.3) does, so if plurality rule chooses Aj in (D.3) it should

choose Aj in (D.4) also, a contradiction. And if s = 1, then the profile in (D.4)

differs from that in (D.3) by a vote shift from Ak∗ to Ai, which cannot change the
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winner from Aj to Al — a contradiction again. Thus the claim holds.

Consider any x−jk∗ such that there exist xj, xk∗ for which the resulting profile lies

in S→j. We will again bound the probability of realizing this profile, conditional

on x−jk∗. For this pivotal profile, we must have xj+k∗ ≥ xj ≥ (N + 1)/M − 1 ≥
N(1/M−ǫ) (as long as N is large). The conditional probability of realizing (xj, xk∗)

given x−jk∗ is

p(x−jk∗) = P

(
xj

xk∗

∣∣∣∣∣ xj+k∗ ;
φj/(φj + φk∗)

φk∗/(φj + φk∗)

)
.

(i) If xj > (1 + 2ǫ)xk∗ then this probability p(x−jk∗) is bounded above by an

expression that decays exponentially in xj+k∗ (by Lemma 2.2(a) and φj <

(1+ǫ)φk∗). In particular, across all choices of x−jk∗ such that the corresponding

profile in S→j satisfies xj > (1 + 2ǫ)xk∗ , the probability p(x−jk∗) is bounded

above uniformly by a quantity that decays exponentially in N .

(ii) If xj ≤ (1 + 2ǫ)xk∗ , then (since we also have xj + 1 ≥ xk∗) we get xj+k∗ ≥
N(2/M − 3ǫ). Hence

p(x−jk∗) ≤ max
x+y≥N(2/M−3ǫ)

x≤(1+2ǫ)y
y≤(1+2ǫ)x

P(x, y | x+ y;αx, αy).

For given x + y, the choices of x, y, αx, αy that attain the max are given by

Lemmas 2.3 and 2.4, and we obtain

p(x−jk∗) ≤ max
K≥N(2/M−3ǫ)

P
(
x, y

∣∣∣ K;
x

K
,
y

K

)
with x =

⌈
K

2 + 2ǫ

⌉
, y = K − x.

Denote the expression inside this maximum by p̃(K).

We have thus shown that the conditional probability of realizing (xj, xk∗) forming

a profile in S→j, given x−jk∗ , satisfies

p(x−jk∗) ≤ max{ce−λN , max
K≥N(2/M−3ǫ)

p̃(K)}.

(Here c, λ are some positive values.) This inequality applies to the conditional

probability of obtaining a profile x ∈ S→j, given x−jk∗ . So it also applies to the
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unconditional probability of drawing a profile in S→j:

P(S→j | N ;φ) ≤ max{ce−λN , max
K≥N(2/M−3ǫ)

p̃(K)}.

Now, Lemma 2.1 gives

p̃(K) ∼
√

1

2πK
(

1
2+2ǫ

) (
1+2ǫ
2+2ǫ

) .

Hence

P(S→j | N ;φ) . max

{
ce−λN ,

√
1

2πN
(

2
M

− 3ǫ
) (

1
2+2ǫ

) (
1+2ǫ
2+2ǫ

)
}
.

Clearly, for N large enough the square-root term dominates.

Finally, taking ǫ→ 0 gives us the simpler asymptotic upper bound
√
M/πN , which

is what we wanted to show.

�

Proof of Proposition 3.3:

Given Proposition 3.2(a), we need only show σplur
N ≤ σ∗

N . Consider any true preference

for the manipulator and proposed manipulation. For this proof only, label the candidates

so that the manipulator’s preference is ABC, not necessarily corresponding to the tie-

breaking order. A manipulation from A to C can never be beneficial; manipulation to B

can be beneficial only when it changes the winner from C to B. So we need to show that

the probability of being pivotal from C to B is at most σ∗
N . Let

S0 = {(xA, xB, xC) | xB = xC − 1 ≥ xA},

S1 = {(xA, xB, xC) | xB = xC ≥ xA + 1}.

The relevant set of pivotal profiles is contained either in S0 or S1 (depending on which

of B,C wins a tiebreaker), so we just need to show that for any φ, both S0 and S1 are

events of total probability at most σ∗
N .

Consider the φ that maximizes P(S0 | N ;φ). Write φ = (φA, φB, φC). We then have

18



φC ≥ φA. Proof: Suppose not. Then

d

dǫ
[P(S0 | N ;φA − ǫ, φB, φC + ǫ)]

=
d

dǫ


 ∑

(xA,xB ,xC)∈S0

N !

xA!xB!xC !
(φA − ǫ)xAφxB

B (φC + ǫ)xC




=
∑

(xA,xB ,xC)∈S0

N !

xA!xB!xC !
(φA − ǫ)xAφxB

B (φC + ǫ)xC ·
(

xC
φC + ǫ

− xA
φA − ǫ

)
.

For ǫ close to 0, the last factor in parentheses is always positive (since xC ≥ xA through-

out S0). So changing the belief from (φA, φB, φC) to (φA − ǫ, φB, φC + ǫ) increases the

probability of drawing a profile in S0, contrary to the assumption that the belief was

chosen to maximize this probability.

Exactly the same reasoning applies for S1. Thus it suffices to show that each of S0, S1

has probability at most σ∗
N , assuming that the belief φ = (φA, φB, φC) satisfies φA ≤ φC .

In particular, we may assume φA ≤ 1/2.

We need to show four things:

(i) when N is odd, the probability of drawing a profile in S0 is at most σ∗
N ;

(ii) when N is odd, the probability of S1 is at most σ∗
N ;

(iii) when N is even, the probability of S0 is at most σ∗
N ;

(iv) when N is even, the probability of S1 is at most σ∗
N .

First consider (i), so N is odd. Then, for (xA, xB, xC) ∈ S0, we have xA even and at

most xmax
A = 2⌊N/6⌋, so

P(S0 | N ;φ) =
∑

xA even
0≤xA≤xmax

A

P

(
xA

N − xA

∣∣∣∣∣ N ;
φA

1− φA

)
P

(
xB

xC

∣∣∣∣∣ N − xA;
φ′
B

φ′
C

)

by Lemma C.2 (where φ′
B = φB

φB+φC
, φ′

C = φC

φB+φC
). Since the relevant xB, xC are equal

or differ by 1, Lemma 2.3 gives P(xB, xC | N − xA;φ
′
B, φ

′
C) ≤ σ∗

N−xA
, which in turn is at
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most σ∗
N−xmax

A
by Corollary C.6. Hence, the above sum is at most

P

(
0

N

∣∣∣∣∣ N ;
φA

1− φA

)
σ∗
N +

∑

xA even
2≤xA≤xmax

A

P

(
xA

N − xA

∣∣∣∣∣ N ;
φA

1− φA

)
σ∗
N−xmax

A

≤ P

(
0

N

∣∣∣∣∣ N ;
φA

1− φA

)
(σ∗

N − σ∗
N−xmax

A
) +

[
∑

xA even

P

(
xA

N − xA

∣∣∣∣∣ N ;
φA

1− φA

)]
σ∗
N−xmax

A
.

In this last line, the first probability is (1−φA)
N , and the bracketed sum is the probability

that a binomial distribution with parameters N ;φA produces an even number of successes,

which is (1 + (1 − 2φA)
N)/2 (Lemma C.3). Thus, the probability of drawing a profile in

S0 is at most

h(φA) = (1− φA)
N(σ∗

N − σ∗
N−xmax

A
) +

1 + (1− 2φA)
N

2
σ∗
N−xmax

A
.

Let us find the maximum of h on [0, 1/2] (since by assumption φA lies in this interval).

Differentiating gives

dh

dφA

= −N
[
(1− φA)

N−1(σ∗
N − σ∗

N−xmax
A

) + (1− 2φA)
N−1σ∗

N−xmax
A

]
.

This is negative if (
1− 2φA

1− φA

)N−1

>
σ∗
N−xmax

A
− σ∗

N

σ∗
N−xmax

A

,

which holds precisely when φA is sufficiently small. Therefore h is initially decreasing and

then increasing, so the maximum occurs at one of the endpoints of the interval,

h(0) = σ∗
N or h

(
1

2

)
=

1

2N
σ∗
N +

(
1

2
− 1

2N

)
σ∗
N−xmax

A
.

The first of these is larger as long as σ∗
N ≥ σ∗

N−xmax
A

/2. Using the fact that N − xmax
A ≥

2N/3 and the bounds in Lemma C.5, we can verify that this always holds. Thus, we have
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shown that the probability of drawing a profile in S0 is

P(S0 | N ;φ) ≤ h(φA) ≤ h(0) = σ∗
N .

That takes care of (i).

Next we turn to (ii), where we consider the probability of drawing a profile in S1. In

this case, each such profile has xA odd and at most xmax
A = 2⌊N/6⌋+1. Hence, by similar

calculations, the relevant probability is

∑

xA odd
1≤xA≤xmax

A

P

(
xA

N − xA

∣∣∣∣∣ N ;
φA

1− φA

)
P

(
xB

xC

∣∣∣∣∣ N − xA;
φ′
B

φ′
C

)

≤
[
∑

xA odd

P

(
xA

N − xA

∣∣∣∣∣ N ;
φA

1− φA

)]
σ∗
N−xmax

A
.

The bracketed expression is the probability that a binomial distribution with parameters

N ;φA produces an odd number of successes, which is (1−(1−2φA)
N)/2 ≤ 1/2. (Remember

that φA ≤ 1/2.) Therefore the probability of drawing a profile in S1 is at most σ∗
N−xmax

A
/2.

This is less than σ∗
N , again by straightforward use of the bounds from Lemma C.5.

In case (iii), the relevant set of profiles again has xA odd and at most xmax
A = 2⌊N/6⌋+

1, so the reasoning used for (ii) applies again word for word.

Finally, in (iv), the relevant set of profiles has xA even and at most xmax
A = 2⌊N/6⌋.

In this case the reasoning used for (i) applies again.

This covers all four cases (i)-(iv), so the probability that the manipulator is pivotal is

never more than σ∗
N .

�

Proof of Proposition 3.5: Again, the tie-breaking assumption leads us to split into

cases depending on parity. First suppose M is even. Let the manipulator’s preferences

be A1A2 . . . AM . Suppose the belief φ is

1
2
A1A2A3 . . . AM

1
2
A2A1A3 . . . AM

.

That is, all the other voters prefer A1 and A2, then the remaining candidates in numerical

order, but are evenly split between ranking A1 first or A2 first. The manipulator considers

manipulating by moving A2 to the bottom, thus reporting A1A3 . . . AMA2.
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Regardless of whether the manipulator tells the truth or lies, A1 will have a higher

score than A3, . . . , AM , so the winner must be A1 or A2. Suppose x of the other voters

rank A1 first, and the remaining N −x rank A2 first. The difference in scores between A1

and A2 is (x+ 1)− (N − x) if the manipulator tells the truth and (x+M − 1)− (N − x)

if he lies. Therefore, manipulation improves the outcome from A2 to A1 if

2x−N + 1 < 0 ≤ 2x−N +M − 1

or equivalently
N − (M − 1)

2
≤ x <

N − 1

2
.

Otherwise, manipulation has no effect on the outcome.

Given that x has to be an integer, the possible values of x in this range are ⌊N/2−K⌋
for K = 1, 2, . . . , (M − 2)/2. For each such K, Lemma 2.1 tells us that the probability

that x = ⌊N/2 − K⌋ is ∼
√

2/πN . Therefore, the total probability of being pivotal is

∼ M−2
2

√
2/πN , and the result follows via (2.3).

Now suppose M is odd. The argument is essentially the same, except that we have

to consider different cases depending on the parity of N . If N is even, then we consider

exactly the same preferences, the same manipulation, and the same belief as before. Again,

the manipulator is pivotal if (N − (M − 1))/2 ≤ x < (N − 1)/2. The integer values of x

in this range are N/2−K for K = 1, 2, . . . , (M − 1)/2.

IfN is odd, then we reverse the roles of A1 and A2 throughout. Thus, the manipulator’s

belief is the same as before, but his true preference is A2A1A3 . . . AM , and the proposed

manipulation is A2A3 . . . AMA1. Let x now denote the number of other voters who rank

A2 first. Then the score of A2 minus the score of A1 is (x+1)−(N−x) if the manipulator

tells the truth and (x+M − 1)− (N − x) if he lies; in view of alphabetical tie-breaking,

the manipulator is pivotal if

2x−N + 1 ≤ 0 < 2x−N +M − 1.

The integer values of x satisfying these inequalities are x = (N + 1)/2 − K for K =

1, 2, . . . , (M − 1)/2.

So for both N even and N odd, the manipulator is pivotal when x = ⌈N/2⌉ −K for

some K = 1, 2, . . . , (M − 1)/2. The total probability of this event is ∼ M−1
2

√
2/πN .

�

We next prove Lemma 4.8, the ancillary result en route to the local average lemma.
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We use the notation f(φ), fAi
(φ) developed in Subsection 4.3 of the main paper.

Proof of Lemma 4.8: Put g(x) = fAi
(φx).

The proof is based on the following observation. Consider the definition (2.4) of P,

and take the partial derivative with respect to a parameter αi (ignoring the fact that our

interpretation of (2.4) required α1 + · · ·+ αr = 1). We obtain

∂

∂αi

P




x1
...

xi
...

xr

∣∣∣∣∣∣∣∣∣∣∣∣∣

K;

α1

...

αi

...

αr




= K · P




x1
...

xi − 1
...

xr

∣∣∣∣∣∣∣∣∣∣∣∣∣

K − 1;

α1

...

αi

...

αr




. (D.5)

On the right-hand side, xi has been replaced by xi − 1 and all other xj are unchanged.

Now consider the function of x,

fAi
(φx) =

∑

f(P )=Ai

P


 P

∣∣∣∣∣∣∣
N + 1;

α(1− x) ≻
αx ≻′

1− α φ


 .

The sum is over all (N + 1)-profiles P such that f(P ) = Ai. Differentiating this sum

term-by-term with respect to x, and applying (D.5), we obtain

d

dx

(
fAi

(φx)
)
=

∑

f(P )=Ai

(
αÑ ·P(P− ≻′ | N ;φx)− αÑ ·P(P− ≻ | N ;φx)

)
. (D.6)

The interpretation of the P(P− ≻′ | · · · ) term is that if P contains at least one ≻′ vote,

then P− ≻′ is the N -profile consisting of P with a ≻′ removed, and otherwise we simply

interpret the whole term to be zero; similarly for the P(P− ≻ | · · · ) term.

Now (D.6) can be rewritten

d

dx

(
fAi

(φx)
)
= αÑ


 ∑

f(≻′,P )=Ai

P(P | N ;φx)−
∑

f(≻,P )=Ai

P(P | N ;φx)


 .

Here the first sum is over N -profiles P with f(≻′, P ) = Ai, and the second is over P with

f(≻, P ) = Ai. This in turn is equivalent to the difference given in the lemma statement.

�

We also include here the proof of the result in Appendix A. It is basically a routine
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unwinding of definitions.

Proof of Proposition A.1: It suffices to show that for any symmetric equilibrium

strategies of the voters, the following holds:

(a) if the planner chooses a voting rule f with σ(f) ≤ ǫ then her utility is given by

minP∈LN+1 V (f(P ), P );

(b) if she chooses f with σ(f) > ǫ, then her utility is V .

Statement (a) holds because the voters will never manipulate. Specifically, suppose

the state is ω ∈ Ω∗. Then, σω(f) < σ(f) ≤ ǫ. Consider a voter with utility function u,

manipulation cost ǫ, and belief ψ about the types of the other voters. Composing the

strategy τ of the other voters with ψ gives a probability distribution φ ∈ ∆(L), so that

other voters’ actual reports are expected to be independent draws from φ. Consider any

manipulation ≻′∈ L. From the definition of σω(f) we have

u(ω(f,≻′, φ))− u(ω(f,≻∗ (u), φ)) ≤ σω(f) < ǫ ≤ ǫ.

Equivalently,

u(ω(f,≻′, φ))− ǫ < u(ω(f,≻∗ (u), φ)).

So the voter will choose to simply report the true preference ≻∗ (u). Thus, in all possible

states ω ∈ Ω∗, each equilibrium strategy τ of the voters will specify that they always tell

the truth. Then, whenever the voters’ true preferences realize the (ordinal) profile P , the

planner’s utility is V (f(P ), P ), regardless of the state. From the maxmin specification of

the planner’s utility, claim (a) follows.

For (b), consider any f with σ(f) > ǫ. We know that there exist some preferences

≻1, . . . ,≻N+1 and reports ≻̂1, . . . , ≻̂N+1 such that

V (f(≻̂1, . . . , ≻̂N+1);≻1, . . . ,≻N+1) = V .

(This follows from the definition of V as the minimum value of V , and the fact that f

is surjective.) So our strategy will be to construct some state ω ∈ Ω∗, and some types

ti ∈ T for the voters, such that each voter i has true preference ≻i but reports ≻̂i in any

equilibrium.

First we construct the state ω, as follows. Fix a number σ̃ with ǫ < σ̃ < min{1, σ(f)}.
We first define ξ : L × ∆(L) → ∆(C) to be any continuous function such that for all
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preferences ≻,≻′,≻′′∈ L,

ξ

(
≻, 2

3
≻′ +

1

3
≻′′
)

=

{
the candidate ranked first by ≻′, with certainty if ≻=≻′′;

the candidate ranked last by ≻′, with certainty otherwise.

This can be done, since we have only specified the values of ξ at finitely many points.

Now, for the given voting rule f , we define ω(f,≻, φ) ∈ ∆(C) for all preferences ≻∈ L
and all beliefs φ ∈ ∆(L), by

ω(f,≻, φ) = σ̃ξ(≻, φ) + (1− σ̃) A1.

That is, if the voting rule is f , then ω chooses the output of ξ with probability σ̃, and

otherwise just chooses the fixed candidate A1 as winner.

For every other voting rule f ′ 6= f , any ≻∈ L and any φ ∈ ∆(L), put

ω(f ′,≻, φ) = ω0(f
′,≻, φ).

This completes the definition of ω. It is straightforward to check that ω is indeed a

continuous function: we need ω(f,≻, φ) to be continuous in φ, but this follows from

continuity of ξ; and for each f ′ 6= f we need ω(f ′,≻, φ) to be continuous in φ, but this

follows from continuity for ω0.

We check that ω ∈ Ω∗. Notice that under voting rule f in state ω, each voter cannot

affect more than σ̃ probability mass of the outcome by changing his vote. It immediately

follows that

σω(f) ≤ σ̃ < σ(f).

And for any other voting rule f ′, we have

σω(f
′) = σω0(f

′) < σ(f ′)

by the assumption ω0 ∈ Ω∗. Thus, the susceptibility bounds are satisfied, and ω ∈ Ω∗.

Next, for each voter i, we construct a type ti as follows:

• the utility function ui represents the preference ≻i, and values the most-preferred

candidate at 1 and the least-preferred candidate at 0;

• the manipulation cost is ǫ;

• the first-order belief about others’ preferences is that every other voter
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– with probability 2/3, has a utility function that represents ≻i and has range

smaller than ǫ; and

– with remaining probability 1/3, has a utility function that represents ≻̂i and

has range smaller than ǫ.

(The first-order belief about others’ manipulation costs may be arbitrary.)

By the richness assumption, there exists a type ti ∈ T having this basic type and first-

order belief.

Now we consider ti’s equilibrium behavior in state ω. First, in any equilibrium, any

voter whose utility function has range smaller than ǫ always votes truthfully (since his

material gain from lying is less than ǫ). Therefore, voter i’s induced belief φ about others’

behavior is that each other voter will report ≻i with probability 2/3 and report ≻̂i with

probability 1/3. Then:

• ω(f, ≻̂i, φ) is the distribution that chooses the candidate ranked first by ≻i with

probability σ̃, and chooses A1 with remaining probability 1 − σ̃. Thereforefore, if

voter i reports ≻̂i, his expected material utility is σ̃ + (1− σ̃)ui(A1).

• For any ≻′ 6= ≻̂i, ω(f,≻′, φ) chooses the candidate ranked last by ≻i with probability

σ̃, and A1 with remaining probability 1− σ̃. Therefore, i’s expected material utility

from reporting any such ≻′ is (1− σ̃)ui(A1).

Since σ̃ > ǫ, voter i’s unique best reply is to report ≻̂i.

Thus, in state ω ∈ Ω∗, the types t1, . . . , tN+1 of the voters have true preferences

≻1, . . . ,≻N+1 but necessarily report ≻̂1, . . . , ≻̂N+1. This leaves the planner with utility

V (f(≻̂1, . . . , ≻̂N+1);≻1, . . . ,≻N+1) = V ,

her worst possible. Statement (b) follows. �

E Proofs for comparison of voting systems

Here we prove Proposition 3.6, giving lower bounds on the susceptibility of five voting

systems from [2].

Proof of Proposition 3.6: We give the proofs for the voting systems one by one

in order.
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Black’s system. This is just an embellishment of the construction given for the

Borda count, performed so as to ensure the nonexistence of a Condorcet winner (with

probability close to 1). We first present the construction for M = 5. For readability

we refer to the candidates using letters A,B,C,D,E. Take small ǫ > 0. Consider the

following belief of the manipulator: the other voters report

CDABE DEABC ECABD

CDBAE DEBAC ECBAD

}
each with probability 1/12 + ǫ;

CABDE ABDEC ABECD

CBADE BADEC BAECD

}
each with probability 1/12− ǫ.

Each other voter then:

• prefers C over D with probability 2/3;

• prefers D over E with probability 2/3;

• prefers E over C with probability 2/3;

• prefers C over A and B with probability 1/2 + 2ǫ.

By Lemma 2.2(a), with probability converging exponentially to 1, each of these pairwise

preferences will be held by a share at least 1/2 + ǫ of opposing voters, so no matter what

the manipulator does, we will end up with C → A,B,D; D → E; and E → C. In

particular, no candidate can then be a Condorcet winner.

Also, each other voter awards, on average,

• 40/12− 10ǫ points each to A and B;

• 36/12 + 4ǫ points to C;

• 32/12 + 8ǫ points each to D and E.

Using Lemma 2.2(a) again, we see that with probability converging exponentially to 1,

candidates A and B will end up with higher scores than C,D or E, no matter what the

manipulator does.

So, neglecting events of exponentially small probability, we can assume that there is

no Condorcet winner and, however the manipulator votes, only A or B can possibly win.

Since each of the other voters’ contribution to the difference between A’s and B’s Borda

scores is either +1 or −1 with probability 1/2 each, the same analysis that was used
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to prove Proposition 3.5 applies here. Explicitly, if N is even, we let the manipulator’s

true preference be ABCDE and consider the manipulation ACDEB; if N is odd, we let

the true preference be BACDE and the manipulation be BCDEA. The manipulation

improves the outcome from the manipulator’s second-ranked to his first-ranked candidate

with probability ∼ 2
√
2/πN , and has no effect otherwise.

This covers the case M = 5. For M > 5, construct a belief by supposing each other

voter ranks the first five candidates A1, . . . , A5 (= A, . . . , E) at the top according to the

distribution above, and then has all remaining candidates in numerical order after them.

Then none of the extra candidates can ever be a Condorcet winner, nor a Borda winner,

since they receive lower scores than (say) A1. So again, with probability converging

exponentially to 1, the winner will be either A1 or A2 no matter what the manipulator

does. Let the manipulator’s preferences and proposed manipulation be as for Proposition

3.5; then manipulation succeeds with probability ∼ ⌈((M − 2)/2)⌉
√

2/πN by the same

argument as before.

Copeland’s system. We will give a construction supposing thatM = 3K−1, where

K ≥ 3. IfM ≥ 9 is instead of the form 3K or 3K+1, then we can modify the construction

by the usual method of appending the extra one or two candidates at the end of everyone’s

preferences, and the same argument will apply. At the end of the proof we will also show

how to modify the construction for the remaining cases M = 3, 4, 6, 7.

It will be convenient to depart from our usual notation for candidates and instead let

the candidates be called A,B,C1, . . . , CK , D1, . . . , D2K−3, where ties are broken in that

order. We will also let the D-candidates be numbered cyclically, so that Di+(2K−3) = Di.

Let the manipulator’s true preference be C1 . . . CKD1 . . . D2K−3AB. To describe the

belief φ, we will not list out all the preferences that other voters may have, as there are too

many to list individually. Instead, we describe a randomized procedure to construct a pref-

erence ranking, and let φ be the resulting distribution over preferences. In this description,

we will refer to choosing a random cyclic permutation of the Di, which means an ordering

of the form DjDj+1 . . . Dj+2K−4, where each possible value of j ∈ {1, 2, . . . , 2K − 3} is

chosen with probability 1/(2K − 3).

• With probability 1/3, do the following: Begin with BA, then, for each i = 1, . . . , K

in succession, append Ci either at the beginning or at the end, independently each

with probability 1/2. Finally, attach a random cyclic permutation of the Di at the

beginning of the preference order.

• With complementary probability 2/3, do the following: Begin with BA, immediately
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followed by a random cyclic permutation of the Di; then successively append each

Ci either at the beginning or at the end, each with probability 1/2.

Whenever one candidate is preferred to another candidate with probability strictly

greater than 1/2 under this distribution, the usual application of Lemma 2.2(a) ensures

that the former candidate majority-defeats the latter (regardless of what the manipulator

does) with probability
e∼ 1. Thus, we can see that with probability

e∼ 1, all of the following

majority-defeat relations hold:

• B → A;

• Di → Di+1, Di+2, . . . , Di+K−2, for each i;

• B,A→ Di for each i;

• Di → Cj, for all i and j.

We henceforth assume that these relations hold. Moreover, for each Cj, each of the other

voters either prefers both A and B over Cj or prefers Cj over both A and B; each case

occurs with probability 1/2, and they are independent across different j’s.

Each candidate Di majority-defeats exactly half of the other D-candidates and all of

the C-candidates, for a Copeland score of 2K − 2. Each of the C-candidates is majority-

defeated by all of the D-candidates and so has a score of no more than K + 1 ≤ 2K − 2.

On the other hand, B defeats all of the D-candidates and A, and so has a score of at least

2K − 2. So by alphabetical tie-breaking, no matter what the manipulator does, either A

or B must win.

Call a candidate Cj defeated if there are at least ⌊N/2⌋+ 1 other voters ranking A,B

above Cj. Let d be the number of defeated candidates. If the manipulator tells the truth,

then A majority-defeats all the Di and the defeated Cj, for a score of 2K − 3 + d; B

majority-defeats all the Di, the defeated Cj, and A, for a score of 2K − 2+ d. So B wins.

Now suppose the manipulator reports the ranking AC1 . . . CKD1 . . . D2K−3B. Say that

the manipulator is pivotal for Cj if there are exactly ⌊N/2⌋ other voters ranking A,B

above Cj. If the manipulator is pivotal for c candidates, then B still has a score of

2K − 2 + d, but A now majority-defeats all the candidates for which the manipulator is

pivotal and so has score 2K − 3 + d+ c. Thus, A wins if c ≥ 1.

The probability of being pivotal for any given Cj is ∼
√

2/πN . Then the probability of

being pivotal for at least one Cj is asymptotically K times this quantity, since the overlaps

between these K events are negligible in comparison (pivotality for Cj is independent of
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pivotality for Ck for j 6= k, so the probability of being pivotal for Cj, Ck simultaneously

is ∼ 2/πN). That is, the probability of being pivotal for at least one Cj is ∼ K
√
2/πN .

The lower bound for susceptibility follows.

We still need to give the construction for the cases M = 3, 4, 6, 7. For M = 6, call the

candidates A,B,C1, C2, D,E. Let the true preference be C1C2DEAB, and the proposed

manipulation AC1C2DEB. The belief φ is given as follows:

• With probability 1/3, do the following: Begin with BAE; successively append C1

and then C2 either at the beginning or the end each with probability 1/2; finally,

append D at the beginning.

• With probability 1/3, do the following: Begin with BADE; then successively ap-

pend C1 and then C2 either at the beginning or the end each with probability 1/2.

• With probability 1/3, do the following: Begin with BAD; successively append C1

and then C2 either at the beginning or at the end each with probability 1/2; finally,

add E at the beginning.

Now with probability
e∼ 1 we have the following majority-defeat relations:

• A→ D,E;

• B → A,D,E;

• D → C1, C2, E;

• E → C1, C2.

Then C1, C2 both have score at most 3 since they are majority-defeated by D and E.

Define d as before. Under truth-telling, A,B,D,E have respective scores 2+d, 3+d, 3, 2, so

that B wins. Under the proposed manipulation, A,B,D,E have scores 2+d+c, 3+d, 3, 2,

so that A wins if the manipulator is pivotal for either C1 or C2. The same argument as

before shows that this occurs with probability ∼ 2
√

2/πN .

If M = 3, let the manipulator’s true preference be CBA, and the belief φ be

1/4 ACB, 1/2 BAC, 1/4 CBA.

With probability
e∼ 1, the resulting profile will have B → A→ C. If exactly ⌊N/2⌋ of the

other voters have B ≻ C, then the manipulator is pivotal for this pair: Telling the truth

leads to C → B, in which case A is the winner; manipulation leads to B → C, so that B
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wins, a more preferred outcome. If the manipulator is not pivotal, then the manipulation

has no effect. So the manipulation is successful when the manipulator is pivotal, which

happens with probability ∼
√
2/πN .

Finally, for M = 4 or 7, we take the construction for 3 or 6, respectively, and add an

extra candidate at the end of everyone’s preference ranking.

Fishburn’s system. Assume M ≥ 4, since the statement is trivial for M = 3.

We return to the usual numerical labeling of the candidates. Let the manipulator’s true

preferences be A1A2 . . . AM . As with the Copeland system, in order to describe the belief

φ, we give a randomized procedure for generating a preference, and let φ denote the

resulting distribution over L.

• With probability 2/3, we construct a preference as follows: Begin with A2A1A3,

and then for each i = 4, . . . ,M in succession, randomly append Ai either at the

beginning of the existing ordering or at the end, independently with probability

1/2.

• With complementary probability 1/3, we instead do the following: Begin with A2A1,

then for each i = 4, . . . ,M in succession, append Ai either at the beginning or the

end, independently with probability 1/2; finally, append A3 at the beginning.

A preference ≻ drawn according to this distribution has the following properties:

• With probability 1, A2 ≻ A1.

• With probability 2/3, A1, A2 ≻ A3.

• For each i ≥ 4, with probability 2/3, A3 ≻ Ai.

• For each i ≥ 4, with probability 1/2, A1, A2 ≻ Ai; and with probability 1/2,

A2, A1 ≻ Ai.

Let the proposed manipulation consist of moving A2 to the bottom of the ranking,

thus reporting A1A3 . . . AMA2. Let the set C+ in (2.3) be A1 — so the manipulator is

concerned only with the probability of A1 winning.

As usual, with probability
e∼ 1, we have A2 → A1, A1 → A3, A2 → A3, and A3 → Ai

for all i ≥ 4. We may assume these relations hold.

If the manipulator tells the truth, then for each i ≥ 4, either A1, A2 both majority-

defeat Ai, or both are majority-defeated by Ai. It follows that A1 is covered by A2, and

so cannot win.
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Now consider manipulation. For each i ≥ 4, if there are exactly ⌊N/2⌋ other voters

who report A2 ≻ Ai, then the manipulation leads to A1 → Ai → A2 in the resulting

profile. Say that the manipulator is pivotal for Ai if this occurs. In this case, A2 no

longer covers A1. Notice that A3 also cannot cover A1, nor can any Ai for i ≥ 4, since

A1 → A3 → Ai. Hence, A1 is uncovered and so wins.

So the manipulation is successful whenever the manipulator is pivotal for any Ai,

i ≥ 4. For each such Ai, the probability of being pivotal is ∼
√
2/πN . Moreover, as in

the argument for the Copeland system above, since pivotality for Ai is independent of

pivotality for Aj (for distinct i, j ≥ 4), the probability of being pivotal for at least one Ai

is ∼ (M − 3)
√

2/πN . This gives the claimed bound.

Minimax system. For this voting system, we will vary the beliefs φ as N varies.

Doing so allows us to obtain a lower bound on susceptibility that converges more slowly

than N−1/2, although at the cost of requiring some additional computation.

For any given candidate Ai, we will use the term defeater of Ai to refer to any candidate

Aj achieving the maximum, over j 6= i, of the number of voters preferring Aj to Ai.

We prove the bound for M = 4; the construction for higher M is identical with the

extra candidates added at the end of everyone’s preference. Let the four candidates be

labeled A,B,C,D. Let the manipulator’s preference be ABCD, and take the set of

desirable candidates in (2.3) to be C+ = {A}. Consider the following belief φ:

1√
N

ACBD,
1
2
− 1√

N
ADBC,

1
2
− 1√

N
CBAD,

1√
N

DBAC.

Let the proposed manipulation be ACBD.

In order to keep track of the consequences of manipulation, let the number of other

voters reporting each of the four preferences be w, x, y, z, respectively. Then, the score of

each candidate under truth-telling and under manipulation are as follows:

Truth Manipulation

A y + z y + z

B max{w + x+ 1, w + y, x+ z} max{w + x+ 1, w + y + 1, x+ z}
C w + x+ z + 1 w + x+ z + 1

D w + x+ y + 1 w + x+ y + 1
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(To obtain these values, note that B is always a defeater for A, since every voter who

does not rank A first ranks B above A. Likewise, A is always a defeater for C and D.)

By Lemma 2.2(a), with probability
e∼ 1, D has score > 3N/4 whereas A has score

< 2N/3 (whatever the manipulator does). So D cannot win. In particular, we can assume

that the winner is whichever of A,B,C has the lowest score; this introduces negligible

error.

We see from the table that the only possible effect of manipulation is to increase the

score of B from w+y to w+y+1. Hence, since we are ruling out D winning, manipulation

can change the outcome of the vote in only two situations:

• Manipulation can change the outcome from B to A if it causes A and B to have

equal scores, and C’s score is at least as high. This requires w+y ≥ w+x+1, x+z;

w = z − 1; and y ≤ w + x+ 1.

If w = z− 1 then w+x+1 = x+ z, so we actually need only x+1 ≤ y ≤ w+x+1

and w = z − 1.

• Manipulation can also change the outcome from B to C. However, since both B

and C are undesirable outcomes, this case contributes nothing to the expectation

in (2.3).

Thus, we are left to estimate the probability that x+1 ≤ y ≤ w+x+1 and w = z−1.

Write s for the sum w+ z, and t for N − s = x+ y. We use Lemma C.2 to decompose

the probability of a profile (w, x, y, z) into the probability of given values of s, t, times the

probabilities of w conditional on s and of y conditional on t. Thus, the probability we

want becomes

∑

s odd
t=N−s


P

(
s

t

∣∣∣∣∣ N ;
2√
N

1− 2√
N

)
×P

(
s−1
2

s+1
2

∣∣∣∣∣ s;
1
2
1
2

)
×

∑

t+1
2

≤y≤ 2t+s+1
4

P

(
y

t− y

∣∣∣∣∣ t;
1
2
1
2

)
 .

(E.1)

A lower bound for this outer sum is given by considering only the terms where
√
N < s <

3
√
N . In this case, by Lemma 2.1, mins P((s−1)/2, (s+1)/2 | s; 1/2, 1/2) ∼

√
2/3π

√
N .

Also, the probability in the inner sum of (E.1) is decreasing as a function of y for y > t/2,
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so each such term is at least

P

(
⌈(2t+ s+ 1)/4⌉

t− ⌈(2t+ s+ 1)/4⌉

∣∣∣∣∣ t;
1
2
1
2

)

= P

(
⌈t/2⌉
⌊t/2⌋

∣∣∣∣∣ t;
1
2
1
2

)
×

⌈(2t+s+1)/4⌉−⌈t/2⌉∏

k=1

⌊t/2⌋+ 1− k

⌈t/2⌉+ k

≥ min√
N<s<3

√
N

t=N−s


P

(
⌈t/2⌉
⌊t/2⌋

∣∣∣∣∣ t;
1
2
1
2

)
×
(

t/2−
⌈
s+1
4

⌉

t/2 + 1 +
⌈
s+1
4

⌉
)⌈ s+1

4 ⌉


& min
N−3

√
N<t<N−

√
N

[
P

(
⌈t/2⌉
⌊t/2⌋

∣∣∣∣∣ t;
1
2
1
2

)
×
(
1− 6√

N

)⌈
√
N⌉
]

∼
√

2

πN
× e−6.

Hence the expression in (E.1) is

&
∑

s odd√
N<s<3

√
N

t=N−s

[
P

(
s

t

∣∣∣∣∣ N ;
2√
N

1− 2√
N

)
×
√

2

3π
√
N

×
⌊
s+ 1

4

⌋
e−6

√
2

πN

]

&




∑

s odd√
N<s<3

√
N

P

(
s

N − s

∣∣∣∣∣ N ;
2√
N

1− 2√
N

)

× e−6

2π
√
3 4
√
N
.

To evaluate the bracketed probability sum, notice that if (s,N − s) follows a binomial

distributionM(N ; 2/
√
N, 1−2/

√
N) then s has mean 2

√
N and variance 2

√
N−4 < 2

√
N ;

by Chebyshev’s inequality, the probability that it differs from its mean by more than
√
N

is less than 2/
√
N . Hence this probability sum is ∼ 1. Consequently, the probability that

the manipulator is pivotal, given by (E.1), is

&
e−6

2π
√
3
· 1

4
√
N
.

Thus, the susceptibility is asymptotically bounded below by this quantity, as claimed.
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Single transferable vote system. Fix small ǫ > 0. Put ǫ′ = 2ǫ/(M − 2). Let the

manipulator’s true preferences be A1A2 . . . AM , and let the belief φ be as follows:

1
2M−1 + ǫ A1A2A3 . . .

1
2M−1 + ǫ A2A3 . . .

1
2M−2 − ǫ′ A3A2 . . .

1
2M−3 − ǫ′ A4A2A3 . . .

1
2M−4 − ǫ′ A5A2A3 . . .

...
1
2
− ǫ′ AMA2A3 . . .

.

(In this list, the first 3 preference types are A1A2A3 . . ., A2A3 . . ., and A3A2 . . ., and then

the remaining preferences — if M > 3 — are all of the form AiA2A3 . . ..) The part of

each preference rankings denoted by . . . may be filled in arbitrarily with the remaining

candidates.

By the usual application of Lemma 2.2(a), for N large, we can focus on the realizations

such that for each preference ordering ≻, the share of the population reporting ≻ is within

ǫ′′ = ǫ/M2 of the weight put on ≻ by distribution φ.

In this case, the single transferable vote procedure follows one of two possible execution

paths. Either A1 or A2 is eliminated in the first round.

• Suppose A1 is eliminated first. Then the candidates A1, A3, A4, A5, . . . , AM are

eliminated in succession. Indeed, we can show by induction that at the beginning of

the kth round of elimination (k > 1) that candidates A2 and Ak+1, . . . , AM remain.

If this holds for some k, then A2 receives the votes of the first k preference types of

voters, thus getting a vote share of at least

1

2M−k
+ 2ǫ− (k − 2)ǫ′ − kǫ′′ >

1

2M−k
.

Ak+1 has a vote share at most

1

2M−k
− ǫ′ + ǫ′′ <

1

2M−k
,

and each of the other remaining candidates has vote share at least

1

2M−k−1
− ǫ′ − ǫ′′ >

1

2M−k
.
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Thus, Ak+1 is eliminated next, and the voters who ranked Ak+1 first have their votes

transferred to A2, giving the induction step.

Thus, in this case, A2 ends up winning.

• Suppose A2 is eliminated first. Then the voters who ranked A2 first have their votes

transferrred to A3. In the second round, A1 is eliminated, and the voters who ranked

A1 first have their votes transferred to A3. An induction identical to the previous

case now shows that A4, A5, . . . , AM are eliminated in successive rounds. Thus A3

ends up winning.

Consider a proposed manipulation of the form A2A3 . . .. The manipulator can po-

tentially influence the first round of elimination, but conditional on the outcome of that

round, the manipulator cannot affect subsequent eliminations. In the first round, piv-

otality occurs either when A1 and A2 receive the same number of first-place votes among

the other voters, or when A2 receives one more first-place vote than A1. In both of these

cases, if the manipulator tells the truth then A2 is eliminated in the first round, hence A3

ends up winning; under the proposed manipulation, A1 is eliminated in the first round,

and A2 ends up winning. Hence, the manipulation is indeed beneficial.

By Lemma 2.2(b), we know each of the two pivotal scenarios happens with probability

∼ (1/2)
√

1/π(1/2M−1 + ǫ)N . Therefore, the total probability that the manipulator is

pivotal is twice this quantity. We have thus shown

σSTV
N &

√
1

π
(

1
2M−1 + ǫ

)
N
.

Taking ǫ→ 0 gives the result. �

F Analysis of the pair-or-plurality voting system

Proof of Lemma 3.7: For readability, we will refer to the candidates as A,B,C, with

the understanding that this does not necessarily represent the tie-breaking order.

Pareto efficiency is immediate: if all voters rank A above B, then B is not viable and

so cannot win. Hence we focus on monotonicity.

Consider a profile P at which some voter reports preference ABC. We need only

consider what happens when this voter changes his preference by transposing the winner

f(P ) with the candidate ranked immediately above her.
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If f(P ) = C, and the voter changes his preference to ACB, this cannot change the

set of viable candidates, nor can it cause C to lose in a majority vote against another

candidate given that C previously won this pairwise contest. This leaves only the case in

which all three candidates are viable; in this case, the change can only increase C’s score

and decrease B’s (while leaving A’s unchanged), so that C remains the winner.

It remains to consider the case in which f(P ) = B, and the voter changes his preference

to BAC. Let P ′ be the resulting profile. The change cannot affect the set of viable

candidates except by making A inviable. If this happens, A gets exactly K first-place

votes at P . Suppose that f(P ′) = C (otherwise f(P ′) = B and we are done). Then,

A,B,C are all viable at P , while only B and C are viable at P ′.

We claim that B and C both have at least L first-place votes at P . If B has less than

L first-place votes, then C has at least N + 1−K − L > (N + 1)/2 first-place votes and

so gets more than half the total points, giving f(P ) = C, a contradiction. If C has less

than L first-place votes, then B likewise has more than (N +1)/2 first-place votes and so

f(P ′) = B.

Hence, at P , all the points from voters ranking B first go to B, and all the points from

voters ranking C first go to C. Since there are K voters ranking A first, their points go

to B and C in the same quantities as rank B or C second, respectively. So the outcome

is effectively determined by a pairwise vote between B and C — exactly the same as at

P ′. Thus f(P ) = f(P ′), a contradiction.

Thus we can assume that the same set of candidates is viable at P as at P ′. Since the

change from ABC to BAC can only improve B’s standing in a pairwise majority vote,

we only need to concern ourselves with the case where all three candidates are viable at

both P and P ′.

Let us consider then the effect of changing ABC to BAC on each candidate’s score.

Given a profile where all three candidates are viable, write sA(A), sA(B), sA(C) for the

number of points awarded to A,B,C, respectively, from the voters ranking A first. Let us

consider the effect of removing an ABC vote on the vector sA = (sA(A), sA(B), sA(C)).

If this leaves at least L total voters with A as their first-place vote, the net change in

sA is (−1, 0, 0). Otherwise, sA(A) is changed by −L/(L − K) and sA(C) is changed

by ≤ L/2(L − K), so sA(B) is changed by ≥ −1 − (−L/(L − K)) − (L/2(L − K)) =

(2K − L)/2(L−K). In short, the net change in sA is of the form

∆sA = (−1, 0, 0) or

(
− L

L−K
, ≥ 2K − L

2(L−K)
, ≤ L

2(L−K)

)
. (F.1)
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Now consider the effect of adding a BAC vote on the corresponding vector sB =

(sB(A), sB(B), sB(C)) of points from the voters ranking B first. If there are initially at

least L such voters, the net change is (0, 1, 0); otherwise, sB(B) changes by L/(L −K),

sB(A) changes by at most (L− 2K)/2(L−K), and sB(C) changes by at most 0. So the

net change in sB is

∆sB = (0, 1, 0) or

(
≤ L− 2K

2(L−K)
,

L

L−K
, ≤ 0

)
. (F.2)

Finally, when one voter’s preference changes from ABC to BAC, the net effect on

the scores of the three candidates is given by the vector sum ∆s = ∆sA + ∆sB. From

(F.1), ∆sA(B) ≥ ∆sA(A), and from (F.2), ∆sB(B) ≥ ∆sB(A); thus ∆s(B) ≥ ∆s(A).

From (F.1), ∆sA(B) ≥ ∆sA(C) − 1, and from (F.2), ∆sB(B) ≥ ∆sB(C) + 1; thus

∆s(B) ≥ ∆s(C). We conclude that the net change in B’s score from P to P ′ is at least as

large as the net change in A’s score or C’s score. Since B was the winner at the original

profile P , then, B again wins at P ′. So we have f(P ′) = f(P ) in this case as well, as

required.

�

The proof of Proposition 3.8 will make use of the following two lemmas.

Lemma F.1 Let xN , yN be sequences of positive integers with (yN − xN)/N > ǫ, where

ǫ > 0 is some constant; yN ≤ N − xN ; and xN → ∞ as N → ∞. Also let b be a fixed

positive integer, and let aN be any sequence of integers. Then

max
αN∈[0,1]


b×

∑

xN<x<yN
x≡aN (mod b)

P

(
x

N − x

∣∣∣∣∣ N ;
αN

1− αN

)

→ 1. (F.3)

(Here, for each N separately, we are maximizing over αN .)

Proof: The sum of P(x,N − x | N ;αN , 1 − αN) over all x congruent to aN mod

b, without the restriction xN < x < yN , equals the sum of the coefficients of the cor-

responding terms zx in the polynomial (αNz + (1 − αN))
N , and so is computed by the

formula
1

b

b−1∑

i=0

ζ−aN i(αNζ
i + (1− αN))

N (F.4)

where ζ is a primitive complex bth root of unity.

Let λ be a positive number such that |αζ i + (1− α)| < e−λα for each i = 1, . . . , b− 1
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and each α ∈ (0, 1/2); this holds if λ is sufficiently small. Also consider any t > 0,

held fixed as N grows. For any N , if t/N < αN < 1 − t/N , then the term in the sum

(F.4) corresponding to i = 0 always equals 1, and the other terms are all bounded above

in absolute value by e−λt. On the other hand, if αN ≤ t/N , then a variable following

the multinomial distribution M(N ;αN , 1 − αN) has mean ≤ t and variance ≤ t, so its

probability of exceeding xN is at most t/(xN−t)2 by Chebyshev’s inequality. This quantity
goes to zero as N → ∞ (since xN → ∞), so the sum in (F.3) does as well. A similar

argument applies when αN ≥ 1 − t/N . So in all three cases, the maximand in (F.3) is

≤ 1+ (b− 1)e−λt, once N is sufficiently large. By choosing t arbitrarily large, we see that

the left-hand side of (F.3) is . 1.

To see that it is & 1, simply take αN = (xN + yN)/2N and apply (F.4) to obtain∑
x≡aN (mod b)P(x,N−x | N ;αN , 1−αN ) → 1/b, and note that the probability of realizing

a value x < xN or x > yN tends to 0, again by a Chebyshev argument (such a realization

would require a multinomial M(N ;αN , 1−αN ) to deviate from its mean αNN by at least

N · ǫ/2, which has probability ≤ N/(N · ǫ/2)2 = 4/ǫ2N → 0).

�

Lemma F.2 Let S be a set of r-vectors of integers (x1, . . . , xr) each of which has sum N

and satisfies x1, x2 ≥ K, for some integer K. Then for any distribution α,

∑

(x1,...,xr)∈S




P




x1

x2

x3
...

xr

∣∣∣∣∣∣∣∣∣∣∣∣∣

N ; α




−P




x1 + 1

x2 − 1

x3
...

xr

∣∣∣∣∣∣∣∣∣∣∣∣∣

N ; α







≤ e1/12√
πK

.

Proof: We first prove the result for r = 2. In this case, taking N and α as fixed,

the expression h(x) = P(x,N − x | N ;α1, α2) is unimodal as a function of x. Letting x∗

denote its maximum on the range K ≤ x ≤ N − K, the specified difference is negative

for x < x∗ and nonnegative for x ≥ x∗, so the sum in the lemma statement is maximized

when S is the set of pairs whose x1-values are x
∗, x∗+1, . . . , N −K. In this case, the sum

of differences telescopes and the sum is simply h(x∗)− h(N −K + 1) ≤ h(x∗). It follows

from Lemma C.7 that h(x∗) ≤ e1/12/
√
πK. This completes the proof in the case r = 2.

For the general case, let S ′ be the set of all values of the (r − 1)-tuple x′ = (x1 +

x2, x3, . . . , xr) for (x1, . . . , xr) ∈ S. For each such x′ ∈ S ′, let Sx′ be the set of pairs

(x1, x2) such that (x1, x2, . . . , xr) ∈ S.
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By Lemma C.2, we can rewrite the sum in the lemma statement as as

∑

(x1,...,xr)∈S
P




x1+2

x3
...

xr

∣∣∣∣∣∣∣∣∣∣

N ;

α1+2

α3

...

αr




×

[
P

(
x1

x2

∣∣∣∣∣ x1+2;
β1

β2

)
−P

(
x1 + 1

x2 − 1

∣∣∣∣∣ x1+2;
β1

β2

)]

(with β1 = α1/α1+2 and β2 similarly)

=
∑

x′=(x1+2,x3,...,xr)∈S′

P




x′

∣∣∣∣∣∣∣∣∣∣

N ;

α1 + α2

α3

...

αr




×


 ∑

(x1,x2)∈Sx′

[
P

(
x1

x2

∣∣∣∣∣ x1+2;
β1

β2

)
−P

(
x1 + 1

x2 − 1

∣∣∣∣∣ x1+2;
β1

β2

)]
 .

By the r = 2 case, the expression in square brackets is at most e1/12/
√
πK, so the

whole sum is

≤ e1/12√
πK

∑

x′∈S′

P




x′

∣∣∣∣∣∣∣∣∣∣

N ;

α1 + α2

α3

...

αr



.

Since the sum of probabilities is at most 1, we are done.

�

Proof of Proposition 3.8: We will prove the following claim: If λ is an integer

such that L/K > λ for each (sufficiently large) N , and K → ∞ as N → ∞, then the

pair-or-plurality voting rule satisfies

σPOP
N .

(
1

2
+

2

λ− 1

)√
3

πN
(
1− 1

16λ2

) . (F.5)

The desired bound will then follow by taking λ→ ∞.

Our proof will make frequent use of the following observation: At any profile where
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all three candidates are viable, if a candidate Ai wins, then Ai must have score at least

(N +1)/3. For each Aj 6= Ai, the voters ranking Aj first can contribute at most K points

to Ai, so there must be at least (N +1)/3−2K > L voters ranking Ai first. In particular,

all the points from these voters are awarded to Ai; and even if we change one of their

votes, the other such voters still award all their points to Ai.

Henceforth, as in the proof of Proposition 3.3, we will notate the manipulator’s true

preference as ABC for readability; this does not necessarily correspond to the tie-breaking

order.

We first narrow down the manipulations we need to consider. With reference to (2.3),

we have either C+ = {A} or C+ = {A,B}. In the first case, the manipulator wants

to maximize the probability of A winning. By monotonicity (Lemma 3.7) an optimal

manipulation ranks A first, so we need only consider the manipulation ACB. However,

we can show this manipulation cannot improve the outcome from B or C to A. To see

this, first notice that it cannot change the set of viable candidates. It also cannot change

the outcome of a pairwise vote between A and B, or between A and C, and so cannot have

any effect if only one or two candidates are viable. This leaves the case when all three

candidates are viable (at both the true profile, namely (ABC,P ) for some opponent-

profile P , and the manipulated profile, (ACB,P )). But if A wins at the manipulated

profile, then our initial observation implies all voters ranking A first assign all their points

to A, at both profiles. So the manipulation from ABC to ACB actually has no effect on

any candidate’s score, and thus no effect on the outcome.

This leaves us with the case C+ = {A,B}, so that the manipulator wishes to minimize

the probability of C winning. By monotonicity again, an optimal manipulation ranks C

last, so we can focus on the manipulation BAC. This manipulation cannot improve the

outcome from C to A, again by monotonicity, so we need only consider the possibility

that it improves from C to B.

So, let S denote the set of all opponent-profile realizations P such that f(ABC,P )

= C and f(BAC,P ) = B. Now consider any such P . By our initial observation, P must

include at least L first-place votes for B and L first-place votes for C. If the manipulation

does not change the set of viable candidates, and only one or two candidates are viable,

then manipulation cannot improve the outcome from C to B, by the same arguments as

in the C+ = {A} case. If manipulation does change the set of viable candidates, then

it cannot make B become viable (since B has more than L votes), so it can only make

A inviable: all three candidates are viable at (ABC,P ), but only B,C are viable at

(BAC,P ). Then P contains exactly K − 1 first-place votes for A. But then the outcome
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at both (ABC,P ) and (BAC,P ) is determined by a a pairwise vote between B and C,

which means the winner is the same at both profiles, a contradiction. Hence, for any

P ∈ S, all three candidates are viable at both (ABC,P ) and (BAC,P ), and at both

these profiles, all voters ranking B or C first award all their points to their first-choice

candidate.

Now we can get quantitative. Our goal is to show that maxφ P(S | N ;φ) . G(N),

where G(N) is the right-hand side of (F.5). This will imply the proposition.

We will assume that φ ∈ ∆(L) is the distribution attaining the max. (φ depends

implicitly on N .) Also, in a generic opponent-profile P , write w, x, y, z, respectively, for

the number of ABC votes, the number of ACB votes, the number of first-place votes for

B, and the number of first-place votes for C. (We can regard BAC and BCA votes as

equivalent, and CAB and CBA votes as equivalent.)

Let SA be the set of pairs (w, x) such that there exist y and z with (w, x, y, z) ∈ S.

For any fixed (w, x), there exists at most one such pair (y, z). Indeed: start with a

P corresponding to some (w, x, y, z) ∈ S, and let P ′ be the (N − 1)-profile obtained

by removing a B-first vote. Then f(ABC,BAC, P ′) = C. So f(BAC,CAB,P ′) =

f(CAB,BAC, P ′) = C by monotonicity. Thus, if we change one B-first vote in P to a C-

first vote, we get a profile P ′′ such that f(BAC,P ′′) = C, hence P ′′ /∈ S. By monotonicity

this remains true if we change further B-first votes to C-first votes.

Thus, we can regard y, z as functions of (w, x) ∈ SA. Our desired probabilityP(S |N ;φ)

can then be written by Lemma C.2 as

∑

(w,x,y,z)∈S
P




w

x

y + z

∣∣∣∣∣∣∣
N ;

φw

φx

φy+z


P

(
y

z

∣∣∣∣∣ y + z;
φy/φy+z

φz/φy+z

)

=
∑

(w,x)∈SA

P




w

x

N − (w + x)

∣∣∣∣∣∣∣
N ;

φw

φx

1− φw+x


×

P

(
y(w, x)

z(w, x)

∣∣∣∣∣ N − (w + x);
χ

1− χ

)
(F.6)

with χ = φy/φy+z.
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We will now proceed to bound each factor separately: we will show that

∑

(w,x)∈SA

P




w

x

N − (w + x)

∣∣∣∣∣∣∣
N ;

φw

φx

1− φw+x


 .

1

2
+

2

λ− 1
(F.7)

and

max
(w,x,y,z)∈S

χ∈[0,1]

P

(
y

z

∣∣∣∣∣ y + z;
χ

1− χ

)
.

√
3

πN
(
1− 1

16λ2

) . (F.8)

The expression in (F.6) is bounded above by the product of the left-hand sides of (F.7)

and (F.8). So if we can prove (F.7) and (F.8), then combining will give (F.5), which will

in particular imply our desired result.

We first prove (F.8), which is the easier of the two. First note that the absolute

difference between points awarded to B and points awarded to C from the voters who

rank A first is always at most K; so for any P ∈ S, where either B or C can be made to

win by adding just one vote, we must have |y− z| ≤ K +1. Moreover, we claim that any

profile in S satisfies y+ z ≥ (2N −1)/3. Indeed, if this is false, then w+x > N/3 > L, so

at both of the profiles (ABC,P ) and (BAC,P ), the voters ranking A first award all their

points to A, and the winner is simply determined by plurality vote. Then, for C and B to

win at these two profiles respectively, we must have z ≥ (N +1)/3 and y+1 ≥ (N +1)/3,

implying y + z ≥ (2N − 1)/3 after all.

Combining |y − z| ≤ K + 1 and y + z ≥ (2N − 1)/3 gives y/(y + z), z/(y + z) ≤
(2N + 3K + 2)/(4N − 2). More simply, using K ≤ N/6λ, we have for any ǫ > 0 that

y, z ≤ κ(y + z) with κ =
1

2
+

1

8λ
+ ǫ for large N.

Thus, the left-hand side of (F.8) is at most

max
χ;y,z

y+z≥(2N−1)/3
y,z≤κ(y+z)

P

(
y

z

∣∣∣∣∣ y + z;
χ

1− χ

)
.

By Lemmas 2.3 and 2.4, for any given value of s = y + z, this maximum is attained

by taking y = ⌊κs⌋ and χ = y/s, and by Lemma 2.1, the value is asymptotically (in s)
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bounded above by
√
1/2πsκ(1− κ). Using s & 2N/3 and the value of κ, we get

max
(w,x,y,z)∈S

χ∈[0,1]

P

(
y

z

∣∣∣∣∣ y + z;
χ

1− χ

)
.

√√√√
3

πN
(
1−

(
1
4λ

+ 2ǫ
)2) .

Letting ǫ→ 0 gives (F.8).

It remains to prove (F.7).

To begin this, divide the set of pairs of nonnegative integers (w, x), with w + x ≥ K,

into four regions:

• R1: w + x < L and w ≥ x(1− 2K/L) +K.

• R2: w + x < L and x ≥ w(1− 2K/L) +K.

• R3: w + x < L, w < x(1− 2K/L) +K and x < w(1− 2K/L) +K.

• R4: w + x ≥ L.

When an opponent-profile P = (w, x, y, z) is drawn from M(N ;φ), the probability

that (w, x) lies in one region and (w + 1, x) lies in a different region converges to zero

(uniformly over φ) as N → ∞. Indeed, we have the following exhaustive list of possible

subcases:

• (w, x) ∈ R1, R2 or R3 but (w+1, x) ∈ R4: Can happen only if w+x = L−1, which

occurs with probability ≤ e1/12/
√
π(L− 1) by Lemmas C.2 and C.7.

• (w, x) ∈ R2 but (w + 1, x) ∈ R1 or R3: This requires w(1 − 2K/L) + K ≤ x <

(w+1)(1−2K/L)+K. For any given value of w, there is at most one integer value

of x in this range, and it must be at least K. So conditional on the realization of w,

this x occurs with probability at most e1/12/
√
πK (again by Lemmas C.2 and C.7),

and hence this same bound applies to the unconditional probability of this subcase.

• (w, x) ∈ R3 but (w + 1, x) ∈ R1: Requires w = x(1 − 2K/L) +K − 1, so similarly

to the previous subcase, this occurs with probability at most e1/12/
√
π(K − 1).

Since K,L→ ∞ as N → ∞, we see that the total probability of any of these subcases

goes to zero.

Thus, since our goal is to prove (F.7), we can modify SA by removing all pairs such

that (w, x) and (w + 1, x) are not in the same region; this introduces negligible error. So

from here on we work with the modified SA.
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Given now that (w, x) and (w+1, x) are assumed to lie in the same region, we compute

the scores of B and C associated with the true profile (ABC,P ) (= (w + 1, x, y, z)) and

the manipulated profile (BAC,P ) (= (w, x, y + 1, z)), for each of the four regions:

• R1: The associated scores are

(ABC,P ) :
K(L− w − x− 1)

L−K
+ y for B, z for C

(BAC,P ) :
K(L− w − x)

L−K
+ y + 1 for B, z for C.

Thus, in this region, the manipulation increases B’s score by L/(L−K) and leaves

C’s score unaffected.

• R2:

(ABC,P ) : y for B,
K(L− w − x− 1)

L−K
+ z for C

(BAC,P ) : y + 1 for B,
K(L− w − x)

L−K
+ z for C.

Thus, manipulation increases B’s score by 1 and C’s score by K/(L−K).

• R3:

(ABC,P ) : w+1− (w + x+ 1−K)L

2(L−K)
+y for B, x− (w + x+ 1−K)L

2(L−K)
+z for C

(BAC,P ) : w− (w + x−K)L

2(L−K)
+ y+1 for B, x− (w + x−K)L

2(L−K)
+ z for C.

Thus, in this region, manipulation has no effect on the difference between B’s and

C’s scores, so it cannot change the winner from C to B: R3 ∩ SA = ∅.

• R4:

(ABC,P ) : y for B, z for C

(BAC,P ) : y + 1 for B, z for C.

Thus, in this region, manipulation increases B’s score by 1 and leaves C’s score

unaffected.

45



Henceforth, we assume that tie-breaking favors B over C. (If the reverse is the case,

all the same arguments will go through with only minor adjustments.)

Let T be the set of all pairs (w, x) such that K ≤ w + x ≤ N −K and N − w − x is

odd.

By Lemma F.1, we know that the maximum probability (over all φ) of drawing (w, x) ∈
T is ∼ 1/2. Our strategy will be to show that the probability of (w, x) ∈ SA cannot be

much larger than the probability of (w, x) ∈ T .

We begin by comparing the probability of (w, x) ∈ R1 ∩ SA and the probability of

(w, x) ∈ R1 ∩ T .
First consider the possibility that

(w, x) ∈ R1 ∩ SA and (w + 1, x) ∈ R1 ∩ SA. (F.9)

We observe that if

⌊
K(L− w − x− 2)

L−K

⌋
=

⌊
K(L− w − x− 1)

L−K

⌋
=

⌊
K(L− w − x)

L−K

⌋
, (F.10)

then (F.9) cannot occur. Indeed, (w, x) ∈ R1 ∩ SA means that, for some suitable choice

of (y, z),

K(L− w − x− 1)

L−K
+ y < z but

K(L− w − x)

L−K
+ y + 1 ≥ z

which, under (F.10), implies that ⌊K(L − w − x − 1)/(L − K)⌋ + y = z − 1. Then

⌊K(L−w−x−1)/(L−K)⌋+(N−w−x) must be odd (since N−w−x = y+z). Likewise,

(w+1, x) ∈ R1∩SA together with (F.10) requires ⌊K(L−w−x−1)/(L−K)⌋+(N−w−1−x)
to be odd. But these expressions cannot both be odd.

Let

V =

{
v

∣∣∣∣ K ≤ v ≤ N −K and

⌊
K(L− v − 1)

L−K

⌋
<

⌊
K(L− v)

L−K

⌋}
,

V ′ =

{
v

∣∣∣∣ K ≤ v ≤ N −K and

⌊
K(L− v − 2)

L−K

⌋
<

⌊
K(L− v − 1)

L−K

⌋}
.

Thus, the probability that (F.9) arises is at most the probability of w + x ∈ V ∪ V ′.

(w + x ≤ N −K holds since B and C need to be viable.)

Since (L −K)/K > λ − 1, it follows that of any λ − 1 consecutive integers, at most
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one can be in V .

Now, we claim that for any set V ⊆ {K,K + 1, . . . , N −K} with this property, there

exists a such that

∑

v∈V
P

(
v

N − v

∣∣∣∣∣ N ;
φw+x

1− φw+x

)
≤

∑

K≤v≤N−K
v≡a mod λ−1

P

(
v

N − v

∣∣∣∣∣ N ;
φw+x

1− φw+x

)
. (F.11)

Indeed, choose a to be the value of v ∈ V for which P(v,N − v | N ;φw+x, 1−φw+x) is

maximized. Since this latter expression is unimodal in v, for any two successive elements

of V that differ by more than λ− 1, either the lower element can be increased by 1 or the

higher element can be decreased by 1 in such a way that the expression on the left side of

(F.11) is increased. We thus replace V by a new set for which the left-hand side of (F.11)

is higher than before. This operation cannot be repeated forever; when it terminates,

it must be that every two consecutive elements of the current set differ by λ − 1. The

resulting set clearly satisfies (F.11), and so the original set V did as well.

By Lemma F.1, the right-hand side of (F.11) is . 1/(λ − 1). Hence, the same holds

for the probability of w + x ∈ V . The same argument applies to w + x ∈ V ′ as well. We

conclude that the probability of (F.9) is . 2/(λ− 1).

Now we are ready to compare the probability of (w, x) ∈ R1∩SA with that of (w, x) ∈
R1∩T . To economize on notation, henceforth, we write simply P(w, x) for the probability

of realizing (w, x) under M(N ;φ).

Notice that

∑

(w,x)∈R1∩SA

P

(
w

x

)
≤

∑

(w,x)∈R1∩T
P

(
w

x

)
+

∑

(w,x)∈R1∩SA\T
(w+1,x)∈R1∩T\SA

[
P

(
w

x

)
−P

(
w + 1

x

)]
+

∑

(w,x)∈R1∩SA\T
(w+1,x)∈R1∩SA

P

(
w

x

)
+

∑

(w,x)∈R1∩SA\T
(w+1,x)∈R1\T

P

(
w

x

)
.

The second sum on the right-hand side is at most e1/12/
√
2πK, by Lemma F.2 (notice
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that (w, x) ∈ R1 ensures w ≥ K). The third sum consists of pairs (w, x) satisfying (F.9),

which have a total probability . 2/(λ − 1), by the preceding argument. And the fourth

sum is empty.

The bound e1/12/
√
πK goes to 0 as N → ∞, and thus we get

∑

(w,x)∈R1∩SA

P

(
w

x

)
−

∑

(w,x)∈R1∩T
P

(
w

x

)
.

2

λ− 1
. (F.12)

This takes care of R1 ∩ SA for now. Next let us perform a similar analysis for pairs

(w, x) ∈ R2 ∩ SA.

Consider the possibility that

(w, x) ∈ R2 ∩ SA and (w + 1, x) ∈ R2 ∩ SA. (F.13)

If (w, x) ∈ R2 ∩ SA, then for suitable choices of (y, z),

y <
K(L− w − x− 1)

L−K
+ z and y + 1 ≥ K(L− w − x)

L−K
+ z.

This means that

⌈
K(L− w − x− 1)

L−K

⌉
=

⌈
K(L− w − x)

L−K

⌉
= y − z + 1.

Hence, ⌈K(L−w−x−1)/(L−K)⌉+(N−w−x) must be odd; and if (w+1, x) ∈ R2∩SA,

then ⌈K(L − w − x − 1)/(L − K)⌉ + (N − w − x − 1) must be odd. These quantities

cannot both be odd, however. So we see that (F.13) can never occur.

Thus, we can perform an analysis for the probability of (w, x) ∈ R2 ∩SA that entirely

parallels what we did for R1 ∩ SA, but our life is now simplified by the fact that (F.13)

has probability zero (unlike its counterpart (F.9)). The result is

∑

(w,x)∈R2∩SA

P

(
w

x

)
−

∑

(w,x)∈R2∩T
P

(
w

x

)
≤ e1/12√

πK
→ 0. (F.14)

Next we turn to R3. Since R3 ∩ SA = ∅, we simply have

∑

(w,x)∈R3∩SA

P

(
w

x

)
= 0 ≤

∑

(w,x)∈R3∩T
P

(
w

x

)
. (F.15)
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Finally, we claim that R4 ∩ SA ⊆ T . Check: if (w, x) ∈ R4 ∩ SA, then y < z but

y+1 ≥ z, so y = z− 1, and hence N −w− x = y+ z is odd; also w+ x ≤ N −K by the

viability of B and C. So it is immediate that

∑

(w,x)∈R4∩SA

P

(
w

x

)
≤

∑

(w,x)∈R4∩T
P

(
w

x

)
. (F.16)

Finally, using the fact that every (w, x) ∈ SA must lie in one of the regionsR1, R2, R3, R4,

we can combine (F.12), (F.14), (F.15), (F.16):

∑

(w,x)∈SA

P

(
w

x

)
=

4∑

i=1

∑

(w,x)∈Ri∩SA

P

(
w

x

)

.

4∑

i=1

∑

(w,x)∈Ri∩T
P

(
w

x

)
+

2

λ− 1

≤
∑

(w,x)∈T
P

(
w

x

)
+

2

λ− 1

.
1

2
+

2

λ− 1
.

Thus, we have proven (F.7). Combining with (F.8), as previously mentioned, gives

the result.

�

G Proofs of lower bounds

The proofs of the results from Section 4 are in this appendix (except for results that are

proven in the main text, and Theorem 4.3 which is in the next appendix). We present

the proofs in the same order that they are sketched in the text.

Proof of Theorem 4.5: For any two candidates A,B, letK∗(A;B) be the maximum

number K such that f(K A,N + 1−K B) 6= A. By unanimity, K∗(A;B) < N + 1.

Let us call a triple (A,B,C) of distinct candidates unobtrusive if

f(1 A,K B,N −K C) 6= A for all K.

Note that this also implies f(K B,N + 1 −K C) 6= A for all K (otherwise, change one
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of the B or C votes to A, and we get a violation of monotonicity).

Fix any triple (A,B,C). Write K∗ for K∗(B,C) defined above. Also write K̃∗ for the

maximum value of K such that f(1 A,K B,N −K C) 6= B (or K̃∗ = −1 if no such K

exists). Notice that K̃∗ ≥ K∗ − 1, since otherwise f(1 A, K̃∗ + 1 B,N − K̃∗ − 1 C) = B

and f(K∗ B,N + 1−K∗ C) 6= B would violate monotonicity.

We will show the inequality σ ≥ σ∗
N in each of the following cases:

(i) K̃∗ = K∗ − 1;

(ii) K̃∗ = K∗ and (A,B,C) is unobtrusive;

(iii) K̃∗ > K∗.

First note that

f(K B,N + 1−K C) = B for all K > K∗ (G.1)

by definition, and

f(K B,N + 1−K C) 6= B for all K ≤ K∗ (G.2)

since otherwise monotonicity would imply f(K∗ B,N + 1−K∗ C) = B, a contradiction.

By similar arguments,

f(1 A,K B,N −K C) = B for all K > K̃∗; (G.3)

f(1 A,K B,N −K C) 6= B for all K ≤ K̃∗. (G.4)

Now for the case analysis:

• Case (i): Let the manipulator’s true preference be any ordering with A ranked first

and B last; let the proposed manipulation be a vote for C; and let the manipulator’s

belief be φ = (φB B, (1− φB) C) with φB = K∗/N . Since the other voters all vote

for B or C, (G.1)–(G.4) imply that the manipulator cannot affect whether B wins,

unless the realized opponent-profile is (K∗ B,N−K∗ C), in which case a vote for A

leads to B winning and a vote for C leads to B losing. So considering the definition

(2.3) of susceptibility with C+ = C \ {B}, we have

σ ≥ P

(
K∗ B

N −K∗ C

∣∣∣∣∣ N ; φ

)
,
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which is ≥ σ∗
N by Lemma 2.4.

• Case (ii): Let the manipulator’s true preference be any ordering with A ranked

first and B second; let the proposed manipulation be a vote for B; and again

let the manipulator’s belief be φ = (φB B, (1 − φB) C) with φB = K∗/N . By

unobtrusiveness, no matter whether the manipulator votes for A or B, A cannot

win. Again, (G.1)-(G.4) imply that the manipulator cannot affect whether or not

B wins, unless the realized opponent-profile is (K∗ B,N −K∗ C) in which case a

vote for A leads to B losing and a vote for B leads to B winning. So considering

(2.3) with C+ = {A,B}, we again have

σ ≥ P

(
K∗ B

N −K∗ C

∣∣∣∣∣ N ; φ

)
≥ σ∗

N .

• Case (iii): Suppose K̃∗ > K∗. Let the manipulator’s true preference be any ordering

with C ranked first and B last; let the proposed manipulation be a vote for A; and

let the belief be φ = (φB B, (1 − φB) C) with φB = (K∗ + 1)/N . Once again,

the manipulator cannot affect whether or not B wins, unless the opponent-profile is

(K B,N−K C) for some K with K∗ < K ≤ K̃∗, in which case a vote for C leads to

B winning and a vote for A leads to B losing. Considering (2.3) with C+ = C \{B},
we again have

σ ≥
K̃∗∑

K=K∗+1

P

(
K B

N −K C

∣∣∣∣∣ N ; φ

)
≥ P

(
K∗ + 1 B

N −K∗ − 1 C

∣∣∣∣∣ N ; φ

)
≥ σ∗

N .

Now, if any triple of candidates (A,B,C) is unobtrusive, then since we already ob-

served K̃∗ ≥ K∗ − 1, one of the cases (i)–(iii) must hold. So to prove the inequality, it

remains only to consider the case that no unobtrusive triple exists.

In this case, choose A,B,C so that f(1 A,K B,N − K C) = A for K as large as

possible. By assumption, there also exists K ′ such that f(1 C,K ′ B,N −K ′ A) = C, and

by maximalityK ′ ≤ K. IfK < N , then monotonicity implies f(N−K ′ A,K ′ B, 1 C) = A,

a contradiction. Therefore K = N , so that f(1 A,N B) = A. Again by assumption, there

exists K ′′ such that f(1 B,K ′′ C,N −K ′′ A) = B. If K ′′ < N then monotonicity implies

f(1 A,N B) = B, a contradiction. So K ′′ = N , or f(1 B,N C) = B. By monotonicity

again, f(N B, 1 C) = B.

Suppose the manipulator’s true preference ranks C first and B last; let the proposed
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manipulation be a vote for A, and let the belief be that everyone else votes for B with

probability 1. Then a truthful vote for C leads to B winning, while manipulation leads

to A winning, hence (taking C+ = C \ {B}) we have susceptibility σ = 1.

This proves that the inequality σ ≥ σ∗
N always holds.

It remains to study the equality case. This proof roughly follows the above case

analysis but requires further splitting into subcases. We prove the contrapositive: suppose

that f is not a majority rule; we will show that σ > σ∗
N strictly. So there is a profile at

which strictly more than half the voters vote for some candidate — say C — but some

other candidate wins — say B. We may assume B and C are chosen so as to maximize

the number of voters voting for C with B winning.

By monotonicity, B still wins when all the non-C votes are replaced by B’s, and it

follows that K∗ = K∗(B;C) ≤ (N − 2)/2. The extremal choice of B and C implies that

whenever at least N + 1−K∗ voters vote for C, then C wins.

Let A be an arbtirary candidate distinct from B and C. Define K̃∗ as before. We

have K̃∗ ≥ K∗ − 1 again. We now review the cases from the previous analysis, making

amendments as needed; but now we also add the case where K̃∗ = K∗ and (A,B,C) is

not unobtrusive.

• In case (i), the same argument as before applies. Since K∗ < (N − 1)/2, Lemma

2.4 implies that the inequality at the end of case (i) holds strictly.

• In case (ii) the analysis goes through as before and again the final inequality holds

strictly.

• Case (ii’), where K̃∗ = K∗ but (A,B,C) is not unobtrusive. Then we have f(1A,K B,N−
K C) = B whenever K > K∗. Since at least N + 1−K∗ votes for C make C win,

then, obtrusiveness can only happen for K = K∗: f(1 A,K∗ B,N − K∗ C) = A.

By monotonicity, we then have

f(J A,K B,N+1−J−K C) = A for all K ≤ K∗, J+K−1 ≥ K∗. (G.5)

And the extremal property of B and C implies that

f(J A,K B,N + 1− J −K C) = C whenever J +K − 1 < K∗. (G.6)

If K∗ ≥ 1 then (G.5) and (G.6) imply that we can use the triple (B,A,C) instead

of (A,B,C): this triple has the same value of K∗, but falls into case (i), from which
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the proof is complete.

Finally suppose K∗ = 0. Then we have f(1 A, 1 B,N−1 C) = B; f(1 A,N C) = A

(and by monotonicity f(K A,N +1−K C) = A for all K ≥ 1); f(1 B,N C) = B;

and f(N + 1 C) = C. Let the manipulator have true preference ranking C first, B

second, and A last; let the proposed manipulation be a vote for B, and let the belief

φ be 1/N A, (N −1)/N C. If the realized opponent profile is that all others vote for

C, then truthful voting leads to C winning, while manipulating leads to B winning.

For any other possible opponent-profile, telling the truth leads to A winning, and at

least when the opponent-profile is (1 A,N − 1 C), manipulation leads to B winning

instead. It follows by taking C+ = C \ {A} that

σ ≥ P

(
1 A

N − 1 C

∣∣∣∣∣ N ; φ

)
> σ∗

N .

• In case (iii), if K∗ ≤ (N − 4)/2, then the final inequality in case (iii) becomes strict,

again by Lemma 2.4. So we may assume K∗ > (N − 4)/2 ≥ 0.

If f(1 A,K∗ B,N −K∗ C) = A, we again have (G.5) and (G.6), so that just as in

case (ii) above, we can replace the triple (A,B,C) by (B,A,C), and end up in case

(i), for which the proof has been completed. (Note that this uses our assumption

K∗ > 0.)

Finally, suppose f(1 A,K∗ B,N − K∗ C) 6= A. We also have f(1 A,K∗ B,N −
K∗ C) 6= B by the assumption of case (iii).

As before, the extremal property of B and C implies f(1 A,K B,N −K C) = C

for K < K∗. In this case, consider the same preferences, belief, and proposed

manipulation as in the original analysis for case (ii). If the realized opponent-profile

is (K B,N −K C) for K < K∗, then C wins regardless of whether the manipulator

votes for A or B. Otherwise, a vote for B will ensure that B wins, while a vote for

A will fail to ensure an outcome in C+ = {A,B} if the realized opponent-profile is

(K∗ B,N −K∗ C). Hence (2.3) with C+ = {A,B} gives

σ ≥ P

(
K∗ B

N −K∗ C

∣∣∣∣∣ N ; φ

)
> σ∗

N .

This shows that σ > σ∗
N in every possible case.

�
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Next we proceed to the proof of Theorem 4.4, for monotone and Pareto-efficient voting

rules. This proof makes reference to proof techniques from Theorem 4.7, which was given

in the main text.

Proof of Lemma 4.10: For each K = 0, . . . , K, let J(K) be the highest value such

that f(PJ,K) = Aj, or J(K) = J −1 if no such value exists. By (i) and (iii), f(PJ,K) = Aj

for J ≤ J(K) and = Ai for J > J(K). Also (iii) ensures that J(K − 1) ≤ J(K) + 1

(whenever these quantities are defined); hence J(K) +K is weakly increasing in K. We

further note for later reference that

J(K) +K < Ñ for each K, (G.7)

since otherwise f(PJ(K),K) = Aj, together with f(PÑ−K,K) = Ai from (v), would contra-

dict (iii).

Choose integer values 0 = K0 < K1 < K2 < · · · < Kr = K, where any two successive

Ki differ by at most 40
√
Ñ/κ and with r ≤

√
Ñκ/20. Certainly this can be done, as

long as N is sufficiently large.

Now, by (iv), J(0) = J , while by (v), J(K) = J − 1. Therefore

J(0)− J(K) > J − J > κÑ.

Therefore, there exists some i ∈ {1, . . . , r} such that

J(Ki−1)− J(Ki) >
κÑ

r
≥ 20

√
Ñ .

Put

γ =
J(Ki−1) + J(Ki)

2Ñ
,

δ1 =
Ki−1 +

√
2Ñ

Ñ
, φ1 =




γ ≻
δ1 ≻′

1− γ − δ1 ≻′′


 ,

δ2 = min

{
Ki −

√
2Ñ

Ñ
, 1− γ

}
, φ2 =




γ ≻
δ2 ≻′

1− γ − δ2 ≻′′


 .

It is straightforward to check that φ1 and φ2 are legitimate probability distributions

(that is, all entries are nonnegative); the only nontrivial part is Ki −
√
2Ñ ≥ 0 which
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follows from Ki −Ki−1 ≥ J(Ki−1)− J(Ki) ≥ 20
√
Ñ .

We will show that

fAj
(φ1) > 3/4 (G.8)

and

fAi
(φ2) > 3/4. (G.9)

Suppose that the Ñ -profile P = (x ≻, y ≻′, z ≻′′) is drawn according to IID(φ1). If

the inequalities

x ≥ J (G.10)

y ≥ Ki−1 (G.11)

x+ y ≤ Ki−1 + J(Ki−1) (G.12)

are satisfied, then we must have P ∈ R (since x ≤ J(Ki−1) ≤ J , and x + y ≤ K + J(K)

implying y < K). Moreover in this case f(P ) = Aj, on account of f(PJ(Ki−1),Ji−1
) = Aj

and the monotonicity relation (iii). Notice also that if

x ≤ (3J(Ki−1) + J(Ki))/4 (G.13)

y ≤ Ki−1 + 4
√
Ñ (G.14)

are satisfied, then (G.12) will automatically hold.

Now we apply the same Chebyshev argument as in the proof of Lemma 4.2. We have

(x, Ñ − x) ∼ M(Ñ ; γ, 1 − γ), so (G.10) and (G.13) are satisfied unless |x − E[x]| ≥
(J(Ki−1)− J(Ki))/4, which happens with probability

Pr

(
|x− E[x]| ≥ J(Ki−1)− J(Ki)

4

)
≤ V ar(x)
(

J(Ki−1)−J(Ki)
4

)2 ≤ Ñ/4

(5
√
Ñ)2

=
1

100
.

Likewise, (y, Ñ − y) ∼ M(Ñ ; δ1, 1 − δ1), so (G.11) and (G.14) are satisfied unless

|y − E[y]| ≥
√
2Ñ , which happens with probability

Pr(|y − E[y]| ≥
√

2Ñ) ≤ V ar(y)
(√

2Ñ
)2 ≤ Ñ/4

2Ñ
=

1

8
.

We conclude that (G.10), (G.11), (G.13), (G.14) are all satisfied — and hence f(P ) = Aj

— with probability at least 1− 1/100− 1/8 > 3/4. This gives (G.8).
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Similarly, suppose that the Ñ -profile P = (x ≻, y ≻′, z ≻′′) is drawn according to

IID(φ2). If the inequalities

x ≤ J (G.15)

y ≤ Ki (G.16)

x+ y > Ki + J(Ki) (G.17)

are satisfied, then we again must have P ∈ R (since x > J(Ki) ≥ J), and then f(P ) = Ai,

in consequence of f(PJ(Ki)+1,Ki
) = Ai and the monotonicity condition (iii).

Notice also that if

x ≥ (J(Ki−1) + 3J(Ki))/4 (G.18)

y > Ki − 4
√
Ñ (G.19)

are satisfied, then (G.17) will automatically hold.

If δ2 = (Ki −
√

2Ñ)/Ñ , then exactly the same Chebyshev arguments as before give

that (G.15), (G.16), (G.18), (G.19) are all satisfied — and hence f(P ) = Ai — with

probability greater than 3/4. Otherwise, we necessarily have x + y = Ñ so that (G.17)

is always satisfied (recall (G.7)), and then the same arguments show that (G.15), (G.16)

are both satisfied with probability greater than 3/4. In either case, then, we get (G.9).

Now that (G.8) and (G.9) are proven, we use Lemma 4.9 to complete the argument.

Notice that φ2 − φ1 = ∆(≻′ − ≻′′), where

0 ≤ ∆ <
Ki

Ñ
− Ki−1

Ñ
<

40

κ
√
Ñ
.

By (ii), preferences ≻′ and ≻′′ rank Ai and Aj in the same way. If they both rank Ai

above Aj, then let C+ be the set of candidates weakly preferred to Ai under ≻′′. Lemma

4.9(a) gives ∑

A∈C+

fA(φ2)−
∑

A∈C+

fA(φ1) ≤ c0Ñ∆σ, (G.20)

where c0 is the constant promised by that lemma. By (G.8) and (G.9), the left-hand side

of (G.20) is at least 3/4− (1− 3/4) = 1/2, so

1

2
≤ c0Ñ∆σ ≤ c0

√
Ñ
40

κ
σ.

If ≻′ and ≻′′ both rank Aj above Ai, then let C+ be the set of candidates weakly preferred
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to Aj under ≻′. Lemma 4.9(a) gives

∑

A∈C+

fA(φ1)−
∑

A∈C+

fA(φ2) ≤ c0Ñ∆σ

and we again arrive at 1/2 ≤ c0
√
Ñ(40/κ)σ. Thus in either case we have

σ ≥ κ

80c0
Ñ−1/2

which is the promised result. �

Proof of Theorem 4.4: We first suppose there are just three candidates, C =

{A,B,C}. For every K, we have f(K ABC, Ñ −K BCA) ∈ {A,B} by Pareto efficiency

(and this value is B when K = 0 and A when K = Ñ). Moreover, by monotonicity, if

this expression equals A for some K then it also equals A for all higher K. So, writing

KAB = max

{
K

∣∣∣∣∣ f
(

K ABC

Ñ −K BCA

)
= B

}
,

we have f(K ABC, Ñ −K BCA) = B if K ≤ KAB and A if K > KAB. Likewise define

KBC = max

{
K

∣∣∣∣∣ f
(

K BCA

Ñ −K CAB

)
= C

}
,

KCA = max

{
K

∣∣∣∣∣ f
(

K CAB

Ñ −K ABC

)
= A

}
,

KCB = max

{
K |

∣∣∣∣∣ f
(

K CBA

Ñ −K BAC

)
= B

}
,

KBA = max

{
K

∣∣∣∣∣ f
(

K BAC

Ñ −K ACB

)
= A

}
,

KAC = max

{
K

∣∣∣∣∣ f
(

K ACB

Ñ −K CBA

)
= C

}
.

We now have two cases.

(i) KAB +KBC +KCA +KCB +KBA +KAC > 7Ñ/2.

In this case one of the three quantities KAB + KBA, KBC + KCB, KCA + KAC is
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greater than 7Ñ/6. Without loss of generality we will assume KCA +KAC > 7Ñ/6,

which is the case shown in Figure 4.4.

Let

K∗ = max

{
K

∣∣∣∣∣ f
(

K CAB

Ñ −K ACB

)
= A

}
.

Similarly to before, f(K CAB, Ñ−K ACB) = A for K ≤ K∗ and = C for K > K∗.

Now one of the following two inequalities must hold:

KCA −K∗ >
Ñ

12
; KAC − (N −K∗) >

Ñ

12
.

We assume henceforth that the first inequality holds (otherwise, the argument is

the same with A and C reversed).

Now we apply Lemma 4.10 with

≻= CAB, ≻′= ACB, ≻′′= ABC,

J = K∗ + 1, J = KCA, κ =
1

13
, K = Ñ − (K∗ + 1),

Ai = C, Aj = A.

The condition J − J > κÑ is evidently satsified (as long as N is large), so we need

to verify conditions (i)-(v) of the lemma. (i) follows from Pareto efficiency. (ii) is

immediate. (iii) follows from monotonicity. (iv) comes from the definition of KCA

(and our monotonicity observation earlier). (v) comes from the definition of K∗.

Hence, the lemma applies, and σ is bounded below by a constant times N−1/2. This

takes care of case (i).

(ii) KAB +KBC +KCA +KCB +KBA +KAC ≤ 7Ñ/2.

In this case one of the quantities KAB +KBC +KCA, KCB +KBA +KAC is at most

7Ñ/4. Without loss of generality we will assume

KAB +KBC +KCA ≤ 7Ñ

4
. (G.21)

We can now focus our attention on the ABC −BCA− CAB simplex.
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We will also assume for now the inequalities

KAB +KBC , KBC +KCA, KCA +KAB ≥ 89

90
Ñ . (G.22)

Afterwards we will come back to address the (easier) case where one of these in-

equalities is violated.

In terms of Figure 4.4, we will show that one of the boundaries between regions

within the ABC − BCA − CAB simplex has a portion sufficiently sloped so that

we can apply Lemma 4.10. However, to locate such a portion of a boundary we will

need some more detailed case analysis. An outline of the argument is illustrated

in Figure G.1. In the top-left panel, the dots marked on the edges of the simplex

are the profiles (KAB ABC, Ñ − KAB BCA), (KBC BCA, Ñ − KBC CAB), and

(KCA CAB, Ñ −KCA ABC). The assumption KAB +KBC +KCA ≤ 7Ñ/4 ensures

that the downward-pointing triangle in the middle of the simplex has side length

at least Ñ/4. Consider the profile at the center of the triangle, and without loss of

generality assume that the winner there is A. Then consider the smaller downward-

pointing triangle (shown in the bottom two panels). Using monotonicity we can

show that at each profile in the smaller triangle, f must choose either A or B. If f

chooses A at the center of the smaller triangle, then consider the shaded trapezoid in

the bottom-left panel of Figure G.1. By monotonicity arguments, f chooses either

A or C at each profile in the trapezoid, and chooses A near the left edge and C

at the right edge. Then, this trapezoid gives a region where the A − C boundary

is nontrivially sloped, and we can apply Lemma 4.10. If instead f chooses B at

the center of the smaller triangle, then we consider the parallelogram shown in the

bottom-right panel, and similarly apply Lemma 4.10.

Now we begin the proof properly. Let P0 be a profile with

P0 =




x0 ABC

y0 BCA

z0 CAB


 ≈




(Ñ +KAB +KBC − 2KCA)/3 ABC

(Ñ − 2KAB +KBC +KCA)/3 BCA

(Ñ +KAB − 2KBC +KCA)/3 CAB


 ,

where the approximation means that we add or subtract at most 1 to each com-

ponent to ensure x0, y0, z0 are integers. Inequality (G.21), together with (G.22),

ensure that x0, y0, z0 are all positive. We have f(P0) = A, B, or C. Without loss of

generality, suppose henceforth that f(P0) = A.
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BCA

ABC

CAB

A
B

Figure G.1: Proof of Theorem 4.4 (case (ii))
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Now take

T =








Ñ − s− t ABC

s BCA

t CAB




∣∣∣∣∣∣∣
s ≤ y0, t ≤ z0, s+ t ≥ KCA




.

If P is any profile in T with t = z0, then P can be obtained from P0 by changing some

BCA votes to ABC, so by monotonicity f(P ) = A for each such P . Consequently,

we cannot have f(P ) = C for any P ∈ T : if f(Ñ−s− t ABC, s BCA, t CAB) = C,

then by monotonicity f(Ñ−s−z0 ABC, s BCA, z0 CAB) = C, but this profile is also

in T and we just saw that A must win there, a contradiction. Hence, f(P ) ∈ {A,B}
for all P ∈ T .

Let P1 be a profile with

P1 =




x1 ABC

y1 BCA

z1 CAB


 ≈




(7Ñ +KAB +KBC − 8KCA)/9 ABC

(Ñ − 5KAB + 4KBC + 4KCA)/9 BCA

(Ñ + 4KAB − 5KBC + 4KCA)/9 CAB


 .

This profile is the “center of the smaller triangle” in Figure G.1. Again, one can

verify that all components are positive. Moreover, P1 ∈ T : all of the relevant

inequalities reduce (up to rounding error which is bounded by a constant) to KAB+

KBC +KCA ≤ 2Ñ , which is true by (G.21). Therefore, f(P1) ∈ {A,B}. We have

two subcases.

– If f(P1) = A, then we will apply Lemma 4.10 with

≻= ABC, ≻′= BCA, ≻′′= CAB,

J = x1, J = Ñ −KCA− 4, κ =
1

40
, K = y1− (Ñ −KCA− 4−x1),

Ai = A, Aj = C.

The required inequality J − J > κÑ follows directly from (G.21). We proceed

to verify conditions (i)-(v) of the lemma.

To verify condition (i), suppose for contradiction that f(J ABC,K BCA, Ñ −
J − K CAB) = B for some J ≤ J ≤ J and 0 ≤ K ≤ K. By monotonicity,

f(J ABC, Ñ−J−z1 BCA, z1 CAB) = B also. (Note that since Ñ−J−z1 = K,

then indeed Ñ − J − z1 ≥ K ≥ 0.) But since J ≥ x1, f(P1) = A and
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monotonicity imply f(J ABC, Ñ−J−z1 BCA, z1 CAB) = A, a contradiction.

Thus condition (i) of Lemma 4.10 holds.

Condition (ii) is immediate. (iii) follows from monotonicity given (i): if f(PJ,K) =

A then f(PJ+1,K−1) = A by monotonicity, and f(PJ+1,K) cannot equal C be-

cause then monotonicity would require f(PJ,K) = C, so f(PJ+1,K) = A instead.

(iv) follows from the definition of KCA. And (v) holds because each of the rel-

evant profiles PJ,K lies in the set T (checking the relevant linear inequalities is

tedious but straightforward), hence f(PJ,K) = A or B; since we have already

ruled out B with condition (i), we must have f(PJ,K) = A for each J , and

condition (v) is satisfied. This checks all the conditions to apply Lemma 4.10,

and we conclude that σ is bounded below by a constant times N−1/2.

– If on the other hand f(P1) = B, then we will apply Lemma 4.10 with

≻= BCA, ≻′= CAB, ≻′′= ABC,

J = y1, J = y0 − 4, κ =
1

40
, K = z1,

Ai = B, Aj = A.

Again, the requirement J − J > κÑ follows from (G.21), so we proceed to

verify conditions (i)-(v) of the lemma.

If f(J BCA, K CAB, Ñ − J − K ABC) = C for some (J,K), then by

monotonicity we also have f(J BCA, z1 CAB, Ñ −J− z1 ABC) = C. ((G.21)

and (G.22) ensure this is a valid profile.) But this profile lies in T , so we

should have f(J BCA, z1 CAB, Ñ − J − z1 ABC) ∈ {A,B}, a contradiction.

This shows that condition (i) is satisfied. Condition (ii) is immediate. (iii)

follows from monotonicity given (i): if f(PJ,K) = B, then f(PJ+1,K−1) = B

by monotonicity, and we cannot have f(PJ+1,K) = A since then monotonicity

would require f(PJ,K) = A as well, so we must have f(PJ+1,K) = B. (iv)

follows from Ñ − J > KAB (which in turn follows from (G.21)). Finally,

f(PJ,K) = f(P1) = B, so f(PJ,K) = B for all J (by condition (iii)), verifying

(v). So we have checked all the conditions, and Lemma 4.10 applies. We again

conclude that σ is bounded below by a constant times N−1/2.

This completes the proof of case (ii) of the theorem as long as we have the maintained

assumption (G.22). It remains to address what happens when (G.22) is violated.
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Without loss of generality, we assume that

KCA +KAB <
89

90
Ñ .

Then we can apply Lemma 4.10 with

≻= ABC, ≻′= BCA, ≻′′= CAB,

J = KAB + 1, J = Ñ −KCA − 1, κ =
1

100
, K = Ñ −KAB − 1,

Ai = A, Aj = C.

It is clear that J − J > κÑ as long as N is large, so we check (i)-(v) of the lemma.

For (i), suppose f(J ABC,K BCA, Ñ − J − K CAB) = B for some J,K with

J ≥ KAB +1. By monotonicity, f(J ABC, Ñ −J BCA) = B also. This contradicts

J > KAB. Then (i) follows. (ii) is immediate. (iii) holds by monotonicity: if

f(PJ,K) = A, then f(PJ+1,K−1) = A by monotonicity directly; and f(PJ+1,K) = C

would imply f(PJ,K) = C by monotonicity, a contradiction, so from (i) we must

have f(PJ+1,K) = A instead. (iv) follows from the definition of KCA, and (v)

follows from the definition of KAB. Thus all the conditions hold and once again

Lemma 4.10 assures us that σ is bounded below by a constant times N−1/2.

This completes the analysis of cases (i) and (ii). We have had to apply Lemma

4.10 with only finitely many values of κ, so if we simply let c be the smallest of the

corresponding values of c(κ), then we have σ ≥ cN−1/2 in every subcase (as always,

assuming N is sufficiently large).

Finally, the foregoing analysis assumed that C consisted of just three candidates. If

there are more than three candidates, then let A,B,C be any three of them, and restrict

attention to profiles (and beliefs) at which each voter ranks A,B,C higher than any other

candidate, with the remaining candidates all ranked according to some fixed order. By

Pareto efficiency, only A,B, or C can win at any such profile. Then, all of the preceding

analysis carries through directly, with the preferences ABC replaced by ABC . . ., BCA

replaced by BCA . . ., and so forth.

�

Next, we round out Subsection 4.5 by supplying the proof of Theorem 4.2, for any

unanimous, tops-only voting rule.
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Proof of Theorem 4.2: Let c1 be the constant given by Lemma C.8. Take A,B,C

to be any three different candidates. We consider two possibilities.

(i) Suppose there exists some K such that f(K B,N + 1 − K C) /∈ {B,C}. Let

S ⊆ {1, . . . , N} be the set of all such values. Let α be the value given by Lemma

C.8 for the set S. Put φ = (α B, 1 − α C). The conclusion of the lemma can be

written as

Pr
IID(φ)

(f(C,P ) /∈ {B,C})− Pr
IID(φ)

(f(B,P ) /∈ {B,C}) ≥ c1
N
,

where the probabilities are over opponent-profiles P drawn according to IID(φ); or

equivalently,

Pr
IID(φ)

(f(B,P ) ∈ {B,C})− Pr
IID(φ)

(f(C,P ) ∈ {B,C}) ≥ c1
N
. (G.23)

If the manipulator’s true preference ranks C first and B second, then consider the

manipulation to reporting C, with the set of preferred candidates C+ = {B,C}.
The left side of (G.23) is ≤ σ, by (2.3). So we get σ ≥ c1/N in this case.

(ii) Suppose that f(K B,N+1−K C) ∈ {B,C} for all K. Assume that σ < 1/(N+1)

(otherwise we are done). We will first show the following

Claim. There exists exactly one value of K such that f(1 A,K B,N − K C) /∈
{B,C}.
For any α ∈ [0, 1], consider (2.3) for a manipulator with true preference B . . . C,

considering a manipulation to A, with belief φ = (α B, 1−α C) and C+ = C \ {C}.
We get

N∑

K=0

P

(
K

N −K

∣∣∣∣∣ N ;
α

1− α

)
×


I


f




1 A

K B

N −K C


 ∈ C+


− I

(
f

(
K + 1 B

N −K C

)
∈ C+

)


≤ σ

<
1

N + 1
.
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Now integrate over α from 0 to 1, using the well-known identity
∫ 1

0

(
N
K

)
αK(1 −

α)N−K dα = 1/(N + 1).1 This gives

N∑

K=0

1

N + 1


I


f




1 A

K B

N −K C


 ∈ C+


− I

(
f

(
K + 1 B

N −K C

)
∈ C+

)
 <

1

N + 1
.

Applying (2.3) for a manipulator with true preference A . . . C, considering a ma-

nipulation to B, gives the same inequality with the left-hand side negated. Hence,

after multiplying through by N + 1, we get

∣∣∣∣∣∣∣

N∑

K=0

I


f




1 A

K B

N −K C


 6= C


−

N∑

K=0

I

(
f

(
K + 1 B

N −K C

)
6= C

)∣∣∣∣∣∣∣
< 1.

The left side is an integer, so it must be zero.

After subtracting both of the sums from N + 1, we get the simpler equation

N∑

K=0

I


f




1 A

K B

N −K C


 = C


 =

N∑

K=0

I

(
f

(
K + 1 B

N −K C

)
= C

)
.

Moreover, the upper bound of summation on the right side can be replaced by N−1,

since we know f(N + 1 C) = C by unanimity.

Now, we can repeat the same argument with B and C reversed, giving

N∑

K=0

I


f




1 A

K B

N −K C


 = B


 =

N−1∑

K=0

I

(
f

(
K + 1 B

N −K C

)
= B

)
.

Adding these two equations gives

N∑

K=0

I


f




1 A

K B

N −K C


 ∈ {B,C}


 =

N−1∑

K=0

I

(
f

(
K + 1 B

N −K C

)
∈ {B,C}

)
.

1The identity can be proven by showing that the integral is equal at two successive values of K, since
the difference between the integrals at K and K + 1 is 1

N+1

(
N+1

K+1

)
α
K+1(1− α)N−K |10 = 0.
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Since the right side is N by assumption, we see there are exactly N profiles of the

form (1 A,K B,N −K C) at which either B or C wins. This proves the claim.

Let K∗ be the unique value for which f(1 A,K∗ B,N −K∗ C) /∈ {B,C}.
Now let KB be the minimum value such that f(KB B,N + 1 − KB C) = B. Let

KC be the maximum value such that f(KC B,N + 1−KC C) = C. Our next step

is to show that KB and KC are both close to K∗, and therefore close to each other.

From there, we will be able to repeat the argument from the proof of Theorem 4.7.

Let S = {K | f(K B,N + 1−K C) = C}. Let αC ≥ KC/N be the value given by

Lemma C.8 for this set. Assume that σ < c1/3N (otherwise we are done).

Consider a manipulator with belief φC = (αC B, 1 − αC C), preference A . . . B,

manipulating to C. We will write P[K] rather than P(K,N −K | N ;φC) to save

on notation. The manipulation cannot decrease the probability of B by more than

σ, hence

N∑

K=0

P[K]


I


f




1 A

K B

N −K C


 = B


− I

(
f

(
K B

N + 1−K C

)
= B

)
 ≤ c1

3N
.

(G.24)

Similarly, a manipulator with the same belief and preference A . . . C, manipulating

to B, cannot decrease the probability of C by more than σ, hence

N∑

K=0

P[K]


I


f




1 A

K B

N −K C


 = C


− I

(
f

(
K + 1 B

N −K C

))
= C


 ≤ c1

3N
.

(G.25)

Now add (G.24) and (G.25). Notice that the f(1 A,K B,N −K C) terms add up

to cover each possible value of K exactly once, except for K = K∗. Thus we get

1−P[K∗]−
N∑

K=0

P[K]×
[
I

(
f

(
K B

N + 1−K C

)
= B

)
+ I

(
f

(
K + 1 B

N −K C

)
= C

)]

≤ 2c1
3N

. (G.26)
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But the summation on the left side comes under control because

N∑

K=0

P[K]

[
I

(
f

(
K B

N + 1−K C

)
= B

)
+ I

(
f

(
K + 1 B

N −K C

)
= C

)]

=
N∑

K=0

P[K]

[
1− I

(
f

(
K B

N + 1−K C

)
= C

)
+

I

(
f

(
K + 1 B

N −K C

)
= C

)]

= 1 +
N∑

K=0

[P[K − 1]−P[K]] I

(
f

(
K B

N + 1−K C

)
= C

)

≤ 1− c1
N

where the second equality comes from reindexing the sum, and the final inequality

comes from Lemma C.8.

Combining with (G.26) gives

1−P[K∗]−
[
1− c1

N

]
≤ 2c1

3N

or, finally,

P

(
K∗

N −K∗

∣∣∣∣∣ N ;
αC

1− αC

)
≥ c1

3N
. (G.27)

Now combining (G.27) with Lemma C.4 gives

c1
3N

≤ e−N
(αC−K∗/N)2

2

from which ∣∣∣∣αC − K∗

N

∣∣∣∣ ≤
√

2(lnN − ln(c1/3))

N
.

As long as N is sufficiently large, the right-hand side is ≤ N−1/3. So we can conclude

KC ≤ αCN ≤ K∗ +N2/3.

Now, exactly the same argument with the roles of B and C reversed leads to the
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conclusion that

KB ≥ K∗ −N2/3.

Therefore, we have

KC −KB ≤ 2N2/3. (G.28)

This is the assertion that KB and KC are close to each other, as promised. (Notice

also from the definitions that KB ≤ KC + 1.)

From here, we will continue to assume that f has susceptibility σ < 1/Ñ and obtain

a contradiction, following the same steps as for Theorem 4.7. As long as N is large

enough, we may assume that KB ≤ 2Ñ/3 (otherwise KC ≥ Ñ/3, so just switch B

and C). Let

φ1 = (α1 B, 1− α1 C) with α1 = min

{
KC +

√
2Ñ

Ñ
, 1

}
.

Whenever more than KC voters vote for B and the rest vote for C, B wins; so the

same Chebyshev argument as in the proof of Theorem 4.7 gives f(φ1) = (γ1 B, 1−
γ1 C) where γ1 ≥ 7/8. Let

φ2 = (α2 B, 1− α2 C) with α2 = max

{
KB −

√
2Ñ

Ñ
, 0

}
,

and obtain f(φ2) = (γ2 B, 1− γ2 C) where γ2 ≤ 1/8.

Write φ1 − φ2 = ∆(B − C), with ∆ ≥ 0. On account of (G.28), we have

∆ = α1 − α2 ≤ 2
√
2Ñ−1/2 + 2Ñ−1/3 ≤ 3Ñ−1/3

as long as N is large. Again taking c0 to be the constant from Lemma 4.9, we have

c0Ñ∆σ < 3c0Ñ
−1/3 <

1

8

as long as N is large. Exactly as for Theorem 4.7, we now define φ3 = φ1+∆(A−B)

and φ4 = φ1 +∆(A−C). We check that these are valid probability distributions as

long as 1− α1 > ∆; and indeed, we have

α1 +∆ ≤ KC +
√
2Ñ

Ñ
+ 3Ñ−1/3 ≤ KB + 2N2/3 +

√
2Ñ

Ñ
+ 3Ñ−1/3 < 1
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as long as N is sufficiently large (using (G.28) and KB ≤ 2Ñ/3). We can then apply

Lemma 4.9 to each of the pairs connected by thick lines in Figure 4.5, obtaining

constraints on the values of f(φ3) and f(φ4) until we reach a contradiction.

�

Finally, we give proofs of the ingredients for Theorem 4.1, covering any weakly unan-

imous voting rule. We begin with Lemma 4.11.

Proof of Lemma 4.11: Let v denote the four-way difference on the left-hand side

of (4.7).

Put

w1 = f




α ≻1

β ≻3

γ φ


− f




α ≻2

β ≻3

γ φ


 ,

w2 = f




α ≻1

β ≻4

γ φ


− f




α ≻2

β ≻4

γ φ


 .

Apply Lemma 4.9(b) twice to the difference represented by w1: once letting C ′ be

the set of candidates A 6= Ai, Aj such that (w1)A ≥ 0, and once letting C ′ be the set of

candidates A 6= Ai, Aj such that (w1)A < 0. We obtain

∑

A 6=Ai,Aj

|(w1)A| ≤ 2c0Ñασ ≤ 2c0Ñσ.

Likewise, ∑

A 6=Ai,Aj

|(w2)A| ≤ 2c0Ñσ.

Then, since v = w1 − w2, we get

∑

A 6=Ai,Aj

|vA| ≤ 4c0Ñσ. (G.29)

Now put

w3 = f




α ≻1

β ≻3

γ φ


− f




α ≻1

β ≻4

γ φ


 ,
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w4 = f




α ≻2

β ≻3

γ φ


− f




α ≻2

β ≻4

γ φ


 .

Using v = w3 − w4, analogous computations give

∑

A 6=Ak,Al

|vA| ≤ 4c0Ñσ. (G.30)

Now if {Ai, Aj} is disjoint from {Ak, Al}, then (G.29) and (G.30) immediately lead

us to
∑

A∈C |vA| ≤ 8c0Ñσ which is stronger than (4.7). Otherwise, {Ai, Aj} and {Ak, Al}
have one element in common— sayAi — in which case (G.29) and (G.30) give

∑
A 6=Ai

|vA| ≤
8c0Ñσ. Since the sum of the components of v is zero, we also have |vAi

| ≤ 8c0Ñσ, and

(4.7) follows. �

We now prove the three main lemmas that combine to give the theorem.

Proof of Lemma 4.12: Suppose the conclusion does not hold. Then the same

reasoning as in case (i) of Theorem 4.2 — applying Lemma C.8 to the set of all K such

that f(K CAB, Ñ −K CBA) 6= C — gives a distribution φ such that

Pr
IID(φ)

(f(CAB,P ) = C)− Pr
IID(φ)

(f(CBA,P ) = C) ≥ c1
N
.

If we consider a manipulator with true preference CBA, manipulating to CAB, with the

set of preferred candidates C+ = {C}, then this gives us σ ≥ c1/N , contradicting the

given. �

Proof of Lemma 4.13: Define the following vectors in R
M :

v1 = f




x ABC . . .

y BAC . . .

z BAC . . .


− f




x ABC . . .

y ABC . . .

z BAC . . .


 ,

(we write e.g. (x ABC . . . , y BAC . . . , z BAC . . .) rather than (x ABC . . . , y+z BAC . . .)

to aid readability; no confusion should result)

v2 = f




x ACB . . .

y BAC . . .

z BAC . . .


− f




x ACB . . .

y ABC . . .

z BAC . . .


 ,
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v3 = f




x CAB . . .

y BAC . . .

z BAC . . .


− f




x CAB . . .

y ABC . . .

z BAC . . .


 ,

v4 = f




x CAB . . .

y BAC . . .

z BCA . . .


− f




x CAB . . .

y ABC . . .

z BCA . . .


 ,

v5 = f




x CAB . . .

y BAC . . .

z CBA . . .


− f




x CAB . . .

y ABC . . .

z CBA . . .




By applying Lemma 4.11 repeatedly, we get

|v1−v2| ≤ 16c0Ñσ; |v2−v3| ≤ 16c0Ñσ; |v3−v4| ≤ 16c0Ñσ; |v4−v5| ≤ 16c0Ñσ.

Adding these and using the triangle inequality gives

|v1 − v5| ≤ 64c0Ñσ.

Next, define

v′1 = f




x′ ABC . . .

y BAC . . .

z′ BAC . . .


− f




x′ ABC . . .

y ABC . . .

z′ BAC . . .


 ,

v′5 = f




x′ CAB . . .

y BAC . . .

z′ CBA . . .


− f




x′ CAB . . .

y ABC . . .

z′ CBA . . .


 .

Then the above reasoning also gives

|v′1 − v′5| ≤ 64c0Ñσ,

and hence we obtain

|(v1 − v′1)− (v5 − v′5)| ≤ 128c0Ñσ. (G.31)
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Now define

w1 = f




x CAB . . .

y BAC . . .

z CBA . . .


− f




x′ CAB . . .

y BAC . . .

z′ CBA . . .


 ,

w2 = f




x CAB . . .

y BCA . . .

z CBA . . .


− f




x′ CAB . . .

y BCA . . .

z′ CBA . . .


 ,

w3 = f




x CAB . . .

y CBA . . .

z CBA . . .


− f




x′ CAB . . .

y CBA . . .

z′ CBA . . .


 .

Then Lemma 4.11 gives

|w1 − w2| ≤ 16c0Ñσ; |w2 − w3| ≤ 16c0Ñσ,

so by the triangle inequality,

|w1 − w3| ≤ 32c0Ñσ.

However, w3 = 0, because our assumption (4.8) implies that both f(· · · ) values in the

definition of w3 are just C with probability 1. Thus we actually have

|w1| ≤ 32c0Ñσ. (G.32)

Similarly define

w4 = f




x CAB . . .

y ABC . . .

z CBA . . .


− f




x′ CAB . . .

y ABC . . .

z′ CBA . . .


 ,

w5 = f




x CAB . . .

y ACB . . .

z CBA . . .


− f




x′ CAB . . .

y ACB . . .

z′ CBA . . .


 ,

w6 = f




x CAB . . .

y CAB . . .

z CBA . . .


− f




x′ CAB . . .

y CAB . . .

z′ CBA . . .


 .
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Lemma 4.11 gives

|w4 − w5| ≤ 16c0Ñσ; |w5 − w6| ≤ 16c0Ñσ,

and as before we actually have w6 = 0, so we conclude

|w4| ≤ 32c0Ñσ. (G.33)

Notice now that v5 − v′5 = w1 − w4, so (G.32) and (G.33) give us

|v5 − v′5| ≤ 64c0Ñσ,

and combining this with (G.31) we obtain

|v1 − v′1| ≤ 192c0Ñσ. (G.34)

This is exactly what we sought to prove. �

Proof of Lemma 4.14: We proceed by considering the behavior of f near the

endpoints of the ABC . . .−BAC . . . edge of the vote simplex, showing that f cannot be

very close to linearity.

Given f , let Γ denote the supremum of the left-hand side of (4.10), over all choices of

x, y, z, x′, z′. Also define v1 and v′1 as in the proof of Lemma 4.13. Now, we consider two

cases.

(i) There is some K ≤
√
Ñ/2 such that f(K BAC . . . , Ñ −K ABC . . .) 6= A. In this

case, as long as N is sufficiently large, we have

fA

(
1− K

Ñ
ABC . . .

K

Ñ
BAC . . .

)
≤ 1−P

(
Ñ −K

K

∣∣∣∣∣ Ñ ;
1− K

Ñ
K

Ñ

)

≤ 1− σ∗
N

< 1− 1√
2Ñ

by Lemma 2.4 and the asymptotic behavior of σ∗
N . Therefore by taking x = 1−K/Ñ ,

y = K/Ñ , z = 0, and noting f(x + y ABC . . . , z BAC . . .) = f(Ñ ABC) = A by

weak unanimity, we get

(v1)A ≤ − 1√
2Ñ

.
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It follows that for any choices of x′, z′ ≥ 0 with x′ + z′ = 1−K/Ñ ,

(v′1)A ≤ − 1√
2Ñ

+ Γ.

In particular, for any positive integer r ≤ ⌊2
√
Ñ⌋, we may take x′ = 1− rK/Ñ, z =

(r − 1)K/Ñ to obtain

fA

(
1− rK

Ñ
ABC . . .

rK
Ñ

BAC . . .

)
− fA

(
1− (r − 1)K

Ñ
ABC . . .

(r − 1)K
Ñ

BAC . . .

)

≤ − 1√
2Ñ

+ Γ.

Put r = 2
√
Ñ⌋, and apply the above inequality for each r = 1, 2, . . . , r and telescope.

This gives

fA

(
1− rK

Ñ
ABC . . .

rK
Ñ

BAC . . .

)
− fA

(
1 ABC . . .

0 BAC . . .

)
≤ r

(
− 1√

2Ñ
+ Γ

)
.

The left side cannot be lower than 0− 1 = −1, so

−1 ≤ r

(
− 1√

2Ñ
+ Γ

)

which leads to

Γ ≥ 1√
2Ñ

− 1

r
∼
(√

2− 1

2

)
· 1√

Ñ
.

(ii) For all K ≤
√
Ñ/2, f(K BAC . . . , Ñ − K ABC . . .) = A. Then apply Lemma

C.9 with c = 1/6 to conclude that if an Ñ -profile P is drawn IID(α BAC . . . , 1−
α ABC . . .) for any α ≤ 1/6

√
Ñ , then the probability that f(P ) 6= A is at most

1/Ñ , as long as N is sufficiently large.

Let s be an integer with 6
√
Ñ < s < 7

√
Ñ . Then taking x = 1 − 1/s, y = 1/s,

z = 0, and again using f(x + y ABC . . . , z BAC . . .) = A by weak unanimity, we

get

(v1)A ≥ − 1

Ñ
.
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So for any choices of x′, z′ ≥ 0 with x′ + z′ = 1− 1/s, we have

(v′1)A ≥ − 1

Ñ
− Γ.

In particular, for any r = 0, . . . , s− 1, we can take x′ = (s− 1− r)/s and z′ = r/s

to obtain

fA

(
1− r+1

s
ABC . . .

r+1
s

BAC . . .

)
− fA

(
1− r

s
ABC . . .

r
s

BAC . . .

)
≥ − 1

Ñ
− Γ.

Summing for r = 0, . . . , s− 1 and telescoping gives

fA

(
0 ABC . . .

1 BAC . . .

)
− fA

(
1 ABC . . .

0 BAC . . .

)
≥ s

(
− 1

Ñ
− Γ

)
.

Using weak unanimity, the left side equals 0− 1 = −1, so

−1 ≥ s

(
− 1

Ñ
− Γ

)

from which

Γ ≥ 1

s
− 1

Ñ
&

1

8
√
Ñ
.

In both cases (i) and (ii), we showed that Γ was bounded below (asymptotically) by

a constant times 1/
√
Ñ , which is exactly what the lemma claims.

�

This wraps up Theorem 4.1. Now we give the proof of Theorem 4.6, for simple and

weakly unanimous voting rules. Essentially, we just need to replace Lemma 4.14 with a

corresponding statement giving a sharper bound when the rule is simple:

Lemma G.1 There exists some absolute constant c3, independent of N , with the follow-

ing property: As long as N is large enough, for any f that is weakly unanimous and simple

over A and B, there exist some nonnegative x, y, z, x′, z′ with

∣∣∣∣∣

(
f

(
x ABC . . .

y + z BAC . . .

)
− f

(
x+ y ABC . . .

z BAC . . .

))
−

(
f

(
x′ ABC . . .

y + z′ BAC . . .

)
− f

(
x′ + y ABC . . .

z′ BAC . . .

))∣∣∣∣∣ ≥ c3. (G.35)
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Proof: Let K∗ be the threshold such that f(K ABC . . . , Ñ − K BAC . . .) = A iff

K ≥ K∗. Just as in the proof of Theorem 4.7, assume that K∗ ≤ Ñ/2 (otherwise switch

A and B), and put

φ1 = (α1 ABC . . . , 1− α1 BAC . . .) with α1 =
K∗ +

√
2Ñ

Ñ
,

φ2 = (α2 ABC . . . , 1− α2 BAC . . .) with α2 = max

{
K∗ −

√
2Ñ

Ñ
, 0

}
.

By simplicity, f(φ1), f(φ2) both put positive weight only on A and B, and by the same

Chebyshev argument as in Theorem 4.2, f(φ1) puts probability at least 7/8 on A, while

f(φ2) puts probability at most 1/8 on A.

Next put

φ3 = (α3 ABC . . . , 1− α3 BAC . . .) with α3 = 2α1 − α2.

The weight on ABC . . . is ≤ (K∗ +
√
2Ñ)/Ñ + 2

√
2Ñ/Ñ < 1 for large N , so this is a

valid distribution. Since α3 > α1, the same Chebyshev argument gives that f(φ3) puts

probability at least 7/8 on A (and the remaining probability on B). We now have

|f(φ2)− f(φ1)| ≥ 3/2,

|f(φ1)− f(φ3)| ≤ 1/4.

Now take

x = α2, y = α1 − α2, z = 1− α1,

x′ = α1, z′ = 1− α3.

The expression on the left side of (G.35) reduces to

∣∣(f(φ2)− f(φ1)
)
−
(
f(φ1)− f(φ3)

)∣∣ ≥ 3

2
− 1

4
=

5

4

which proves the lemma. �

Proof of Theorem 4.6: As usual, it suffices to assume N is large enough so that

Lemma G.1 applies. Assume A,B,C are chosen so that f is simple over A and B. Let

c1, c0, c3 be as in Lemmas 4.12, 4.13, G.1. Either σ ≥ c1/N , and we are done; or else
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Lemma 4.12 applies, in which case (4.9) and (by simplicity) (G.35) apply; combining

these gives σ ≥ c3/192c0Ñ . �

H Construction for quickly-decaying susceptibility

We provide here the construction of a tops-only voting rule whose susceptibility shrinks

in N at rate N−κ with κ > 1/2, as required by Theorem 4.3. The actual construction is

more elaborate than the approximate random dictatorship sketched in the main paper,

so we first give a more detailed overview.

The main idea behind the construction is to subdivide the simplex of vote profiles into

blocks, as illustrated in Figure H.1. Within each block, we then assign winners A1, . . . , AM

to the various profiles, in proportions that correspond to the position of the block in the

vote simplex.

More specifically, in order to avoid creating especially large opportunities for manip-

ulation near the edge of the vote simplex, we need to focus on viable candidates at each

vote profile, much as in the construction of the pair-or-plurality system in Subsection 3.3.

Roughly speaking, each candidate needs to get more than some threshold number of votes

to be considered viable; the threshold will be taken to be (asymptotically) some constant

λ times N . Then, for each set C ′ of candidates, we consider the set of all vote profiles

in which the viable candidates are precisely the members of C ′, and carve up this set

of profiles into blocks, depending on how many votes each viable candidate receives. All

blocks have equal size S along each of the dimensions corresponding to a viable candidate.

For any given block, we define a weight for each viable candidate by subtracting λN

from her vote total. We then define the voting rule within the block by assigning a winner

at each vote profile, in such a way that the fraction of profiles assigned to any (viable)

candidate is approximately proportional to her weight. This principle tells us how many

profiles each candidate gets within the block; to decide exactly which profiles she gets,

so as to keep the difference between her relative probability of winning and her weight

tightly controlled, we use Lemma C.11.

Consider now the susceptibility of a voting rule defined in this way, with blocks of

size S. When the manipulator changes his vote, this affects the distribution over realized

vote profiles in two ways: it changes the distribution over blocks, and it changes the

distribution over profiles within each block. Because the distribution within each block

is close to the weights in that block, we are assured that the distribution across blocks

approximately pins down the distribution of winners — more concretely, the error in this

77



approximation is of order SdN− d−2
2 (ignoring constant factors). Here d is the value used in

applying Lemma C.11. We also show that the change across blocks affects the distribution

over candidates on the order of S− 1
dN− 1

2 . Hence, our construction gives an upper bound

for susceptibility that is approximately on the same order as max{SdN− d−2
2 , S− 1

dN− 1
2}.

In order to achieve the fastest possible rate of decline in susceptibility as N → ∞, we

choose d = 6 and S ≈ N
9
37 , with the resulting rate of decline N− 20

37 . We will henceforth

use these numbers for concreteness.2

A

B C

Figure H.1: Sketch of the construction for Theorem 4.3: each region of the vote simplex
bounded by the lines shown represents a block

Proof of Theorem 4.3: We first give the exact construction of the voting system.

Fix constants λ, µ with 0 < λ < 1/M and 0 < µ < 1 −Mλ. Also fix α with 0 < α <

min{λ/3, µ/3, (1−Mλ− µ)/(M + 1)}.
For each value of N , choose integers SN , LN , RN such that

• SN = 26h for some integer h and N
9
37 . SN . 26 ·N 9

37 ;

• LN ∼ λN ;

• RNSN ∼ µN .

We will henceforth refer to these as S, L,R, with the dependence on N implicit. The

roles played by these values will be as follows: L is the number of votes needed for a

2It is possible to achieve faster rates of convergence through minor improvements on the construction,
but we do not include the details here since they do not seem to yield substantial new insights.
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candidate to be viable; S is the size of a block, and R measures the number of blocks (in

each dimension).

A block label is a sequence consisting of M − 1 or fewer (possibly zero) nonnegative

integers, whose sum is at most R.

Given a profile P = (x1 A1, . . . , xM AM) of first-place votes, we compute a correspond-

ing block label BL(P ) by the following algorithm:

1. For each i = 1, . . . ,M , if xi < L, put Λi = 0. Otherwise, put Λi = ⌊(xi−L)/S⌋+1.

2. Let t be the smallest index such that Λ1 + · · · + Λt > R. Notice that t must exist

(for large enough N), since

Λ1 + · · ·+ ΛM

R
≥ x1 + · · ·+ xM −ML

RS
∼ (1−Mλ)N

RS
∼ 1−Mλ

µ
> 1.

Then define BL(P ) to be the (t− 1)-term sequence Λ = (Λ1, . . . ,Λt−1).

Given a block label Λ, we define the corresponding block as BL−1(Λ), the set of profiles

that can be obtained by inverting the above procedure. For each candidate Ai we construct

a lower bound xi and an upper bound xi on the number of votes: If Λ = (Λ1, . . . ,Λt−1),

then

• if i ≤ t− 1 and Λi = 0, put xi = 0 and xi = L− 1;

• if i ≤ t− 1 and Λi > 0, put xi = S(Λi − 1) + L and xi = SΛi + L− 1;

• for i = t, put xi = S(R−∑j Λj) + L and xi = N + 1;

• for i > t, put xi = 0 and xi = N + 1.

Then one readily checks that BL−1(Λ) is the set of all (N+1)-profiles of votes (x1, . . . , xM)

such that xi ≤ xi ≤ xi for all i.

We also define weights Wi(Λ), for each block label Λ and each candidate Ai. If Λ =

(Λ1, . . . ,Λt−1) then the weights are defined by

• for i ≤ t− 1, Wi(Λ) = Λi/(R + 1);

• for i = t, Wi(Λ) = 1−∑j Λj/(R + 1);

• for i > t, Wi(Λ) = 0.

79



Thus we always have
∑

iWi(Λ) = 1.

We further modify these weights by rounding down to integer multiples of 1/2h:

• for i ≤ t− 1, W̃i(Λ) = ⌊2hWi(Λ)⌋/2h;

• for i = t, W̃i(Λ) = 1−∑j<t W̃j(Λ);

• for i > t, W̃i(t) = 0.

Let S = 26h, and let Z = {0, 1, . . . , 26h−1} be partitioned into 2h subsets Z0, . . . , Z2h−1

according to Lemma C.11. For each block label Λ, we let gΛ : {0, 1, . . . , 2h − 1} → C be

any function such that |g−1
Λ (Ai)| = 2hW̃i(Λ) for each candidate Ai. Thus, the proportion

of values of y on which gΛ takes the value Ai equals the rounded weight of Ai.

Finally, we are ready to define the voting rule f . Given a profile of votes, P =

(x1 A1, . . . , xM AM), we define f(P ) as follows:

• Let (Λ1, . . . ,Λt−1) = Λ = BL(P ) be the block label.

• If every term Λi is zero, then let f(P ) = At.

• Otherwise, consider the smallest i such that Λi > 0. Let

x̂i = (xi − L)− S

⌊
xi − L

S

⌋
.

Then x̂i is an element of Z. So x̂i ∈ Zy for exactly one y. Put f(P ) = gΛ(y).

This defines the voting rule. The statement of Theorem 4.3 promised that it would be

Pareto efficient and tops-only. Tops-onliness is clear from the construction, so we should

check Pareto efficiency. Evidently we must check that f(P ) is always a candidate who

gets at least one vote in profile P . If every term Λi of the block label BL(P ) is zero,

then Λt > R > 1 so that xt > 0. Otherwise, notice that whenever Ai is a candidate

with Λi = 0, then W̃i(Λ) = 0, and so gΛ(y) 6= Ai for all y. Consequently we cannot have

f(P ) = Ai for any such i. Thus, f(P ) must be a candidate Ai for whom Λi > 0, implying

xi > 0.

Our remaining task is to prove the susceptibility bound. The proof of the bound is

based on two claims. Let ǫ be an arbitrary small positive constant, and BL the set of all

block labels (which depends on N).
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Claim I. There is a constant cI such that the following holds, for every value of N :

For all distributions φ ∈ ∆(C), all candidates Ai, Aj ,

∣∣∣∣∣Prφ (f(Aj, P ) = Ai)−
∑

Λ∈BL
Pr
φ
((Aj, P ) ∈ BL−1(Λ))W̃i(Λ)

∣∣∣∣∣ < cIN
−( 20

37
−ǫ).

Here the Prφ(· · · ) expressions refer to probabilities concerning the profile (Aj, P ), given

that P is formed by having each of the N other votes drawn independently from φ.

Claim II. There is a constant cII such that the following holds, for every value of N :

For all distributions φ ∈ ∆(C), and all candidates Ai, Aj , Ak,

∣∣∣∣∣
∑

Λ∈BL
Pr
φ
((Aj, P ) ∈ BL−1(Λ))W̃i(Λ)−

∑

Λ∈BL
Pr
φ
((Ak, P ) ∈ BL−1(Λ))W̃i(Λ)

∣∣∣∣∣

< cIIN
−( 20

37
−ǫ). (H.1)

We shall prove these two claims, then show how this quickly completes the proof of

the theorem.

Proof of Claim I. We rewrite the expression inside the absolute value as

∑

Λ∈BL

[
Pr
φ
((Aj, P ) ∈ BL−1(Λ) and f(Aj, P ) = Ai)− Pr

φ
((Aj, P ) ∈ BL−1(Λ))W̃i(Λ)

]
.

For each block label Λ consisting of zeroes, the relevant difference is zero. (If t− 1 is

the length of Λ, then W̃t(Λ) = 1, while W̃i(Λ) = 0 for i 6= t; and f takes the value At

throughout BL−1(Λ).) So we can restrict to the sum over Λ having a nonzero component.

For each pair (k, t) with 1 ≤ k < t ≤M , let BLk,t be the set of all block labels Λ with

length t− 1 such that Λl = 0 for all l < k, but Λk > 0. It suffices to show that there is a

constant c′, independent of φ (or N), such that

∣∣∣∣∣∣

∑

Λ∈BLk,t

[
Pr
φ
((Aj, P ) ∈ BL−1(Λ) ∩ f−1(Ai))− Pr

φ
((Aj, P ) ∈ BL−1(Λ))W̃i(Λ)

]∣∣∣∣∣∣

< c′N−( 20
37

−ǫ). (H.2)

Accordingly, we take k, t as fixed from here on.

First consider any distribution φ such that φt < α. If P ∼ IID(φ), then the number of

votes received by candidate At in P has expectation φtN ≤ αN and variance φt(1−φt)N ≤
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αN , so by Chebyshev, the probability that At’s vote count is at least 2αN is ≤ 1/αN .

Consequently, the probability that (Aj, P ) gives At at least 2αN + 1 votes is ≤ 1/αN .

Notice that at every profile in any block Λ ∈ BLk,t, we must have Λt ≥ 1 from which

xt ≥ L > 2αN + 1. Thus

∑

Λ∈BLk,t

Pr
φ
((Aj, P ) ∈ BL−1(Λ)) ≤ 1/αN. (H.3)

But both probabilities on the left side of (H.2) are bounded above by the sum in (H.3),

hence (H.2) holds in this case (with the appropriate choice of c′).

Similarly, consider any distribution φ such that φk < α. Because every block Λ ∈ BLk,t

must have Λk ≥ 1, from which any profile in such a block must have xk ≥ L > 2αN + 1,

we can follow the same argument to show that (H.2) is satisfied again.

This means we can now restrict to distributions φ such that

φt ≥ α and φk ≥ α.

Take φ as given, and let l be the highest index such that φl ≥ α; thus l ≥ t.

Consider any block Λ = (Λ1, . . . ,Λt−1) ∈ BLk,t. For each s = 1, . . . ,M , define bounds

xs, xs as in the computation of BL−1(Λ) above. Consider any given values xs, with

xs ≤ xs ≤ xs, for each s 6= k, l; write x−kl for the vector of such values. Define [x−kl] to be

the set of all profiles having the specified number of votes for each candidate As, s 6= k, l.

We further break down the left-hand side of (H.2) by summing over different values

of x−kl. Define notations

Π1(Λ, x−kl) = Pr
φ

(
(Aj, P ) ∈ BL−1(Λ) ∩ [x−kl] ∩ f−1(Ai)

)
,

Π2(Λ, x−kl) = Pr
φ

(
(Aj, P ) ∈ BL−1(Λ) ∩ [x−kl]

)
· W̃i(Λ).

Then in the left-hand side of (H.2), the first probability is
∑

x−kl
Π1(Λ, x−kl) (where the

sum is over all vectors x−kl of M − 2 nonnegative integers), and the second probability is∑
x−kl

Π2(Λ, x−kl). Thus, (H.2) is equivalent to

∣∣∣∣∣∣∣

∑

Λ∈BLk,t
x−kl

[Π1(Λ, x−kl)− Π2(Λ, x−kl)]

∣∣∣∣∣∣∣
< c′N−( 20

37
−ǫ). (H.4)
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We prove this by breaking into three cases depending on the choice of Λ and x−kl. We

first deal with cases that have low probability, so that their contribution to the sums of

Π1,Π2 in (H.4) is small; and then we can deal with the substantive case where we actually

make use of the elaborate construction behind f within each block.

(i) First, for each s 6= k, l, consider choices of x−kl that have |xs−φsN | > αN/M . The

probability that (Aj, P ) gives candidate As such a number of votes is at most the

probability that P gives As a number of votes more than αN/2M away from φsN .

By the usual Chebyshev argument, this probability is ≤ 4M2/α2N .

Since Π1(Λ, x−kl) ≤ Prφ((Aj, P ) ∈ BL−1(Λ) ∩ [x−kl]), the sum of Π1(Λ, x−kl) over

all Λ and all x−kl with |xs − φsN | > αN/M is at most 4M2/α2N . Similarly, the

same holds for Π2. Thus, all the pairs (Λ, x−kl) for which |xs−φsN | > αN/M make

a total contribution to the left side of (H.4) that is bounded above by a constant

times N−1.

(ii) Next, consider choices of Λ ∈ BLk,t that have |(S(Λk − 1) + L) − φkN | > αN/M .

If (Aj, P ) is in such a block BL−1(Λ), then the number of votes for candidate Ak is

between xk = S(Λk − 1) + L and xk = SΛk + L − 1. For N sufficiently large, this

means that the number of votes for Ak in P is more than αN/2M away from φkN .

Again, this occurs with probability ≤ 4M2/αN .

Thus, the pairs (Λ, x−kl) for which |(S(Λk − 1) + L)− φkN | > αN/M make a total

contribution to the left side of (H.4) that is bounded above by a constant times

N−1.

From this and the previous bullet point, we see that in proving (H.4) it suffices to restrict

attention to pairs (Λ, x−kl) for which

|xs − φsN | ≤ αN/M for all s 6= k, l; (H.5)

|(S(Λk − 1) + L)− φkN | ≤ αN/M. (H.6)

That is, the contribution of all other pairs to the sum in (H.4) is negligible.

(iii) We will show that (H.5) and (H.6) imply

|Π1(Λ, x−kl)− Π2(Λ, x−kl)| ≤ c′′N−( 48
37

−ǫ) Pr
φ
((Aj, P ) ∈ [x−kl]) (H.7)
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where c′′ is a constant not depending on φ, N , or x−kl.

For each candidate As, define bounds xs, xs as in the calculation of BL−1(Λ). We

will first show that BL−1(Λ) ∩ [x−kl] contains exactly xk − xk + 1 profiles. That is,

for every choice of xk with xk ≤ xk ≤ xk, there is exactly one choice of xl such that

the profile (xk, xl, x−kl) is in BL−1(Λ) ∩ [x−kl]. The relevant choice of xl would of

course be xl = xk+l − xk, where xk+l = N + 1−∑s 6=k,l xs, so we just need to check

that this value of xl always lies between the bounds xl and xl.

There are two cases for the lower bound:

– If l > t, then xl = 0. We have

xl = N + 1−
∑

s 6=k,l

xs − xk

≥ N + 1−
∑

s 6=k,l

(φsN + αN/M)− xk

≥ (φk + φl)N − (M − 2)αN/M − SΛk − L

≥ (φk + φl)N − (M − 2)αN/M − (S − L+ φkN + αN/M)− L

= φlN − (M − 1)αN/M − S

≥ αN/M − S

≥ 0

as long as N is sufficiently large.

– If l = t, then xl = S(R−∑s<t Λs) + L. We also know, by definition of l, that

φs < α for each s > t, so (H.5) implies xs ≤ α(1 + 1/M)N for each such s.
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Let ν be the constant 1− α(M + 1)− (Mλ+ µ) > 0. We have

xl = N + 1−
∑

s 6=t

xs

≥ N + 1−
∑

s<t

xs −
∑

s>t

α(1 + 1/M)N

≥ N + 1−
∑

s<t

(SΛs + L− 1)− α(M + 1)N

≥ N(1− α(M + 1))− S
∑

s<t

Λs − (M − 1)L

= (Mλ+ µ+ ν)N − S
∑

s<t

Λs −ML+ L

≥ ML+RS − S
∑

s<t

Λs −ML+ L

(when N is sufficiently large)

= S

(
R−

∑

s<t

Λs

)
+ L.

Thus the lower bound is satisfied when l = t as well.

As for the upper bound, in both cases, xl = N + 1. Then

xl = N + 1−
∑

s 6=k,l

xs − xk ≤ N + 1

so the upper bound is always satisfied.

Thus BL−1(Λ) ∩ [x−kl] contains exactly xk − xk + 1 = S profiles.

For each profile (xk, xl, x−kl), we will explicitly write out the probability of achieving

this profile as the realized value of (Aj, P ). Specifically, let (x
−
k , x

−
l , x

−
−kl) be identical

to (xk, xl, x−kl) except that the j-component has been decreased by 1. (There is no

more succinct way to write this without breaking into cases depending whether

j = k, j = l, or neither.) Likewise put x−k+l = x−k + x−l , and as usual write

φk+l = φk+φl and φ−kl for the vector of other components of φ. Then the probability

of achieving (xk, xl, x−kl) is

P




x−k
x−l
x−kl

∣∣∣∣∣∣∣
N ; φ


 = P

(
x−k+l

x−−kl

∣∣∣∣∣ N ;
φk+l

φ−
−kl

)
P

(
x−k
x−l

∣∣∣∣∣ x
−
k+l;

φk/φk+l

φl/φk+l

)
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by Lemma C.2.

For succinctness, write

β = P

(
x−k+l

x−−kl

∣∣∣∣∣ N ;
φk+l

φ−
−kl

)

for the first factor, which is independent of xk, and

P̂(x−k ) = P

(
x−k

x−k+l − x−k

∣∣∣∣∣ x
−
k+l;

φk/φk+l

φl/φk+l

)

for the second factor.

Let x−k = xk or xk − 1 (depending whether j 6= k or j = k). Then the possible

values of x−k corresponding to profiles (xk, xl, x−kl) ∈ BL−1(Λ) ∩ [x−kl] are exactly

the numbers x−k + z, for z ∈ Z. (Recall we defined Z = {0, 1, . . . , S − 1}.)
Now, we have φk/φk+l ≥ φk ≥ α, and likewise φl/φk+l ≥ α. We also have x−k+l ≥
φk+lN − αN − 1 (using (H.5)) ≥ αN − 1, a lower bound that grows linearly in N .

Consequently, we can apply Lemma C.11, with d = 6. As long as N is greater

than some absolute threshold N0, we have the inequality for any two values y, y′ ∈
{0, 1, . . . , 2h − 1}:

∣∣∣∣∣∣

∑

z∈Zy

P̂(x−k + z)−
∑

z∈Zy′

P̂(x−k + z)

∣∣∣∣∣∣
≤ 241hh

(
x−k+l

)−6( 1
2
− ǫ

18) . (H.8)

This inequality is the key step in the proof of Claim I; it was for this reason that

we needed to use the sets Zy in designing f .

We have the bounds h ≤ ln(N) ≤ N
ǫ
3 for large N ; x−k+l ≥ αN − 1; and

241h = S
41
6 ≤ (constant) ·N 123

74 .

Applying these to simplify the right side of (H.8) gives

∣∣∣∣∣∣

∑

z∈Zy

P̂(x−k + z)−
∑

z∈Zy′

P̂(x−k + z)

∣∣∣∣∣∣
≤ (constant) ·N−( 99

74
−ǫ).

Next, sum over all choices of y′ ∈ {0, 1, . . . , 2h − 1} and use the triangle inequality.
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Since 2h = S1/6 . (constant) ·N3/74, we obtain

∣∣∣∣∣∣
2h
∑

z∈Zy

P̂(x−k + z)−
26h−1∑

z=0

P̂(x−k + z)

∣∣∣∣∣∣
≤ (constant) ·N−( 96

74
−ǫ).

Sum again over all y with gΛ(y) = Ai, and then also divide by 2h. The right-hand

side has been multiplied by W̃i(Λ) ≤ 1, and so we get

∣∣∣∣∣∣∣∣∣

∑

y∈g−1
Λ (Ai)

z∈Zy

P̂(x−k + z)− W̃i(Λ)
26h−1∑

z=0

P̂(x−k + z)

∣∣∣∣∣∣∣∣∣
≤ (constant) ·N−( 48

37
−ǫ) (H.9)

(after simplifying the exponent on the right side).

Now we return to the definitions of Π1 and Π2. By definition, Π1(Λ, x−kl) is the

sum of the probabilities of all realizations of P such that (Aj, P ) ∈ BL−1(Λ)∩ [x−kl]

and f(Aj, P ) = Ai. Continuing to write (xk, xl, x−kl) = (Aj, P ) for such a P , and

writing f̂(xk) = f(xk, xk+l − xk, x−kl) for each possible value of xk, we have

Π1(Λ, x−kl) =
∑

z:f̂(xk+z)=Ai

βP̂(x−k + z).

Moreover, by assumption Λk > 0, while Λs = 0 for all s < k. Therefore, the

construction of f on the block BL−1(Λ) implies that f̂(xk + z) = Ai if and only if

z ∈ Zy for some y such that gΛ(y) = Ai. That is,

Π1(Λ, x−kl) =
∑

y∈g−1
Λ (Ai)

z∈Zy

βP̂(x−k + z).

Meanwhile, Π2(Λ, x−kl) is the sum of the probabilities of all profiles in BL−1(Λ) ∩
[x−kl], regardless of the corresponding values of f , multiplied by W̃i(Λ). This can

be written as

Π2(Λ, x−kl) =




26h−1∑

z=0

βP̂(x−k + z)


 · W̃i(Λ).
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Now we see that multiplying (H.9) by β gives

|Π1(Λ, x−kl)− Π2(Λ, x−kl)| ≤ (constant) · β ·N−( 48
37

−ǫ).

Since β = Prφ((Aj, P ) ∈ [x−kl]), we see that this is exactly (H.7), as promised.

This completes the main goal of item (iii). Before leaving this case, however, let us

consider what happens when we hold fixed x−kl and sum over Λ. If BL−1(Λ)∩[xkl] =
∅, then Π1(Λ, x−kl) = Π2(Λ, x−kl) = 0, so these choices of Λ will contribute nothing

to the sum on the left-hand side of (H.4). How many block labels Λ make a nonzero

contribution, i.e. satisfy BL−1(Λ) ∩ [xkl] 6= ∅? Suppose Λ is such a block label,

with length t − 1. For each s ≤ t − 1 except for s = k, the value of Λs is uniquely

determined by the constraint xs ≤ xs ≤ xs. (Recall that l ≥ t.) This determines

every component of Λ except for Λk, and so we get at most R+1 such block labels.

Now we are ready to complete the proof of (H.2). Consider the sum

∑

Λ∈BLk,t
x−kl

[Π1(Λ, x−kl)− Π2(Λ, x−kl)]

on the left side of (H.2). Each term of the sum is indexed by a pair (Λ, x−kl). Again, we

can consider only terms with BL−1(Λ) ∩ [x−kl] 6= ∅, because the other terms are all zero.

All the terms for which x−kl violates (H.5) have a total sum whose absolute value is

bounded by a constant times N−1 (this was case (i)). All the terms for which Λ violates

(H.6) have a sum that is again bounded by a constant times N−1 (this was case (ii)). For

the remaining terms, we apply case (iii). Consider any x−kl satisfying (H.5). Sum over

all Λ that satisfy (H.6). Using (H.7), and our previous observation that at most R + 1

choices of Λ make a nonzero contribution to the left-hand side, we get

∣∣∣∣∣∣∣∣

∑

Λ∈BLk,t

Λ satisfies (H.6)

[Π1(Λ, x−kl)− Π2(Λ, x−kl)]

∣∣∣∣∣∣∣∣

≤ (constant) ·N−( 48
37

−ǫ) Pr
φ
((Aj, P ) ∈ [x−kl]) · (R + 1)

≤ (constant) ·N−( 20
37

−ǫ) Pr
φ
((Aj, P ) ∈ [x−kl])

since R+1 ≤ (constant) ·N28/37. Summing over all choices of x−kl, and using the obvious
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fact that ∑

x−kl satisfies (H.5)

Pr
φ
((Aj, P ) ∈ [x−kl]) ≤ 1,

we obtain

∣∣∣∣∣∣∣∣

∑

Λ∈BLk,t satisfying (H.6)
x−kl satisfying (H.5)

[Π1(Λ, x−kl)− Π2(Λ, x−kl)]

∣∣∣∣∣∣∣∣
≤ (constant) ·N−( 20

37
−ǫ).

These three cases (i)–(iii) together cover every possible pair (Λ, x−kl). So, adding them

together, we obtain (H.4). We already saw that (H.4) was equivalent to (H.2), so we have

proven (H.2) and the proof of Claim I is complete.

Proof of Claim II. Rewrite the asserted bound as a sum over all N -profiles P :

∣∣∣∣∣
∑

P

Pr
φ
(P )W̃i(BL(Aj, P ))−

∑

P

Pr
φ
(P )W̃i(BL(Ak, P ))

∣∣∣∣∣ < cIIN
−( 20

37
−ǫ)

or equivalently

∣∣∣∣∣
∑

P

P(P | N ;φ)
[
W̃i(BL(Aj, P ))− W̃i(BL(Ak, P ))

]∣∣∣∣∣ < cIIN
−( 20

37
−ǫ). (H.10)

Notice that the P term on the left side can only be nonzero if (Aj, P ) and (Ak, P ) are

in different blocks. In fact, it is necessary not only that these two terms be in different

blocks but that these blocks have different rounded weights for Ai. We will bound the

left side of (H.10) by bounding both the probability of drawing a P for which BL(Aj, P )

and BL(Ak, P ) have different rounded weights for Ai, and the amount by which these

rounded weights can differ.

Specifically, we will show

Pr
φ

(
W̃i(BL(Aj, P )) 6= W̃i(BL(Ak, P ))

)
< (constant) ·N−( 1

2
−ǫ) (H.11)

and

∣∣∣W̃i(BL(Aj, P ))− W̃i(BL(Ak, P ))
∣∣∣ < (constant) ·N− 3

74 for each P. (H.12)

First, we prove (H.11).
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Define Λ1, . . . ,ΛM from the profile (Aj, P ) following the block label algorithm, and

put Λ = (Λ1, . . . ,Λt−1) = BL(Aj, P ). Similarly define Λ′
1, . . . ,Λ

′
M from (Ak, P ), and put

Λ′ = (Λ′
1, . . . ,Λ

′
t′−1) = BL(Ak, P ). Notice that Λs = Λ′

s for each s, except possibly if

s = j or s = k, in which case we may have Λ′
j = Λj − 1 or Λ′

k = Λk + 1, respectively.

We consider all the cases in which W̃i(Λ) 6= W̃i(Λ
′). There are several possibilities,

depending whether the lengths t, t′ are different or equal.

(a) It may be that t < t′.

(b) It may be that t > t′.

If t = t′, then we must have W̃s(Λ) 6= W̃s(Λ
′) for some s < t, which in turn can only

happen if Ws(Λ) 6= Ws(Λ
′). Since this can occur only for s = j or k, we have two

remaining possibilities:

(c) j < t and W̃j(Λ) 6= W̃j(Λ
′).

(d) k < t and W̃k(Λ) 6= W̃k(Λ
′).

We will deal with each of these cases in turn, and show that the probability of each

one is bounded above by a constant times N−(1/2−ǫ).

(a) If t < t′, then Λ1 + · · · + Λt > R but Λ′
1 + · · · + Λ′

t ≤ R. This can only happen if

j ≤ t, Λ′
j = Λj − 1 and Λ1 + · · · + Λt = R + 1. We will estimate the probability of

these latter two equalities jointly occurring, for any fixed value of t ≥ j.

Write (Aj, P ) = (x1 A1, . . . , xM AM) as usual. To have Λ′
j = Λj − 1 we must have

xj = L+(Λj−1)S exactly. We claim that we need only worry about realizations for

which xj−1 is within 2N
1
2

√
lnN of φjN . Indeed, using Lemma C.4, the probability

of realizing any given value of xj outside this range is at most

e−N · (2N
− 1

2
√
lnN)2

2 = e−2 lnN = N−2,

so the total probablity of realizing all such xj is at most N−1. Certainly, then, it

is sufficient to focus on values of xj that are within 3N
1
2

√
lnN > 2N

1
2

√
lnN + 1 of

φjN .

We may also assume that α ≤ φj ≤ 1−α. For if φj < α and xj ≤ φjN+3N
1
2

√
lnN ,

then xj < L (as long as N is large enough); and if φj > 1 − α and xj ≥ φjN −
3N

1
2

√
lnN , then xj > L+RS ≥ L+ (Λj − 1)S (again for large N).
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The number of possible values of xj = L+ (Λj − 1)S that are within 3N
1
2

√
lnN of

φjN is at most a constant times N
1
2

√
lnN/S < N

1
2
+ǫ/S. Moreover, for each such

value, the probability of realizing it is at most a constant times N− 1
2 , by Lemma

C.7.

Therefore,

Pr
φ
(xj = L+ (Λj − 1)S) ≤ (constant) ·N ǫ/S.

Now, conditional on the value of xj = L + (Λj − 1)S, the remaining terms x−j are

distributed multinomially (by Lemma C.2). What is the probability that Λ1+ · · ·+
Λt = R + 1?

Since we are holding fixed the values of xj and Λj, let us denote them by x∗j and

Λ∗
j respectively, while the other xs and Λs follow their corresponding conditional

distributions. As long as Λ∗
j < R + 1, what we are looking is for the probability,

under the specified multinomial distribution, that

∑

1≤s≤t
s 6=j

Λs = R + 1− Λ∗
j .

Consider any realization of the profile for which this occurs. If we let Γ be the set

of indices s (1 ≤ s ≤ t, s 6= j) such that Λs > 0, then we also have
∑

s∈Γ Λs =

R + 1− Λ∗
j > 0.

Consider any possible choice of the nonempty set Γ not containing j, and estimate

the probability that
∑

s∈Γ Λs = R + 1 − Λ∗
j with each Λs > 0, conditional on the

value of xj = x∗j = L + (Λ∗
j − 1)S. Since 0 ≤ xs − (L + S(Λs − 1)) < S for each

s ∈ Γ, the desired event can happen only if

0 ≤
∑

s∈Γ
xs − (|Γ|L+ S(R + 1− Λ∗

j − |Γ|)) < |Γ| · S.

This requires that the sum
∑

s∈Γ xs — which is binomially distributed — should lie

between the lower bound

|Γ|L+ S(R + 1− Λ∗
j − |Γ|)
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and the strict upper bound

|Γ|L+ S(R + 1− Λ∗
j − |Γ|) + |Γ|S.

The lower bound is at least

|Γ|L+ S(1−M) ≥ λ

2
N

when N is large, and the upper bound is at most

|Γ|L+ S(R + 1) ≤ML+ (R + 1)S ≤ 1 + (Mλ+ µ)

2
N

whenN is large. Therefore, each such realization of
∑

s∈Γ xs has probability bounded

by a constant times N−1/2 by Lemma C.7, and so their total probability is at most

|Γ| · S · (constant) ·N−1/2.

Summing over all possible sets Γ (there are certainly at most 2M−1 possibilities), we

see that

Pr
φ

(
there exists some set Γ with

∑

s∈Γ
Λs = R + 1− Λ∗

j , Λs > 0 for all s ∈ Γ,

and j /∈ Γ | xj = L+ (Λ∗
j − 1)S

)
≤ (constant) · S ·N−1/2 (H.13)

for each fixed choice of Λ∗
j < R + 1.

Therefore,

Pr
φ
(Λ1 + · · ·+ Λt = R + 1 | xj = L+ (Λ∗

j − 1)S) ≤ (constant) · S ·N−1/2

for each fixed choice of Λ∗
j < R + 1.
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Finally,

Pr
φ
(Λ′

j = Λj − 1 and Λ1 + · · ·+ Λt = R + 1)

≤
∑

Λ∗
j

Pr
φ
(xj = L+ (Λ∗

j − 1)S and Λ1 + · · ·+ Λt = R + 1)

≤
( ∑

Λ∗
j<R+1

Pr
φ
(xj = L+ (Λ∗

j − 1)S)×

Pr
φ
(Λ1 + · · ·+ Λt = R + 1 | xj = L+ (Λ∗

j − 1)S)

)

+Pr
φ
(xj = L+RS)

≤


 ∑

Λ∗
j<R+1

Pr
φ
(xj = L+ (Λ∗

j − 1)S) · (constant) ·N− 1
2S




+(constant) ·N− 1
2

≤


∑

Λ∗
j

Pr
φ
(xj = L+ (Λ∗

j − 1)S)


 · (constant) ·N− 1

2S

+(constant) ·N− 1
2

≤ (constant) · (N ǫ/S) ·N− 1
2S + (constant) ·N− 1

2

≤ (constant) ·N−( 1
2
−ǫ).

This shows that the total probability of case (a) is at most a constant times N−( 1
2
−ǫ).

(b) If t > t′, then Λ1 + · · · + Λt′ ≤ R but Λ′
1 + · · · + Λ′

t′ > R. This can only happen

if k < t, Λ′
k = Λk + 1 and Λ′

1 + · · · + Λ′
t′ = R + 1. From here we proceed exactly

as in case (a), with Λ and Λ′ interchanged, and with the role of j played instead

by k. We thus see that the probability of case (b) is also at most a constant times

N−( 1
2
−ǫ).

(c) Suppose j < t. If W̃j(Λ) 6= W̃j(Λ
′), it must certainly happen that Wj(Λ) 6= Wj(Λ

′),

which requires Λj 6= Λ′
j. As in (a), this requires Λ′

j = Λj − 1 and xj = L+(Λj − 1)S

exactly. Also as in (a), we need only worry about values of xj that are within

3N1/2
√
lnN of φjN , because the total probability of all other values of xj is at most

N−1. Note that

|xj − φjN | ≤ 3N
1
2

√
lnN
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is equivalent to ∣∣∣∣Λj −
φjN − L+ S

S

∣∣∣∣ ≤
3N

1
2

√
lnN

S
. (H.14)

However, Λ′
j = Λj − 1 implies Wj(Λ

′) = Wj(Λ)− 1/(R + 1), and therefore

2hWj(Λ
′) = 2hWj(Λ)−

2h

R + 1
.

For the corresponding rounded weights to differ, that is to say equivalently

⌊2hWj(Λ)⌋ 6= ⌊2hWj(Λ)⌋,

it must be that

K ≤ 2hWj(Λ) < K +
2h

R + 1

for some integer K. Writing this in terms of Λj, we have

K ≤ 2h

R + 1
Λj < K +

2h

R + 1
.

Now, for each integerK, we get exactly one choice of Λj that satisfies this. Moreover,

the difference between any two such possible values of Λj (corresponding to different

K’s) is at least

⌊
1− 2h/(R + 1)

2h/(R + 1)

⌋
≥
⌊
(constant) · N/S − 1

S1/6

⌋
≥
⌊
(constant) ·N 53

74

⌋
.

For N sufficiently large, this is bigger than the width of the window in (H.14), since

the latter is

3
2N1/2

√
lnN

S
. N1/2.

Therefore, for N sufficiently large, no matter what φ is, there is at most one possible

value of Λj — call it Λ∗
j — that falls in the window (H.14) and allows W̃j(Λ) 6=

W̃j(Λ
′).

We also know that a realization of this case requires Λj > 0 (since Λ′
j = Λj − 1),

and Λj ≤ R (since j < t). Thus, using the same arguments as in case (a), (L +

(Λ∗
j−1)S)/N is bounded strictly between 0 and 1, and so the probability of realizing

xj = L+ (Λ∗
j − 1)S is bounded by a constant times N− 1

2 .
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In summary: for case (c), to happen, either (H.14) must be violated, which happens

with probability at most N−1; or we must have xj = L + (Λ∗
j − 1)S for a specific

value 0 < Λ∗
j ≤ R (although this value may depend on φ), which happens with

probability at most a constant times N− 1
2 . This shows that the total probability of

case (c) is at most a constant times N− 1
2 .

(d) For this case to happen, we must have Λk = Λ′
k − 1. From here we proceed exactly

as in (c), with the roles of Λ and Λ′ interchanged, and the role of j played by k.

This covers all four cases (a)-(d), completing the proof of (H.11).

Next we prove (H.12). We retain the notation Λ,Λ′, and so forth from the proof of

(H.11). We regard j, k, P as fixed, and prove that (H.12) holds for every possible choice

of i = 1, . . . ,M .

First we will show the analogue for the unrounded weights:

|Wi(Λ)−Wi(Λ
′)| < (constant) ·N− 3

74 . (H.15)

To show this, suppose first that i < min{t, t′}. Since Λi and Λ′
i can differ by at most

1 (with a difference possible only when i = j or k), then

|Wi(Λ)−Wi(Λ
′)| =

∣∣∣∣
Λi − Λ′

i

R + 1

∣∣∣∣ ≤
1

R + 1
< (constant) ·N− 28

37

which is a much stronger bound than N− 3
74 . And if i > max{t, t′}, thenWi(Λ) = Wi(Λ

′) =

0.

Thus, if t = t′, we have proven (H.15) for all i except possibly i = t. But then since

M∑

i=1

(Wi(Λ)−Wi(Λ
′)) = 1− 1 = 0, (H.16)

the fact that (H.15) holds for all i 6= t means it holds for i = t as well.

Now suppose t < t′. As in case (a) of the proof of (H.11), this implies j ≤ t, Λ′
j = Λj−1

and Λ1+· · ·+Λt = R+1, whereas Λ′
s = Λs for every s ≤ t, s 6= j. Hence Λ′

1+· · ·+Λ′
t = R,

and then Λ′
s = 0 for all t < s < t′ (because otherwise we would have Λ′

1 + · · · + Λ′
s > R

contradicting the minimality of t′).

Since Λ1 + · · ·+ Λt = R + 1, we have

Wt(Λ) = 1−
∑

s<t Λs

R + 1
=

Λt

R + 1
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while also Wt(Λ) = Λ′
t/(R + 1), so the same argument used to verify (H.15) above for

i < t also holds for i = t. And if t < i < t′ then Wi(Λ) = 0 = Wi(Λ
′). Thus, we have now

shown (H.15) for all i 6= t′. By (H.16), it holds for i = t′ as well.

This proves (H.15) for the case t < t′. The case t > t′ is identical, with the roles of Λ

and Λ′ interchanged and k in place of j. Thus (H.15) is proven in all cases.

Moreover, for all Λ and all i, we have

∣∣∣Wi(Λ)− W̃i(Λ)
∣∣∣ < (constant) ·N− 3

74 . (H.17)

Indeed, if i < t, then the definition of W̃i(Λ) implies

0 ≤ Wi(Λ)− W̃i(Λ) <
1

2h
=

1

S
1
6

< (constant) ·N− 3
74 .

If i > t then W̃i(Λ) = Wi(Λ) = 0. And now that we have (H.17) for all i 6= t, the identity

M∑

i=1

(
Wi(Λ)− W̃i(Λ)

)
= 1− 1 = 0

implies that it holds for i = t as well.

Combining (H.15), (H.17), and another application of (H.17) with Λ′ in place of Λ, we

get (H.12), as claimed.

Now we can prove (H.10). Let Ω be the set of allN -profiles P for which W̃i(BL(Aj, P )) 6=
W̃i(BL(Ak, P )). We have

∣∣∣∣∣
∑

P

P(P | N ;φ)
[
W̃i(BL(Aj, P ))− W̃i(BL(Ak, P ))

]∣∣∣∣∣

=

∣∣∣∣∣
∑

P∈Ω
P(P | N ;φ)

[
W̃i(BL(Aj, P ))− W̃i(BL(Ak, P ))

]∣∣∣∣∣

≤ Pr
φ
(P ∈ Ω) · (constant) ·N− 3

74

by (H.12)

≤ (constant) ·N−( 1
2
−ǫ)− 3

74

by (H.11).

This gives (H.10), and so Claim II is proven.

Completion of Proof of Theorem 4.3. Suppose the manipulator has belief φ and
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considers a change in his vote from Aj to Ak. We show that this manipulation can change

the probability of any candidate Ai winning by (asymptotically) no more than a constant

times N−( 20
37

−ǫ). We have

∣∣∣∣∣Prφ (f(Aj, P ) = Ai)−
∑

Λ

Pr
φ
((Aj, P ) ∈ BL−1(Λ))W̃i(Λ)

∣∣∣∣∣ . cIN
−( 20

37
−ǫ)

by Claim I;

∣∣∣∣∣
∑

Λ

Pr
φ
((Aj, P ) ∈ BL−1(Λ))W̃i(Λ)−

∑

Λ

Pr
φ
((Ak, P ) ∈ BL−1(Λ))W̃i(Λ)

∣∣∣∣∣

. cIIN
−( 20

37
−ǫ)

by Claim II;

∣∣∣∣∣
∑

Λ

Pr
φ
((Ak, P ) ∈ BL−1(Λ))W̃i(Λ)− Pr

φ
(f(Ak, P ) = Ai)

∣∣∣∣∣ . cIN
−( 20

37
−ǫ)

by Claim I again. The triangle inequality then gives

∣∣∣∣Prφ (f(Aj, P ) = Ai)− Pr
φ
(f(Ak, P ) = Ai)

∣∣∣∣ . (2cI + cII)N
−( 20

37
−ǫ).

The theorem follows, with (say) κ = 20/37− 2ǫ.

�
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