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Abstract

We prove that there exist social choice correspondences that can be implemented

in undominated strategies, using finite mechanisms, but can require arbitrarily many

strategies to do so, even when there are only two agents and two types of each

agent. This is in sharp contrast with dominant-strategy implementation, where

the revelation principle implies that only one strategy for each type of agent is

needed; our result shows that no corresponding simplifying principle can exist for

undominated strategies.

JEL Classifications: D82, C72, D71

Keywords: undominated strategies, implementation, revelation principle, com-

plexity

1 Introduction

Mechanism design studies situations in which a designer sets up an interaction between

agents — a mechanism — whose outcome will depend on the agents’ privately known

preferences in some desired way. An important modeling choice in any mechanism design

problem is the choice of solution concept — that is, the assumptions the designer is willing

to make about how agents will behave in any given mechanism.

One widely-used solution concept is dominant-strategy implementation. Here the de-

signer constructs the mechanism so that each type of each agent has a dominant strategy
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— a strategy that is optimal no matter what the other agents do — and so that a desirable

outcome occurs as long as the agents play these strategies. This approach is about as

robust as one could wish for: it makes no assumptions about agents’ beliefs about each

other’s preferences or strategic behavior; as long as each agent knows his own preferences,

he should be willing to play his dominant strategy, leading to the desired outcome. But

because dominant-strategy implementation is so demanding, interesting positive results

have been achieved only in some specific domains; in general, few things can be im-

plemented in dominant strategies. (Classic impossibility results for dominant strategies

include the Gibbard-Satterthwaite theorem [8, 12] on non-implementability of nontrivial

voting rules, and the Green-Laffont theorem [9] on impossiblity of budget balance in a

public projects environment, among many others. The survey by Barberá [2] gives an

overview of many negative and positive results.)

An alternative approach is the Bayesian paradigm, where the designer assumes some

specific prior belief over players’ types, and (typically) assumes that the players all share

this prior, when predicting behavior in a mechanism. This allows for some more positive

results than dominant-strategy implementation; for example, attaining budget balance

in public projects [1]. But the practical usefulness of this approach is limited because it

requires the designer to accept strong assumptions about the agents’ beliefs and strategic

behavior in order to be confident that the mechanism will perform as planned. The

“Wilson doctrine” [13] calls for analysis that does not depend on such strong assumptions.

A potentially appealing middle ground is implementation in undominated strategies :

that is, seeking a mechanism that will ensure a desirable outcome as long as agents do

not play (weakly) dominated strategies. This seems to share the robustness of dominant-

strategy implementation, allowing the designer to be very agnostic about agents’ beliefs

about each other, while not being quite as restrictive. Several works exploring possi-

bilities in some particular environments have suggested that this may be a fruitful way

forward. Börgers [6] shows that one can get around the Gibbard-Satterthwaite impossibil-

ity theorem, implementing nontrivial outcomes in a voting environment. More recently,

Yamashita [14] considers auction and bilateral trade environments, and shows examples

where one can accomplish more (in terms of expected welfare) using undominated-strategy

than dominant-strategy mechanisms, and also examples where one cannot. Interestingly,

Yamashita shows that some of the analytical tools used to study dominant-strategy and

Bayesian mechanism design problems in these environments partially carry over to study

undominated strategies, raising the hope that the study of undominated-strategy imple-

mentation can become tractable.
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One advantage of working in the dominant-strategy paradigm is that problems are

simplified by the revelation principle. This principle says that to describe the outcomes

that can be implemented by some mechanism, instead of considering the very large ab-

stract space of all possible mechanisms, it suffices to focus on mechanisms where the

strategies of each agent i are labeled by i’s types, and each type plays the corresponding

strategy. For example, if there are two agents, each with three types, it is sufficient for

the analyst to restrict attention to mechanisms that have only three strategies for each

agent. The same principle also applies to Bayesian mechanism design.1

By contrast, for implementation in undominated strategies, no such immediate reduc-

tion is available. If some desired outcome is implemented in undominated strategies by

some mechanism, we cannot simplify the mechanism by choosing a particular strategy for

each type and then throwing away all the unchosen strategies, as in dominant-strategy

implementation. The problem is that when extra strategies for one player are thrown out,

then strategies for another player that were originally dominated for some type might now

become undominated, leading to unwanted outcomes. Thus, even with a small number

of types, we might worry that undominated implementation could be possible only by

offering a large number of strategies, with each strategy being needed to prevent some

other strategy from becoming undominated. This suggests that studying undominated-

strategy implementation might be much more complex than studying dominant-strategy

(or Bayesian) implementation.

In this note, we prove a formal version of this complexity statement. We restrict

ourselves to small environments: two agents, two types of each agent, and also private

values (i.e. each agent knows his own preferences over outcomes). We show that, even

in these small environments, there exist outcomes (SCC’s) that can be implemented in

undominated strategies, but that require arbitrarily many strategies in order to do so.

We can think of this as a negative result for understanding undominated-strategy imple-

mentation: it shows that that no general-purpose simplifying principle, analogous to the

revelation principle, can exist here.

We should make clear, however, that the result is not an insurmountable barrier to

studying undominated-strategy implementation. Our result shows the absence of any

general simplifying principle for arbitrary, unstructured environments. But in any par-

ticular structured environment — such as Yamashita’s [14], with quasi-linear preferences

1With a caveat: it applies only to partial implementation, finding a mechanism with some good

Bayesian Nash equilibrium; whereas the closest analogue to the question we study would consider full

implementation, where all equilibria must ensure desirable outcomes.
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and one-dimensional types — it may still be possible to give a clean characterization of

what can and cannot be implemented.

There is not much prior literature giving general results for undominated-strategy

implementation. Early work by Jackson [10] found that basically anything can be im-

plemented in undominated strategies, but did so by creating infinite chains of strategies,

each one dominated by the next, so that no strategy in the chain ends up undominated.

This use of infinite chains is generally considered unpalatable. One natural restriction is

to require the mechanism to be bounded, meaning that any dominated strategy should be

dominated by some strategy that is not itself dominated. (In this note we will focus on

finite mechanisms, which are necessarily bounded.) Jackson showed that any SCC imple-

mentable by such a mechanism satisfies a weak form of strategyproofness. In particular,

a social choice function — specifying a single outcome for each type profile — can only

be implemented in undominated strategies if it is implementable in dominant strategies,

so that the revelation principle applies in this particular case.

One other prior paper with some similarity in spirit to ours is by Dutta and Sen [7] on

full implementation in Bayesian equilibrium (see Footnote 1). They give a finite environ-

ment — two agents, two types of each, and two outcomes — and a social choice function

that can be fully implemented, but only by an infinite mechanism. Their mechanism

involves an infinite-chain construction to avoid unwanted equilibria. Another strand of

work that similarly looks for a simplifying principle to reduce a space of mechanisms, with

positive results, is that of Bester and Strausz [4, 3, 5] on mechanism design with limited

commitment. Ours seems to be the first example of a negative result in this vein that

focuses on finite but arbitrarily large mechanisms.

2 Model and result

Here and subsequently, we will use the notation [k], with k a positive integer, for the set

{1, 2, . . . , k}. We will give definitions for general numbers of agents and types; later, we

will specialize to consider just two agents and two types of each agent.

An environment, then, consists of the following primitives:

• a set [n] of agents, for some n;

• for each agent i, a finite set of types Ti;

• a finite set X of possible outcomes ;
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• for each i and each ti ∈ Ti, a preference ≻ti , which is a strict total ordering over X .

Given such an environment, we write T = T1 × · · · × Tn for the set of type profiles.

A social choice correspondence (SCC) is a nonempty-valued correspondence F : T ⇒ X ,

specifying, for each profile of agents’ types, the outcomes that the designer considers

acceptable.

A mechanism consists of

• a nonempty, finite set Si of strategies for each agent i, whose product is denoted by

S = S1 × · · · × Sn; and

• an outcome function g : S → X .

Consider a given environment and a given mechanism. For each agent i we write

S−i = ×j 6=iSj. For a type ti of agent i, say that strategy si ∈ Si is dominated by s′i ∈ Si

if, for all s−i ∈ S−i,

g(s′i, s−i) �ti g(si, s−i)

and there is some s−i such that g(s′i, s−i) 6= g(si, s−i). A strategy si is undominated for ti

if there is no s′i that dominates it.

We then say that the mechanism (S, g) implements the SCC F in undominated

strategies if, for every profile of types t = (t1, . . . , tn) ∈ T and every strategy profile

s = (s1, . . . , sn) ∈ S such that si is undominated for ti (for each i), we have g(s) ∈ F (t).

Note that this definition is what is sometimes called “weak implementation” (e.g.

[11]): it requires only that every outcome of undominated strategies be consistent with F .

Some of the relevant literature (including [10]) uses “strong implementation,” which also

requires that every outcome specified by F be attainable by some undominated strategies.

Arguably weak implementation is the more natural desideratum for our designer to use,

since she is agnostic about agents’ behavior: even if F were strongly implemented, she

could not guarantee that the agents would be willing to play so as to attain any partic-

ular element of F (t). In any case, a version of our main result also holds with strong

implementation; see below.

Note also that we here use weak dominance. This is consistent with recent literature

[6, 14]. If we instead were to use strict dominance, then more strategies would be un-

dominated in a given mechanism, so we might expect fewer things could be implemented.

However, our theorem and proof would go through unchanged with strict dominance.

Here is our complexity result on undominated-strategy implementation.
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Theorem 2.1. For any positive integer M , there exists an environment with 2 agents,

and 2 types of each agent, and an SCC F , such that

• F can be implemented in undominated strategies;

• any mechanism implementing F in undominated strategies must have at least M

strategies for each agent.

Note that the statement of this theorem immediately implies a corresponding state-

ment for strong implementation. Indeed, if we consider the environment given by the

theorem statement and the mechanism ((S1, S2), g), implementing it, then letting F ′ be

the SCC strongly implemented by this mechanism (i.e. F ′(t) is the set of all values of

g(s1, s2), where si is undominated for ti), it follows that F
′ cannot be (weakly or strongly)

implemented with fewer than M strategies for each agent.

3 Patterns

At the heart of our result is a particular combinatorial construction. We will describe the

construction abstractly here, and the proof of the main result will then illustrate how it

relates back to undominated-strategy implementation.

Let Y be an arbitrary finite set, and let ≻1,≻2,≻3,≻4 be four total orderings of Y .

If q, r are two positive integers, we will say that a function φ : [2q] × [2r] → Y is a

(q, r)-pattern on (Y ,≻1,≻2,≻3,≻4) if all of the following conditions are satisfied:

(a) For each even i ∈ [2q] and each j ∈ [2r],

φ(i, j) ≻1 φ(i− 1, j);

(b) For each odd i ∈ [2q] and each j ∈ [2r],

φ(i, j) ≻2 φ(i− 1, j),

where the ordering is taken mod 2q (so we read i− 1 as 2q when i = 1);

(c) For each i ∈ [2q] and each even j ∈ [2r],

φ(i, j) ≻3 φ(i, j − 1);
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(d) For each i ∈ [2q] and each odd j ∈ [2r],

φ(i, j) ≻4 φ(i, j − 1),

where the ordering is taken mod 2r.

This concept is illustrated in Figure 1. A pattern is an assignment of elements of Y

to the dots so that each solid arrow represents a preference according to ≻1, with the

element at the tail preferred over the element at the head; likewise, each dashed arrow

represents a preference according to ≻2, each dotted arrow ≻3, and each dashed-dotted

arow ≻4.

1

2

3

4

Figure 1: The concept of a pattern

The pattern is called injective if the function φ is injective.

Lemma 3.1. For any positive integer M , it is possible to construct Y ,≻1,≻2,≻3,≻4 so

that there exists an injective (M,M)-pattern, but there does not exist a (q, r)-pattern for

any pair q, r with min{q, r} < M/2.

Proof: We will let Y = [2M ]× [2M ]. To describe the constructions of the orderings

≻1,≻2,≻3,≻4, we will need some notation.

We first define functions i∗, j∗ : [2M ] → [2M ] as follows:
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• If j is even, then i∗(j) = 2M + 2− j; otherwise, i∗(j) = 2M .

• If i is even and i < 2M , then j∗(i) = 2M − i; otherwise, j∗(i) = 2M .

Now, for any k ∈ [2M ], define a total ordering ≻
〈k〉
− on [2M ] as follows: for distinct

i, i′, we have i ≻
〈k〉
− i′ iff

• i > i′ ≥ k, or

• k > i > i′, or

• i′ ≥ k > i.

Thus, numbers less than k are ordered above numbers greater than or equal to k, but

within each of these two ranges, we follow the usual ordering. We also define a total

ordering ≻
〈k〉
+ to be the same as ≻

〈k〉
− , except that k itself is ordered highest rather than

lowest. Note that ≻
〈k〉
+ is the same as ≻

〈k+1〉
− (or, in case of k = 2M , we have ≻

〈2M〉
+ = ≻

〈1〉
− ,

both of which coincide with the usual ordering >). However we keep the redundant

notation for convenience.

Now we define the four orderings as follows: For distinct pairs (i, j), (i′, j′) ∈ [2M ] ×

[2M ],

• (i, j) ≻1 (i′, j′) iff j > j′, or j = j′ and i ≻
〈i∗(j)〉
+ i′;

• (i, j) ≻2 (i′, j′) iff j > j′, or j = j′ and i ≻
〈i∗(j)〉
− i′;

• (i, j) ≻3 (i′, j′) iff i > i′, or i = i′ and j ≻〈j∗(i)〉
+ j′;

• (i, j) ≻4 (i′, j′) iff i > i′, or i = i′ and j ≻
〈j∗(i)〉
− j′.

It is straightforward to see that each of these does indeed define a total ordering of

[2M ] × [2M ] = Y . For example, ≻1 above defines a lexicographic comparison, where

two pairs are compared first by their second coordinate, and if the second coordinates

coincide, then they are compared by the first coordinate (using an ordering that depends

on what the second coordinate is). Similarly for ≻2,≻3,≻4.

We check the existence of an injective (2M, 2M)-pattern φ∗. We claim we can simply

define φ∗ : [2M ]× [2M ] → Y to be the identity, φ∗(i, j) = (i, j).

Let us check that the requirements are met. To see that (a) is satisfied, say, we need

to know that i ≻
〈i∗(j)〉
+ i−1 for all even i and all j. Since i∗(j) is always even, the numbers

i, i − 1 are either both ≤ i∗(j) or both > i∗(j), so ≻
〈i∗(j)〉
+ orders them in the same way
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as >, which is what we need. For (b), we need that i ≻
〈i∗(j)〉
− i − 1 for all odd i and all

j. Since i∗(j) is even, we have either i, i − 1 both ≥ i∗(j) or both < i∗(j). The only

extra hitch is the case i = 1 and i− 1 = 2M , in which case we again have i ≻
〈i∗(j)〉
− i− 1

(noticing that i∗(j) 6= 1). Checking conditions (c) and (d) is totally analogous, using the

fact that j∗(i) is even for all i.

Now for the final assertion of the lemma, suppose that a (q, r)-pattern exists for some

q and r. Call it φ. We will show that q ≥ M/2 and r ≥ M/2. We will write φ1(i, j) for

the first component of φ(i, j), and write φ2(i, j) similarly.

First, fix any j. We have the cycle

φ(2q, j) ≻1 φ(2q − 1, j) ≻2 φ(2q − 2, j) ≻1 φ(2q − 3, j) ≻2 · · · ≻1 φ(1, j) ≻2 φ(2q, j).

The second components, φ2(i, j), can never increase along this cycle. Therefore, they

must be constant: For each j ∈ [2q], there is some number ĵ(j) such that φ2(i, j) = ĵ(j)

for all i. Moreover, there must exist some i such that φ1(i, j) = i∗(ĵ(j)). Here is why;

for brevity we write i∗ = i∗(ĵ(j)). Since ≻
〈i∗〉
+ and ≻

〈i∗〉
− agree on the ordering of the set

[2M ] \ {i∗}, if all φ(i, j) had first component different from i∗, then ≻1 and ≻2 would

order all such pairs in the same way, contradicting the existence of the cycle. To avoid

such a contradiction, we must have some pair with first component i∗ appearing in the

cycle.

So, we can define functions ĵ : [2r] → [2M ] and ĩ : [2r] → [2q] such that φ2(i, j) = ĵ(j)

for all i, j, and φ1(̃i(j), j) = i∗(ĵ(j)) for all j.

Reversing the roles of i, j lets us define functions î and j̃ similarly. Summing up, we

have defined functions î : [2q] → [2M ], ĵ : [2r] → [2M ], and ĩ : [2r] → [2q], j̃ : [2q] → [2r],

such that

φ(i, j) = (̂i(i), ĵ(j)) for all (i, j),

and

î(̃i(j)) = i∗(ĵ(j)); ĵ(j̃(i)) = j∗(̂i(i)).

Now define a sequence i1, i2, . . . by i1 = 1 and ik+1 = ĩ(j̃(ik)). We can define corre-

sponding values î1, î2, . . . by îk = î(ik). These values satisfy the recursion îk+1 = i∗(j∗(̂ik)),

since

îk+1 = î(̃i(j̃(ik))) = i∗(ĵ(j̃(ik))) = i∗(j∗(̂i(ik))).

From the definitions of i∗ and j∗, we can see that

• if îk is even and îk < 2M , then îk+1 = îk + 2;
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• otherwise, îk+1 = 2.

So the sequence of values (̂ik) enters the cycle 2, 4, 6, 8, . . . , 2M − 2, 2M, 2, 4, 6, . . .. In

particular, there are at least M distinct values. But each îk equals the value of the

function î on some i ∈ [2q]. Therefore, we must have 2q ≥ M or q ≥ M/2.

A similar argument shows that r ≥ M/2. �

4 The main proof

Now we can show how the construction from the previous section is used to prove the

main theorem.

Proof of Theorem 2.1: Let Y ,≻1,≻2,≻3,≻4, and the injective pattern φ∗ be as

given in the lemma. We take the environment to consist of two types of agent 1, {tE1 , t
O
1 },

and two types of agent 2, {tE2 , t
O
2 }, and the set of outcomes X = Y . The preferences are

as follows: tE1 has preference ≻1; tO1 has preference ≻2; tE2 has preference ≻3; and tO2 has

preference ≻4.

The social choice correspondence F is defined by

F ({tE1 , t
E
2 }) = {φ∗(i, j) | i even, j even};

F ({tE1 , t
O
2 }) = {φ∗(i, j) | i even, j odd};

F ({tO1 , t
E
2 }) = {φ∗(i, j) | i odd, j even};

F ({tO2 , t
E
2 }) = {φ∗(i, j) | i odd, j odd}.

First we check that F can be implemented in undominated strategies. Let Si = [2M ]

for each i = 1, 2, and g(i, j) = φ∗(i, j). This defines the mechanism.

For type tE1 of agent 1, the strategy i dominates i− 1 for any even i ∈ [2M ]. Indeed,

by construction, φ∗(i, j) ≻1 φ∗(i − 1, j) for every j, which is exactly the same as saying

that tE1 prefers g(i, j) over g(i− 1, j). Similarly, for type tO1 , strategy i dominates i− 1 for

any odd i (where we read i− 1 as 2M for i = 1). And likewise, for type tE2 , i dominates

i− 1 whenever i is even; for type tO2 , i dominates i− 1 whenever i is odd.

Now, suppose each agent i is of type ti and plays a strategy si that is undominated

for that type.

If the realized type profile is (tE1 , t
E
2 ), then s1, s2 must both be even, so the outcome

g(s1, s2) = φ∗(s1, s2) is in F (tE1 , t
E
2 ). The cases of the other three type profiles — (tE1 , t

O
2 ),
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(tO1 , t
E
2 ), (t

O
1 , t

O
2 ) — are similar. In each case, we have g(s1, s2) ∈ F (t1, t2). Thus, the

proposed mechanism does indeed implement F .

Now suppose ((S1, S2), g) is any mechanism implementing F in undominated strate-

gies. Let SE
1 be the set of strategies that are undominated for tE1 , and SO

1 , S
E
2 , S

O
2 similarly.

Each of these is nonempty — since the mechanism is finite, every type has some undom-

inated strategy. Note that SE
1 ∩ SO

1 = ∅: otherwise, if s1 lies in both, then we can take

s2 to be any element of SE
2 (say), and then g(s1, s2) needs to lie in both F (tE1 , t

E
2 ) and

F (tO1 , t
E
2 ); but these two sets are disjoint (since φ∗ is injective). Thus, any s ∈ SE

1 is

dominated by some s′ for type tO1 . We may assume s′ ∈ SO
1 (if not, s′ is itself dominated

for tO1 by another strategy in SO
1 , so we take that strategy in place of s′). Likewise, any

s ∈ SO
1 is dominated for type tE1 by some s′ ∈ SE

1 . Following these relations gives us

a sequence of strategies, alternating between members of SE
1 and SO

1 , such that each is

dominated by the next one for tO1 (respectively, tE1 ). But since S
E
1 ∪SO

1 is finite, these must

eventually form a cycle. Thus, after reindexing, we have a cycle of 2q distinct strategies

s11, s
2
1, s

3
1, . . . , s

2q
1 , for some positive integer q, such that

• if i is even, si1 ∈ SE
1 , and si1 dominates si−1

1 for type tE1 ;

• if i is odd, si1 ∈ SO
1 , and si1 dominates si−1

1 for type tO1 (as usual, indexing in the

cycle is mod 2q).

Likewise for agent 2: SE
2 and SO

2 are disjoint, and we find a cycle of 2r distinct

strategies s12, s
2
2, . . . , s

2r
2 , for some r, such that

• if i is even, si2 ∈ SE
2 , and si2 dominates si−1

2 for type tE2 ;

• if i is odd, si2 ∈ SO
2 , and si2 dominates si−1

2 for type tO2 (indexing mod 2r).

Then, defining φ : [2q]× [2r] → Y by φ(i, j) = g(si1, s
j
2) gives a (2q, 2r)-pattern. To see

this, notice, for example, that for all j and all even i, the statement that si1 dominates si−1
1

for type tE1 — whose preference is ≻1 — implies that g(si1, s
j
2) �

1 g(si−1
1 , sj2). We cannot

have equality, because g(si1, s
j
2) ∈ F (tE1 , t

E
2 ) or F (tE1 , t

O
2 ) (depending on the parity of j) and

g(si−1
1 , sj2) ∈ F (tO1 , t

E
2 ) or F (tO1 , t

O
2 ), and in either case F (tE1 , t2) is disjoint from F (tO1 , t2).

Thus, we have g(si1, s
j
2) ≻1 g(si−1

1 , sj2), for each even i and all j. This is statement (a)

of the definition of a pattern. Similar reasoning checks that (b), (c), and (d) are also

satisfied.

Then, by the lemma, we have q, r ≥ M/2. Since our cycles consist of 2q distinct

strategies in S1 and 2r distinct strategies in S2, we see that each agent’s strategy set

contains at least M strategies. �
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5 Minimality

There are two respects in which one might potentially seek a construction that is simpler

than the one we have given. First, we have two agents with two types each; is it possible

to give a construction where only one agent has more than one type? And second, our F

becomes arbitrarily large as M grows; is it possible to give examples of SCC’s with only

a fixed number of acceptable outcomes, yet requiring unbounded numbers of strategies to

implement? The answers to both questions are no. This should not be surprising, but it

still requires checking.

Here is our answer to the first question:

Proposition 5.1. Consider an environment in which only one agent has more than one

type. If F is an SCC that can be implemented in undominated strategies, then it can be

so implemented by a mechanism (S ′, g′) with S ′
i = Ti for each agent i.

The proof is simple, but does require a little care. We can’t simply choose one strategy

for each one-type agent and throw away the other strategies, as in the usual revelation

principle: doing so might cause formerly dominated strategies for the multiple-type agent

to become undominated. (If we used strict rather than weak dominance, this would not

be the case.)

Proof: Without loss of generality, assume agent 1 is the only one who may have

multiple types. Let (S, g) be a mechanism implementing F . Define (S ′, g′) as follows. For

each agent i, S ′
i = Ti. For each type profile t = (t1, . . . , tn), consider all the outcomes

g(s1, . . . , sn) that can be obtained from the original mechanism, where each si is undom-

inated for ti; among all such outcomes, define g′(t) be the one that is most preferred by

t1.

Evidently g′(t) ∈ F (t), since g implemented F . So we just have to check that play of

undominated strategies at t necessarily leads to outcome g′(t). Since every agent other

than agent 1 only has one choice of strategy, this is equivalent to checking that the best

obtainable outcome, according to the preference of t1, is g
′(t).

Suppose not, so that there is some outcome x ≻t1 g′(t) obtainable under g′. Hence,

x = g(s1, . . . , sn), where s1 is some strategy in S1, and for each i > 1, si ∈ Si is some

undominated strategy for (the unique type of) agent i. Then, either s1 is dominated for

t1, in which case we can find some strategy s′1 dominating it that is not itself dominated;

or s1 is undominated for t1, in which case we take s′1 = s1. In either case, put x′ =

g(s′1, s2, . . . , sn), and the dominance relation implies x′ �t1 x. But by construction of g′

we have g′(t) �t1 x
′. Hence, g′(t) �t1 x, contradicting our assumption. �
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And for the second question, we show that in order to construct examples requiring

unboundedly many strategies, we do indeed need unboundedly many outcomes, at least

if we keep the number of agents small. The proof is straightforward: if there is a fixed

number k of outcomes, then there are effectively at most k! possible types of each agent,

so there are really only finitely many SCC’s to consider, and by allowing a large enough

number of strategies we can implement any of them.

Proposition 5.2. Let n, k be positive integers. Then, there exists M with the following

property: For any environment with n agents, and any SCC F whose range contains no

more than k outcomes, if F can be implemented in undominated strategies, then it can be

so implemented by a mechanism that has at most M strategies for each agent.

Proof: Let X̂ be the range of F . Define a new environment as follows: The agents

i = 1, . . . , n are the same as in the original environment. The set of outcomes is X̂ . For

each agent i, the set of types T̂i is simply the set of all preference orderings on X̂ that are

induced by some type in Ti; for each such type ≻i, we define its preference on X̂ to be

simply the preference ≻i itself. Although types and their preferences are mathematically

the same object in this environment, they play different roles in the model, so we will use

the notation t̂i to refer to a type in T̂i, and ≻t̂i
to refer to the corresponding preference.

For each t̂i ∈ T̂i, let Ti(t̂i) in Ti be the (nonempty) set of original types that have the

corresponding induced preference over X̂ . For a profile t̂ ∈ T̂ , let T (t) = ×n
i=1Ti(t̂i).

Define the SCC F̂ : T̂ ⇒ X̂ as follows: for each t̂ = (t̂1, . . . , t̂n) ∈ T̂ , let F̂ (t̂) =

∩t∈T (t̂)F (t). We will show that F̂ can be implemented, in the new environment. (In

particular, this will verify that F̂ is nonempty-valued.)

Suppose the original SCC F was implemented in the original environment by some

mechanism (S, g). We cannot immediately reinterpret (S, g) as a mechanism for the new

environment, because g may specify outcomes that no longer exist in the new environment

— but only as a result of dominated strategies. Thus, for each i, let Ŝi ⊆ Si be the set of

all strategies that are undominated for some type. Whenever s is a strategy profile with

si ∈ Ŝi for each i, then g(s) ∈ F (t) for some type profile t, and so g(s) ∈ X̂ . Thus, we

have a mechanism over the new environment, defined by taking each agent i’s strategy

set to be Ŝi, and defining ĝ : Ŝ → X̂ as the restriction of g.

We claim that this new mechanism implements F̂ over T̂ . Indeed: Let t̂1, . . . , t̂n be

types in X̂ , and let ŝ1, . . . , ŝn be corresponding undominated strategies. Let ti ∈ Ti(t̂i) for

each i. We need to show that ĝ(ŝ) is in F (t). For each i, either ŝi was undominated for ti

in the original mechanism, or it was dominated by some other strategy ŝ′i that is in turn
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undominated for ti. In the former case we take ŝ′i = ŝi. So in either case, ŝ′i ∈ Ŝi. We claim

that ŝ′i is equivalent to ŝi in Ŝ — that is, for any ŝ′′−i ∈ Ŝ−i, we have ĝ(ŝ
′
i, ŝ

′′
−i) = ĝ(ŝi, ŝ

′′
−i).

If ŝ′i = ŝi this is obvious; otherwise, ŝ
′
i weakly dominates ŝi for ti over S, hence

ĝ(ŝ′i, ŝ
′′
−i) �ti ĝ(ŝi, ŝ

′′
−i).

Since both ĝ(ŝ′i, ŝ
′′
−i) and ĝ(ŝi, ŝ

′′
−i) are in X̂ , we can actually write this as

ĝ(ŝ′i, ŝ
′′
−i) �t̂i

ĝ(ŝi, ŝ
′′
−i).

But since ŝi is undominated for t̂i, this is possible only if there is equality, ĝ(ŝ′i, ŝ
′′
−i) =

ĝ(ŝi, ŝ
′′
−i), for all ŝ

′′
−i, as claimed. Now, the equivalence just shown, applied to every agent

i in succession, gives us that

ĝ(ŝ1, . . . , ŝn) = ĝ(ŝ′1, . . . , ŝ
′
n) = g(ŝ′1, . . . , ŝ

′
n) ∈ F (t1, . . . , tn)

which is what we needed. Thus, the new mechanism does indeed implement F̂ .

Now, our reduced environment consists of n agents, at most k outcomes, and at most

k! types of each agent. There are only finitely many SCC’s for such an environment (up

to isomorphism), and so there exists some M , depending only on n and k, such that any

such SCC that is implementable in undominated strategies can be implemented with a

mechanism of at mostM strategies for each agent. Consequently, for thisM , there is some

mechanism that implements our F̂ over T̂ , using at most M strategies for each agent.

Call it (S̃, g̃). We wrap up the proof by showing that such a mechanism implements F

over T as well.

Let t ∈ T , and let s̃ be a profile of corresponding undominated strategies. For each i,

let t̂i ∈ T̂i be the type whose preference over X̂ agrees with ti. Then s̃i is also undominated

for t̂i, since all possible outcomes of the mechanism (S̃, g̃) are in the set X̂ . Hence,

g̃(s̃) ∈ F̂ (t̂) ⊆ F (t).

Hence the mechanism implements F . �
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