
A General Equivalence Theorem for Allocation of

Indivisible Objects

Gabriel Carroll, Stanford University

gdc@stanford.edu

December 13, 2013

Abstract

We consider situations in which n indivisible objects are to be allocated to n

agents. A number of recent papers studying such allocation problems have shown

various interesting equivalences between randomized mechanisms based on trading

and randomized mechanisms based on serial dictatorship. We prove a very general

equivalence theorem from which many previous equivalence results immediately fol-

low, and we give several new applications. Our general result sheds some light

on why these equivalences hold by presenting the existing serial-dictatorship-based

mechanisms as randomizations of a general mechanism which we call serial dicta-

torship in groups. Our proof technique also streamlines the bijective methods used

in previous proofs, showing that it is enough to assemble a bijection from smaller

pieces, without needing to construct the pieces explicitly.

Keywords: Equivalence; indivisible goods; random assignment; random serial

dictatorship; serial dictatorship in groups; top trading cycles

JEL Classifications: C78, D79

Thanks to (in random order) Özgün Ekici, Jay Sethuraman, Daron Acemoglu, Parag

Pathak, Glenn Ellison, and Tayfun Sönmez for discussions and advice. One anonymous

referee also offered exceptionally helpful suggestions. Most of the research for this paper

was performed while the author was a student at MIT and was supported by an NSF

Graduate Research Fellowship.

1

1 Introduction

We consider situations in which there are n agents and n indivisible objects to be allocated

to them. Each agent is to receive one of the objects, and each agent has strict preferences

over the objects. Monetary transfers are not possible. The task is to allocate the objects

based on the agents’ preferences. This model has numerous real-life applications; the

objects may, for example, be housing units, jobs, seats at public schools, time slots for

the use of a machine, or organs for transplant [3, 4, 6, 23].

Many of the allocation mechanisms often proposed for such situations are versions

of one of two basic mechanisms: one (serial dictatorship) in which agents are lined up

and choose objects one by one, and another (top trading cycles, or TTC for short) in

which the agents are initially endowed with objects and then trade them. In either case,

fairness can be introduced into the mechanism by some randomization over the agents. In

recent years, a number of results have appeared showing unexpected equivalences between

randomized versions of serial dictatorship on one hand, and randomized versions of TTC

on the other. The appearance of several similar results, and often with similar styles of

proof, suggests that there should be a single master equivalence theorem incorporating all

of them as special cases. The main mission of the present paper is to give such a master

theorem.

To introduce this contribution in more detail, we first expand on the two basic mech-

anisms. The first, serial dictatorship, applies naturally when there is no initial ownership

of the objects, and works as follows. The agents are arranged in some order. The first

agent gets his favorite object; the second agent then gets his favorite object from the ones

remaining; the third agent then gets his favorite object from the ones remaining, and so

forth.

The second mechanism, TTC (first described in [24]), applies when each object is

initially owned by a different agent. The model then becomes a special case of an exchange

economy. In this setting, TTC allocates the objects by the following algorithm: Initially,

each agent points to the owner of his favorite object. In the resulting graph, there is at

least one cycle, i.e. a sequence of agents i1, . . . , ik such that i1 points to i2, i2 points to

i3, . . ., ik points to i1. (An agent pointing to himself forms a cycle of length 1.) For each

such cycle, give each agent the object owned by the agent he points to, and remove these

agents and objects. Next, among the remaining agents, have each point to the owner of

his favorite among the remaining objects. Again apply and remove any cycles. Continue

in this way until every agent has been allocated an object.

2

A number of characteristics help explain the popularity of these two mechanisms:

Both of them lead to Pareto-efficient allocations [2]. In the second case, TTC computes

the allocation in the core of the exchange economy (which turns out to be unique) [22].

Moreover, both mechanisms are strategyproof, i.e. for each agent, it is a dominant strategy

to report his preferences truthfully. (See [21] for TTC.) Serial dictatorship is intuitive

and easy to execute in practice; and TTC is actually the unique mechanism for exchange

economies that is Pareto-efficient, strategyproof, and individually rational [13].

The connection between randomized versions of the two mechanisms was pointed out

by Abdulkadiroğlu and Sönmez [2], who considered an allocation problem with no initial

ownership. They considered on the one hand random serial dictatorship (RSD), given by

ordering the agents uniformly at random and then executing serial dictatorship; and on

the other hand core from random endowments, given by initially allocating each object

to a different agent uniformly at random and then executing TTC. They showed that

these two mechanisms produce the same probability distribution over allocations.1 They

presented this result as an extra justification for the use of RSD in real-world settings.

Subsequently, Pathak and Sethuraman [19] and Sönmez and Ünver [25] gave several other

equivalence theorems in the same vein. We will describe their results more detail later, in

Subsections 2.1 and 2.2. Aside from their mathematical interest, these equivalences also

help shed light on the practical problem of choosing an allocation mechanism, since they

lead to new interpretations of certain mechanisms.

To formulate our result, we will consider here a version of TTC that is more general

than the one sketched above, drawing on [19] among others [4, 15]. Instead of having a

single owner, each object has a priority list that gives an ordering of the n agents. Different

objects may have different priority lists. Each agent points to his favorite object, and each

object points to the top agent in its priority list. At least one cycle forms. In each cycle,

every agent is assigned the object he points to, and these agents and objects are removed.

Next, each remaining agent points to his favorite of the remaining objects, and each

remaining object points to the highest-priority of the remaining agents; any cycles are

again applied and removed, and so forth until every agent has received an object.

We will express our results using the concept of priority frameworks, which make such

TTC mechanisms anonymous by instead giving each object an ordered list of n abstract

priority roles. Given a priority framework, if we choose an assignment of the agents to

the roles, we get a priority list for each object and can then apply TTC as above.

For expository ease, our unifying theorem is presented in two steps. We first give

1This result was also discovered by Knuth [10].

3

a special case (Theorem 1) and then the full result (Theorem 3). Theorem 1 says that

for any fixed priority framework, if we randomly assign the agents to the roles and then

run TTC, the resulting distribution is the same as RSD. Theorem 3 then extends this

by assuming that the set of agents is partitioned into groups, and the priority roles are

partitioned into groups of corresponding sizes. The agents are randomly assigned to

roles within each group, and then TTC is run. Theorem 3 states that this mechanism is

equivalent to a randomization of a new mechanism we call serial dictatorship in groups, a

kind of generalization of serial dictatorship where several dictators from different groups

choose simultaneously.

Our paper makes substantive, conceptual, and methodological contributions to the in-

divisible goods literature. On the substantive front, we unify various previous equivalence

results by showing that they are all special cases of Theorem 3, and also illustrate the

gain in generality with a few new applications.2

On the conceptual front, we introduce the ideas of anonymous priority frameworks and

priority roles. We also introduce the mechanism of serial dictatorship in groups (SDIG),

which is properly a special case of TTC, but can also be thought of as intermediate between

serial dictatorship and TTC. Bridging this gap helps build insight into why the existing

equivalence results hold: each such equivalence compares two mechanisms in which, at

each step, some collection of agents get to choose their favorite objects; the mechanisms

superficially differ in the order in which agents choose, and our proof shows that these

differences have no effect on the allocations.

On the methodological front, the proof of the main equivalence result, Theorem 3,

exhibits a new technique that draws on the bijective method used in most previous proofs

[2, 18, 25, 8]. We show that each way of assigning the agents to roles for TTC can be

mapped to a different ordering of the agents for SDIG, such that TTC leads to the same

allocation as the corresponding SDIG. But unlike previous bijective proofs, we do not fully

construct this mapping. Instead, we show how to build it up from smaller bijections, each

tying a set of several role assignment functions to a set of several orderings that all produce

the same allocation. Rather than construct each smaller bijection explicitly, we simply

show that the two sets involved have the same size, and so the bijection between them

can be chosen arbitrarily. This approach avoids some of the messy details of previous

arguments. On the other hand, the full proof of Theorem 3 is not short: with the

2As of this writing (December 2013), there is only one previously-published result in this literature
that is not a special case of our main theorem, namely an equivalence between single and multiple lotteries
for house allocation with existing tenants, mentioned in [19]. However, there is also more recent work
[12] that is still more general — discussed ahead.

4

new generality that comes from partitioning agents, the process of verifying that the

construction works becomes fairly involved.

After the present paper was first circulated, Lee and Sethuraman [12] gave a general

technique for proving equivalence of random allocation mechanisms. Their technique,

extending ideas from Pathak and Sethuraman [19], involves an inductive argument, using

inclusion-exclusion to express the outcomes of two mechanisms in terms of outcomes for

smaller sets of agents and objects, then showing that the terms that differ between the

two mechanisms cancel out. This allows them to give a quick proof of a new equivalence

that further generalizes our Theorem 3, and also of a related result in a working paper

by Ekici [8] that does not follow from ours. Although their proofs are shorter than ours,

the bijective approach here arguably offers more understanding as to why the equivalence

holds.

In the next section, we present the model and the necessary notation in detail. We first

define priority roles and priority frameworks, which allows us to state Theorem 1. Then,

we describe how to extend these concepts to partitions of agents into groups, leading to

Theorem 3. In the process, we describe the previous equivalence results and show how

they are special cases, and also give new applications. The following section gives the

proof: first a quick sketch of the ideas in the special case represented by Theorem 1, then

the full details for the more general Theorem 3. After this, we give some examples of the

necessity of a technical condition in Theorem 3. Finally, we give a brief conclusion.

2 The results

2.1 Full anonymity

We first develop the machinery necessary to state our basic theorem, Theorem 1, and

discuss the existing results that are special cases, as well as some new applications. Again,

the proof is ahead, in Section 3.

We consider sets of n agents, I = {i1, . . . , in}, and n objects, O = {o1, . . . , on}. Each

agent i has a strict preference ordering ≻i over the objects; o ≻i o
′ means that i prefers

object o over o′. Preferences will be held fixed. An allocation is an assignment of one

object to each agent, with different agents getting different objects.

Ordinarily, a mechanism is a function mapping profiles of preferences for the n agents

to allocations, or probability distributions over allocations. However, our purpose here is

to prove that two (random) mechanisms are equivalent — that is, they lead to the same

5

distribution over allocations for any given preference profile. We are not interested in

any properties of the mechanism that require comparing different preference profiles (e.g.

strategyproofness), except in passing, as motivation for focusing attention on particular

mechanisms. For our purposes, then, it is more convenient to hold preferences fixed, and

we define a mechanism to be a (possibly randomized) algorithm which produces an al-

location as output. Two mechanisms are equivalent if they lead to the same probability

distribution over allocations. Since our equivalence results will hold for arbitrary prefer-

ences, they can also be interpreted as equivalences of mechanisms under the more usual

definition.

One commonly used mechanism is as follows. Given an ordering of the agents — that

is, a bijection f : {1, . . . , n} → I — we can do the following:

• At step 1, agent f(1) is assigned his favorite object. This agent and object are

removed.

• At each step t, for t > 1, agent f(t) is assigned his favorite object from the ones

currently remaining. This agent and object are removed.

After n steps, all agents and objects have been removed; each agent has been assigned

a distinct object, so we have an allocation. This mechanism is the serial dictatorship

corresponding to the ordering f .

The random serial dictatorship (RSD) is the mechanism given as follows: first choose

an ordering f uniformly at random from the n! possible orderings, then apply the serial

dictatorship corresponding to f .

The other basic mechanism of interest to us is top trading cycles (TTC). We use the

priority-lists form of TTC as described by Abdulkadiroğlu and Sönmez [4] (see also [15]).

Suppose that each object has associated with it a priority list, an ordering of the agents.

A specification of n priority lists, one for each object, will be called a priority structure.

(The terminology in previous literature varies; see e.g. [15, 7, 26, 18, 19].) Given a priority

structure π, the following is the top trading cycles mechanism corresponding to π:

• At step 1, a directed graph is formed having the objects and agents as vertices,

where each vertex has one outgoing edge. Specifically, each agent points to his

favorite object, and each object points to the agent at the top of its priority list.

Any cycle in this graph must alternate between agents and objects. For each such

cycle, we assign each agent the object to which he points. (We can do this, because

all cycles are mutually disjoint.) All the agents and objects involved in any cycle

are removed.

6

• At step t, for t > 1, we again form a directed graph on the remaining agents and

objects. Each agent points to his favorite among the remaining objects, and each

object points to whichever of the remaining agents is highest on its priority list.

Again, for any cycle, we assign each agent the object to which he points. All the

agents and objects involved in any cycle are removed.

At each step, at least one cycle must form, since we have a finite graph in which each

vertex has outdegree 1. Thus the algorithm must terminate in at most n steps.

If f is an ordering of the agents, and every object has priority list f(1), . . . , f(n), then

the resulting TTC mechanism is equivalent to the serial dictatorship for f . Indeed, at

each step t, all objects point to f(t), and so the only cycle consists simply of agent f(t)

and his favorite object among those available.

If each object has a different agent at the top of its priority list, then our TTC mech-

anism coincides with the simpler TTC mechanism for an exchange economy, described in

the introduction, where each object is initially owned by the agent at the top of its list.

(The rest of each priority list is irrelevant.) Indeed, the cycles formed at each step are

the same as in that algorithm, except that instead of agent i pointing to the owner of his

favorite object among those available, i points to his favorite object, which in turn points

to its owner. To check this, we just need to verify that at each step t each remaining

object is pointing to its owner. This holds by induction on t: If it fails, some remaining o

must have had its owner i removed at time t− 1, but only o was pointing to i at t− 1 (by

the induction hypothesis) so they should have been removed together, a contradiction.

As discussed in the introduction, both serial dictatorship and TTC for endowment

economies are very natural mechanisms for a variety of reasons. The normative case for

the more general version of TTC with priority lists is perhaps less clear-cut; but if one

grants that it is natural in some applications for objects to have exogenous priority lists,

then TTC can be thought of as a way to respect priorities for each object while allowing

agents to achieve Pareto efficiency by “trading” their priorities [4]. Abdulkadiroğlu and

Che [1] give an axiomatization of TTC with priority lists that formalizes this idea; see

also [14, 26, 17] for related axiomatization results.

We have written out the TTC algorithm so that all cycles are removed at each step.

However, the same allocation would result if we removed only a subset of cycles at each

step — regardless of the order in which the cycles were removed. Previous literature has

recognized that this “slow TTC” produces the same allocation as TTC (see [3, Remark

1]). We will take this fact for granted in what follows; but for completeness, we provide

7

a formal statement and its (routine) proof in the appendix, as Lemma 6.

Next, we introduce the formal vocabulary needed to make priority structures anony-

mous. Define a set of n priority roles R = {r1, . . . , rn}. A priority role list is an ordering

of the priority roles, and a priority framework is a specification of n priority role lists,

one for each object. A role assignment function g is a bijection from the priority roles to

the agents. Suppose we are given a priority framework φ and a role assignment function

g. We can then construct a priority structure from φ by replacing each role rj by g(rj) in

every object’s priority role list; denote this structure by g(φ).

Thus, a priority framework describes the logical relationships between different objects’

priority lists without identifying individual agents. For example, if φ is the priority

framework in which every object has list r1, . . . , rn, then g(φ) is the priority structure

in which every object has list g(r1), . . . , g(rn). TTC with this priority structure is then

equivalent to serial dictatorship with the ordering f(j) = g(rj).

For any priority framework φ, we can define the mechanism random TTC from φ as

follows: pick a role assignment function g, uniformly at random from the set of all n!

possible such functions; then execute TTC with priority structure g(φ). Intuitively, this

mechanism respects the priority relationships specified by φ while treating the agents

entirely symmetrically.

At this point we provide a concrete example to illustrate the concepts presented thus

far. Suppose n = 3, and the preferences and the priority role structure φ are as follows:

i1 : o1 ≻ o2 ≻ o3 o1 : r3, r1, r2

i2 : o3 ≻ o2 ≻ o1 o2 : r3, r2, r1

i3 : o3 ≻ o1 ≻ o2 o3 : r1, r3, r2.

Let us calculate the result of applying random TTC from φ. First consider the role

assignment function given by g(rj) = ij for each j = 1, 2, 3. This gives us the following

priority structure g(φ):

o1 : i3, i1, i2

o2 : i3, i2, i1

o3 : i1, i3, i2.

At the first step of the TTC algorithm, we have the cycle (i1, o1, i3, o3); whereas i2 points

to o3 and o2 points to i3. So i1 is assigned o1 and i3 is assigned o3, and they are removed.

At the second step, only i2 and o2 remain, and they point to each other. Thus, the

allocation produced by TTC from g(φ) is (o1, o2, o3) (this should be read to mean that

agents i1, i2, i3 receive o1, o2, o3 respectively).

8

For each choice of g, we calculate in this way the priority structure g(φ) and the

resulting allocation. Writing g as the triple (g(r1), g(r2), g(r3)), we have

i3, i1, i2 i1, i2, i3

(i1, i2, i3) → i3, i2, i1 → (o1, o2, o3) (i2, i3, i1) → i1, i3, i2 → (o1, o3, o2)

i1, i3, i2 i2, i1, i3

i2, i1, i3 i2, i3, i1

(i1, i3, i2) → i2, i3, i1 → (o1, o3, o2) (i3, i1, i2) → i2, i1, i3 → (o1, o2, o3)

i1, i2, i3 i3, i2, i1

i3, i2, i1 i1, i3, i2

(i2, i1, i3) → i3, i1, i2 → (o2, o3, o1) (i3, i2, i1) → i1, i2, i3 → (o1, o2, o3)

i2, i3, i1 i3, i1, i2

Thus, random TTC from φ produces the allocations (o1, o2, o3), (o1, o3, o2), and (o2, o3, o1)

with probabilities 1/2, 1/3, 1/6, respectively.

We can also easily calculate the outcome of random serial dictatorship. For each of

the six possible orderings of the agents, we compute the allocation produced by serial

dictatorship:

(i1, i2, i3) → (o1, o3, o2) (i2, i3, i1) → (o2, o3, o1)

(i1, i3, i2) → (o1, o2, o3) (i3, i1, i2) → (o1, o2, o3)

(i2, i1, i3) → (o1, o3, o2) (i3, i2, i1) → (o1, o2, o3)

Thus random serial dictatorship also gives (o1, o2, o3), (o1, o3, o2), (o2, o3, o1) with prob-

abilities 1/2, 1/3, 1/6 — the same as random TTC.

Our first main result says that this identity is completely general.

Theorem 1 Let φ be any priority framework. Then random TTC from φ is equivalent

to random serial dictatorship.

Now, in order to illustrate how previous equivalence results follow as special cases —

and to offer new applications — we first give a simple corollary. Say that two priority

structures π, π′ are equivalent if there exists a permutation τ of the agents such that π′

is obtained from π by replacing each agent i by τ(i) in every priority list. Clearly this is

an equivalence relation. Moreover, for any given priority framework φ, the set of priority

structures g(φ), as g varies over role assignment functions, exactly forms an equivalence

class; let us say that φ represents this class.

9

Corollary 2 Let Π be a nonempty set of priority structures such that, if π ∈ Π, every

priority structure equivalent to π is also in Π. Consider the following mechanism: choose

π ∈ Π uniformly at random, and execute TTC with priority structure π. This mechanism

is equivalent to random serial dictatorship.

Proof: Partition Π into equivalence classes. Each equivalence class contains n! prior-

ity structures. For each equivalence class Σ, fix a priority framework φΣ that represents

it. Then, choosing a structure π ∈ Π uniformly at random is equivalent to choosing Σ

uniformly at random, choosing a role assignment function g uniformly at random, and

taking π = g(φΣ).

Conditional on the choice of Σ, choosing g at random and applying TTC with priorities

π = g(φΣ) produces the same distribution over allocations as RSD, by Theorem 1. Since

this is true for every choice of Σ, the unconditional distribution over allocations is also

the same as RSD. �

We now describe the applications, old and new.

Core from random endowments. Consider any priority framework φ in which

each object oj has rj first in its priority role list. Assigning each role rj to a different

agent g(rj) and then running TTC gives us the core of the economy where each object oj

is initially owned by g(rj). Therefore, random TTC from φ is just the core from random

endowments. Theorem 1 tells us this mechanism is equivalent to RSD; thus we recover

the result of Abdulkadiroğlu and Sönmez [2].

Partitioned random priority. Pathak and Sethuraman [19] proved an equivalence

that addressed a practical design question in the secondary round of the New York City

high school match: should priorities be determined by a single lottery at the citywide

level, or a separate lottery for each school? The formal statement of their result concerns

the partitioned random priority mechanism, defined in terms of an exogenously given

partition of the objects into disjoint classes C1, . . . , Cl (so |C1| + · · · + |Cl| = n). In

partitioned random priority, a priority structure π is drawn uniformly at random subject

to the constraint that objects in the same class have identical priority lists, and then

TTC is applied. The result states that this mechanism is equivalent to RSD. That is,

single-lottery and multiple-lottery systems yield the same outcome.

To see how this equivalence arises as a special case of our result, just notice that the

set of priority structures π satisfying the constraint meets the conditions of Corollary 2.

Partitioned random endowment. Pathak and Sethuraman also considered par-

titioned random endowment, which can be described as follows. We run TTC with a

10

priority structure π drawn uniformly at random, subject to the constraint that objects

in the same class have identical priority lists, and the following additional constraint: if

we consider the |C1| highest-priority agents for any object in C1, the |C2| highest-priority

agents for any object in C2, . . ., the |Cl| highest-priority agents for any object in Cl, then

these n agents are equal to i1, . . . , in in some order. (Thus, the mechanism is a kind of

generalization of core from random endowments, where each class of objects initially is

jointly “owned” by a correspondingly-sized set of agents, and each agent is an owner for

exactly one class.) Pathak and Sethuraman showed that partitioned random endowment

is also equivalent to RSD.

Again, the set of possible π satisfies the conditions of Corollary 2, so this equivalence

result is obtained as another special case.

More general partitioned lotteries. For a new application, we can generalize

Pathak and Sethuraman’s two mechanisms as follows. Assume again that the objects are

partitioned into classes C1, . . . , Cl, and let b1, . . . , bl be given nonnegative integers such

that b1 + · · · + bl ≤ n. Draw a priority structure π uniformly at random, subject to the

constraints that

• any two objects in the same class have the same priority list, and

• if agent i is one of the bj highest-priority agents for class Cj, and agent i′ is one of

the bj′ highest-priority agents for class Cj′ , where j 6= j′, then i 6= i′.

Then execute TTC. Corollary 2 tells us that this mechanism is always equivalent to

random serial dictatorship. Partitioned random priority is the special case bj = 0 for all

j; partitioned random endowment has bj = |Cj| for all j.

Inheritance relations. One more application is inspired by the work of Ekici [8],

in which inheritance relations between agents are randomized (this work is discussed

further in the conclusion). Suppose we assign each object an initial owner, uniformly

at random; multiple objects may have the same owner. We also choose for each agent

i an heir h(i) ∈ I. Heirs are chosen uniformly at random subject to the constraint

that the sequence i, h(i), h(h(i)), . . . should consist of one cycle containing all n agents.

Then run TTC, with each object pointing to its owner at each stage. When the initial

owner i of object o is removed, o becomes owned by h(i); if h(i) is also removed, o is

owned by h(h(i)), and so forth. (The one-long-cycle constraint ensures that inheritance

is always well-defined — an object never gets stuck cycling among agents who have all

been removed.)

11

This random mechanism is again equivalent to RSD. Indeed, running TTC as de-

scribed is equivalent to using the following priority lists: for each object o, its list consists

of its initial owner i, followed by h(i), h(h(i)), and so forth. In view of the uniform

randomizations, Corollary 2 applies.

In summary, Theorem 1 and its corollary apply to many TTC-based mechanisms one

might imagine in which all agents are to be treated equitably.

There are, however, situations where it is natural to make some distinctions among

agents — most prominently, the model known as “house allocation with existing tenants,”

where some agents initially own an object and others do not [3, 25]. This motivates us to

formulate the more general equivalence result of the next subsection.

2.2 Anonymity within groups

Suppose henceforth that we are given an exogenous partition of the set of agents into

groups I1, . . . , Im. We would like to write down an equivalence result that looks like

Theorem 1, but instead of randomly permuting all the agents, the serial-dictatorship-

based mechanism only permutes the agents within each group separately.

Suppose that we are given, for each group, an ordering of the agents within that group;

call these orderings f1, . . . , fm. Suppose we are also given a priority structure π. Consider

the following mechanism:

• At each step t ≥ 1, for each group whose agents have not all been already removed,

we define its head to be the earliest-ordered currently remaining agent in the group.

Each remaining agent points to his favorite among the remaining objects. Each

remaining object points not to its highest-priority remaining agent, but rather to

the head of the group containing that agent. As in TTC, any cycles in this graph

must alternate between agents and objects, and distinct cycles are disjoint. Each

agent participating in a cycle is assigned the object he points to; these agents and

objects are removed.

• This is iterated until all agents and objects are removed.

Just as in TTC, at least one cycle forms at every step, so the algorithm is sure to terminate.

This mechanism will be referred to as serial dictatorship in groups (SDIG) with priority

structure π and orderings f1, . . . , fm.

To build some intuition about this mechanism, notice that if all the agents are in one

big group, with ordering f , then at step t all the objects point to agent f(t), and this

12

agent and his favorite remaining object are removed. Thus, we recover serial dictatorship.

On the other hand, if there are n groups of one agent each, then we simply recover TTC

with priority structure π. SDIG can be thought of as a generalization of serial dictatorship

with several potential dictators at each step (namely, the heads of the various groups),

using priorities to help determine which of the dictators get to choose.

We can randomize SDIG easily enough, given a priority structure π. For each group

Ik, choose one of the |Ik|! possible orderings of its members uniformly at random (and

independently across groups); then perform SDIG with these orderings. This mechanism

will be called random SDIG with priority structure π. When all agents are in one big

group, random SDIG reduces to random serial dictatorship, regardless of the priority

structure.

Now suppose that, in addition to the partition of the set of agents, the priority roles

are also partitioned into groups R1, . . . , Rm, whose sizes correspond to those of the groups

of agents. For convenience we may as well assume Rk = {rj | ij ∈ Ik} for each k. We

will speak of a priority role in Rk being associated with group Ik and vice versa. A role

assignment function g is now a bijection from priority roles to agents such that, for each

rj, g(rj) belongs to the group associated with rj. We will say that a priority framework

φ respects the partition of priority roles if it satisfies the following condition: for each

object, roles in the same group must appear consecutively in its priority role list. That

is, we cannot have roles rj , rk, rl appear in that order in some object’s list, where rj, rl

belong to the same group but rk belongs to a different group. In this case, each object’s

priority role list gives an unambiguous ordering of the groups relative to each other.

Suppose φ respects the partition, g is a role assignment function, and f1, . . . , fm are

given orderings of the agents within each group. Consider the priority structure π obtained

by sorting φ using the orderings f1, . . . , fm, as follows: for each object o, we convert its

priority role list into a priority list by replacing the roles in each group Rk with the agents

in Ik, ordering these agents according to fk. Then, it is not hard to see that SDIG with

priority structure g(φ) and orderings f1, . . . , fm is exactly the same as TTC with priority

structure π. More specifically, both mechanisms involve the same graph forming, and the

same agents and objects being removed (with the same assignments), at each step.

The construction of this priority structure π does not make any use of g. So we can

unambiguously talk about the SDIG mechanism with priority framework φ and orderings

f1, . . . , fm, without reference to g.3

3This observation requires the assumption that φ respects the partition of priority roles; see Section
4.

13

In particular, given a φ that respects the partition, we can define random SDIG from

φ as follows: For each group of agents Ik, randomly choose an ordering fk, uniformly

and independently across groups; then run SDIG with priority framework φ and these

orderings.

On the other hand, we can also define random-within-groups TTC from φ as follows:

Choose a role assignment function g uniformly at random. (This is equivalent to separately

choosing a random bijection from Rk to Ik for each k.) Then run TTC with priority

structure g(φ).

Random SDIG is the analogue of random serial dictatorship in this partitioned context,

where we randomly order agents within each group, rather than ordering all n agents.

Random-within-groups TTC is the analogue of random TTC, where we constrain each

priority role to be given to an agent in the corresponding group.

To illustrate briefly we give another example. Consider again n = 3, and suppose

there are two groups, I1 = {i1, i2} and I2 = {i3}. Let the preferences and the priority

framework φ now be

i1 : o1 ≻ o2 ≻ o3 o1 : r1, r2, r3

i2 : o3 ≻ o1 ≻ o2 o2 : r3, r2, r1

i3 : o1 ≻ o2 ≻ o3 o3 : r2, r1, r3.

This φ respects the partition of roles.

For random-within-groups TTC from φ, there are two possible role assignment func-

tions: (g(r1), g(r2), g(r3)) = (i1, i2, i3) or (i2, i1, i3). Generating the corresponding priority

structures and then running TTC, we have:

i1, i2, i3 i2, i1, i3

(i1, i2, i3) → i3, i2, i1 → (o1, o3, o2) (i2, i1, i3) → i3, i1, i2 → (o1, o3, o2)

i2, i1, i3 i1, i2, i3

Thus random-within-groups TTC produces allocation (o1, o3, o2) with probability 1.

For random SDIG, there are two possible orderings (I1 may be ordered (i1, i2) or

(i2, i1), and I2 is always ordered (i3)). In each case, as described above, we can speedily

calculate the result of SDIG by sorting the priority framework using the orderings and

then running TTC. This gives

14

i1, i2, i3 i2, i1, i3

(i1, i2), (i3) → i3, i1, i2 → (o1, o3, o2) (i2, i1), (i3) → i3, i2, i1 → (o1, o3, o2)

i1, i2, i3 i2, i1, i3

So in this example, random SDIG also produces (o1, o3, o2) with probability 1.

By now the reader can probably guess what the theorem is going to say.

Theorem 3 Given corresponding partitions of the set of agents and the set of priority

roles, let φ be any priority framework that respects the partition. Then random-within-

groups TTC from φ is equivalent to random SDIG from φ.

Notice that even though we have shown how to compute the outcome of both mecha-

nisms as instances of TTC, and even though our theorem asserts that the two mechanisms

lead to the same random allocation, the executions — i.e. the sets of cycles forming at

each TTC step — are not the same. In the above example, when applying random-within-

groups TTC, with either role assignment function, two agents receive objects at the first

step (under role assignment function (i1, i2, i3), the two cycles (i1, o1) and (i2, o3) form;

under (i2, i1, i3), the one cycle (i1, o1, i2, o3) forms). When applying random SDIG, only

one agent gets an object at the first step (under (i1, i2), (i3), the only cycle is (i1, o1);

under (i2, i1), (i3), the only cycle is (i2, o3)).

One special case of Theorem 3 occurs when there is simply one group consisting of all

n agents. In this case, every priority framework respects the partition. Random SDIG

reduces to random serial dictatorship, and random-within-groups TTC is just random

TTC as defined in Subsection 2.1. Thus, we immediately recover Theorem 1.

We now discuss new applications not covered by Theorem 1.

Existing tenants. In the model of house allocation with existing tenants [3], there

are m ≤ n objects that have (distinct) initial owners, and the rest are unowned. Running

serial dictatorship in this model may be individually irrational, meaning that an owner

may end up with a worse object than he started with. To remedy this, Abdulkadiroğlu and

Sönmez proposed the following variant, you request my house, I get your turn (YRMH-

IGYT): The agents are arranged in an order. Each agent successively names his favorite

from the available objects. If it is unowned, he gets it, and relinquishes any other object

he owns. If it is owned, then the owner gets moved up from his position in the order and

placed ahead of the current agent. If this process ever fails to terminate, it is because a

15

cycle forms, consisting of existing owners, each requesting the object owned by the next

one. Give each such owner his desired object, remove them from the list, and continue.

Sönmez and Ünver [25] considered the following version of the core mechanism: ini-

tially, randomly allocate the unowned objects to the unendowed agents, and then run

TTC for this exchange economy. They showed that this is equivalent to a randomized

version of YRMH-IGYT, where the order is chosen by randomizing uniformly over all

orders of the non-owners, and then listing all the owners at the end in a fixed order.

We indicate how to recover their equivalence result from Theorem 3. Without loss

of generality, the initial owners are agents i1, . . . , im, endowed with objects o1, . . . , om

respectively. Consider the following partition of the set of agents: each agent i1, . . . , im is

in a group by himself, and then the last group consists of all other agents. Partition the

set of priority roles correspondingly. Consider the priority framework φ given as follows:

• For each owned object oj, the role rj has highest priority, then the non-owning roles

rm+1, . . . , rn, and the other owning roles (r1, . . . , rm with rj omitted) in increasing

numerical order.

• For each unowned object oj, the role rj has highest priority, then the other non-

owning roles in arbitrary order, then r1, . . . , rm in increasing order.

Such a φ respects the partition of roles.

Consider what happens when we run random-within-groups TTC. A role assignment

function g is just an assignment of the unowned objects to different non-owning agents.

So the random-within-groups TTC mechanism just assigns these objects randomly among

these agents and then applies ordinary TTC.

On the other hand, running random SDIG is equivalent to doing the following: form

an ordering f of all agents, by randomly arranging all the non-owning agents and then

putting all the owners in numerical order behind them; set each unowned object’s priority

list to be this f , and each owned object’s list to be the same except that its initial owner

is moved to the top; and then run TTC.

Abdulkadiroğlu and Sönmez make the straightforward observation that this latter

TTC is equivalent to YRMH-IGYT with the specified ordering f of agents [3, Theorem

3]. Combining this observation with our Theorem 3, we recover exactly the equivalence

of Sönmez and Ünver [25].

Partitioned randomization with group priorities. Our next application extends

the single versus multiple lottery result of Pathak and Sethuraman [19] to allow schools to

prioritize one group of students over another. For motivation, schools might, say, wish to

16

prioritize students who live nearby, or those who bring socioeconomic or gender balance

to the student body.

To model this, suppose that the objects are partitioned into classes C1, . . . , Cl, in

addition to the partition of agents into groups I1, . . . , Im. For each class, we are given a

priority ordering over the groups. We would like to run TTC, which requires breaking

ties for priority within each group so as to form strict orderings of the set of all agents.

There are two natural ways to do this.

• Single lotteries: For each group Ik, select an ordering fk of its members, uniformly at

random. For each object o in any class Cj, form a priority list by ordering the groups

of agents relative to each other as specified for Cj; within each group Ik, members

are ordered consecutively according to fk. This gives us a priority structure π, and

we run TTC with this priority structure.

• Multiple lotteries: For each class Cj and each group Ik, select an ordering fjk of

the members of the group, uniformly at random. The fjk are chosen independently

across agent groups and object classes. For each object o ∈ Cj, form its priority

list by ordering the groups relative to each other as specified for Cj, and ordering

the agents within each group Ik according to order fjk. This gives us a priority

structure π, and we run TTC with this priority structure.

The result is that the single-lottery and multiple-lottery mechanisms are equivalent.

The proof follows the same lines as the original equivalence for partitioned random

endowment from Subsection 2.1. It uses an analogue of Corollary 2, in which we consider

the set Π of all priority structures that can be obtained via multiple lotteries and partition

this Π into equivalence classes (of cardinality |I1|!·|I2|! · · · |Im|! each). Conditional on each

equivalence class, the multiple-lotteries mechanism is equivalent to the single-lotteries

mechanism, so the same holds unconditionally as well. We omit further details.

Limited preference conflicts. One last application of Theorem 3 will require further

assumptions on agents’ preferences. Specifically, suppose the objects are partitioned into

classes C1, . . . , Cm with |Ck| = |Ik| for each k, and it is known that each agent in any Ik

prefers objects in Ck above all other objects. If objects in Ck are randomly allocated to

distinct agents in Ik and then TTC is applied, the result is equivalent to running random

serial dictatorship in each group separately. (This follows directly from [2].) In fact, we

can now say more. Let C ′
1, . . . , C

′
m be any other partition of the objects into classes with

sizes |C ′
k| = |Ik|. Suppose we randomly allocate the objects in each C ′

k to distinct agents

of Ik, and then run TTC. This is still equivalent to RSD within each group. Indeed, it

17

is just random-within-groups TTC from any φ that respects the partitions and has each

object in C ′
k give top priority to a distinct role in Rk. And the corresponding SDIG is

equivalent to serial dictatorship within each group, because in the course of the SDIG

algorithm, dictators from different groups never make conflicting demands.

We close this section by commenting on an assumption we have made throughout the

paper, namely, that the numbers of agents and objects are equal. We can now see that

this is not really a substantive restriction. If there are nI agents and nO > nI objects,

one can modify the definitions of TTC and SDIG by stipulating that the algorithms

terminate when every agent is assigned, and any remaining objects are left unallocated.

Random-within-groups TTC then remains equivalent to random SDIG. To see this, just

posit an additional group of nO−nI “dummy” agents with arbitrary preferences, append

the corresponding roles at the end of every object’s priority role list, and apply Theorem

3. Similarly, if nO < nI , we can define the mechanisms to stop when the objects run

out, and remaining agents are left unassigned; equivalence again follows from Theorem

3 by defining nI − nO dummy objects and adding them to the bottom of every agent’s

preference ordering.

3 The proof

3.1 Outline

We are ready to commence the proof. The basic approach is bijective, inspired by the

constructions in [2, 18]. We will begin by building intuition with an outline of the main

ideas involved in proving Theorem 1. Then we will briefly discuss the additional com-

plexities involved in generalizing to the setting of Theorem 3. In the ensuing subsections,

we proceed to the full proof of Theorem 3. We do not provide a separate detailed proof

for Theorem 1 since it is a special case of Theorem 3.

Suppose we are in the setting of Theorem 1; fix a priority framework φ. Let Raf denote

the set of role assignment functions, and Ord the set of orderings of all agents. Both of

these sets have cardinality n!. We would like to construct a bijection F : Raf → Ord such

that, for each g ∈ Raf , TTC with priority structure g(φ) produces the same allocation

as serial dictatorship with order F (g). This will imply the desired equivalence.

Take g ∈ Raf , and consider running the TTC algorithm from g(φ). Let I t denote

the set of agents removed at step t of the algorithm. (The I t are separate from the sets

18

Ik introduced in Subsection 2.2.) We will also need the important distinction between

satisfied and unsatisfied agents (first introduced in [2]). For each step t > 1, let an agent

i ∈ I t be satisfied if

• i is pointing to the same object at step t as he was at step t− 1, and moreover

• this object is pointing to the same agent at step t as at step t− 1.

Otherwise, we say that i is unsatisfied. Notice that every cycle that forms at step t must

contain at least one unsatisfied agent: otherwise the cycle would have formed by step t−1

and so would have been removed. It will also be convenient to specify that every agent

in I1 is unsatisfied. Denote by St and U t the sets of satisfied and unsatisfied agents in I t,

respectively.

The sets I t, St, U t partially describe the execution of the TTC algorithm. We use

them to construct the ordering F (g) as follows: first, we have the agents in I1, in some

order; then we have the agents in I2, in some order, beginning with one of the unsatisfied

agents; then I3 in some order, again beginning with an unsatisfied agent, and so forth.

(We can do this, since there is some unsatisfied agent at each step — in fact, at least

one in each cycle.) This will have the desired property that serial dictatorship with order

F (g) produces the same allocation as TTC from g(φ), since TTC gives each agent in I t

his favorite object from among those not removed at any earlier step (and this object

cannot have been assigned to another agent in the same I t). We do need to check that

we can order the agents within each step so that F is a bijection.

Given such an ordering F (g), we can uniquely recover the set I t of agents removed at

each step t of the TTC procedure, as well as the set Ot of objects they receive and the

corresponding set of roles Rt = g−1(I t). For example, I1 is the largest initial sequence of

agents in the order such that their favorite objects are all distinct and these objects’ first

priority roles in φ are also all distinct. (This follows from the fact that the next agent

listed after I1 is unsatisfied.) So we can reconstruct I1, and also O1 since each agent in

I1 is assigned his favorite object. We also know the set R1 of priority roles assigned to

agents in I1: it must consist of the top priority role for each object o ∈ O1. From this,

we know which agents, objects, and priority roles remain at step 2. By iterating on these

remaining agents, objects, and priority roles, we can identify I2, O2, and R2, and so forth.

Thus, for each step t, we can uniquely reconstruct the sets I t, Ot, Rt. Notice that this also

gives us enough information to reconstruct the sets of satisfied and unsatisfied agents at

each step t.

19

In order for F to be a bijection, we need to be able to uniquely reconstruct which

priority role in Rt corresponds to each agent in I t, given F (g). We use the ordering of

agents in I t among themselves to encode this information. Consider the following two

sets:

• URaf(I t, Rt, St), the set of bijections between Rt and I t (“step-t role assignment

functions”) for which no cycle in the resulting graph at step t of TTC consists

entirely of satisfied agents;

• UOrd(I t, St), the set of orderings of I t such that the first agent is not satisfied.

Both of these sets have cardinality (|I t|− |St|) · (|I t|− 1)!.4 So we can choose an arbitrary

“step-t” bijection between them, independent of g — for example, list members of both

sets in lexicographical order and specify that members in the same position correspond

to each other.

We can thus use the ordering of the agents in I t to encode the necessary information

about which agent has which role. Using the step-t bijection to determine the order

of agents within the set I t, for each step t, we can complete the construction of F (g).

Conversely, given F (g), the function g can be uniquely reconstructed by inverting these

step-t bijections. This ensures that the big map F is a bijection, which is what we wanted.

This outline shows the overall approach. We construct a bijection F between the role

assignment functions g for TTC and the orderings for serial dictatorship. But to avoid

unnecessary mess, we do not fully specify F explicitly; we only specify how F is built up

from its pieces (the step-t bijections), and the pieces need not be actually constructed.

In order to apply this approach in the setting where agents are partitioned into groups,

more work is necessary. For one thing, it is no longer so obvious how to reconstruct

each successive step I t of the TTC algorithm from the orderings of agents. With a

single ordering of all agents, we simply peel off as many agents as possible from the

beginning of the ordering; with orderings for each group separately, we have to show

that there is a unique maximal way to peel off agents from each group simultaneously.

(This will follow from Lemma 4 below.) In addition, the analogue of the fact that

|URaf(I t, Rt, St)| = |UOrd(I t, St)|, which is required to ensure existence of the step-t bi-

jection, becomes substantially trickier to prove (Lemma 5); we use an inclusion-exclusion

4For UOrd(It, St) this is easy to see. For URaf(It, Rt, St), the problem is equivalent to counting the
permutations of It that have no cycles of satisfied agents. If we try to construct such a permutation h

by first assigning a value h(i) for each satisfied agent i in turn, then assigning h(i) for each unsatisfied
agent, we find we have |It| − j choices for the jth assignment when j ≤ |St| and |It| − j+1 choices when
j > |St|. Multiplying gives the formula.

20

argument somewhat like the counting method in [19]. The argument that TTC from g

gives the same allocation as SDIG from F (g) also becomes more complicated, because

the cycles formed in the course of SDIG are no longer trivial. And, inevitably, there is

a certain amount of notational baggage to carry throughout the proof; we hope Table 1

will ease the pain.

We now embark on the project of filling in these details.

F master bijection Raf → Tab

F((Îk);(R̂k);s;Ŝ)
bijection from URaf((Îk); (R̂k); s; Ŝ) to UTab((Îk); (R̂k); s; Ŝ)

g a role assignment function

I set of all agents

Ik kth group of agents

I t set of agents removed at step t

I t+ set of agents remaining at step t

I tk set of agents in group k removed at step t

I t+k set of agents in group k remaining at step t

Î set of all agents (Subsection 3.2)

Îk set of agents in group k (Subsection 3.2)

Lk kth list in a tableau

m number of groups

O set of all objects

Ot set of objects removed at step t

Ot+ set of objects remaining at step t

Ot
k set of objects removed at step t that pointed to an

agent in group k

R set of all priority roles

Rk kth group of priority roles

Rt set of priority roles removed at step t

Rt+ set of priority roles remaining at step t

Rt
k set of priority roles in group k removed at step t

Rt+
k set of priority roles in group k remaining at step t

Table 1: Frequently used notation

21

R̂ set of all priority roles (Subsection 3.2)

R̂k set of priority roles in group k (Subsection 3.2)

r a role assignment function (Subsection 3.2)

Raf set of all role assignment functions

RafS set of role assignment functions for which every

set in S is mapped to itself (Subsection 3.2)

St set of satisfied agents removed at step t

St+ set of potentially satisfied agents remaining at step t

Ŝ set of satisfied agents (Subsection 3.2)

s successor role function

st successor role function for agents removed at step t

st+ successor role function for agents remaining at step t

T a tableau (or F (g) in main proof)

T t tableau formed from step t of TTC algorithm

T t+ tableau formed by agents remaining at step t

Tab set of all full tableaus

TabS set of tableaus for which every set in S forms a

balanced initial subtableau (Subsection 3.2)

t number of steps of TTC algorithm

U t set of unsatisfied agents removed at step t

U t+ set of potentially unsatisfied agents remaining at step t

URaf((Îk); (R̂k); s; Ŝ) set of role assignment functions leading to a

permutation of agents having no cycle

consisting of satisfied agents

UTab((Îk); (R̂k); s; Ŝ) set of full tableaus with no nonempty, balanced initial

subtableau consisting of satisfied agents

π a priority structure

φ a priority framework

Table 1: Frequently used notation (continued)

22

3.2 Tableaus and permutations

We will begin by developing the conceptual tools that are needed to prove the existence

of the step-t bijections (Lemma 5). Along the way, we will also prove a lemma that will

subsequently be crucial in reconstructing a role assignment function g from the corre-

sponding orderings (Lemma 4). The proofs of these two lemmas are logically separate

from the rest of the main proof, and the proof for Lemma 5 in particular is somewhat

involved, so the reader only interested in the main bijective argument can skip over them.

In this subsection, we take as given m disjoint finite sets of agents Î1, . . . , Îm, and m

disjoint sets of priority roles R̂1, . . . , R̂m, with |Îk| = |R̂k| for each k. Let Î = ∪kÎk and

R̂ = ∪kR̂k. We also assume given a successor role function s : Î → R̂. We are especially,

but not exclusively, interested in the case where s is a bijection. (When we apply the

results of this subsection, Îk and R̂k will be subsets of the original sets Ik of agents and

Rk of priority roles; s(i) will denote the highest-priority role for the object to which agent

i points, at some step of the TTC algorithm. But for now we can just think of Îk, R̂k, s

abstractly.)

We are interested in bijections r : R̂ → Î that assign the agents to the priority roles.

For purposes of this subsection, such a bijection is called a role assignment function if

r(R̂k) = Îk for each k. If s : Î → R̂ is a bijection, then for any bijection r : R̂ → Î, the

composition r ◦ s is a permutation of Î.

A tableau will denote a sequence of m ordered lists (L1, . . . , Lm), where each Lk is a

(possibly empty) list of distinct elements of Îk. (Note that to define a tableau we need

only to have specified the sets Îk, not the R̂k or s.) The tableau is full if each Lk contains

every element of Îk. Thus, a full tableau specifies an ordering of all the elements of Îk, for

each k. The tableau is empty if every Lk is empty. The tableau (L1, . . . , Lm) is an initial

subtableau of (L′
1, . . . , L

′
m) if, for each k, the list Lk consists of the first lk elements of L′

k,

for some lk (possibly zero).

We will be a little notationally sloppy and write i ∈ T to indicate that agent i appears

in tableau T ; likewise |T | will denote the number of agents appearing in T , and if L is a

list (or a set) of agents, T ∩ L will denote the set of agents appearing in both T and L.

We will say the tableau (L1, . . . , Lm) is balanced if, for each k, the number of agents

i ∈ Î appearing in the tableau with s(i) ∈ R̂k is equal to the length of Lk. It is consistent

if it does not contain two different agents i, i′ with s(i) = s(i′). Notice that the tableau is

balanced and consistent if and only if there exists some role assignment function r such

that r ◦ s permutes the set of agents appearing in the tableau. Also, if s is a bijection,

23

then every tableau is automatically consistent, and a full tableau is always balanced, as

is the empty tableau.

These definitions allow us to state the following important lemma.

Lemma 4 Let T = (L1, . . . , Lm) be a tableau and T1, T2 two balanced initial subtableaus.

Their union — defined by taking, for each k, the list of elements of Lk appearing in either

T1 or T2, in order according to Lk — is again a balanced initial subtableau of T . Moreover,

if T1 and T2 are both consistent, then so is their union.

Likewise, the intersection of two balanced initial subtableaus T1, T2 — defined by taking,

for each k, the list of elements of Lk appearing in both T1 and T2 — is a balanced initial

subtableau of T , as well as of T1 and of T2.

Proof: Let T∪ denote the union. It is clear that it is an initial subtableau: if it

contained some agent i ∈ Lk such that an earlier agent j ∈ Lk did not appear in T∪, then

either T1 or T2 would again contain i and omit j, contrary to the assumption that T1 and

T2 are initial subtableaus of T .

Now to show that T∪ is balanced. For each k, we want to show that the total number

of agents i ∈ T∪ satisfying s(i) ∈ R̂k equals the number of agents in Lk that appear in T∪.

Let l1k be the number of agents in Lk that appear in T1, and l2k the number of agents in

Lk that appear in T2; without loss of generality assume l1k ≥ l2k. Then

|{i ∈ T∪ | s(i) ∈ R̂k}| ≥ |{i ∈ T1 | s(i) ∈ R̂k}| = l1k = max{l1k, l2k} = |T∪ ∩ Lk| (1)

where the first equality holds because T1 is balanced, and the third equality holds because

T1, T2 are initial subtableaus, so every agent in Lk appearing in T2 also appears in T1.

Thus for each k we get |{i ∈ T∪ | s(i) ∈ R̂k}| ≥ |T∪ ∩ Lk|. Adding over all k gives

|T∪| ≥ |T∪|.

So the equality must hold for each k individually; that is, |{i ∈ T∪ | s(i) ∈ R̂k}| = |T∪∩Lk|,

which says that T∪ is balanced.

If T1, T2 are both consistent, we wish to show that T∪ is as well. Suppose that there

are two different agents j, j′ ∈ T∪ with s(j) = s(j′) ∈ R̂k. Let l1k, l2k be as above, and

again assume without loss of generality that l1k ≥ l2k. The above argument shows that

equality holds in (1), so that {i ∈ T∪ | s(i) ∈ R̂k} = {i ∈ T1 | s(i) ∈ R̂k}; thus, j, j
′ both

appear in T1. But then this violates the consistency of T1. This contradiction shows that

T∪ is consistent.

24

Finally, let T∩ denote the intersection of T1 and T2. It is again an initial subtableau

(of T , T1, and T2): if it contains some agent i ∈ Lk, then every earlier agent in Lk must

also appear in both T1 and T2, hence in T∩. The proof that T∩ is balanced is essentially

identical to the proof for T∪, with all the inequalities reversed and with max replaced by

min in (1). �

Next, we proceed to the counting lemma which will be used to produce the step-t

bijections. For this we will assume that the successor role function s is a bijection. We

also need to assume that, in addition to the sets of agents and priority roles and the

successor role function, we are given a designated subset Ŝ ⊆ Î. We will refer to agents

in Ŝ as satisfied.

We define two important sets as follows:

• URaf(Î1, . . . , Îm; R̂1, . . . , R̂m; s; Ŝ) is the set of role assignment functions r with the

following property: the permutation r ◦ s of Î has no cycles consisting entirely of

satisfied agents.

• UTab(Î1, . . . , Îm; R̂1, . . . , R̂m; s; Ŝ) is the set of full tableaus with the following prop-

erty: there is no nonempty, balanced initial subtableau consisting entirely of satisfied

agents.

For brevity, we will denote these sets by URaf and UTab respectively as long as there

is no confusion about their arguments. They are the generalizations to the partitioned

setting of the sets URaf and UOrd described in Subsection 3.1.

Lemma 5 Suppose s is a bijection. Then |URaf | = |UTab|.

Proof: Let P denote the power set of Ŝ, minus the empty set; that is, P is the set of

all nonempty sets of satisfied agents. For any S ⊆ P , define the following two sets:

• RafS is the set of all role assignment functions r such that for each S ∈ S, the

permutation r ◦ s of the agents maps S to itself.

• TabS is the set of full tableaus such that for each S ∈ S, there exists a balanced

initial subtableau whose set of agents is exactly S.

In particular, Tab∅ is the set of all full tableaus, and Raf∅ is the set of all role assignment

functions.

25

The inclusion-exclusion principle implies that

|URaf | =
∑

S⊆P

(−1)|S||RafS |; (2)

|UTab| =
∑

S⊆P

(−1)|S||TabS |. (3)

We would like to show that these two sums are equal. Our strategy will be to show that

for some choices of S, the term in (2) is equal to the corresponding term in (3); and for

the remaining S’s, the corresponding terms in (2) cancel in pairs, and the terms in (3)

also cancel in pairs.

To this end, let Q be the power set of P , and let

Q∗ = {S ∈ Q | there exist S, S ′ ∈ S with S 6⊆ S ′ and S ′ 6⊆ S}.

Thus, Q∗ consists of all the collections of nonempty sets of satisfied agents that contain

at least two mutually non-nested sets.

We will define an involution ψ : Q∗ → Q∗ as follows. First, letQ∗
2 = {S ∈ Q∗ | |S| = 2}

be the collection of all pairs of non-nested sets of satisfied agents. Order these pairs

according to the size of the larger set in each pair — that is, if {S1, S
′
1}, {S2, S

′
2} are pairs

with max{|S1|, |S
′
1|} < max{|S2|, |S

′
2|}, then {S1, S

′
1} appears before {S2, S

′
2}. (Ties may

be broken arbitrarily.) Now, for any S ∈ Q∗, let S, S ′ be the pair of non-nested sets in

S that appears earliest in this ordering. Then, if S ∪ S ′ ∈ S, let ψ(S) = S \ {S ∪ S ′};

otherwise let ψ(S) = S ∪ {S ∪ S ′}. In words, to apply ψ, we find the earliest pair of sets

S, S ′ ∈ S that are mutually non-nested, and we change S by either adding or deleting

their union S ∪ S ′.

Because S, S ′ are mutually non-nested and the pairs have been ordered by size of the

larger set, any pair containing S ∪ S ′ appears later in the ordering of Q∗
2 than {S, S ′}. It

follows that S and S ′ are also the earliest mutually non-nested sets in ψ(S), and therefore

ψ(ψ(S)) = S. That is, ψ is indeed an involution. It is also clear that |ψ(S)| = |S| ± 1.

Now let S, S ′ be mutually non-nested sets of satisfied agents, and r a role assignment

function. Notice that if r ◦ s maps S to itself and also maps S ′ to itself, then r ◦ s maps

S ∪ S ′ to itself. This means that for S ∈ Q∗, r ∈ RafS if and only if r ∈ Rafψ(S). That

is, RafS = Rafψ(S). Looking back at (2), for any S ∈ Q∗, the terms corresponding to S

and ψ(S) are of equal magnitude and opposite sign. So we can cancel them out. This

26

leaves us with

|URaf | =
∑

S∈Q\Q∗

(−1)|S||RafS |. (4)

Similarly, let T = (L1, . . . , Lm) be a full tableau such that there is a balanced initial

subtableau TS whose set of agents is exactly S, and a balanced initial subtableau TS′ whose

set of agents is exactly S ′. Lemma 4 tells us that there is a balanced initial subtableau

whose set of agents is S ∪ S ′. This means that T ∈ TabS if and only if T ∈ Tabψ(S).

That is, TabS = Tabψ(S). So again, we can cancel out these two terms from (3) for each

S ∈ Q∗, and we are left with

|UTab| =
∑

S∈Q\Q∗

(−1)|S||TabS |. (5)

Now consider any S ∈ Q \ Q∗. That is, S is a collection of nonempty subsets of Ŝ

that are nested. We will show that |RafS | = |TabS |. Write

S = {S1, . . . , Sq} with S1 ⊂ S2 ⊂ · · · ⊂ Sq.

Let S0 = ∅ and Sq+1 = Î for convenience. Write Skl = Îk∩(Sl\Sl−1) for each k = 1, . . . ,m

and l = 1, . . . , q + 1. The m(q + 1) sets Skl form a partition of Î.

Suppose that there exist k and l such that

|Îk ∩ Sl| 6= |{i ∈ Sl | s(i) ∈ R̂k}|.

(We must have 1 ≤ l ≤ q.) Then there are no tableaus having a balanced initial subtableau

with elements Sl. There is also no role assignment function r such that r ◦ s maps Sl into

itself, since for such an r to exist we would have to have

|Îk ∩ Sl| = |(r ◦ s)−1(Îk) ∩ Sl| = |{i ∈ Sl | s(i) ∈ r−1(Îk)}| = |{i ∈ Sl | s(i) ∈ R̂k}|.

Hence, |RafS | = |TabS | = 0 in this case.

Suppose, on the other hand, that for all k and l we have

|Îk ∩ Sl| = |{i ∈ Sl | s(i) ∈ R̂k}|. (6)

Denote S ′
kl = (s−1(R̂k)) ∩ (Sl \ Sl−1) for each k = 1, . . . ,m and l = 1, . . . , q + 1. These

27

sets again form a partition of Î. Notice that

|S ′
kl| = |s−1(R̂k) ∩ Sl| − |s−1(R̂k) ∩ Sl−1| = |Îk ∩ Sl| − |Îk ∩ Sl−1| = |Skl|.

Now, consider a bijection r : R̂ → Î. r is a role assignment function if and only if r ◦ s

maps s−1(R̂k) to Îk for each k. Therefore, the joint requirement that r should be a role

assignment function and r◦s should map each Sl to itself is equivalent to the requirement

that r ◦ s should map S ′
kl to Skl, for all k and l. The number of such bijections r is then

|RafS | =
m∏

k=1

q+1∏

l=1

|Skl|!. (7)

Consider a full tableau T = (L1, . . . , Lm). It is evident that the following two condi-

tions on T are equivalent:

• for each l = 1, . . . , q, there exists an initial subtableau consisting of agents Sl;

• for each k = 1, . . . ,m, the list Lk consists of the agents in Sk1 in some order, followed

by the agents in Sk2 in some order, . . ., the agents in Sk(q+1) in some order.

Moreover, if these initial subtableaus exist, they are automatically balanced, by (6).

Therefore, the number of full tableaus for which there exists a balanced initial subtableau

with agent set Sl, for every l = 1, . . . , q, is just

|TabS | =
m∏

k=1

q+1∏

l=1

|Skl|!. (8)

By combining (7) and (8), we see that |RafS | = |TabS | for every S ∈ Q\Q∗. Therefore,

the sums in (4) and (5) are equal term-by-term, giving |URaf | = |UTab|. �

3.3 The main argument

We now return to the setting and notation of Subsection 2.2, where overall sets of agents

I1, . . . , Im and priority roles R1, . . . , Rm are exogenously given.

As one more preliminary, we prepare the application of Lemma 5. Consider any sets

Î1, . . . , Îm and R̂1, . . . , R̂m of agents and priority roles, respectively, such that Îk ⊆ Ik,

R̂k ⊆ Rk, |Îk| = |R̂k| for each k; consider further any bijection s : ∪kÎk → ∪kR̂k and any

subset Ŝ ⊆ ∪kÎk. For each such choice of the sets Îk, R̂k, Ŝ and choice of s, we fix an

28

arbitrary bijection

F((Îk);(R̂k);s;Ŝ)
: URaf((Îk); (R̂k); s; Ŝ) → UTab((Îk); (R̂k); s; Ŝ).

We know that some such bijection exists because Lemma 5 tells us that the two sets

involved have the same cardinality. We will take all these bijections to be fixed in what

follows, and we will not need to know anything about their exact content.

Proof of Theorem 3: Let Raf denote the set of all possible role assignment

functions g. Let Tab denote the set of all m-tuples (f1, . . . , fm), where each fk is an

ordering of Ik (that is, the set of full tableaus for the agent groups Ik).

We are given the priority framework φ. We wish to construct a bijection F : Raf →

Tab with the following property: for each g ∈ Raf , TTC from g(φ) produces the same

allocation as SDIG from φ and orderings given by F (g). Once we have such a bijection,

Theorem 3 will be immediate.

Moreover, because |Raf | = |I1|! · |I2|! · · · |Im|! = |Tab|, if we can construct F and show

that it is one-to-one, then it will immediately follow that it is bijective.

Our proof will be broken down into four parts: (1) constructing F ; (2) verifying that

TTC from g(φ) is equivalent to SDIG from φ and F (g); (3) showing how the agents,

objects, and roles removed at each step of TTC can be uniquely recovered from F (g); (4)

using Part 3 to uniquely reconstruct all of g from F (g), showing that F is one-to-one.

Some statements within the parts will be highlighted as claims and subclaims. Their

proofs will be delineated by the ending symbols ✸ and △ respectively.

Part 1: Constructing the map F . Let a role assignment function g be given.

Run the TTC algorithm from g(φ). Following the terminology established in Subsection

3.1, we let I t be the set of agents removed at step t, Ot the set of objects removed, and

Rt = g−1(I t) the set of roles corresponding to I t. Also let St, U t ⊆ I t be the sets of

satisfied and unsatisfied agents, respectively. Finally, let t be the total number of steps

required. We will construct a tableau T t based on what happens at step t of the algorithm,

then combine these tableaus T 1, . . . , T t to form one big tableau, and this big tableau will

be F (g).

For each t and each k = 1, . . . ,m, let I tk = I t ∩ Ik, and Rt
k = Rt ∩ Rk. Define

the successor role function st : I t → Rt as follows: For each i ∈ I t, there is a unique

agent j such that i points to an object that points to j (at step t of the algorithm); let

st(i) = g−1(j). Since the agents in I t belong to cycles formed at step t, (g|Rt)◦st permutes

the agents in I t by advancing two steps along each cycle, hence st is a bijection from I t

29

to Rt. Also, g|Rt is clearly a role assignment function (in the language of Subsection 3.2)

with respect to the agent sets I tk and priority role sets Rt
k.

Claim. The permutation (g|Rt)◦ st has no cycles consisting entirely of satisfied agents.

Proof. Suppose there is such a cycle. By the definition of satisfied agents, t > 1, and

each agent i in the cycle is pointing to the same object at step t as at step t−1; moreover

this object is pointing to the same agent at step t as at step t− 1, namely ((g|Rt) ◦ st)(i).

Hence, the agents in the cycle, together with the objects they point to, form a cycle in

the graph at step t of the execution of the TTC algorithm, and this cycle was already

present at step t− 1. But this means these agents and objects should have been removed

before step t — a contradiction. ✸

Thus we have

g|Rt ∈ URaf(I t1, . . . , I
t
m;R

t
1, . . . , R

t
m; s

t;St).

So, applying the bijection F(It
1
,...,Itm;Rt

1
,...,Rt

m;st;St) defined at the beginning of this subsection,

we get a tableau

T t ∈ UTab(I t1, . . . , I
t
m;R

t
1, . . . , R

t
m; s

t;St).

Do this for each step t, obtaining tableaus T 1, . . . , T t. Each tableau T t contains exactly

those agents that are in I t, so each agent appears in one tableau.

Finally, concatenate these tableaus to form a full tableau T . That is, for each k =

1, . . . ,m, the kth list of T is formed by writing the kth list of T 1, followed by the kth list

of T 2, and so on in succession. We have T ∈ Tab. Define F (g) = T .

Part 2: Showing equivalence between g and F (g). We need to show that TTC

from g(φ) produces the same allocation as SDIG from φ and F (g).

Let π be the priority structure produced by sorting φ using the orderings given by

the tableau F (g). From the discussion in Subsection 2.2, we know that SDIG from φ and

F (g) is equivalent to TTC from π. So we just need to show that TTC from g(φ) and

TTC from π produce the same allocation.

One might hope to prove this by showing that g(φ) and π lead to the same cycles at

each step of the TTC algorithm. Unfortunately, things are not quite so simple. The two

priority structures may not lead to the same cycles, and even if they do, these cycles may

not appear in the same order. (Indeed, we saw this in the example in Subsection 2.2.)

Hence the need for the more complex argument that follows.

Continue to let I t, Ot denote the agents and objects removed at step t of TTC from

g(φ). Let I tk = I t ∩ Ik as before. Let Ot
k denote the set of objects in Ot that, at step t of

TTC from g(φ), were pointing to an agent in I tk. Since I
t and Ot formed cycles, we have

30

|Ot
k| = |I tk|.

We now define the following modified version of TTC from π.

• Step 1:

– Substep 1: Each agent initially points to his favorite object, and each object

points to the highest-priority agent according to π. For any cycle that forms

such that all of the agents in the cycle belong to I1, assign each agent in the

cycle the object he points to, and remove these agents and objects. Any other

cycles are left untouched.

– Substep t′ > 1: Each agent points to his favorite remaining object, and each

object points to the highest-priority remaining agent according to π. For any

cycle forms all of whose agents belong to I1, assign each agent the object he

points to, and remove these agents and objects.

Repeat this process until there are no cycles remaining that can be removed.

Then proceed to step 2.

• Step t, 1 < t ≤ t: This is analogous to step 1.

– At each substep t′, each agent points to his favorite object among those cur-

rently remaining, and each object points to the highest-priority agent according

to π among those currently remaining. If any cycle forms, all of whose agents

belong to I t, then assign each agent in the cycle the object he points to, and

remove these agents and objects. Repeat this process until it is no longer

possible to remove cycles. Then proceed to step t+ 1, if t < t. If t = t, end.

It is not obvious that this algorithm will successfully assign every agent an object.

However, we will show:

Claim. At step t of the modified TTC algorithm, all the agents in I t are in fact

removed, and each agent in I t gets the same object in this algorithm as he does in TTC

from g(φ) (which in particular lies in Ot).

Proof. We use induction on t. So suppose we find ourselves at the beginning of step t

of modified TTC from π. By the induction hypothesis, the agents in I1, . . . , I t−1 and the

objects in O1, . . . , Ot−1 have been removed (and clearly no others have).5

5This same argument applies for the base case, in which case no agents or objects have been removed
yet.

31

Each agent is pointing to his favorite of the remaining objects, which is the same as

in step t of TTC from g(φ). In particular, each agent in I t is pointing to a distinct object

in Ot.

Subclaim. At every substep t′ of step t (of modified TTC), each agent in I t is still

pointing to the same object as at the beginning of step t.

Proof. By induction on t′: If at substep t′ − 1, agent i ∈ I t was pointing to an object

that got removed, then by the induction hypothesis he was the only agent in I t pointing

to that object, so he must have also been removed. So for every remaining agent in I t

at substep t′, the object he was previously pointing to is still available, hence is still his

favorite. △

In particular, this subclaim ensures that only objects in Ot can be removed at step t.

Subclaim. At the start of step t, for each k and each object o ∈ Ot
k, the top |Ot

k|

remaining agents in o’s priority list in π are simply the agents of I tk in some order.

Proof. First look at o’s priority list in g(φ). After the agents in I1, . . . , I t−1 have

been removed, the highest-priority of the remaining agents belongs to Ik (because o ∈

Ot
k). Moreover, the agents in Ik occur consecutively in o’s priority list (because the

priority structure respects the partition), and there are at least |I tk| = |Ot
k| of these agents

remaining at the start of step t.

Now, π is obtained from g(φ) be reordering the agents within groups. Hence, in π

also, after the agents in I1, . . . , I t−1 have been removed, the top |Ot
k| remaining agents in

o’s priority list are all in Ik. Moreover, within F (g), the agents within Ik have been sorted

so that those in I1k occur before those in I2k , which in turn occur before those in I3k , and

so forth. So o’s priority list in π also has Ik arranged in this order. Hence, once agents

in I1, . . . , I t−1 have been removed, o’s remaining priority list must start with the agents

of I tk, in some order. △

Subclaim. At each substep t′ of any step t, for each k, each object o ∈ Ot
k is pointing

to an agent in I tk.

Proof. By contradiction: Consider the smallest t′ such that, for some k, some remain-

ing object o ∈ Ot
k is not pointing to an agent in I tk. By the previous subclaim, I tk was

at the top of o’s priority list at the start of step t, so it must be the all the agents in

I tk have been removed at some substeps 1, . . . , t′ − 1. But each such agent can only have

been removed together with a (distinct) object in Ot pointing to him. Moreover, at each

of these earlier substeps, for each k′ 6= k, each object in Ot
k′ was pointing to an agent

in I tk′ (by the minimality of t′), not to an agent in I tk. That is, whenever an agent in I tk
was removed, the object in his cycle pointing to him (which was also removed) must have

32

been in Ot
k. Thus, at substep t

′, at least |I tk| objects from Ot
k have already been removed.

Since |Ot
k| = |I tk|, this means that all of Ot

k has been removed, contrary to the assumption

that o ∈ Ot
k is still surviving. △

At this point we have shown that throughout step t, every remaining agent in I t is

pointing to an object in Ot, and every remaining object in Ot is pointing to an agent in

I t.

It follows that, as long as the agents in I t and objects in Ot have not all been removed,

these agents and objects form an induced subgraph in which every vertex still has outde-

gree 1, so there must be a cycle — and we can remove it. This shows that we do succeed

in removing all of I t and Ot at step t.

We also showed that, through step t, each agent in I t continues pointing to the same

object (until he gets removed). This is his favorite object in Ot, which is the same object

he gets assigned in TTC from g(φ). Hence, each agent in I t gets the same object in

modified TTC from π as in TTC from g(φ). This completes the proof of the claim. ✸

Now, our modified TTC algorithm is just a version of TTC from π where we do not

necessarily remove every cycle at each step. Since we now know that all agents and objects

do eventually get removed, it is an instance of slow TTC, and so it produces the same

allocation as TTC from π (Lemma 6 in the appendix). Thus, the claim ensures that TTC

from g(φ) and TTC from π produce the same allocation, wrapping up Part 2.

Part 3: Showing that F (g) uniquely determines the agents, objects, and

roles at each step. We continue to denote by I t, Ot, Rt, St, U t the agents, objects, roles,

satisfied and unsatisfied agents at step t of TTC from g(φ). We want to show that F (g)

uniquely determines I t, Ot, Rt. That is, if g, g̃ ∈ Raf with F (g) = F (g̃), and Ĩ t, Õt, R̃t

are the corresponding sets generated from g̃(φ), then we want to show

Ĩ t = I t, Õt = Ot, R̃t = Rt

for each t. We will avoid explicitly mentioning all the tilde-adorned sets and simply use

the phrase “uniquely determined” throughout.

Up until now, we have avoided formal notation for the sets of agents, objects, and so

forth remaining at the beginning of each step of the TTC algorithm from g(φ), but these

will now be necessary. So, for each step t, define the following sets:

• I t+ = I \ ∪t′<t I
t′ is the set of agents remaining at (the beginning of) step t. Also

let I t+k = I t+ ∩ Ik.

33

• Ot+ = O \ ∪t′<tO
t′ is the set of objects remaining at step t.

• Rt+ = R \ ∪t′<tR
t′ is the set of priority roles remaining at step t. Also let Rt+

k =

Rt+ ∩Rk.

• st+ : I t+ → Rt+ is defined as follows: for each agent i ∈ I t+, if at step t, i points to

object o which in turn points to agent j, then st+(i) = g−1(j). Notice that st+ need

not be a bijection, but its restriction to I t coincides with the bijection st : I t → Rt.

• T t+ is the tableau formed by concatenating tableaus T t, T t+1, . . . , T t defined in Part

1 above. Equivalently, it is obtained by taking the tableau T = F (g) and removing

the agents not in I t+.

• If t > 1, define an agent in I t+ to be potentially satisfied at step t if he is pointing

to the same object at step t as at step t− 1, and moreover this object is pointing to

the same agent at t as at t − 1. Then let St+ be the set of all potentially satisfied

agents in I t+ at step t. If t = 1, let St+ = ∅. Notice that St = St+ ∩ I t.

• U t+ = I t+ \ St+, the set of potentially unsatisfied agents at step t. Notice that

U t = U t+ ∩ I t.

These data describe the state of the TTC algorithm at the beginning of step t. (Ac-

tually T t+ depends on future steps of the algorithm as well, but given F (g), it can be

reconstructed in terms of the state of the algorithm at step t.) We will show how they

can be used to uniquely characterize T t, and this will lead to an iterative procedure for

reconstructing the sets I t, Ot, Rt from the tableau T = F (g).

In the course of this proof we will refer to several tableaus and several successor role

functions. For convenience, the latter will sometimes be indicated in square brackets; for

example, “T t[st] is balanced” will mean that T t is balanced with respect to st. When

there is no need to identify the successor role function, we will leave it out. There will

be no ambiguity about the partitions of the agents and roles, which we can take to be

I1, . . . , Im and R1, . . . , Rm throughout.

Claim. T t+[st+], has no nonempty, balanced initial subtableau consisting entirely of

agents who are potentially satisfied at step t.

We already know that T t[st] has no such subtableau, since by construction T t lies in

the set UTab((I tk); (R
t
k); s

t;St). Showing this fact for T t+ takes a little more work, since

there might conceivably be such a subtableau that is not contained in T t.

34

Proof. Suppose such a subtableau T ′ exists. Consider the first step t′ ≥ t at which one

of the agents in T ′ is removed.

Subclaim. Let i be any agent in T ′. Suppose that at step t, i points to object o, which

in turn points to agent j. Then i continues to point to o and o continues to point to j

throughout steps t, t+ 1, . . . , t′.

Proof. Suppose j ∈ Ik. Because T ′ is balanced with respect to st+, it contains some

agent in Ik. Because none of the agents in T ′ is removed before step t′, we see that no

agent in Ik is removed at steps t, t+ 1, . . . , t′ − 1. (If any such agent were removed, then

the first agent in the kth list of T t+ would be among the first to be removed — but this

agent must be in T ′, because T ′ is an initial subtableau.) Thus, j cannot be removed at

any of these steps, and then o (which points to j) cannot be removed at any such step

either. So i continues to point to o, and o continues to point to j. △

In particular, this shows that each i ∈ T ′ remains potentially satisfied at each step

t, t + 1, . . . , t′. This also shows that st
′+(i) = st+(i) for all agents i ∈ T ′. This in turn

means that T ′ forms a balanced, initial subtableau of T t
′+[st

′+].

Now consider the agents in T ′ that are removed at step t′: these agents constitute the

intersection of T t
′

and T ′. By Lemma 4, this intersection is a balanced initial subtableau

of T t
′

[st
′+] and so of T t

′

[st
′

]. Thus T t
′

[st
′

] has a nonempty, balanced initial subtableau

consisting entirely of agents that are potentially satisfied at step t′, and so satisfied. But

this means that

T t
′

/∈ UTab(I t
′

1 , . . . , I
t′

m;R
t′

1 , . . . , R
t′

m; s
t′ ;St

′

),

which is a contradiction to the way that F (g) was constructed. This proves the claim. ✸

Next: We know that T t is a balanced, consistent initial subtableau of T t+[st+]. We

can now show more:

Claim. T t is a maximal balanced, consistent initial subtableau of T t+[st+].

Proof. Again, by contradiction. Suppose that T ′ is a balanced, consistent initial sub-

tableau of T t+ that strictly contains T t. Let T− be the tableau obtained from T ′ by

deleting the agents in T t. Notice that T− is an initial subtableau of T (t+1)+, and it is

again balanced with respect to st+.

Consistency implies that the agents in T ′ all point to different objects at step t. In

particular, since the agents in T t (namely I t) point to the objects in Ot, the agents in T−

point to objects outside of Ot. So these objects remain at step t + 1. Let O− be the set

of these objects. Consistency of T ′ also implies that the objects in Ot ∪ O− all point to

different agents at step t; so objects in O− all point to agents outside of I t. Hence these

35

agents are also still remaining at step t + 1. Thus, every agent in T− is still pointing to

the same object at step t + 1 as at step t, and this object is still pointing to the same

agent at step t + 1 as at step t. Thus, all the agents in T− are potentially satisfied at

step t+ 1. Moreover, the successor role function s(t+1)+ agrees with st+ on each of these

agents.

So T− is a nonempty, balanced initial subtableau of T (t+1)+[s(t+1)+], and it consists

entirely of agents who are potentially satisfied at step t+1. But the previous claim showed

that such a subtableau cannot exist. This is a contradiction, proving the current claim.

✸

Claim. T t is the unique maximal balanced consistent initial subtableau of T t+[st+].

Proof. Suppose that there are two distinct balanced, consistent initial subtableaus of

T t+[st+]. By Lemma 4, their union is again a balanced, consistent initial subtableau.

Hence, there can only be one maximal such subtableau. ✸

This last claim implies the following: Once we know T t+, the groups of agents I t+k
and roles Rt+

k , and the successor role function st+, these data uniquely determine the

subtableau T t.

Now we can take a deep breath and then finish the proof of Part 3.

We treat F (g) as known and g as unknown. We want to show that the sets I t, Ot, Rt,

for each t, are uniquely determined by F (g). We do this by induction on t. So suppose

that I t
′

, Ot′ , Rt′ have been determined for each t′ < t. We want to show that there is a

unique choice of I t, Ot, Rt that is consistent with the tableau F (g).

Since we know I t
′

, Ot′ , Rt′ for t′ < t, these uniquely determine what the sets of re-

maining agents, objects, and priority roles (I t+, Ot+, Rt+) are. Thus the sets of remaining

agents and priority roles in each group (I t+k , Rt+
k) are also uniquely determined. So is the

tableau of remaining agents, T t+, since it is formed by simply taking F (g) and deleting

all the agents not in I t+. And the successor role function st+ is also uniquely deter-

mined: for each agent i ∈ I t+, look at his favorite object in Ot+, and then that object’s

highest-priority role in Rt+, according to φ, must be st+(i).

Since our last claim showed how the tableau T t can be uniquely characterized in terms

of these data, T t is also uniquely determined.

This means that I t is uniquely determined — it consists of the agents in T t. And then

Ot is uniquely determined: since each agent in I t is assigned his favorite object in Ot+,

Ot is exactly the set of these favorite objects. Then Rt is also determined in turn: each

object in Ot was pointing to the agent assigned the highest-priority role in Rt+; since the

roles thus picked out by Ot must be assigned to the agents removed at step t, they form

36

the set Rt.

Thus, by induction on t, the sets I t, Ot, Rt are uniquely determined. This completes

the proof of Part 3.

Part 4: Showing that F is one-to-one. All that remains now is to put together the

pieces. We want to show that the tableau F (g) ∈ Tab uniquely determines g ∈ Raf . We

saw in Part 3 that it uniquely determines the sets I t, Ot, Rt; and these in turn uniquely

determine the sets I tk, R
t
k. We also saw in the process that the successor role function

st+ : I t+ → Rt+ is uniquely determined (hence so is its restriction st = st+|It), and T t

is as well. In addition, after knowing all the I t, Ot, Rt, we can reconstruct the object

to which each remaining agent is pointing at step t, and whether or not that object’s

highest-priority role at step t− 1 is still available at step t (if t > 1). Therefore, the sets

St and U t of satisfied and unsatisfied agents at each step are also uniquely determined.

But from the construction in Part 1, we have

g|Rt = F−1
(It

1
,...,Itm;Rt

1
,...,Rt

m;st;St)
(T t).

This is uniquely defined, since F(It
1
,...,Itm;Rt

1
,...,Rt

m;st;St) is a bijection.

So from F (g), we can uniquely reconstruct Rt and g|Rt for each t, and thus we can

reconstruct the entire function g. This shows that F is one-to-one, completing the proof.

�

4 On respecting partitions

The statement of Theorem 3 imposes that the priority framework φ should respect the

partition of priority roles into groups. We now give an example to show that this condition

in Theorem 3 is necessary.

In fact, when φ does not respect the partition of priority roles, random SDIG from φ

is not even clearly defined. Recall that we first defined (random) SDIG from the priority

structure g(φ). When φ respects the partition, we saw that SDIG from g(φ) (and given

orders) does not depend on the choice of g, so we can talk unambiguously about random

SDIG from φ. The following example with n = 3 agents and 3 objects shows that this

is not the case in general. Let the partition of agents be I1 = {i1}, I2 = {i2, i3} (and

correspondingly R1 = {r1}, R2 = {r2, r3}). Let the agents’ preferences over objects and

the priority framework φ be

37

i1 : o1 ≻ o2 ≻ o3 o1 : r3, r1, r2

i2 : o1 ≻ o2 ≻ o3 o2 : r2, r3, r1

i3 : o2 ≻ o1 ≻ o3 o3 : r2, r3, r1.

This priority framework does not respect the partition of priority roles.

There are two possible choices of the role asssignment function g. Suppose we choose

g(rj) = ij for each j. Then straightforward calculations show that random SDIG from

g(φ) results in allocations (o3, o1, o2) and (o1, o3, o2), each with probability 1/2. (Here the

allocations are notated as in the examples in Subsections 2.1 and 2.2.)

On the other hand, what if we choose g(r1) = i1, g(r2) = i3, g(r3) = i2? Then one can

check that random SDIG from g(φ) leads to (o3, o1, o2) with probability 1.

This shows that random SDIG from φ is not even well-defined when φ does not respect

the partition, since it depends on which g we use to map φ into a priority structure. Thus,

Theorem 3 is not properly stated in this case.

One might hope to patch up the statement by redefining random SDIG as follows:

Pick the orderings f1, . . . , fm uniformly at random, then form a priority structure π by

sorting φ using the orderings, as in Subsection 2.2. That is, within the priority list of

each object o, we assign the agents of each group Ik to the roles of group Rk so that these

agents appear in the order given by fk, thereby obtaining a priority list. (This can be done

regardless of whether the roles of Rk appear consecutively in o’s list.) Then perform TTC

from this π. When φ respects the partition, we know this is equivalent to the original

definition of random SDIG, so Theorem 3 holds. Does it still hold in general?

The answer is no. Once again, we can use the same counterexample φ. First consider

calculating random TTC from φ. We have two choices for the role assignment function

g: we can take g(rj) = ij for each j, or take g(r1) = i1, g(r2) = i3, g(r3) = i2. Either way,

TTC from g(φ) gives the allocation (o3, o1, o2).

On the other hand, consider random SDIG under the new definition proposed above.

If I2 is ordered (i3, i2), then sorting leads to the priority structure

o1 : i3, i1, i2

o2 : i3, i2, i1

o3 : i3, i2, i1

and the resulting allocation is (o1, o3, o2). Hence, random TTC from φ cannot give the

same distribution over allocations as random SDIG from φ with the new sorting definition.

38

What goes wrong in the proof of Theorem 3 when φ does not respect the partition?

This assumption on φ was needed in just one place, in Part 2 of the proof, during the

second subclaim. We needed to show that throughout each step t of the modified TTC

algorithm, each remaining object o ∈ Ot
k was always pointing to an agent in I tk. This

depended on knowing that the agents in Ik occurred consecutively in o’s list in the sorted

priority structure π: otherwise, if some of these agents had been removed at an early

substep, o could be left pointing to an agent outside of Ik at a later substep.

5 Conclusion

Having gone through a fair amount of technical detail, we close this paper by recapitulating

the main points of what we have accomplished.

We have considered mechanisms for allocating indivisible goods. We have presented a

general equivalence theorem connecting randomized mechanisms based on the top trading

cycles procedure and randomized mechanisms based on serial dictatorship. The basic ver-

sion of our result, Theorem 1, says that for any priority framework φ, random TTC from

φ is equivalent to random serial dictatorship. More verbally, this essentially says that if

we take any TTC-based allocation mechanism and make it anonymous by permuting the

agents uniformly at random, the result is equivalent to random serial dictatorship. This

theorem directly implies all of the RSD equivalence results in the previously published

literature [2, 19]. It can be interpreted as giving extra support to the use of RSD in appli-

cations, since it shows that many possible allocation mechanisms, once made anonymous,

all become equivalent to RSD.

The full version of our result, Theorem 3, achieves greater generality by allowing

the agents to be partitioned into groups and permuting uniformly at random within

each group. For the partitioned setting, we have introduced the mechanism of serial

dictatorship in groups, which can be seen as a generalization of serial dictatorship in

which several dictators (the heads of different groups) may choose their favorite objects

simultaneously. Theorem 3 states that any TTC mechanism (that respects the partition),

with the agents randomly permuted within each group, is equivalent to SDIG with the

agents randomly ordered in each group. This includes Theorem 1 as a special case, as

well as the previous equivalence result [25] for house allocation with existing tenants.

In addition to unifying many existing theorems, our equivalence result is general

enough to be potentially useful for future applications. We have presented several new

examples to emphasize this point.

39

The paper also makes a couple of conceptual contributions to the study of mechanisms

for allocating indivisible goods. One is the notion of priority frameworks, a device for

making TTC allocation mechanisms anonymous. Another contribution is the notion of

serial dictatorship in groups, which helps close the conceptual gap between traditional

TTC and SD, and so helps us understand the equivalence results as invariance statements

about the order in which agents get to choose favorite objects.

Finally, the method of proof we have used for Theorem 3 simplifies the bijective

approach by injecting a dose of the enumerative approach. It arguably casts some new

light on the equivalence, relative to existing bijective proofs for special cases, by showing

that what matters is the decomposition of the set of all role assignments and the set of

all tableaus into subsets that can be mapped to each other — without having to worry

about exactly how the bijections between these subsets are constructed.

In spite of the relative generality of Theorem 3, this paper is not the final word on

equivalences in allocation of indivisible goods. As mentioned earlier, the recent paper

by Lee and Sethuraman [12] gives a further generalization. In particular, they cover a

version of TTC in which priority frameworks take the form of trees (as in Pápai [15])

instead of lists, so that the highest-priority remaining agent for any given object may

depend on the objects that were assigned to earlier agents at previous steps. It may

well be possible to go even further. A natural target would be the full class of Pareto-

efficient and group-strategyproof mechanisms recently characterized by Pycia and Ünver

[20], which are similar to TTC but with a couple of possible variations. Preliminary work

by Bade [5] looks to an equivalence result for this full class of mechanisms.

It also would be interesting to explore whether the techniques can say anything about

more general kinds of allocation problems. For example, it is well understood that much

of the elegant mathematical structure of the indivisible objects model breaks down once

we venture beyond the simple case of one object per agent (see e.g. [16, 9, 11] for negative

results in this area). If our methods can be partially extended to this broader class of

models, they might then offer new insights that could help inform the choice of mechanisms

for such problems.

A Appendix

Here we give the detailed discussion of slow TTC promised in Subsection 2.1.

Given the usual sets of agents and objects, and a priority structure π, define the slow

TTC algorithm, whose execution is nondeterministic, as follows:

40

• At each step t ≥ 1, each remaining agent points to his favorite remaining object,

and each remaining object points to the highest-priority of the remaining agents.

Choose at least one (and possibly more) of the cycles in the resulting graph. Assign

each agent in any chosen cycle the object to which he points, and remove these

agents and objects.

• Continue until all agents and objects are removed.

This definition makes sense: as in the original TTC algorithm, at least one cycle must

form at each step.

Lemma 6 The allocation produced by slow TTC is independent of the choice of which

cycles to remove at each step.

Proof: First note that for any execution of slow TTC in which several cycles are

removed at once, we can separate this step into removing these same cycles one by one,

without any other cycles intervening; this change in the execution certainly has no effect

on the resulting allocation. So it suffices to prove the lemma under the added restriction

on slow TTC that only one cycle is removed at each step.

Suppose this version of the lemma is false. Consider a counterexample for which

the number n of agents is minimal. Let C1, C2, . . . , Ct describe one execution of the

(restricted) slow TTC algorithm, with Ct denoting the cycle of agents and objects re-

moved at step t; let C̃1, C̃2, . . . , C̃
˜t describe a different execution that leads to a different

allocation of objects to agents.

If C1 = C̃1, then the remaining sequences, C2, . . . , Ct and C̃2, . . . , C̃
˜t, must lead to

different allocations of the remaining objects to the remaining agents. But this contra-

dicts the initial choice of a minimal counterexample. Hence C1 6= C̃1. Now consider

the execution C̃1, . . . , C̃
˜t of slow TTC. The cycle C1 is present at the beginning of the

algorithm. But a cycle, once formed, continues to exist until some agent or object in the

cycle is removed, at which point the entire cycle must be removed. Therefore, C1 must be

equal to one of the cycles C̃1, . . . , C̃
˜t. Let t̃ be such that C1 = C̃ t̃. Then, removing C̃ t̃ at

the beginning does not interfere with the successive formation of the cycles C̃1, . . . , C̃ t̃−1,

since none of them uses any agent or object in C̃ t̃. So there exists an execution of slow

TTC in which the cycles removed at successive steps are

C̃ t̃, C̃1, C̃2, . . . , C̃ t̃−1, C̃ t̃+1, . . . , C̃
˜t.

41

This sequence leads to the same allocation as C̃1, . . . , C̃
˜t, which is a different allocation

than that produced by C1, . . . , Ct. But now we have two executions of slow TTC, starting

with the same cycle C1 = C̃ t̃, and leading to different allocations. We already showed

that this contradicts the minimality of n. This contradiction proves the lemma. �

Lemma 6 ensures, in particular, that slow TTC always produces the same allocation

as TTC (since the latter is a special case of the former).

References

[1] Atila Abdulkadiroğlu and Yeon-Koo Che (2010), “The Role of Priorities in Assign-

ing Indivisible Objects: A Characterization of Top Trading Cycles,” unpublished,

Columbia University.

[2] Atila Abdulkadiroğlu and Tayfun Sönmez (1998), “Random Serial Dictatorship and

the Core from Random Endowments in House Allocation Problems,” Econometrica

66 (3), 689–701.

[3] Atila Abdulkadiroğlu and Tayfun Sönmez (1999), “House Allocation with Existing

Tenants,” Journal of Economic Theory 88 (2), 233–260.

[4] Atila Abdulkadiroğlu and Tayfun Sönmez (2003), “School Choice: A Mechanism

Design Approach,” American Economic Review 93 (3), 729–747.

[5] Sophie Bade (2013), “Random Serial Dictatorship: The One and Only,” unpublished,

Max Planck Institute for Research on Collective Goods.

[6] Anna Bogomolnaia and Hervé Moulin (2001), “A New Solution to the Random As-

signment Problem,” Journal of Economic Theory 100 (2), 295–328.

[7] Lars Ehlers and Bettina Klaus (2004), “Resource-Monotonicity for House Allocation

Problems,” International Journal of Game Theory 32 (4), 545–560.

[8] Özgün Ekici (2011), “Fair and Efficient Discrete Resource Allocation: A Market

Approach,” unpublished, Özyeğin University.

[9] John William Hatfield (2009), “Strategy-proof, Efficient, and Nonbossy Quota Allo-

cations,” Social Choice and Welfare 33 (3), 505–515.

42

[10] Donald E. Knuth (1996), “An Exact Analysis of Stable Allocation,” Journal of Al-

gorithms 20 (2), 431–442.

[11] Fuhito Kojima (2009), “Random Assignment of Multiple Indivisible Objects,” Math-

ematical Social Sciences 57 (1), 134–142.

[12] Thiam Lee and Jay Sethuraman (2011), “Equivalence Results in the Allocation of

Indivisible Objects: A Unified View,” unpublished, Columbia University.

[13] Jinpeng Ma (1994), “Strategy-Proofness and the Strict Core in a Market with Indi-

visibilities,” International Journal of Game Theory 23 (1), 75–83.

[14] Thayer Morrill (2013), “An Alternative Characterization of Top Trading Cycles,”

Economic Theory 54 (1), 181–197.

[15] Szilvia Pápai (2000), “Strategyproof Assignment by Hierarchical Exchange,” Econo-

metrica 68 (6), 1403–1433.

[16] Szilvia Pápai (2001), “Strategyproof and Nonbossy Multiple Assignments,” Journal

of Public Economic Theory 3 (3), 257–271.

[17] Szilvia Pápai (2010), “Matching with Minimal Priority Rights,” in preparation, Con-

cordia University.

[18] Parag A. Pathak (2008), “Lotteries in Student Assignment: The Equivalence of

Queueing and a Market-Based Approach,” unpublished, MIT.

[19] Parag A. Pathak and Jay Sethuraman (2011), “Lotteries in Student Assignment: An

Equivalence Result,” Theoretical Economics 6 (1), 1–17.

[20] Marek Pycia and M. Utku Ünver (2011), “Incentive Compatible Allocation and Ex-

change of Discrete Resources,” Boston College Working Papers in Economics, #715.

[21] Alvin E. Roth (1982), “Incentive Compatibility in a Market with Indivisible Goods,”

Economics Letters 9 (2), 127–132.

[22] Alvin E. Roth and Andrew Postlewaite (1977), “Weak Versus Strong Domination in a

Market with Indivisible Goods,” Journal of Mathematical Economics 4 (2), 131–137.

[23] Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver (2004), “Kidney Exchange,”

Quarterly Journal of Economics 119 (2), 457–488.

43

[24] Lloyd Shapley and Herbert Scarf (1974), “On Cores and Indivisibility,” Journal of

Mathematical Economics 1 (1), 23–37.

[25] Tayfun Sönmez and M. Utku Ünver (2005), “House Allocation with Existing Tenants:

An Equivalence,” Games and Economic Behavior 52 (1), 153–185.

[26] Lars-Gunnar Svensson and Bo Larsson (2005), “Strategy-Proofness, Core, and Se-

quential Trade,” Review of Economic Design 9 (2), 167–190.

44

