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Robustness and Linear Contracts †

By Gabriel Carroll *

We consider a moral hazard problem where the principal is uncer-
tain as to what the agent can and cannot do: she knows some actions 
available to the agent, but other, unknown actions may also exist. 
The principal demands robustness, evaluating possible contracts by 
their worst-case performance, over unknown actions the agent might 
potentially take. The model assumes risk-neutrality and limited lia-
bility, and no other functional form assumptions. Very generally, the 
optimal contract is linear. The model thus offers a new explanation 
for linear contracts in practice. It also introduces a flexible model-
ing approach for moral hazard under nonquantifiable uncertainty. (JEL D81, D82, D86)

Imagine a principal who contracts with an agent, but who has only limited knowl-
edge of what the agent can and cannot do. She wants to write a contract that is robust 
to this uncertainty. What should such a contract look like?

In our model, as in standard moral hazard models, the agent takes an unobserved 
costly action, which produces a stochastic output. The principal gives incentives by 
paying the agent based on observed output. She wishes to maximize the expected 
value of output minus the wage paid out. But unlike in most of the literature, our 
principal does not know exactly what actions the agent can take. She knows of some 
available actions, but other, unknown actions may also exist, and our principal does 
not even have a prior belief about these unknown actions. In this nonprobabilis-
tic setting, we assume a simple (arguably the simplest) criterion to evaluate con-
tracts: any contract is judged by its worst possible performance, given the principal’s 
knowledge. The principal and agent are financially risk-neutral, and payments are 
constrained by limited liability.

One way the principal can obtain a worst-case payoff guarantee is to use a linear 
contract: paying the agent a fixed share of output. For example, suppose the princi-
pal considers a contract that pays the agent one-third of output, keeping two-thirds 
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for herself, and suppose she knows some action the agent can take that would give 
him an expected payoff of  400  under this contract. Then, any unknown action the 
agent might rationally choose would also give him at least  400 . Since the principal’s 
ex post payoff is always at least twice the agent’s, she thus is guaranteed at least  800 .

Besides linear contracts, many other contracts can also provide positive guarantees. 
But the main finding of this paper is that the best such guarantee, out of all possible 
contracts, comes from a linear contract. This result holds without any assumptions 
on the structure of the set of known actions. It also persists—with suitable modi-
fications—through a number of extensions and variations of the basic model.

Briefly, the intuition is as follows. When the principal proposes a contract, in the 
face of her uncertainty about the agent’s technology, she knows very little about 
what will happen. But the one thing she does know is a lower bound on the agent’s 
expected payoff (from the actions that are known to be available). The only effec-
tive way to turn this into a lower bound on her own expected payoff is via a linear 
relationship between the two, as in the example above. Even when a contract is 
nonlinear, whatever guarantee it gives is still driven by a linear relationship, which 
in general is an inequality. Linear contracts are the ones for which this relationship 
is tight, and this is why they are optimal.

The importance of our finding can be viewed in three different ways. First, it 
addresses a longstanding problem in contract theory: why are linear contracts com-
mon in practice, while textbook models often predict more complicated functional 
forms? As Holmström and Milgrom write in their classic paper on linear contracts 
in dynamic environments (Holmström and Milgrom 1987, p. 326):

It is probably the great robustness of linear rules based on aggregates that 
accounts for their popularity. That point is not made as effectively as we 
would like by our model; we suspect that it cannot be made effectively in 
any traditional Bayesian model. But issues of robustness lie at the heart of 
explaining any incentive scheme which is expected to work well in practi-
cal environments.

This paper aims to answer their implicit call with a forthrightly non-Bayesian 
model of robustness.

The second view of our contribution is that it provides concrete advice to people 
faced with the practical task of designing incentive contracts under nonquantifiable 
uncertainty. And, third, it adds to the arsenal of tools for analyzing agency problems, 
offering a new and flexible modeling framework that can be used to make more 
complex moral hazard problems tractable.

Mathematically, the main result of this paper is rather simple. This makes it all 
the more surprising that it did not appear much earlier in the agency theory liter-
ature. There have been results on optimality of linear contracts using other max-
min-type criteria, due to Hurwicz and Shapiro (1978) and recently Chassang (2013, 
Corollary 1). Diamond (1998) also gave a Bayesian model in which related intu-
itions apply. However, the present paper offers a relatively general class of environ-
ments, together with a mathematical argument for robustness based on the alignment 
between the principal’s and agent’s goals, that differentiate it from previous litera-
ture. (The connections with these previous works will be discussed in more detail in 
the concluding section.)
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Section I of the paper formally presents the basic version of the model and result. 
The model is kept as simple and clean as possible here. Section II then shows how 
the logic of the result persists under various extensions that either remedy unrealis-
tic features of the basic model or otherwise enrich it. This includes assuming some 
knowledge about the costs of various actions, replacing the single set of known 
actions with multiple possible minimal sets of actions, and allowing a participa-
tion constraint, as well as allowing the principal to screen agents by their potential 
actions. These extensions also illustrate how the method extends beyond the basic 
model.

This paper joins a recently growing literature exploring mechanism design with 
worst-case objectives. This includes the work of Hurwicz and Shapiro (1978) men-
tioned above, Garrett (2014), and Frankel (2014), also on contracting with unknown 
agent preferences; the work initiated by Bergemann and Morris (2005) and Chung 
and Ely (2007) on mechanism design with unknown higher-order beliefs; and work 
such as Yamashita (2014) on maxmin expected welfare under weak assumptions 
on agent behavior (in this case, assuming only that agents play undominated strat-
egies). A broader mechanism design literature provides nearly optimal worst-case 
performance in various settings, without optimizing exactly. Recent examples 
include the work of Segal (2003), Micali and Valiant (2008), Chawla et al. (2010), 
and Chassang (2013). There is also a less closely related strand of literature, such as 
Madarász and Prat (2014), which looks at local robustness when the model of the 
environment is slightly misspecified.

This paper also adds to the literature on explanations for linear contracts—includ-
ing the maxmin-optimality papers mentioned above as well as several others. Again, 
discussion of the relationship to that literature is deferred to the concluding section. 
The conclusion also gives some discussion of interpretation and how to connect the 
stark assumptions of the model to real-world contract design.

I. The Basic Model

We start with the basic version of the model. The model here is kept simple, at 
some costs of realism, which will be addressed later.

A. Notation

We write  ∆()  for the space of Borel distributions on   ⊆  ℝ   k   , equipped with 
the weak topology. For  x ∈   ,   δ  x    is the degenerate distribution putting probability  
1  on  x .   ℝ   +   is the set of nonnegative reals.

B. Setup

A principal contracts with an agent, who is to take a costly action that leads to a 
stochastic output. The action is not observable to the principal; only the resulting 
output,  y  , is observable. Thus, payment to the agent can depend only on  y  , and this 
dependence is what provides incentives. Both parties are financially risk-neutral.

We write    for the set of possible output values, and assume    is a compact sub-
set of  ℝ .    may be finite or infinite. We normalize  min () = 0 .
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To model the agent’s actions, we abstract away from their physical description 
and record only the features that affect behavior and payoffs: the cost of each action 
to the agent, and the resulting probability distribution over output. Thus, an action 
is a pair  (F, c) ∈ ∆() ×  ℝ   +  . The interpretation is that the agent pays cost  c  , and 
output is drawn  y ∼ F .  c  may be interpreted literally as a monetary cost, or an addi-
tive disutility of effort. We give  ∆() ×  ℝ   +   the natural product topology.

A technology is a compact subset of  ∆() ×  ℝ   +   , describing a possible set of 
actions available to the agent. The agent has a technology    , which he knows but 
the principal does not. Instead, the principal knows only some set    0    of actions 
available to the agent, and she believes    may be any technology such that 
   0   ⊆    .

The exogenous    0    may be any technology, subject to the following nontriviality 
assumption: there exists  (F, c) ∈   0    such that   E  F  [y ] − c > 0 . This assumption 
ensures that the principal benefits from hiring the agent.

It is natural to assume that the agent can always exert no effort; this corresponds 
to assuming  ( δ  0  , 0) ∈   0   . However our results will not require this assumption. 
Also, we say    0    satisfies the full-support condition if, for all  (F, c) ∈   0    such that  
(F, c) ≠ ( δ  0  , 0)  ,  F  has full support on   . Our main result becomes stronger when 
this condition holds.

Next we define the space of contracts. Any contract must specify how much the 
agent is paid for each level of output. We assume one-sided limited liability: the 
agent can never be paid less than zero. Thus, a contract is any continuous function 
w :  →   ℝ   +   .1

We can now summarize the timing of the game:

 (i) the principal offers a contract  w ;

 (ii) the agent, knowing    , chooses action  (F, c) ∈  ;

 (iii) output  y ∼ F  is realized;

 (iv) payoffs are received:  y − w(y)  to the principal and  w(y) − c  to the agent.

Describing the agent’s behavior is simple, since he maximizes expected utility. 
Given contract  w  , and technology    , the set of actions the agent is willing to choose 
is

       * (w | ) =  arg max  
(F, c)∈

      ( E  F  [w(y)] − c) . 
Continuity and compactness ensure this set is nonempty. It will also be useful to 
write 

    V  A  (w | ) =   max  (F, c)∈     ( E  F  [w(y)] − c)  
1 Requiring continuity of  w  ensures the agent’s optimization problem has a solution. If, say,    is an arbitrarily 

fine discrete grid, then continuity is a vacuous assumption. Alternatively, we could relax continuity to upper semi-
continuity, and all arguments would go through, with a few extra verifications. 
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for the agent’s expected payoff. If the agent is indifferent among several actions, we 
assume he maximizes the principal’s utility. Thus the principal’s expected payoff 
under technology    is

    V  P  (w | ) =   max  (F, c)∈    ∗ (w | )  
     E  F  [y − w(y)] . 

Finally, we assume the principal evaluates contracts by their worst-case expected 
payoff, over all possible technologies   :

    V  P  (w) =   inf  ⊇  0    
     V  P  (w | ) . 

Our focus is on the principal’s problem, namely to maximize   V  P  (w) . In the next 
subsection, we will show that the maximum exists, and identify the contract that 
attains it.

C. Analysis

In the model above, the principal considers the worst case over a very wide range 
of technologies. Faced with this huge uncertainty, can she even guarantee herself a 
positive expected payoff? Yes: one simple way to get such a guarantee is to use a 
linear contract—one of the form  w(y) = αy  for constant  α ∈ [0, 1] . The argument 
was sketched in the introduction, and now we write it out formally. (This same cal-
culation appears also in Chassang 2013, Theorem 1.) Suppose the principal offers 
such a contract, with  α > 0 . Note that whatever technology   ⊇   0    the agent 
has, and whatever optimal action  (F, c)  he chooses, his expected payment satisfies

(1)   E  F  [w(y)]  ≥   E  F  [w(y)] − c  =   V  A  (w | )  ≥   V  A  (w |   0  ) . 
Here the second inequality holds because    contains    0    , and having more actions 
available can only make the agent better off. Now, the principal receives a fraction  
1 − α  of output while the agent receives fraction  α  ; hence their ex post payoffs are 
related via

(2)  y − w(y)  =    1 − α _____ α   w(y) . 
Combining with (1) gives a lower bound on the principal’s expected payoff:

   E  F  [y − w(y)] ≥   1 − α _____ α    E  F  [w(y)] ≥   1 − α _____ α    V  A  (w |   0  ).  
Since this holds regardless of the technology,

(3)   V  P  (w)  ≥    1 − α _____ α    V  A  (w |   0  ) . 
The nontriviality assumption implies that if  α  is close to  1  then   V  A  (w |   0  ) > 0  , and 
so we have a positive lower bound on the principal’s worst-case payoff.
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This shows how to obtain a payoff guarantee from a linear contract. But is it 
possible that some other, subtler contract form would give a better guarantee? The 
answer is no.

THEOREM 1: There exists a linear contract that maximizes   V  P   .
To show this, we start from any arbitrary contract  w  , and show that its guarantee 

is driven by a linear relation between the principal’s and agent’s payoffs—in the 
same way that equation (2) drives the guarantee from a linear contract above; but 
in general the driving relation will be an inequality. We then construct a contract   w ′    
that satisfies the same linear relation with equality. We show that as a result,   w ′    gives 
the principal the same guarantee (or better). Thus, any contract can be improved on 
by a linear contract.

The mechanics of the argument are depicted in Figure 1. Consider any contract  
w(y)  , which may be nonlinear and may not even be monotone in  y  , as shown by the 
thick curve in panel A. For any action  (F, c)  the agent may potentially take, consider 
the point whose coordinates are the expected output and expected payment to the 
agent,  ( E  F  [y],  E  F  [w(y)]) . This point evidently lies in the convex hull of the curve  
w —the union of the two shaded regions in panel A. Moreover, since the agent can 
certainly assure himself a payoff of at least   V  A  (w |   0  )  , he will only take actions 
that pay at least this much—those corresponding to the darker shaded region. From 
this we can identify the worst case for the principal, call it point  Q : it is the point in 
the dark region where her expected profit,   E  F  [y] −  E  F  [w(y)]  , is lowest. Aside from 
uninteresting cases, this is where the horizontal line   V  A  (w |   0  )  hits the left bound-
ary of the convex hull, as in the figure.

Now take the support line to the convex hull at this point  Q  , as shown in panel B. 
This line exactly delineates the driving inequality: for any action to the right of 
the line, if it gives the agent at least   V  A  (w |   0  )  (dashed line) then the principal’s 
resulting payoff is no worse than at  Q . But we can also regard the line as being itself 
a contract, call it   w ′   .   w ′    is basically a linear contract; more precisely it is an affine 
contract, one of the form   w ′  (y) = αy + β  for constant  α, β . Because   w ′    lies above  
w  , it indeed assures the agent a payoff at least as high as the dashed line; and because   
w ′    still satisfies the driving inequality (as an equality), it follows that the principal 
does no worse than  Q . Therefore, the principal’s worst-case guarantee is at least as 
good under   w ′    as under  w .

We now proceed to walk through each step of the argument in more detail, for-
mally developing the argument as a series of lemmas. Some technical verifications 
will be left to Appendix A.

The first step is to exactly identify the guarantee   V  P  (w)  from any candidate con-
tract  w . This characterization is given by Lemma 1 below, which formalizes our ver-
bal description of the worst-case point  Q  above: the point in the dark shaded region 
that gives the lowest expected payoff for the principal. However, our assumption of 
tie-breaking in favor of the principal introduces some technicalities.

One technicality is that we need to deal with the zero contract 
( w(y) = 0  for all  y ) separately. We abusively denote this contract by  0 . Suppose 
there exists  (F, c) ∈   0    with  c = 0 ; that is, the agent can definitely produce 
some output costlessly. Then the agent is willing to take any such action, so the 
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principal’s guarantee is simply the highest value of   E  F  [y]  over such  F . That is, 
  V  P  (0) =  max  (F, 0)∈  0         E  F  [y] . If there is no action  (F, 0) ∈   0    , then the principal is 
not guaranteed any positive payoff: if it turns out the agent can either take actions in   
 0    or produce  0  output at cost  0  , he will choose the latter; hence,   V  P  (0) = 0 .

Another minor technicality is that the worst-case payoff   V  P  (w)  may be approached, 
but not actually attained for any technology. (This is why we defined it as an infi-
mum over    , and not a minimum.)

Also, to avoid some extra cases, we say a contract  w  is eligible if 
  V  P  (w) ≥  V  P  (0)  and   V  P  (w) > 0 . From our observations so far, we know some 
eligible contract exists—indeed, an eligible linear contract exists:  w(y) = αy  , for  
α  close to  1  , is eligible, unless   V  P  (w) <  V  P  (0)  in which case the zero contract is 
eligible. Therefore, in our search for optimality, we may restrict ourselves to eligible 
contracts.

All these points duly addressed, we state the characterization of the principal’s 
guarantee:

LEMMA 1: Let  w  be any eligible contract, different from the zero contract. Then,

(4)   V  P  (w) =  min     
     E  F  [y − w(y)]  over F ∈ ∆() s.t.  E  F  [w(y)] ≥  V  A  (w |   0  ) . 

Moreover, for any  F  attaining the minimum, the constraint holds with equality: 
  E  F  [w(y)] =  V  A  (w |   0  ) .

The proof is straightforward and left to Appendix A.
Note that the equality statement in Lemma 1 implies that (3), the guarantee of a 

linear contract, is actually an equality. We record this as a separate lemma:

LEMMA 2: For any  α ∈ (0, 1]  , if the linear contract  w(y) = αy  is eligible, then

(5)   V  p   (w) =    1 − α ______ α      V  A    (w |    0   ) =    max  (F, c)∈  0  
        ((1 − α) E  F   [y] −    1 − α ______ α   c)  .

Panel A Panel B

Q Q

y y

w(y) w(y)
w′

          V  A   (w        | 0)

Figure 1. Sketch of the Main Proof

Notes: Panel A: Identifying the worst-case point for a given contract w(y). Panel B: Improving 
w to an affine contract w′. 
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This is also valid for  α = 0  , if we interpret the term  −   1 − α ____ α   c  as being  0  for  c = 0  
and  −∞  for  c > 0 .

The next step, and the heart of the argument, is to identify the linear inequality 
relating the principal’s and agent’s payoffs that drives the guarantee of contract  w .

LEMMA 3: Let  w  be any eligible contract, different from the zero contract. Then 
there exist numbers  κ, λ  , with  λ > 0  , such that

(6) y − w(y) ≥ κ + λw(y) for all y ∈ ;

(7)   V  p   (w) = κ + λ  V  A   (w |    0   ).
To be clear about why we say (6) drives the guarantee of contract  w  , simply 

consider any action  (F, c)  the agent might take under any technology, and apply 
expectations:

(8)   E  F  [y − w(y)]  ≥  κ + λ  E  F  [w(y)]  ≥  κ + λ  V  A  (w |   0  ) ,

where the second inequality holds as in (1). But by (7), the right side of (8) is 
exactly equal to   V  P  (w) . So essentially, starting from (6) and taking expectations is 
all it takes to show that the principal is indeed guaranteed at least   V  P  (w) .

Inequality (6) carves out a half-plane whose bounding line is the support line 
shown in Figure 1. In the formal proof of the lemma, we identify this support line 
by an application of the separating hyperplane theorem. The earlier characterization 
of the worst-case point (Lemma 1) plays an essential role by showing that this point 
lies on the boundary of the convex hull, so that the support line exists.

The proof of Lemma 3 requires a little extra work (checking that  λ  is well defined 
and positive), so we leave it to Appendix A.

Now we are ready to define our improved contract   w ′   . We rearrange (6) as

(9)  w(y) ≤   1 _____ 
1 + λ   y −   κ _____ 

1 + λ   . 

This leads us to define

(10)   w ′  (y) =   1 _____ 
1 + λ   y −   κ _____ 

1 + λ  , 

an affine contract. We have   w ′   ≥ w  pointwise. Notice that this immediately implies   
w ′  (y) ≥ 0  for all  y  , so that   w ′    is indeed a contract.

The next step shows how the driving inequality ensures a guarantee for the prin-
cipal from   w ′    that is at least as good as the guarantee from  w .

LEMMA 4: Suppose that  w  satisfies (6) and (7). Then the contract   w ′    defined by 
(10) satisfies   V  P  ( w ′  ) ≥  V  P  (w) .
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PROOF:
Rearrange the definition (10) to see that   w ′    satisfies the driving inequality (6) (as 

an equality). So repeating the argument from (8) above, we get

(11)   E  F  [y −  w ′  (y)]  ≥  κ + λ  V  A  ( w ′   |   0  ) 
for any action  (F, c)  the agent might potentially choose under any technology. Thus 
the principal is guaranteed at least this amount. But since   w ′   ≥ w  everywhere, the 
agent is certainly at least as well off under   w ′    as under  w :   V  A  ( w ′   |   0  ) ≥  V  A  (w |   0  ) . 
Applying this to the right side of (11), we see that by using   w ′    , the principal is guar-
anteed at least  κ + λ  V  A  (w |   0  ) . But this equals   V  P  (w)  by (7). ∎

At this point the proof of Theorem 1 is almost complete. We have just a couple 
clean-up steps left:

LEMMA 5: For any affine contract   w ′    , there is a linear contract  w″  that does at least 
as well as   w ′    :   V  P  (w″ ) ≥  V  P  ( w ′  )  , with strict inequality unless   w ′    is already linear.

PROOF:
Write   w ′  (y) = αy + β  , and note  β =  w ′  (0) ≥ 0 . Put  w′′(y) = αy  

=  w ′  (y) − β . This increases the principal’s payoff by  β  , since a constant shift does 
not affect the agent’s incentives for choice of action. ∎
LEMMA 6: Within the class of linear contracts, there exists an optimal one for the 
principal.

PROOF:
Recall the formula (5), which was a lower bound for the guarantee of the linear 

contract with share  α  , with equality whenever the contract is eligible (which must 
be true for some linear contract). Since (5) is continuous in the share  α ∈ [0, 1]  , 
it achieves a maximum, and therefore this maximum is also the optimal guarantee 
over all linear contracts. ∎

And now we can put all the pieces together.

PROOF OF THEOREM 1:
By Lemma 6, among the linear contracts, there is an optimal one, call it   w   ∗  . Then 

in particular   w   ∗   is eligible. If  w  is any other, nonlinear contract that does better than   
w   ∗   , then by Lemmas 3, 4, and 5, there is a linear contract that in turn does at least 
as well as  w . But this contradicts the fact that   w   ∗   is the best possible linear contract. 
Thus,   w   ∗   is optimal among all contracts. ∎

The above argument shows that there is an optimal contract that takes the linear 
form. However, there may potentially be many optimal contracts. If the full-support 
condition is satisfied, however, then we get a stronger conclusion:

COROLLARY 1: If    0    satisfies the full-support condition, then every contract that 
maximizes   V  P    is linear.
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This just requires a couple extra verifications at certain points in the proof of 
Theorem 1, which we leave to Appendix A.

We have now reached our main goal, of showing that an optimal contract is lin-
ear,  w(y) = αy . We may as well wrap up the analysis of the principal’s problem by 
identifying exactly what the share  α  is. From Lemma 2, the optimal share is found 
by maximizing

  (1 − α) E  F  [y] −   1 − α _____ α  c  

jointly over  (F, c) ∈   0    and  α ∈ [0, 1] . So we can first find the optimal  α  for any 
given  (F, c)  , then maximize over actions  (F, c) . When   E  F  [y] < c  , the maximum 
over  α  is  0  (given by  α = 1 ). Otherwise, the optimal  α  is equal to   √ ______ c /  E  F  [y]    , and 
the objective reduces to

(12)   E  F  [y] + c − 2 √ _____ c  E  F  [y]   =  ( √ ____  E  F  [y]   −  √ _ c  )   2  . 
Therefore, the optimal contract is chosen by taking  ( F   ∗ ,  c   ∗ ) ∈   0    to maximize   √ ____  E  F  [y]   −  √ _ c    , and then choosing   α   ∗  =  √ _______  c   ∗  /  E   F   ∗   [y]    to be the share. If it happens 
that there are several actions in    0    attaining the maximum (a knife-edge case), then 
there can be several optimal linear contracts.

We remark that, aside from the support-line approach taken here, there is also 
another, directly constructive way to show that any contract is (weakly) outper-
formed by a linear contract. That alternative proof is a little faster, but generalizes 
less readily. See Appendix C for details and discussion.

D. Discussion of Assumptions

Before moving on to the extensions, we should comment on some assumptions, 
their role in the mechanics of the model, and their consequences for interpretation.

The uncertainty on the principal’s part is clearly essential: if the principal knew 
for certain that   =   0    , then the optimal contract would in general not be linear 
(see, e.g., Diamond 1998). For example, with    finite and    containing only two 
actions, the optimal way to incentivize the costlier action would be to pay a positive 
amount only for the value of output having the highest likelihood ratio, and zero for 
all other realizations of output. Moreover, the space of actions that may potentially 
be available to the agent needs to be sufficiently rich. This is needed in Lemma 1, 
which shows that the worst case for the principal lies on the boundary of the convex 
hull of  w . If we assumed a less rich space of potential actions, the worst case might 
lie inside the convex hull, and then the support line would not be defined.

The limited liability assumption is also crucial. If we removed this assumption, 
and instead constrained payments from below by imposing a participation con-
straint (say, the agent must be assured a nonnegative expected payoff), then the 
standard solution of “selling the firm to the agent” would apply: clearly the principal 
could not be guaranteed any higher payoff than the total surplus under    0    , namely 
  s 0   =  max  (F, c)∈  0       ( E  F  [y] − c)  , and she could achieve this payoff by setting  
w(y) = y −  s 0   . Thus our argument depends on having some exogenous minimum 
payment to the agent. However, our assumption that this minimum payment is  0  
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is simply a normalization. One could instead assume that the minimum payment 
is some (positive or negative) constant  w  , and the straightforward analogue of 
Theorem 1 would say that an optimal contract has the form  w(y) = αy + w .2

Likewise, the model assumes that any action must entail a nonnegative cost to 
the agent. This can be relaxed modestly to allow actions that have private benefits: 
if we instead assume that the minimum possible cost of an action is  c < 0  , so that 
an action is defined as an element of  ∆() × [c,  ∞)  , then the resulting model is 
equivalent to an instance of the original model with the cost of each action translated 
by  −c . Thus, the nontriviality assumption would now require some  (F, c) ∈   0    
with   E  F  [y] − c >  − c  , and as long as this is satisfied, a linear contract is optimal. 
(Section IIA offers another variation on this theme.)

If this version of the nontriviality assumption is not satisfied, then no contract 
will guarantee the principal any positive payoff. Thus, the model is not suitable 
for describing situations where the private benefits from undesirable actions could 
potentially be very large (e.g., where the agent might be able to steal all the output 
for personal consumption).

We have also made an assumption of favorable tie-breaking—that if the agent 
is indifferent among actions, he chooses the best one for the principal. This may 
seem contrary to the worst-case spirit of the model, but it can be read as a modeling 
shorthand for the standard notion of a contract as consisting of both a payment rule 
and a recommended action. (Here the recommended action would be contingent on 
the technology, or we could simply imagine the blanket recommendation “break 
ties in favor of the principal.”) Other tie-breaking rules would lead to essentially the 
same results, but may introduce technical complications: e.g., in some instances the 
optimal contract may not exist, so that   sup  w      V  P  (w)  is approached, but not attained, 
by linear contracts.

One more, subtler, assumption is hidden in the maxmin expected utility formu-
lation: there is nonquantifiable uncertainty about the set of possible actions, but for 
any particular action, the risk associated with the action is quantifiable (and more-
over, the principal and the agent agree about how to quantify it). One way to make 
sense of this combination of nonquantifiable and quantifiable uncertainty is that the 
risk inherent in any given action depends on physical events occurring in the world, 
which might be relatively familiar concepts, whereas technologies are too abstract 
for the principal to be able to reason probabilistically about them. We could also try 
to appeal to decision-theoretic foundations to justify the maxmin expected utility 
formulation (see e.g., Stoye 2012 for references to several such axiomatizations), 
although such an appeal by itself would not explain why technology appears in the 
nonprobabilistic parameter space rather than the probabilistic state space.

II. Extensions

In this section we consider several variations of the basic model. The purpose is 
twofold: to study how the result persists when the model is made more realistic, and 
to show how the analytical tools extend to more complex models.

2 Similarly, our assumption  min () = 0  is simply an additive normalization of the principal’s payoffs; without 
this assumption, an optimal contract would take the form  w(y) = α(y −  min ()) . 



547CARROLL: ROBUSTNESS AND LINEAR CONTRACTSVOL. 105 NO. 2

Specifically, we consider: refining the principal’s knowledge by adding a lower 
bound on the cost of producing any given output distribution, or by otherwise chang-
ing the set of possible technologies; adding a participation constraint; and allow-
ing the principal to screen by offering different contracts depending on the agent’s 
technology   . Note that these extensions are independent of each other; we do not 
pursue the task of writing a single model that is as general as possible.

A. Lower Bounds on Cost

An immediate criticism of the basic model is that it unrealistically allows the 
agent to produce large amounts of output for free. Indeed, as the proof of Lemma 1 
(in Appendix A) shows, the worst-case action for any contract is one that produces 
an undesirable distribution  F  at cost  0 . We might wish to change the model to rule 
this out. One way is to suppose instead that the principal knows a lower bound on 
the cost of producing any given level of expected output.

To model this, suppose there is given a convex function b : ℝ →    ℝ   +    , and amend 
the definition of a technology    to require that every  (F, c) ∈   should satisfy  
c ≥ b( E  F  [y]) . We suppose that the known technology    0    also satisfies this condi-
tion. We again define   V  P  (w)  as the infimum of   V  P  (w|)  over all possible technolo-
gies   ⊇   0   . Everything else is as in the original model. Then, it turns out that a 
linear contract is still optimal.

In fact, a significant generalization holds too. We can allow the known lower 
bound on cost,  b  , to depend not only on the expected value of output but also on 
other moments. (For example, it may be that producing a high level of output for 
certain is known to be expensive, but producing the same mean output with high 
variance might be less costly.) Following Holmström (1979), we can also allow 
there to be other observable variables, besides output, that are informative about the 
bound on cost. The general result is that the optimal contract is an affine function of 
output and whatever other relevant variables are observed.

To give the general formulation, we allow for a vector of observables 
 z = ( z 1  , … ,  z k  )  , taking values in a compact set   ⊆  ℝ   k  . We assume out-
put is included as one component of  z  , say  y =  z 1    , and thus assume 
 min { z 1   | z ∈ } = 0 . An action now consists of a distribution on    and an asso-
ciated cost. In our model, the principal knows a lower bound on the cost of any 
distribution that depends on the expected values of all the   z i   . Thus, we assume 
given a convex function b :   ℝ   k   →   ℝ   +   , and define an action to be a pair  (F, c)  with  
F ∈ ∆()  and  c ≥ b( E  F  [z]) . A technology is a compact set of actions. We assume 
given a technology    0    , the set of known actions, and the true    may be any technol-
ogy containing    0   . We make the same nontriviality assumption as before.

A contract is now a continuous function w :  →   ℝ   +  . The timing of the game 
and payoffs are as before: Given contract  w  and technology    , the agent’s utility 
and his choice set are

   V  A  (w | ) =   max  (F, c)∈      ( E  F  [w(z)] − c),     ∗ (w | ) =  arg  max  
(F, c)∈

      ( E  F  [w(z)] − c);  
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the principal’s expected payoff is

   V  P  (w | )=   max  (F, c)∈    ∗ (w | )  
     E  F  [ z 1   − w(z)].  

The principal’s objective   V  P  (w)  is defined to be the infimum of   V  P  (w | )  over all 
technologies   ⊇   0   .

The main result for this model is:

THEOREM 2: There exists a contract that maximizes   V  P    and is affine—that is

  w(z) =  α 1    z 1   + ⋯ +  α k    z k   + β  

for some real numbers   α 1  , … ,  α k    and  β .

The argument here is an extension of the ideas used for the basic model. However, 
the analogue of Lemma 3, finding the driving inequality for any candidate contract  
w  , is now a bit subtler: we apply the separating hyperplane theorem to separate two 
sets, one given by the convex hull of  w  as before and the other determined by the 
shape of the function  b . In addition, identifying the worst-case action for a given 
contract involves separately addressing a boundary case that previously applied only 
for the zero contract, but now can occur more widely and so requires more careful 
treatment. The details of the proof are deferred to Appendix B. We also give an 
example there to illustrate how this generalized model also serves to describe a situ-
ation where only output is observed but the cost bound depends on higher moments.

B. Alternative Sets of Technologies

The basic model assumes that the true technology might be much, much larger 
than the set of actions known to the principal, since any   ⊇   0    is considered pos-
sible. However, all of the same results hold if the principal considers a much smaller 
set of possible technologies   : either    0    itself, or    0    with just one more action  
(F, c)  added. To see this, just check that when   V  P  (w)  is redefined as the infimum of   
V  P  (w|)  over this restricted set of technologies, its value does not change.

In fact, we do not even need to assume that there is a single minimal technology   
 0   . Here is a more general formulation that allows for multiple minimal technol-
ogies, and also encompasses the simplification in the previous paragraph. Suppose 
simply that there is some nonempty collection    of possible technologies, and the 
principal’s value from any contract  w  is defined as   V  P  (w) =  inf  ∈       V  P  (w | ) . 
Suppose that     has the following property: For any   ∈   , and any arbitrary 
action  (F, c)  , then there exists some  ′ ⊆   such that  ′ ∪ {(F, c)} ∈  . Then, 
Theorem 1 continues to hold.

The proof is essentially the same as before, using the following generalization 
of Lemma 1: if  w  is a nonzero, eligible contract (eligibility defined as before), then

   V  P  (w) = min   E  F  [y − w(y)] over F ∈ ∆() s.t.  E  F  [w(y)] ≥   inf  ∈  
      V  A  (w | ); 
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and for any  F  attaining the minimum,   E  F  [w(y)] =  inf        V  A  (w | ) . (The proof that 
the optimal contract exists is slightly more work than before, but one can derive an 
analogue to (5) and check that it is upper semi-continuous in  α  , which is enough for 
existence of the optimum.)

One can also show that linear contracts are uniquely optimal under an appropriate 
version of the full-support condition.

This discussion stresses that the model does not depend on allowing the agent’s 
technology to be outrageously large. However, we do need that, as the technology 
varies, the range of actions that may potentially be chosen should be sufficiently 
rich, as discussed in Section ID above. We could not (for example) restrict attention 
to technologies that contain only actions “close” to those in the known technology   
 0    and expect the same results to hold.

C. Participation Constraint

In the basic model, the only constraint that imposed a lower bound on payments 
to the agent was limited liability. We could instead imagine that there is also a partic-
ipation constraint, so that the principal is required to guarantee the agent an expected 
payoff of at least    U ─    A   . This operates differently than limited liability, since it applies 
to the agent’s payoff net of cost. Such a constraint could be modeled by restricting 
the principal to only propose contracts  w  satisfying   E  F   [w(y)] − c ≥    U ─    A    for some  
(F, c) ∈   0   . Let us assume some eligible  w  satisfies this constraint.

In this case, the same argument as before shows that every contract is weakly out-
performed by an affine contract. Indeed, since the contract   w ′    constructed in Lemma 
4 satisfies   w ′   ≥ w  everywhere, if  w  satisfies the participation constraint, so does   w ′   . 
However, the one step of the original argument that does not go through is Lemma 
5, going from the affine contract  αy + β  to the linear  αy : the latter may not satisfy 
the participation constraint.

Actually, a little more work shows that the optimal contract is still linear. 
Intuitively, if the optimal contract were affine,  αy + β  with  β > 0  , then the value 
of  β  would be determined by the participation constraint binding. But as long as the 
participation constraint is binding, the principal would rather increase  α  slightly, 
better aligning the agent’s incentives with her own, and decrease  β  so that the partic-
ipation constraint still binds. Thus it would be an improvement to increase the slope  
α  up to the point where limited liability binds instead ( β = 0 ).
THEOREM 3: In the model with a participation constraint added, there is still an 
optimal contract that is linear.

The details are in Appendix A.

D. Screening on Technology

We proved Theorem 1 by improving any contract to a linear contract. One might 
instead try a more direct method of proof: find the contract with the best possible 
guarantee for the principal,   max  w      V  P  (w)  , and identify an adversarial technology    
that prevents the principal from doing any better. It turns out, however, that this 
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proof approach would not work, because in general such an adversarial technology 
does not exist.

PROPOSITION 1: Let   w   ∗ (y) =  α   ∗ y  be the linear contract that maximizes   V  P    , and 
suppose that   α   ∗  > 0 . Then there exists    V ─   P    >   V  P     ( w   * )   such that, for every technol-
ogy   ⊇   0    , there is some contract  w  with   V  P   (w | ) ≥    V ─   P    .

The proof is in Appendix A.
For another interpretation of this proposition, imagine that the principal could 

somehow make the contract she offers be a function of the agent’s technology. The 
proposition says that she could achieve a strictly higher guarantee—in worst case 
over all possible agent types—than in the basic model where she is constrained to 
only offer a single contract.

This result naturally brings to mind the question of the possibility of screening. 
What if the principal could offer multiple contracts, inducing different agent types 
to self-select into different contracts? Such screening would be less flexible than the 
technology-dependent contract choice above, because it has to be incentive-compat-
ible. It turns out this overturns the result of the proposition: screening with a menu 
does not give a better worst-case guarantee than using a single contract.

To formalize this, we imagine that the principal offers a menu of contracts 
  = ( w   )  , one for each possible technology    that the agent could have, such that 
the agent with any technology    chooses the corresponding contract (this is without 
loss of generality by the revelation principle). Thus, we require

(13)   V  A  ( w    | ) ≥  V  A  ( w ′   | ) for all , ′ ⊇   0   . 

We write the principal’s worst-case payoff from the menu as

   V  P  () =   inf  ⊇  0    
    V  P  ( w    | ) . 

THEOREM 4: The principal cannot do any better, in terms of worst-case guaran-
tee, with a menu of contracts than she can with a single contract. That is, for any 
menu    ,

   V  P  () ≤  max  
w
      V  P  (w) . 

Again, the proof is in Appendix A.
We close this section with an additional observation: the fact that the principal 

can do strictly better than   max  w      V  P  (w)  for any given technology suggests that she 
should be able to improve her worst-case guarantee by deliberately randomizing 
over contracts. This naturally raises the question of what the worst-case-optimal 
randomized contract looks like. This seems a harder problem. Similarly, it is not 
clear whether the result of Theorem 4—that screening does not help—persists 
when the principal can offer menus of randomized contracts. We leave these ques-
tions for future work.
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III. Discussion

We have presented here a simple principal-agent model that illustrates the robust-
ness value of linear contracts. In the face of uncertainty about the technology avail-
able to the agent, linearity is the only tool the principal can use to turn her assurance 
about the agent’s expected payoff into a guarantee for herself, and so optimal con-
tracts are linear.

We now return to discuss this model’s potential to help explain the popularity of 
linear contracts in the real world. Many previous scholars have noticed that, while 
theoretical models of agency relations often predict complicated incentive schemes 
that are sensitive to the details of the model, when one does see explicit incen-
tives in practice they often take simple forms, and linear contracts are one common 
form (see Bhattacharyya and Lafontaine 1995, pp. 763–64; and Chu and Sappington 
2007, footnote 3, for many references).

One way to try to explain this via our model would be to take the model liter-
ally, imagining that contract writers explicitly maximize a worst-case objective, are 
risk-neutral, and so on. A fuzzier story, but perhaps closer to the truth, is as follows. 
Just as economists work with stylized models for tractability, so, too, real-life deci-
sion makers may not be able to write down (or solve) their decision problems in 
full precision. They may therefore be content to adopt a solution that is guaranteed 
to perform reasonably well in a class of approximate models (similarly to Simon’s 
“satisficing” in Simon 1956). This paper begins by pointing out how such a guar-
antee can be obtained from linear contracts, with only slight reliance on knowledge 
of the environment. Our main result then shows that, while many other contracts 
can also offer some such guarantee, linear contracts play a distinguished role in this 
story, by providing the best possible guarantee.

How does our model relate to other explanations for linear contracts in previous 
literature? The paper of Holmström and Milgrom (1987) quoted above was one 
early explanation, also invoking robustness. In their model, the principal and agent 
have constant absolute risk aversion (CARA) utility, and the agent controls the drift 
of a (possibly multidimensional) Brownian motion in continuous time. Although 
the principal can make payments depend on the entire path of motion, the optimal 
contract is simply a linear function of the endpoint. Holmström and Milgrom pres-
ent this model as capturing robustness, in view of the agent’s large strategy space. 
However, it is really the stationary structure of the model that underlies the con-
clusion; the CARA utility implies that at each point in time, the optimal incentives 
going forward are independent of the previous history, and this leads to linearity.

Diamond (1998) gives an argument for linear contracts that is close to the intu-
ition of this paper. Diamond (1998, Section 5) considers a model in which the agent 
can either choose no effort, producing a low expected output, or high effort, pro-
ducing a higher expected output. For a given level of effort, the agent can choose 
among all distributions over output that have the same mean, and all such distribu-
tions are equally costly. A linear contract is then optimal. The argument rests on the 
same intuition as here—with such freedom to choose the distribution, only a linear 
relation can tie the principal’s expected profit to the agent’s expected compensation. 
However, the assumptions that there are exactly two effort levels, and that all dis-
tributions with a given mean are equally costly, are restrictive. Furthermore, there 
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are actually many optimal contracts in Diamond’s model. In our model, uncertainty 
about which distributions are actually possible can make the linear contract uniquely 
optimal.

Several other papers consider models where the contractible outcome variable 
combines effort with mean-zero additive noise, leading naturally to linear contracts 
(or, more precisely, what we have called affine contracts, but let’s ignore that distinc-
tion). For example, a version of the model of Edmans and Gabaix (2011) with linear 
utility and additive noise gives this result. However, their model focuses mainly 
on implementing a particular action, rather than maximizing the principal’s payoff. 
Earlier works by Laffont and Tirole (1986) and McAfee and McMillan (1987) con-
sider problems that combine moral hazard and adverse selection: a principal uses a 
menu of contracts to screen agents on ability. In both of their models, there is again 
an optimal menu in which payment is linear in output within each contract. Again, 
however, there may also be other optimal menus. In any case, the assumption of 
additive noise is quite specific.

Chassang (2013) considers a dynamic model and gives the same lower bound as 
ours (3) on the performance of a linear contract, by the same calculation. Chassang 
also gives a worst-case optimality result for linear contracts in a certain class of 
environments (his Corollary 1). In that class, first-best total surplus may be arbi-
trarily small, so the objective used is the ratio of the principal’s profit to first-best 
surplus. As in our proof here, Chassang argues by finding a bad environment for any 
given contract. However, there is no analogue to our argument of improving a non-
linear contract to a linear one (instead, Chassang directly calculates that the objec-
tive value for any contract is at most the lower bound for the best linear contract); 
nor any analogue to our driving inequality (6), which expresses the intuition that 
any contract’s guarantee stems from its ability to align the principal’s and agent’s 
payoffs.

Finally, Hurwicz and Shapiro (1978) also consider a maxmin contracting prob-
lem whose objective involves the ratio of principal’s profits to first-best total surplus. 
They focus on a particular class of environments involving quadratic effort costs. 
Their paper does not discuss economic intuition behind the optimality argument, 
which involves a differential inequality; it seems quite different from the argument 
here.

Against this backdrop, then, the contribution of the current paper is a combi-
nation of features: the model allows many degrees of freedom (the set of known 
actions the agent has can be arbitrary, with no functional form assumptions); the 
concern for robust performance is modeled explicitly through the worst-case payoff 
objective; and we give a mathematical argument for optimality based on the simple 
intuition that any contract’s guarantee is driven by its alignment between the agent’s 
interests and the principal’s. Also, in contrast to previous maxmin results, the simple 
expected-profit objective here might also be considered more natural than the ratio 
objective, although this distinction is a matter of taste.

The model’s mathematical tractability is also a virtue; as discussed in the intro-
duction, one main purpose of the model is to present a methodology that can be 
adopted to study more complicated contracting problems. The various extensions 
in Section II give a sampling of such possibilities. And one can certainly come up 
with others beyond those discussed in detail here: for one more example, suppose 
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that, instead of being risk-neutral over money, the principal and agent maximize the 
expected value of some (known) utility functions; then a straightforward variation 
of our main argument here shows that the maxmin-optimal contract is now affine in 
utility space.3 Another, more sophisticated, application of our machinery is in the 
companion paper (Carroll 2012), which takes the same modeling approach to the 
principal-expert problem (Zermeño 2012) to study worst-case-optimal incentives 
for information acquisition.

Relatedly, the modeling approach here may prove useful to future economic the-
orists, who need a flexible model of moral hazard that outputs a simple solution, 
to serve as just one of many moving parts in some larger model. However, this 
suggestion should be supplemented with a note of caution. It is common in applied 
theory models to assume full knowledge of the environment, but then exogenously 
impose a restriction to linear contracts for tractability (e.g., Gibbons and Murphy 
1992; Feltham and Xie 1994). The model here cannot be invoked as a justification 
for this practice, since the contract that is best among all linear contracts when the 
technology is known to be    0    is generally different from the maxmin-optimal con-
tract studied here.

Appendices

A. Proofs Omitted from Main Text

PROOF OF LEMMA 1:
First, consider any technology   ⊇   0   . The agent’s payoff is at least 

  V  A  (w |   0  ) . That is, his chosen action  (F, c)  satisfies

   E  F  [w(y)] ≥  E  F  [w(y)] − c ≥  V  A  (w |   0  ) . 
Hence the principal’s payoff,   V  P  (w | ) =  E  F  [y − w(y)]  , is at least the minimum 
given by (4). Thus, the principal’s worst-case payoff   V  P  (w)  is no lower than given 
by (4).

To see this is tight, let  F  be a distribution attaining the minimum in (4). First 
suppose that  F  does not place full support on values of  y  for which  w  attains its 
maximum. Then let   F ′    be a mixture of  F  with weight  1 − ϵ  , and a mass point   
δ   y   ∗     with weight  ϵ  , where   y   ∗   is some point where  w  attains its maximum. Then 
  E   F ′    [w(y)] >  E  F  [w(y)] ≥  V  A  (w|   0  ) . The strict inequality means that if   =   0    ∪ {( F ′  , 0)}  , then the agent’s unique optimal action in    is  ( F ′  , 0)  , leading to expected 
payoff  (1 − ϵ) E  F  [y − w(y)] + ϵ( y   ∗  − w( y   ∗ ))  for the principal. As ϵ → 0 this con-
verges to the minimum in (4), so the principal cannot be guaranteed any higher 
expected payoff.

Now suppose  F  does place full support on values of  y  at which  w  attains its 
maximum. If   E  F  [w(y)] >  V  A  (w |   0  )  , then we can again proceed as above with 
  =   0   ∪ {(F, 0)} . This leaves only the case of equality,   V  A  (w |   0  )  =  max  y     w(y) , which is only satisfied when    0    contains some action of the form  

3 Details of this model are available from the author. 
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(F, 0)  with  F  supported at output levels for which  w  attains its maximum. Then, 
under technology    0    the agent will choose such an action. But then the agent 
would have been willing to choose the same action under the zero contract (and any 
  ⊇   0   ), which costs less to the principal (strictly, since  w  is not the zero con-
tract). Thus   V  P  (w) <  V  P  (0)  , contradicting eligibility.

This shows (4). Now let  F ∈ ∆()  attain the minimum in (4). We have  
  E  F  [y − w(y)] =  V  P  (w) > 0  by eligibility. On the other hand,  y − w(y) ≤ 0  when  
y = 0 . Now if we have   E  F  [w(y)] >  V  A  (w |   0  )  strictly, then replace  F  by a mixture 
of  F  with weight  1 − ϵ  and   δ  0    with weight  ϵ  , for small  ϵ  , to see that minimality is 
contradicted. Hence we have equality,   E  F  [w(y)] =  V  A  (w|  0  )  , as claimed. ∎
PROOF OF LEMMA 3:

Although the separation argument in Figure 1 is illustrated in outcome space, the 
proof (and result) of this lemma are most cleanly written in payoff space.

Thus, let   ⊆  ℝ   2   be the convex hull of all points  (w(y), y − w(y))  for  y ∈  . 
Let    be the set of all pairs  (u, v) ∈  ℝ   2   such that  u >  V  A  (w |   0  )  and  v <  V  P  (w) . 
The conclusion (4) of Lemma 1 implies that    and    are disjoint.

So by the separating hyperplane theorem, there exist constants  κ, λ, B  such that

(A1)  κ + λu − Bv ≤ 0 for all (u, v) ∈ , 

(A2)  κ + λu − Bv ≥ 0 for all (u, v) ∈ , 

and  (λ, B) ≠ (0, 0) . In addition, if we let   F   ∗   be the distribution attaining the min-
imum in (4), the pair  ( E   F   ∗   [w(y)],  E   F   ∗   [y − w(y)])  lies in the closures of both    and  
  , hence

(A3)  κ + λ  E   F   ∗   [w(y)] − B  E   F   ∗   [y − w(y)] = 0 . 
We will show that  λ, B > 0 . Condition (A2) implies that  λ, B ≥ 0  , so we just 

need to show that both inequalities are strict:

 B = 0  , then  λ > 0  , and (A1) and (A2) imply   max  y∈      w(y) ≤  − κ / λ 
≤  V  A  (w |   0  ) . This can only happen if the agent has some action in    0    that 
guarantees him a payment of   max  y      w(y)  and costs zero. As in the proof of 
Lemma 1, this implies   V  P  (w) <  V  P  (0)  , contradicting eligibility.

 λ = 0  , then  B > 0  , and (A1) and (A2) imply   min  y∈     (y − w(y)) ≥ κ/B 
≥  V  P  (w) . But   min  y∈      (y − w(y)) ≤ 0 − w(0) ≤ 0  , so   V  P  (w) ≤ 0  , again 
contrary to assumption.

Now we can rescale  κ, λ, B  so as to assume  B = 1 . Then,  λ  remains positive, 
(A1) implies (6), and (A3) implies (7). ∎
PROOF OF COROLLARY 1:

Suppose  w  is an optimal contract. Note that the proof of Lemma 4 actually shows 
that the contract   w ′    defined by (10) satisfies
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(A4)   V  P  ( w ′  ) ≥ κ + λ  V  A  ( w ′   |   0  ) =  V  P  (w) + λ( V  A  ( w ′   |   0  ) −  V  A  (w |   0  )) . 
But under the full-support assumption, if   w ′    is not identical to  w  then the difference   
V  A  ( w ′   |   0  ) −  V  A  (w |   0  )  is strictly positive. (This follows because the action taken 
under  w  and technology    0    has full support, so gives the agent strictly higher payoff 
under   w ′    than  w .) Then (A4) implies that   V  P  ( w ′  ) >  V  P  (w)  , contradicting optimal-
ity of  w .

Therefore,   w ′   = w . So  w  is an affine contract. In fact,  w  must be linear: other-
wise the improvement given by Lemma 5 is strict, again contradicting optimality. 
Thus, every optimal contract is linear. ∎
PROOF OF THEOREM 3:

The same steps used for Theorem 1 show that there is an optimal contract that is 
affine,  w(y) = αy + β . Moreover, for any given  α  , the optimal choice of  β  is to be 
as small as possible subject to the nonnegativity and participation constraints:

(A5)   β   *  (α) = max  {0,   U ─    A   −   max  (F, c)∈  0  
     (α E  F  [y] − c)}  .

Evidently, the first case of the max holds when  α  is greater than some 
threshold    α ─   , and the second case holds for α ≤   α ─    (to be precise,   α ─     
=   min (F, c)∈  0     (   U ─    A    + c)/  E  F   [y]). So we have an analogue of Lemma 2: for any  α  , the 
guarantee of the best affine contract with slope  α  is at least

(A6)    max  (F, c)∈  0  
         ((1 − α) E  F  [y] −   1 − α ______ α   c)   −  β   *  (α),

with equality for eligible contracts. Thus finding the optimal contract reduces to 
maximizing (A6) over  α .

But when α ≤   α ─    , (A6) simplifies to

(A7)    max  (F, c)∈  0  
          ( E  F   [y] −   1 __ α   c)  −    U ─    A   ,

which is increasing in  α  (or constant, in the case  c = 0  ). And so we conclude that 
the maximum is attained at some α ≥   α ─    , where   β   ∗ (α) = 0 . ∎

PROOF OF PROPOSITION 1:
Let  ( F   ∗ ,  c   ∗ ) ∈   0    be the action that maximizes (12). So we have   w   ∗ (y) =  α   ∗ y  ,  

with   α   ∗   =   √ _______  c   ∗ / E   F   ∗   [y]    , and the principal’s guarantee is   V  P  ( w   ∗ )  =   ( √ _____  E   F   ∗   [y]    −   √ __  c   ∗   )   2  . 
Consider any technology    , and let  (F, c)  be the agent’s action under   w   ∗   and   . 
Thus

(A8)   α   ∗  E  F  [y] − c ≥  α   ∗  E   F   ∗   [y] −  c   ∗  . 

We consider two cases.
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 c ≥  c   ∗  /2  , then the principal’s payoff from contract   w   ∗   is

   (1 −  α  * )  E  F  [y] ≥   1 −  α  *  _____  α  *     ( α  *  E   F   *   [y] −  c   *  + c) 

 =  E   F   *   [y] − 2 √ ______  c   *  E   F   *   [y]   +  c   *  +   1 −  α  *  _____  α  *    c

 ≥  V  P   ( w   * )  +   1 −  α  *  _____  α  *       c   *  __ 2    .

 c ≤  c   ∗  / 2 . We know that if the principal learns    before 
contracting, then by choosing an appropriate contract she can earn at 
least    ( √ ____  E  F  [y]   −  √ _ c  )    2   (since in fact this is her worst-case guarantee with    in 
place of    0   —note the condition   E  F  [y] > c  is met). We show that this expres-
sion is bounded strictly above   V  P  ( w   ∗ ) . Define

   g(x) =  √ 
________________

     x   2  + ( α   ∗  E   F   ∗   [y] −  c   ∗ )  ________________   α   ∗      − x  

    for  x ≥ 0 . Then  g  is convex, and we check that the minimum is given by the 
first-order condition. This condition is satisfied (uniquely) by  x =  √ __  c   ∗     , with 
value  g( √ __  c   ∗   ) =  √ _____  E   F   ∗   [y]   −  √ __  c   ∗    . Now, holding  c  fixed, treat   E  F  [y]  as a vari-

able, constrained by (A8) and   E  F  [y] > c . Then   ( √ ____  E  F  [y]   −  √ _ c  )   2   is minimized 
by taking (A8) to hold with equality, and in this case   √ ____  E  F  [y]   −  √ _ c   = g( √ _ c  ) . 
Thus we see that the principal can make a payoff of at least

    ( √ ____  E  F  [y]   −  √ _ c  )    
2
   ≥   (g( √ ____ c  ))   2    ≥   (g( √ ____  c   ∗  / 2  ))   2  .

   Now observe that   (g( √ __  c   ∗    / 2))   2  >   (g( √ __  c   ∗   ))    2  =  V  P  ( w   ∗ ) .
So in both cases, we have a lower bound for the principal’s payoff when she 

knows    that is strictly above   V  P  ( w   ∗ ) . ∎
PROOF OF THEOREM 4:

Consider any menu   . Let   w 0   =  w   0      , the contract that the agent would choose 
when the technology is just    0   . We claim that   V  P  ( w 0  ) ≥  V  P  ()  , which will prove 
the theorem.

Suppose not. Then, there is some technology    1    under which, facing contract   w 0    , 
the agent chooses an action  ( F  1  ,  c 1  )  that gives the principal payoff less than   V  P  () . 
We may assume that    1   =   0   ∪ {( F  1  ,  c 1  )} . Note also that  ( F  1  ,  c 1  ) ∉   0    , since 
otherwise    1   =   0    and so   V  P  ( w 0   |   0  ) <  V  P  ()  which is a contradiction. It must 
be that, under   w 0    , the agent earns strictly higher payoff from  ( F  1  ,  c 1  )  than he does 
from any action in    0   : otherwise he would be willing to take the same action under   
 1    as he does under    0    , thereby giving the principal   V  P  ( w 0   |   0  ) ≥  V  P  () .
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Now let   w 1   =  w   1      , the contract chosen from the menu when the technology is   
 1   . Under   w 1    and    1    , the agent must choose action  ( F  1  ,  c 1  ) . Proof: if he chooses any 
action in    0    , then his payoff is at most   V  A  ( w 0   |   0  )  (by revealed preference (13)). 
On the other hand, his payoff under   w 1    and    1    must be at least as high as his payoff 
from  ( F  1  ,  c 1  )  under   w 0    (by revealed preference again, since   w 1    was chosen under 
   1   ), which is higher than   V  A  ( w 0   |   0  )  by the previous paragraph.

Hence,  ( F  1  ,  c 1  )  is the agent’s uniquely chosen action under   w 1    , and

   E   F  1    [ w 1  (y)] −  c 1   ≥  E   F  1    [ w 0  (y)] −  c 1   
again by (13). Then, the principal’s payoff when the technology is    1    is
   E   F  1     [y −   w 1   (y)] =   E   F  1     [y] −   c 1    −   ( E   F  1    [ w 1  (y)] −  c 1  )  

 ≤   E   F  1     [y] −   c 1    −   ( E   F  1    [ w 0  (y)] −  c 1  )  

 =   E   F  1     [y −   w 0  (y)] 
 <   V  P   (),
where the last line is by definition of  ( F  1  ,  c 1  ) . Since the principal should get at least   
V  P  ()  under every possible technology, we have a contradiction. ∎

B. General Lower Bounds on Cost

First, as promised in Subsection IIA, we illustrate by example how the mul-
tiple-observables model allows us to describe situations where the cost bound 
depends on higher moments of output. Suppose, for example, that only out-
put  y  is observed, and the principal knows that any distribution  F  costs at least 
 h( E  F  [y]) − κ · VA R  F  [y]  , where  h  is some given convex function. Then, we would 
capture this by putting

   = {(y,  y   2 ) | y ∈ }  
and

  b( z 1  ,  z 2  ) = max {0, h( z 1  ) − κ( z 2   −  z  1  2 )} .  
Theorem 2 would apply, and tell us that an optimal contract is quadratic in  y .

We now embark on the proof of the theorem, which follows the same outline as 
in Section IC. We first characterize the payoff guarantee of any given contract  w . 
The situation is a bit more complex than before, because the tie-breaking assump-
tion requires careful treatment of the boundary case in which the agent’s best action 
under any possible technology is already available in    0   .

For  F ∈ ∆()  and a given contract  w  , define  h(F | w) =  E  F  [w(z)] − b( E  F  [z])  , 
the highest expected payoff the agent could possibly get from producing distribution  
F . Since  b  is convex,  h  is concave in  F .
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LEMMA B1: Let  w  be any contract. Then one of the following two cases occurs:

 (i)   V  P  (w) = min   E  F  [ z 1   − w(z)]  over F ∈ ∆() s.t. h(F | w) ≥  V  A  (w |   0  ) . 
 (ii)   max    F∈∆()     h(F | w) =  V  A  (w |   0  ) . 
PROOF:

Let   F  0    be a distribution attaining the minimum in (i). (The constraint set is 
nonempty since it is satisfied by the action chosen under    0   .) Suppose that   F  0    
does not also maximize  h(F | w)  over all  F ∈ ∆() . Then, choose   F  1    yielding 
a higher value of  h  , and put   F ′   = (1 − ϵ) F  0   + ϵ F  1    for small  ϵ . By concavity, 
 h( F ′   | w)  ≥  (1 − ϵ)h( F  0   | w)  +  ϵh( F  1   | w)  >  h( F  0   | w) . So if    =    0   ∪ {( F ′  , b( E   F ′    [z]))}  , 
then the agent’s unique optimal action in    is  ( F ′  , b( E   F ′    [z])) . As ϵ → 0 the princi-
pal’s resulting payoff tends to   E   F  0    [ z 1   − w(z)] . Thus the principal cannot be guaran-
teed more than the value in (i). On the other hand the principal is guaranteed at least 
this much, just as in the proof of Lemma 1.

Also, if  h( F  0   | w) >  V  A  (w |   0  )  strictly, then let   =   0   ∪ {( F  0  , b( E   F  0    [z]))} . 
With this technology, the agent’s unique optimal action is  ( F  0  , b( E   F  0    [z]))  , and again 
the principal cannot be guaranteed more than the value in (i). Thus in either of these 
situations   V  P  (w)  is as specified by conclusion (i).

We are left with the situation in which   F  0    maximizes  h(F | w)  over all  F ∈ ∆()  
and  h( F  0   | w) =  V  A  (w |   0  ) . In this case, we have conclusion (ii). ∎

Now we prove Theorem 2 by the same process as before: given a  non-affine 
contract  w  , use a separation argument to replace it by an affine contract   w ′    that is 
pointwise above it and gives a weakly greater guarantee to the principal. We will 
perform the separation in outcome space, not in payoff space as in our proof of 
Lemma 3. In addition, we use two different versions of the argument, depending 
which case of Lemma B1 applies.

PROOF OF THEOREM 2:
We may assume that the convex hull of    is a full-dimensional set in   ℝ   k  . (This can 

be accomplished by a linear change of coordinates to embed    in a smaller-dimen-
sional space if necessary, unless   = {0}  but the latter situation is uninteresting.)

Consider any non-affine contract  w . As usual, we may restrict attention to eligible 
contracts, since nontriviality ensures such a contract exists. One of the two cases of 
Lemma B1 holds, and we deal with the two separately.

Case (i). We define

  t(z) = max {b(z) +  V  A  (w |   0  ),  z 1   −  V  P  (w)}  

and observe that  t  is a convex function. Now, we define two sets in   ℝ   k+1  =  ℝ   k  × ℝ . 
Let    be the convex hull of all pairs  (z, w(z))  , for  z ∈  . Let     be the set of all pairs  
(z, c)  such that  z  lies in the convex hull of    , and  c > t(z) .
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Both of these sets are convex. We claim they are disjoint. If not, there exists some  
F ∈ ∆(Z)  such that   E  F  [w(z)] > t( E  F  [z]) . In particular,

   E  F  [w(z)] > b( E  F  [z]) +  V  A  (w |   0  )  
implying

  h(F | w) >  V  A  (w |   0  ),  
and also

   E  F  [w(z)] >  E  F  [ z 1  ] −  V  P  (w) 

implying

   E  F  [ z 1   − w(z)] <  V  P  (w) .  
This is a direct contradiction to our statement (i).

So by the separating hyperplane theorem, there are constants   λ 1  , … ,  λ k  , B, ν  
such that

(B1)   ∑ 
i
      λ i    z i   + Bc ≤ ν for all (z, c) ∈ , 

(B2)   ∑ 
i
      λ i    z i   + Bc ≥ ν for all (z, c) ∈ , 

and some   λ i    or  B  is nonzero. Inequality (B2) implies  B ≥ 0 . In fact,  B > 0 . Proof: 
suppose  B = 0 . Since the projection of either    or    onto the first  k  coordinates 
contains    , (B1) gives   ∑ i      λ i    z i   ≤ ν  for all  z ∈   , while (B2) gives   ∑ i     λ i    z i   ≥ ν  
for all  z ∈  . Hence,   ∑ i      λ i    z i   = ν  for all  z ∈  . Since not all   λ i    are zero, this 
contradicts the full-dimensionality of   .

Now we can rewrite (B1) as

  w(z) ≤   ν −  ∑ i      λ i    z i    __________ B   for all z ∈  .  

This motivates us to define

(B3)   w ′  (z) =   ν −  ∑ i      λ i    z i    _________ B  , 

an affine contract satisfying   w ′   ≥ w  pointwise.
Now we are ready to check that   V  P  ( w ′  ) ≥  V  P  (w) . Let  ( F  0  ,  c 0  )  be the action that 

the agent chooses under  w  and technology    0   .
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Consider any technology   ⊇   0   . As in the original proof of Theorem 1, we 
certainly have   V  A  ( w ′   | ) ≥  V  A  ( w ′   |   0  ) ≥  V  A  (w |   0  ) . Let  (F, c)  be the action 
chosen under   w ′    and   . Then (B2) implies

 t(  E  F   [z]) ≥    ν −  ∑ i      λ i    E  F  [ z i  ]  ____________ B   
 =   E  F   [w′(z)]
 =   V  A   (w′ | ) + c

 ≥   V  A   (w |    0   ) + c

 ≥ b(  E  F   [z]) +   V  A   (w |    0   ).

If the inequality is strict, then  t( E  F  [z]) =  E  F  [ z 1  ] −  V  P  (w)  , and so we have

    V  P  ( w ′   | ) =  E  F  [ z 1   −  w ′  (z)] = t( E  F  [z]) +  V  P  (w) −  E  F  [ w ′  (z)] ≥  V  P  (w) . 
Otherwise,  t( E  F  [z]) = b( E  F  [z]) +  V  A  (w |   0  )  and so all the inequalities in the 

stacked chain above are equalities. In particular, the second inequality is an equality, 
implying   V  A  ( w ′   | ) =  V  A  ( w ′   |   0  ) =  V  A  (w |   0  ) . Since the agent does at least as 
well as   V  A  (w |   0  )  by taking action  ( F  0  ,  c 0  )  , this action is in his choice set under 
  w ′    and    , and so the principal gets at least the corresponding payoff:   V  P  ( w ′   | ) 
≥  E   F  0    [ z 1   −  w ′  (z)] . This is equal to   E   F  0    [ z 1   − w(z)]  , since otherwise   V  A  ( w ′   |   0  ) >  V  A  (w |   0  ) . But   E   F  0    [ z 1   − w(z)] =  V  P  (w |   0  ) ≥  V  P  (w) .

Thus in either case,   V  P  ( w ′   | ) ≥  V  P  (w) . This holds for all    , so   V  P  ( w ′  ) ≥  V  P  (w) .
Case (ii). In this case, define    to be the convex hull of all pairs  (z, w(z))  , and    

to be the set of all  (z, c)  with  z  in the convex hull of    and  c > b(z) +  V  A  (w |   0  ) .  
These are convex, and disjoint: otherwise, there exists  F  such that

   E  F  [w(z)] > b( E  F  [z]) +  V  A  (w |   0  ) 
which reduces to

  h(F | w) >  V  A  (w |   0  ), 
in contradiction to the statement of (ii). Using the same arguments as in case (i), we 
find   λ 1  , … ,  λ k  , B, ν  such that (B1) and (B2) hold, and we show that  B > 0 . Again, 
we define an affine contract   w ′    by (B3); from (B1) we know that   w ′   ≥ w  pointwise.

Consider the agent’s behavior under contract   w ′   . For any action  (F, c)  chosen by 
the agent under any possible technology, we have

   E  F  [ w ′  (z)] − c ≤  E  F  [ w ′  (z)] − b( E  F  [z]) =  w ′  ( E  F  [z]) − b( E  F  [z]) ≤  V  A  (w |   0  )  
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where the second inequality  follows from (B2). That is, the agent can never earn 
a higher expected payoff than   V  A  (w |   0  ) . On the other hand, the agent can always 
earn at least this much, since   V  A  ( w ′   | ) ≥  V  A  ( w ′   |   0  ) ≥  V  A  (w |   0  )  as usual. So 
we have equality. From here the argument finishes just as at the end of case (i), and 
we have   V  P  ( w ′  ) ≥  V  P  (w) .

Existence of an Optimum.—We have shown that any contract  w  with   V  P  (w) > 0  
can be (weakly) improved to an affine contract. So it now suffices to show existence 
of an optimum within the class of affine contracts, analogous to Lemma 6, and this 
contract will then be optimal among all contracts.

Put    b ─    =   max  z∈    b(z) and    y ─    = max(). Note that for any contract  w  satisfying    
max  z∈    w(z) −    b ─    ≥    y ─    , the agent can potentially attain a payoff greater than     y ─   , 
which means that the principal cannot be guaranteed a positive payoff. Hence we can 
restrict attention to contracts with w(z) ∈ [0,    y ─    +    b ─   ] for all  z . By  full-dimensionality, 
this implies a compact range of possible values for the parameters  α  and  β  defining 
the affine contract. We will show below that   V  P  (w)  is upper semi-continuous with 
respect to  w  , under the sup-norm topology on the space of contracts. (It may not 
be fully continuous.) Since the affine contract  w  in turn varies continuously in  α, β  
under this topology, it will then follow that   V  P  (w)  is upper semi-continuous in  α, β  , 
so that the maximum is attained.

Let   w 1  ,  w 2  , …   be any contracts that converge to some contract   w ∞    in the sup norm. 
We wish to show that   V  P  ( w ∞  ) ≥ lim  sup  k      V  P  ( w k  ) . We can replace the sequence 
 ( w k  )  with a subsequence along which   V  P  ( w k  )  converges to its lim sup on the original 
sequence; thus, we assume henceforth that   V  P  ( w k  )  converges. Now consider any 
technology    , and let  ( F  k  ,  c k  )  be the agent’s chosen action under    and contract   w k   .  
We may again pass to a subsequence and assume that  ( F  k  ,  c k  )  has some limit 
 ( F  ∞  ,  c ∞  ) ∈  . Then straightforward continuity arguments show that  ( F  ∞  ,  c ∞  )  is 
an optimal action (perhaps not the only one) for the agent under   w ∞    , and its payoff 
to the principal is the limit of the corresponding payoffs of  ( F  k  ,  c k  )  under   w k   . Hence,

    V  P   (  w ∞    | ) ≥   E   F  ∞     [  z 1    −   w ∞   (z)]
 =   lim  

k
  

 
      E   F  k     [  z 1    −   w k   (z)]

 =   lim  
k
  

 
      V  P   (  w k    | ) ≥   lim  

k
  

 
      V  P   (  w k   ),

and so   V  P  ( w ∞  ) ≥  lim  k      V  P  ( w k  )  as needed. ∎
C. An Alternative Approach

We give here another, more direct approach to the main argument of Theorem 1: 
that for any contract  w  , there is a linear contract   w ′    that guarantees at least as much 
for the principal. (The argument here was suggested by Lucas Maestri.)

Consider any eligible  w  , and let  ( F  0  ,  c 0  )  be the action that the agent would 
choose under technology    0   . Put  α =  E   F  0    [w(y)] /  E   F  0    [y] . (The denominator must 
be  positive, since the principal is guaranteed a positive payoff.) Put   w ′  (y) = αy .  
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Notice that under this contract, the agent can again take action  ( F  0  ,  c 0  )  to earn a 
payoff of

   E   F  0    [αy] −  c 0   =  E   F  0    [w(y)] −  c 0   =  V  A  (w |   0  ),  
and the principal then earns

   E   F  0    [(1 − α)y] =  E   F  0    [y − w(y)] =  V  P  (w |   0  ) ≥  V  P  (w) . 
We will show that the principal does at least as well under   w ′    as under  w . 

Consider an arbitrary technology    , and let  (F, c)  be the action the agent would 
take under contract   w ′   ; we need to show that the principal’s resulting payoff, 
  V  P  ( w ′   | )  , is at least   V  P  (w) . If   E  F  [y] ≥  E   F  0    [y]  , then the principal gets

  (1 − α) E  F  [y] ≥ (1 − α) E   F  0    [y] =  V  P  (w |   0  ) ≥  V  P  (w) .  
Also, we have   E  F  [ w ′  (y)] − c ≥  V  A  ( w ′   |   0  ) ≥  V  A  (w |   0  )  by optimality for 

the agent. And if equality holds throughout, then the agent would also be will-
ing to choose  ( F  0  ,  c 0  )  , again giving the principal at least   V  P  (w) ; thus   V  P  ( w ′   | )  
≥  V  P  (w)  in this case too. So we can focus on the case when   E  F  [y] <  E   F  0    [y]  and 
  E  F  [ w ′  (y)] − c >  V  A  (w |   0  ) .

Put  λ =  E  F  [y] /  E   F  0    [y]  , and let   F ′    be the mixture  λ F  0   + (1 − λ) δ  0   . Then, con-
sider contract  w  when the technology is    0   ∪ {( F ′  , c)} . The agent’s payoff from 
 ( F ′  , c)  is
   E   F ′     [w(y)] − c = λ  E   F  0     [w(y)] + (1 − λ)w(0) − c
 ≥ λ  E   F  0     [w(y)] − c
 = λα  E   F  0     [y] − c
 = α  E  F   [y] − c
 =   E  F   [w′(y)] − c
  >  V  A  (w |   0  ), 
which means that the agent would strictly prefer to take action  ( F ′  , c)  over any other 
action. This leaves the principal with a payoff of

    E   F ′     [y − w(y)] = λ  E   F  0     [y − w(y)] − (1 − λ)w(0)
 ≤ λ  E   F  0     [y − w(y)]
 = (1 − α)  E  F   [y]
 =   E  F   [y − w′(y)]
  =  V  P  (w′ | ). 
Thus we have   V  P  (w) ≤  V  P  ( w ′   | ) . So we have shown this inequality holds for all  
  , implying   V  P  (w) ≤  V  P  ( w ′  ) .
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We comment that, while this proof is quicker and more direct than the support-line 
approach in the main text, we have focused on that approach for two reasons. One 
is that it generalizes readily, in particular to the multiple-observables extension of 
Appendix B and to the principal-expert problem in Carroll (2012). The approach 
above depends on taking a convex combination of an arbitrary distribution with   δ  0    
to attain a specific expected output; it is not clear how to extend it when the space of 
observable outcomes is not one-dimensional. The second reason is that Corollary 1 
(only linear contracts are optimal with full support) is almost immediate with the 
support-line approach; with the argument here it seems to require more work.
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