
Review of Economic Studies (2018) 01, 1–30 0034-6527/18/00000001$02.00

c© 2018 The Review of Economic Studies Limited

Robustly Optimal Auctions
with Unknown Resale Opportunities

[Formatted manuscript; volume and
page numbers to be changed later]

GABRIEL CARROLL

Stanford University

ILYA SEGAL

Stanford University

First version received December 2016; final version accepted April 2018 (Eds.)

The standard revenue-maximizing auction discriminates against a priori stronger
bidders so as to reduce their information rents. We show that such discrimination is no
longer optimal when the auction’s winner may resell to another bidder, and the auctioneer
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bidders compete Bertrand-style to buy the object from the winner. With this form of resale,
misallocation no longer reduces the information rents of the high-value bidder, as he could
still secure the same rents by buying the object in resale. Under regularity assumptions, we
show that revenue is maximized by a version of the Vickrey auction with bidder-specific
reserve prices, first proposed by Ausubel and Cramton (2004). The proof of optimality
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incentive constraints.
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1. INTRODUCTION

Standard auction theory says that when bidders are a priori asymmetric, revenue-
maximizing auctions discriminate against “stronger” bidders, i.e. those who are more
likely to have higher values. The optimal auction requires them to pay a premium over
“weaker” bidders’ values in order to win (Myerson, 1981; McAfee and McMillan, 1989).
This discrimination enhances revenue because it increases competition between weaker
and stronger bidders and so reduces the latter bidders’ information rents.

One might suspect that the benefits of such discrimination would be vitiated if
bidders could resell to each other after the auction, since a strong bidder might then
prefer to sit back and let a weaker bidder win, in the hopes of buying from him later at a
better price. In the words of Ausubel and Cramton (1999, p. 19): “The possibility of resale
undermines the seller’s ability to gain by misassigning the good. The best that the seller
can do is to conduct an efficient auction [i.e. selling only to the highest-value bidder],
perhaps withholding ... the good.”1 However, this is not supported by existing results on

1. The notion that price discrimination is ineffective under resale is also familiar in the context
of pricing in markets. For example, Tirole (1988, p. 134) writes: “It is clear that if the transaction
(arbitrage) costs between two consumers are low, any attempt to sell a given good to two consumers
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optimal auctions with resale (Zheng, 2002; Calzolari and Pavan, 2006), in which revenue
is typically maximized by a biased auction, which induces resale in equilibrium with a
positive probability. For a simple example due to Zheng (2002), suppose one bidder is
known to have a zero value for the good and also to have full bargaining power in resale.
Then the auctioneer would want to simply sell to this bidder, who would then resell
the good using Myerson’s (1981) revenue-maximizing mechanism. The auctioneer could
charge the zero-value bidder a price equal to the Myerson expected revenue. (This is the
best she can do as long as bidders’ values remain private information, since the combined
outcome of the auction and resale would have to satisfy the same incentive compatibility
constraints as Myerson’s mechanism.)

Ausubel and Cramton (1999, 2004) claim that it is optimal for the auctioneer not to
misallocate when resale is “perfect.” Specifically, they propose a way of adding bidder-
specific reserve prices to a Vickrey (second-price) auction, which we call the Ausubel-
Cramton-Vickrey (ACV) auction and describe in detail below. The ACV either allocates
the object efficiently among bidders, or withholds it (when no bidder beats his assigned
reserve).2 Ausubel and Cramton (1999) assert that the ACV auction is optimal. They do
not formalize the assumption of perfect resale, and as is well known, efficient resale would
generally be impossible under private information;3 but one might justify the assumption
by assuming that the parties’ values exogenously become publicly known before resale.

However, even if we operationalize perfect resale in this way, it could still be optimal
for the auctioneer to misallocate. Indeed, if we modify the zero-value bidder example
above by letting the zero bidder observe all other bidders’ values before reselling, the
optimal mechanism would extract full first-best surplus — by again selling the object
to the zero bidder, now at a price equal to the expectation of the highest value,
which is exactly what the zero bidder expects to receive in resale. Similarly, in the
symmetric setting with perfect resale studied by Bulow and Klemperer (2002) and
Bergemann, Brooks, and Morris (2017a), where the auction’s winner is assumed to have
full information and full bargaining power in resale, the auctioneer can command a higher
price by allocating to an inefficient bidder than to the efficient one, because the inefficient
bidder can later extract the efficient bidder’s surplus in resale; thus the optimal auction
misallocates the good.4

Our paper shows how the intuition expressed by Ausubel and Cramton can
nevertheless be validated when the auction designer is uncertain about the resale
procedure (including possible exogenous revelation of private information) and desires
the revenue to be robust to this uncertainty. Indeed, notice that some of the optimal

at different prices runs into the problem that the low-price consumer buys the good to resell it to the
high-price one.”

2. At least two other ways to introduce asymmetric reserves into Vickrey have been studied:
“lazy” and “eager” Vickrey (Dhangwatnotai, Roughgarden, and Yan, 2010). “Eager” Vickrey allocates
to the highest bidder among those who met their reserve prices as long as one such bidder exists, and so
it misallocates in equilibrium. “Lazy” Vickrey allocates to the highest bidder provided that he met his
reserve price and does not allocate otherwise. It will emerge as the solution to our relaxed problem in
Subsection 4.2.

3. For example, when the auction simply gives the object to bidder 1 for zero payment, so that no
information is revealed, resale must be inefficient according to the theorem of Myerson and Satterthwaite
(1983). The same ideas apply to resale following more general auction mechanisms.

4. Bulow and Klemperer (2002, Example 3) find that in this setting, selling to a randomly chosen
bidder at a fixed price low enough to guarantee a sale yields a higher revenue than the Vickrey auction.
Bergemann et al. (2017a) show that the fixed-price mechanism is in fact the optimal mechanism among
those that always sell the good. They also derive the optimal auction that can withhold the good, and
show that it misallocates with a high probability. While written independently of our paper, their paper
shares some technical similarities with our analysis, which we point out below.
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biased auctions described in the above examples are not robust to even a small amount
of uncertainty about resale.5 Thus, we formulate the problem of maximizing worst-case
expected revenue, where the expectation is taken over buyers’ private values drawn from
known distributions, and the worst case is over the possible resale procedures. We refer
to this problem as the robust revenue maximization problem.

To solve this problem, we begin with a simplified model in which the auctioneer
is required to always sell the object (Section 3). With no resale, the optimal auction
in this model would be biased. In contrast, robust revenue maximization under resale
uncertainty is achieved by the simple second-price auction (with no reserve), which
allocates efficiently. To prove this, we guess a “worst-case” resale procedure, in which
bidders’ values exogenously become public knowledge after the auction, and then the
losing bidders compete à la Bertrand to buy the object from the winner in resale.
With this resale procedure, in any auction that always sells the object, each bidder
can guarantee himself a payoff equal to his marginal contribution to social surplus, by
sitting out to let another bidder win and then buying from the winner. Given this lower
bound on the information rents captured by the bidders, the designer cannot do better
for herself than the Vickrey auction. Since this auction also sustains truthful bidding
as an ex post equilibrium under any other resale procedure, it solves the robust revenue
maximization problem. As a side benefit, the optimal auction turns out to be independent
of the bidders’ value distributions, i.e., completely prior-free.

While the must-sell model cleanly illustrates the robust optimality of efficient
auctions, in most real-life settings (and in the classical theory) the auctioneer has the
ability to increase revenue by sometimes withholding the object, e.g. by using reserve
prices. In Section 4, we turn to study such settings, and show that under appropriate
regularity assumptions on the distributions, an ACV auction with appropriately chosen
reserve prices is optimal. Thus, the auctioneer again never misallocates the good, but
takes advantage of the known asymmetries by setting different reserve prices to different
bidders. We show this result by proving that the ACV auction is optimal under the
particular worst-case resale procedure described above. Since, by an argument of Ausubel
and Cramton (2004) (which we include in the appendix for completeness), this auction
sustains truthful bidding as an equilibrium under any resale procedure, it solves the
robust revenue maximization problem.

Characterizing an optimal auction under our worst-case resale procedure requires
new techniques that may be of separate interest. First, by folding the outcome of resale
into reduced-form payoff functions, we model the auctioneer’s problem as a single-stage
auction design problem, albeit one with externalities and interdependent values (since
a bidder who does not win the object cares whether another bidder wins, and what
the winner’s value is.)6 We can then apply the standard “first-order approach” to such
problems, which considers only the local incentive constraints, and rewrites the objective
as an appropriately-defined virtual surplus.

The solution found by this standard method reinforces our basic intuition: it never
misallocates the good; it either allocates efficiently or withholds the good. However, this
solution is not the right answer, because it is not incentive-compatible. It is vulnerable
to non-local deviations, where a bidder underbids to lose and then buys the good in

5. In either of the zero-bidder examples, suppose the auctioneer’s guess about resale is mistaken,
and there is actually an ε probability that no resale opportunity will arise. Then the zero bidder refuses
to buy at the proposed price, and revenue drops to zero.

6. Other examples of externalities and interdependent values caused by post-auction interactions
among buyers can be found in Jehiel and Moldovanu (2000) and Bulow and Klemperer (2002).
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resale. To find the true optimal auction, we need to account for such non-local incentive
constraints. We guess that the optimum is the ACV auction. To verify optimality, we
explicitly construct supporting Lagrange multipliers on the double continuum of binding
non-local incentive constraints.7

Our approach also yields an iterative construction of the optimal bidder-specific
reserve prices in ACV auctions. Appendix F illustrates by working through an example
in which bidders’ values are distributed uniformly with different upper limits. In this
case, with bidders ordered from stronger to weaker, the optimal reserve price for the kth
bidder is obtained by solving a kth-degree polynomial equation.

Some readers may find a tension between the auctioneer’s use of Bayesian priors
to construct optimal reserve prices in the ACV auction and her complete ignorance
of the resale procedure. We do believe that there are real-life situations in which
the auctioneer has knowledge that some bidders are stronger than others, which is
traditionally captured by means of Bayesian priors, while being ignorant about the resale
procedure.8 Furthermore, as we detail in Section 5, the tension can be directly ameliorated
in two ways. First, we offer a model with uncertainty both about value distributions and
about resale, in which our conclusion about optimality of ACV auctions carries over.
Second, we offer additional results suggesting that setting the right reserve prices is
quantitatively less important than ignorance of resale, so that simply using Vickrey with
no reserves is a good prior-free auction choice.

Our paper joins the growing literature using the maxmin criterion to model
robust mechanism design (including, in particular, Frankel (2014), Carroll (2015), and
Bergemann, Brooks, and Morris (2017b)). Conceptually, it is the closest to the work
showing that a strategy-proof mechanism may emerge as optimal when the designer
is uncertain about bidders’ beliefs about each other’s values (Chung and Ely, 2007;
Yamashita and Zhu, 2017) or about each other’s strategies (Yamashita, 2015). Likewise,
in our paper, a resale-proof mechanism may emerge as optimal when the designer is
ignorant about the resale procedure. Also, observe that ACV auctions are also robust
to bidders’ beliefs and information about each other’s values and their beliefs about the
resale procedure, hence we obtain these additional robustness benefits “for free.”

2. SETUP

There are n ≥ 2 bidders. Bidder i’s private type is his value θi for the object, which is
distributed on [0, 1] according to a c.d.f. Fi with a continuous strictly positive density
fi.

9 Values are independent across bidders. We write θ = (θ1, . . . , θn) for the profile of
values. The space of (possibly randomized) allocations is X = {x ∈ [0, 1]

n
:
∑
i xi ≤ 1},

7. Earlier work that constructed Lagrange multipliers as a measure over a double continuum of
binding incentive constraints includes the “transport theory” approach to multidimensional screening
(e.g., Daskalakis, Deckelbaum, and Tzamos (2013)). Also, Bergemann et al. (2017a) independently
develop a treatment of non-local incentive constraints that is the closest technically to our approach: our
analysis implicitly shares with theirs the feature of considering randomized misreports that are drawn
from the same distribution as the true type, but truncated.

8. To give one example, in spectrum auctions run by the US Federal Communications Commission,
some bidders (such as AT&T, Verizon, and T-Mobile) are believed to have strong business cases for the
use of additional spectrum, while other bidders (such as Dish and Comcast) are believed to be bidding
speculatively, with their values determined to a large extent by expectation of resale, even though the
structure and outcomes of the resale market are hard to anticipate.

9. The assumptions of common support and continuous positive densities are made for expositional
simplicity: in Appendix F we explain how our results can be extended to some cases in which these
assumptions do not hold.
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where xi ∈ [0, 1] is the probability of allocating the object to bidder i. We use tildes
to denote random variables: θ̃i for the random variable representing i’s value; θi for a
specific realization.

A general auction mechanism is a triple Γ = 〈M,χ, ψ〉, where

• M = (M1, . . . ,Mn) is a collection of measurable message spaces for the bidders,
such that ∅ ∈Mi for each i, where ∅ denotes the special non-participation message;

• χ :
∏
iMi → X is a measurable allocation rule and ψ :

∏
iMi → Rn is a measurable

payment rule, with χi (m) = ψi (m) = 0 whenever mi = ∅.

Following allocation specified by the auction, resale may take place. We model resale
in reduced form by an n-tuple of measurable functions v = (v1, . . . , vn), where vi(x; θ)
gives bidder i’s post-resale payoff (net of payments in the auction) following allocation
x ∈ X specified by the auction when the bidders’ value profile is θ. This formalism
captures a setting in which all bidders’ values exogenously become public after the
auction, so that the outcome of resale depends only on the initial allocation and the
values. (In Appendix C, we describe a more general class of resale procedures that does
not assume values are revealed.)

We require that the total reduced-form payoffs not exceed the maximal total surplus
available in resale: ∑

i vi (x;θ) ≤
(

max
i
θi

)
· (
∑
i xi) . (1)

We also require the resale procedure to be individually rational:

vi(x; θ) ≥ θixi for each i. (2)

A given mechanism Γ and resale procedure v together induce a Bayesian game: the
action space of player i is Mi, and his payoff is vi (χ (m) ; θ)−ψi (m), with corresponding
revenue

∑
i ψi(m) for the auctioneer.

Let Rev(Γ, v) denote the supremum of expected revenue over all Bayes-Nash
equilibria of this game. We state the robust revenue maximization problem as10

max
Γ

(
inf
v

Rev(Γ, v)
)
. (3)

We will establish that a specific auction Γ̄ solves the robust revenue maximization
problem, by constructing a resale procedure v and a revenue target R̄ such that the
following two conditions are satisfied:

Rev(Γ, v) ≤ R̄ for all auctions Γ, (4)

Rev(Γ̄, v) ≥ R̄ for all resale procedures v. (5)

(4) means that given resale procedure v, the designer could not design an auction yielding
expected revenue above R̄, while (5) means that given auction Γ̄, an adversary could not
construct a resale procedure to reduce the designer’s expected revenue below R̄. The
logic of the Minimax Theorem then implies (the formal proof of this and all other results
are in the appendix)

10. Note, in particular, that Rev(Γ, v) = −∞ if the induced game has no equilibrium, so the
designer must guarantee equilibrium existence for all v. We view this requirement as not too onerous; for
example, any mechanism Γ with finite message spaces guarantees equilibrium existence (Milgrom and
Weber, 1985, Theorem 1). It is in line with the standard assumption in mechanism design that agents
must play an equilibrium.
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Lemma 1. If (4)-(5) hold then auction Γ̄ solves the robust revenue maximization
problem maxΓ (infv Rev(Γ, v)), while resale procedure v solves the worst-case resale
problem minv (supΓ Rev(Γ, v)), and the value of both problems is Rev(Γ̄, v) = R̄.

To establish (4) for a particular resale procedure v, we can apply the Revelation
Principle and restrict attention to direct mechanisms Γ, in which each bidder i’s message
space is Mi = [0, 1] ∪ {∅}, and to the Bayes-Nash equilibrium in which all bidders
participate and report truthfully, i.e., Γ satisfies the following incentive compatibility
and individual rationality constraints:11

Eθ̃−i
[vi(χ(θi, θ̃−i); θi, θ̃−i)− ψi(θi, θ̃−i)] ≥ Eθ̃−i

[vi(χ(θ̂i, θ̃−i); θi, θ̃−i)− ψi(θ̂i, θ̃−i)]

for all θi, θ̂i; (6)

Eθ̃−i
[vi(χ(θi, θ̃−i); θi, θ̃−i)− ψi(θi, θ̃−i)] ≥ Eθ̃−i

[
vi(χ(∅, θ̃−i); θi, θ̃−i)

]
for all θi. (7)

Then, we show (4) by showing that the expected revenue in any direct auction
satisfying (6)-(7) cannot exceed the target R̄, which we take to be the expected revenue
of Γ̄ when bidders behave truthfully. In Section 3, we do this for the special case in which
the seller must sell the object with probability 1, and Γ̄ is the standard Vickrey auction. In
Section 4, we do this for the general case in which the seller can withhold the object, and Γ̄
is an ACV auction (formally defined in Definition 1 ahead) with appropriately constructed
bidder-specific reserve prices. These results constitute the heart of our contribution. Then,
by an argument of Ausubel and Cramton (2004), truthtelling is an equilibrium of Γ̄ for
any resale procedure v, not just for v. Thus, Rev(Γ̄, v), which is the highest expected
revenue of Γ̄ across all equilibria, is bounded below by R̄, establishing (5). Lemma 1
then implies our main result.

3. THE MUST-SELL CASE

We begin by considering a simpler model in which the seller must sell the object. (For
example, this could be microfounded by assuming the seller has a prohibitively high cost
of keeping the object.) To adapt the robust problem (3) to this setting, just redefine
the objective Rev(Γ, v) as the supremum of expected revenue over those Bayes-Nash
equilibria in which the object is sold with probability 1, and Rev(Γ, v) = −∞ if no such
equilibrium exists.

In the absence of resale, if bidders’ values are drawn from different distributions,
the optimal must-sell auction misallocates the object towards weaker bidders, with the
goal of reducing the information rents of stronger bidders (Myerson, 1981; McAfee and
McMillan, 1989). As we shall see, this benefit of misallocation can be hampered by resale.

We guess a “worst-case” resale procedure to be the “Bertrand game” in which the
auction’s losers make competing price offers to acquire the object from the winner, who
then accepts one of the offers or rejects all of them and keeps the object to himself.
As a result, if the auction’s winner is not the highest-value bidder, the former sells the

11. Note that the Revelation Principle would not generally apply to the robust maximization
problem, since in a given auction, truth-telling may be an equilibrium for some resale procedures but
not for others. This is why the robust problem is formulated using indirect mechanisms.
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object to the latter at price θ(2), the second-highest value of all bidders.12 Thus, bidder
i’s post-resale payoff from auction allocation x in state θ (exclusive of payments made in
the auction) can be written as

vi(x; θ) = max{θi, θ(2)} · xi + max{0, θi − θ(2)} ·
∑
j 6=i xj . (8)

Note that this resale procedure v is efficient (i.e., satisfies (1) with equality) and
individually rational (satisfies (2)).

Resale procedure (8) is a natural guess for the worst case because it makes the
highest-value bidder a residual claimant for surplus, thus allowing him to capture
information rents even if the object is allocated to another bidder. More specifically, in
any must-sell auction, any bidder i can, by letting another bidder win and then buying

from him if possible, assure himself an expected payoff Eθ̃
[
max{θ̃i − θ̃(2), 0}

]
. This payoff

is bidder i’s expected “marginal contribution” (that is, the total surplus available, minus
the surplus that would be achievable if i were absent), and coincides with his expected
payoff in the Vickrey auction (i.e. second-price auction) with no reserve price. If the
seller cannot avoid conceding at least this much surplus to the bidders, she cannot do
any better than using the Vickrey auction with no reserve price.

The above argument is not complete because it is not clear that bidder i can ensure
that another bidder wins while avoiding paying anything to the auctioneer. For example,
if bidder i bids exactly 0, the auctioneer might withhold the good (since she only needs
to sell with probability 1), or might sell it to bidder i but charge him a positive price,
letting him recoup it in resale. We can address these issues by noting that since the
auction must sell with probability 1, bidder i could ensure that the good is sold with
probability 1 (to either another bidder or himself) by making a bid θ̂i that is arbitrarily

small. Then, we can show that the individual rationality constraint of type θ̂i and resale
procedure (8) guarantee bidder i an expected payoff close to his expected Vickrey payoff,
which implies the result.

Theorem 1. Under resale procedure (8), equilibrium expected revenue in any
auction that sells with probability 1 does not exceed the expected truthtelling revenue
in the Vickrey auction.

This establishes condition (4) above for resale procedure (8). As for condition (5), it
follows from the observation that truthful bidding is an ex post equilibrium of the Vickrey
auction for any resale procedure satisfying (1)-(2) (and then no resale occurs, since the
highest-value bidder has already won). While this will follow from Theorem 2 below, the
informal argument is as follows. Since the usual arguments show that a bidder can never
benefit by deviating from truthful bidding in a way that does not involve resale, we just
need to check that there are no profitable deviations that involve resale either. If bidder i
makes a downward deviation that causes him to lose, he cannot buy the object in resale
unless he pays at least the winner’s value, θ(2), which is what he would have paid to
win the object in the auction anyway. And if he makes an upward deviation that causes

12. Specifically, this is the unique outcome arising in a subgame-perfect equilibrium in undominated
strategies in the full-information Bertrand game. This is not the only worst-case resale procedure: for
example, the argument below would also work if the highest-value bidder, when he fails to win the object,
were to buy it back by making a take-it-or-leave-it offer to the auction’s winner. On the other hand, the
results below do rely on the extreme division of bargaining power in these games. For example, if there
are two bidders and bidder 1 captures a fixed share α ∈ (0, 1) of resale surplus, we can have an example
where the seller can do better than the Vickrey auction.
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him to win, he cannot resell the object for more than the highest value, θ(1), which is
the price he would have to pay to win the auction. In both cases he does no better than
bidding his true value.

With (4) and (5) thus established, Lemma 1 implies

Corollary 1. The Vickrey auction solves the robust revenue maximization
problem (3) for a seller that must sell the object with probability 1.

4. THE CAN-KEEP CASE

We now turn to the optimal auction when the seller can withhold the object, which is the
version of the model more widely studied in the literature. As in the previous section, we
conjecture that a worst-case resale procedure is given by (8), and show that given this
procedure, an appropriately-designed ACV auction is optimal.

4.1. Regularity assumptions on distributions

The main result of this section will use the following assumptions on bidders’ value
distributions. (However, many of the intermediate steps will not rely on all of the
assumptions, and so we will impose them only when needed.)

A1. For each bidder i, the hazard rate fi (θ) / [1− Fi (θ)] is non-decreasing.
A2. For each bidder i, the reverse hazard rate fi (θ) /Fi (θ) is non-increasing.
A3. The virtual value functions νi(θ) = θ−(1−Fi(θ))/fi(θ) satisfy ν1 (θ) ≤ . . . ≤ νn (θ)

for each θ ∈ [0, 1].

(A1) implies, in particular, that each distribution Fi is regular, i.e., each function
νi(θ) is increasing. The value ri = ν−1

i (0) is then uniquely defined; it is the optimal price
for selling to bidder i alone, and is also the optimal reserve price for bidder i in Myerson’s
optimal auction. Note also that both (A1) and (A2) are satisfied, in particular, when the
density fi is log-concave, which is satisfied by many standard distributions (Bagnoli and
Bergstrom, 2005).

Assumption (A3) is equivalent to requiring that the distributions Fi be ordered from
“stronger” to “weaker” under the hazard rate ordering. In the absence of resale, it is a
sufficient condition (and, for two-bidder must-sell auctions, a necessary condition) for
the optimal auction to always discriminate against the stronger bidders (McAfee and
McMillan, 1989, Theorem 3). In particular, (A3) ensures that the optimal bidder-specific
reserve prices would satisfy r1 ≥ . . . ≥ rn.

While assumptions (A1)-(A3) are not unreasonable and are familiar from the
literature on optimal auctions, they are not the weakest possible to ensure the optimality
of ACV auctions. In Section 5 we discuss the possibility of relaxing the assumptions and
the challenges that arise.

4.2. Virtual surplus and the relaxed problem

We begin with the standard approach of using first-order incentive compatibility
constraints to substitute out the payment functions. To this end, for any proposed (direct)
auction (χ, ψ), let

Ui (θi) = Eθ̃−i
[vi(χ(θi, θ̃−i); θi, θ̃−i)− ψi(θi, θ̃−i)] (9)
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be the interim expected payoff enjoyed by i when his type is θi, and note that by
the standard envelope-theorem argument, incentive compatibility (6) implies that Ui
is absolutely continuous and its derivative is given almost everywhere by13

U ′i(θi) = Eθ̃−i
[v′i(χ(θi, θ̃−i); θi, θ̃−i)]. (10)

Here v′i denotes the derivative of vi(x; θ) with respect to θi, which is defined when θi does
not tie with another bidder, and then takes the form v′i(x; θ) = 1θi=θ(2) · xi + 1θi=θ(1) .

As for participation constraints, as usual we consider (7) only for type 0, for which
it takes the form Ui(0) ≥ 0. If only this participation constraint is imposed, it will
be optimal to satisfy it with equality, and so integrating (10) and using (9) yields the
following expression for the interim expected payment of bidder i of type θi:

Eθ̃−i
[ψi(θi, θ̃−i)] = Eθ̃−i

[vi(χ(θi, θ̃−i); θi, θ̃−i)]−
∫ θi

0

Eθ̃−i

[
v′i(χ(θ̂i, θ̃−i); θ̂i, θ̃−i)

]
dθ̂i.

(11)
The usual integration by parts then allows us to rewrite the auction’s expected

revenue in terms of the allocation rule as

Eθ̃

[∑
i

ψi(θ̃)

]
= Eθ̃

[∑
i

vi(χ(θ̃); θ̃)−
∑
i

1− Fi(θ̃i)
fi(θ̃i)

v′i(χ(θ̃); θ̃)

]
. (12)

The standard relaxed problem maximizes (12) over all allocation rules χ, ignoring
(6), as well as (7) for types other than 0. This can be done by maximizing the virtual
surplus (the expression inside brackets) for each profile θ separately. At any profile θ
without ties, if we allocate to the highest-value bidder i∗, the virtual surplus is

θi∗ −
1− Fi∗(θi∗)

fi∗(θi∗)
= νi∗(θi∗).

If we allocate to the second-highest bidder j, then the v′i terms are 1 for both i = i∗ and
i = j, so the virtual surplus is

θi∗ −
1− Fi∗(θi∗)

fi∗(θi∗)
− 1− Fj(θj)

fj(θj)
.

Finally, if we allocate to a bidder other than i∗ or j, the virtual surplus is the same as from
allocating to i∗. Thus, misallocation could only increase information rents: allocating to
a bidder other than i∗ still concedes information rents to higher types of i∗ (who can buy
the good cheaply in resale), and may leave information rents to the inefficient winner as
well. So the seller cannot do better than allocating to the high-value bidder i∗, which
leaves rents to him only. Furthermore, we should allocate to the highest-value bidder
i∗ if and only if his virtual value is positive, which is equivalent to θi > ri = ν−1

i (0)
provided that his virtual value function νi crosses zero just once (which is ensured under
assumption (A1)). In particular, if there are two bidders and each νi crosses zero once,
the allocation rule solving the relaxed problem is as shown in Figure 1, and the solution
is unique up to measure-zero sets.

Given the allocation rule, transfers consistent with (11) can be obtained, in
particular, by charging auction winner i∗ the “threshold price” max{ri∗ , θ(2)}, which

13. Specifically, for any given report θ̂i, vi(χ(θ̂i, θ−i); θi, θ−i) is Lipschitz continuous in θi and is

differentiable in θi except when there are ties in values. This implies that Eθ̃−i
[vi(χ(θ̂i, θ̃−i); θi, θ̃−i)] is

Lipschitz continuous and differentiable in θi, and allows the application of Milgrom and Segal’s (2002)
Corollary 1 to establish absolute continuity of Ui and (10).
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Figure 1

Allocation rule from relaxed problem. 1 means allocate to bidder 1; 2 means allocate to
bidder 2. In the remaining regions, the good is not sold.

is his lowest value for which he would have won the good given the values of others;
and charging losers nothing. The resulting mechanism is known as the “Vickrey auction
with lazy reserves” (Dhangwatnotai et al., 2010), and it is dominant-strategy incentive
compatible in the absence of resale.

However, with our resale procedure v, the solution to the relaxed problem violates
global incentive compatibility constraints (6) unless all bidders have the same optimal
reserve ri. For example, consider the case of two bidders with r1 > r2, and consider bidder
1 of type θ1 ∈ (r2, r1) deviating to report θ̂1 < θ1, as illustrated with the horizontal arrow

in Figure 1. This deviation affects the auction’s outcome when θ2 ∈ (max{θ̂1, r2}, θ1),
and in these cases it changes the outcome from leaving the object unsold to giving it to
bidder 2, allowing 1 to profitably buy it back in resale. Thus, in order to find the correct
solution, we need to consider non-local incentive constraints.14

4.3. Ausubel-Cramton-Vickrey auctions

Intuitively, to avoid the incentive to underbid to cede the object and then buy it back,
we might use an allocation rule in which a lower bid never causes the object to be sold.
(Ausubel and Cramton (1999) call this property monotonicity in aggregate.) In the two-
bidder example, we might try to fix the allocation rule by “filling in” the triangular
region r2 < θ2 < θ1 < r1 in Figure 1, allocating to bidder 1 in this region (based on
the above intuition that we prefer to allocate to the high-value bidder or to nobody).

14. Note that we could deter all local misreports within distance ε > 0 by perturbing the relaxed
solution to withhold the good whenever |θ2 − θ1| < ε, but the perturbed mechanism would still be
vulnerable to global deviations of the form described above. This is in contrast to “ironing” in the
standard screening setting, where global incentive compatibility is implied by local (first- and second-
order) incentive constraints (Carroll, 2012; Archer and Kleinberg, 2014).
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Figure 2

Allocation rule for ACV auction. 1 means allocate to bidder 1; 2 means allocate to
bidder 2. In the remaining regions, the good is not sold.

Note, however, that this solution can be improved: since bidder 1’s virtual value in the
filled-in triangle is negative, the seller would rather shrink the size of this triangle by
raising the reserve price for bidder 2 above r2, even though doing so also means missing
out on profitable sales to bidder 2. The optimal reserve price for bidder 2 trades off these
two effects. The resulting allocation rule is shown in Figure 2.

This auction belongs to the following class of auctions, introduced by Ausubel and
Cramton (1999, 2004):

Definition 1. An Ausubel-Cramton-Vickrey (ACV) auction with reserve prices
p1, . . . , pn ∈ [0, 1] is the direct revelation mechanism described as follows:

• Allocation rule:

χi (θ) =

{
1 if i = i∗ (θ) and θj > pj for some j,
0 otherwise,

where i∗ (θ) ∈ arg maxi θi (with arbitrary tie-breaking.)

• Payments:

ψi (θ) =

 max {pi,maxj 6=i θj} if χi (θ) = 1 and θj ≤ pj for all j 6= i,
maxj 6=i θj if χi (θ) = 1 and θj > pj for some j 6= i,
0 otherwise,

and non-participation message ∅ is treated the same as a report of 0.

In words, if at least one bidder i beats his reserve price pi, then the good is allocated
to the highest-value bidder, otherwise, the good is left unsold. Importantly, since the
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reserve prices are asymmetric, a bidder i can win the good without meeting his reserve
price pi — if another bidder j with a lower reserve has met his reserve pj .

A winner’s payment in the ACV auction is his “threshold price” — the minimal
bid that would have allowed him to win. By standard arguments, this ensures that the
auction is strategy-proof without resale.15 More important for us is that (in contrast to
the solution to our relaxed problem) in an ACV auction, bidders are incentivized to bid
truthfully even with resale. Specifically, truthful bidding is an ex post equilibrium, for
any resale procedure and for any profile of values:

Theorem 2. Consider an ACV auction with reserve prices p1, . . . , pn. For any
resale payoff functions v1, . . . , vn satisfying (1)–(2), it is an ex post equilibrium for all
bidders to participate and report their true values (after which no resale occurs). Formally,

for any values θ1, . . . , θn, and any possible deviation θ̂i ∈ [0, 1] ∪ {∅} for any bidder i,

θiχi(θ)− ψi(θ) ≥ vi(χ(θ̂i, θ−i); θ)− ψi(θ̂i, θ).

The proof essentially follows the informal argument given in Section 3 for the Vickrey
auction without reserves, but also using the fact that in an ACV auction, a downward
deviation would never cause the object to be sold. While this result was proved by
Ausubel and Cramton (2004), for completeness we give a proof in Appendix C. Also, in
that appendix we develop additional formalism for a broader class of resale procedures
that drops the assumption that values are revealed; thus, bargaining may take place
under asymmetric information. The proof shows that the result holds for this broader
class of resale procedures.

We note in passing that this theorem only gives us ex post equilibrium, not dominant
strategies as we would have in Vickrey auctions without resale.16 This is to be expected
since our setting is one of interdependent values (compare Perry and Reny (2002) or
Chung and Ely (2006)).

4.4. Construction of optimal reserve prices

In the two-bidder ACV auction illustrated in Figure 2, bidder 1’s price p1 can be
optimized without regard to bidder 2 (since it only matters when bidder 2 bids below
p2 < p1, and therefore does not win), hence it is optimal to set p1 = r1. On the other
hand, the optimal price for bidder 2 is raised above r2 to increase the expected revenue
on bidder 1. Extending this idea to n bidders, we construct a weakly decreasing sequence
p1, . . . , pn of reserve prices and a corresponding sequence R̄1, . . . R̄n of revenue levels on

15. An ACV auction can also be indirectly implemented as a “deferred acceptance” clock auction
of the kind described by Milgrom and Segal (2017). In this implementation, the auction offers the same
ascending price to all bidders, letting them either accept the price or exit at any point, and stopping
when both (i) there is a single bidder who is still accepting the current price, and (ii) at least one bidder
(not necessarily the one who is still bidding) has ever accepted a price above his reserve price. (Note,
however, that one advantage of the clock auction format – its obvious strategy-proofness (Li, 2017) –
does not hold when resale is possible.)

16. To see this concretely, imagine that there are two bidders, no reserve prices, and bidder 1
expects 2 to bid higher than his true value. Then, under our resale procedure (8), 1 has an incentive to
underbid and make 2 win, since if 1 wins the object in the auction he has to pay 2’s (exaggerated) bid,
whereas to buy it in resale he only has to pay 2’s true value. Thus, truthful bidding is not a dominant
strategy.
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the first k bidders recursively, initializing p0 = 1 and R̄0 = 0 and letting for each k ≥ 1,

R̄k = Rk (pk) + Fk (pk)
[
R̄k−1 −Rk−1 (pk)

]
(13)

= max
p∈[0,pk−1]

{
Rk (p) + Fk (p)

[
R̄k−1 −Rk−1 (p)

]}
, (14)

where Rk(p) is the expected revenue from the (symmetric) Vickrey auction on the first
k bidders facing the same reserve price p, with R0(p) ≡ 0.

Formula (13) gives an inductive construction of the expected revenue R̄k from the
ACV auction on bidders 1, . . . , k with reserves p1, . . . , pk, assuming the bidders bid their
true values. To see this, compare this ACV auction to the symmetric Vickrey auction
with reserve pk on the same bidders. Notice that the only states θ in which the two
auctions could yield different revenues are those in which bidder k’s value θk is below pk,
which happens with probability Fk(pk). Conditional on any such value of θk, the former
auction reduces to the ACV auction on the first k− 1 bidders with reserves p1, . . . , pk−1,
yielding expected revenue R̄k−1, while the latter auction reduces to the Vickrey auction
with reserve pk on the first k − 1 bidders, yielding expected revenue Rk−1(pk).

Condition (14) requires that bidder k’s reserve price pk maximize revenue on the
strongest k bidders taking as given the stronger bidders’ reserves p1, . . . , pk−1 and the
constraint pk ≤ pk−1. This condition does not immediately imply full optimality of the
reserve prices, since we do not know whether the constraint binds, or how the choice of pk
in turn constrains the revenues on the weaker bidders. However, we will show a stronger
result – that the resulting auction is indeed optimal, and not just among ACV auctions
but among all possible auctions.17

4.5. Optimality of ACV auction

We now come to our main theorem.

Theorem 3. Under assumptions (A1)-(A3), the formulas (13)-(14) uniquely
define reserve prices p1, . . . , pn. The ACV auction with these reserve prices is an optimal
auction given resale procedure (8), and the resulting revenue is R̄n.

This implies a solution to our original problem:

Corollary 2. Under assumptions (A1)-(A3), the ACV auction with reserve prices
p1, . . . , pn uniquely defined by (13)-(14) solves the robust revenue maximization problem
(3).

We sketch the main steps of the proof of Theorem 3. Since Theorem 2 showed that
the ACV auction is feasible (i.e. satisifes the constraints (6)–(7)), and its revenue is
indeed R̄n by (13), we focus on showing that R̄n is an upper bound for revenue in any
auction.

17. The working paper of Ausubel and Cramton (1999) formulated the problem of optimal
auction design, assuming no misallocation and monotonicity in the aggregate, motivating both properties
informally by incentive compatibility under perfect resale. They also claimed (without proof) that, in the
two-bidder case, the problem is solved by an ACV auction. In contrast, we derive no misallocation and
monotonicity in aggregate as properties of a solution to the seller’s maxmin problem under regularity
assumptions (A1)-(A3). As argued in the Introduction, the optimal auction need not have these properties
when resale is perfect but not of the worst-case form. Also, in the Online Appendix, we show that the
robust-revenue-maximizing auction need not have these properties without regularity assumptions.
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As discussed in Subsection 4.2, we need to make active use of the non-local incentive
constraints, which, using the formula (11) for transfers, can be rewritten entirely in terms
of the allocation rule:∫ θi

θ̂i

Eθ̃−i
[v′i(χ(τ i, θ̃−i); τ i, θ̃−i)] dτ i

− Eθ̃−i
[vi(χ(θ̂i, θ̃−i); θi, θ̃−i)− vi(χ(θ̂i, θ̃−i); θ̂i, θ̃−i)] ≥ 0. (15)

We account for these constraints by introducing Lagrange multipliers on them.
Since there is a double continuum of such constraints for each bidder i, indexed by
(θi, θ̂i), the Lagrange multipliers (weights) on them are described with some appropriately
constructed non-negative measure Mi on [0, 1] × [0, 1]. The Lagrangian adds terms to
the objective function (12) to penalize violations of the constraints:

Eθ̃

[∑
i

vi(χ(θ̃); θ̃)−
∑
i

1− Fi(θ̃i)
fi(θ̃i)

v′i(χ(θ̃); θ̃)

]
+
∑
i

∫∫
Si(θi, θ̂i;χ) dMi(θi, θ̂i), (16)

where Si(θi, θ̂i;χ) is the left side of (15) – the slack in bidder i’s incentive constraint

from type θi to type θ̂i.
We show Theorem 3 by constructing measuresM = (M1, . . . ,Mn) such that 〈χ̄,M〉

satisfies the following conditions, where χ̄ is the allocation rule from the ACV auction
that is our candidate optimum.

(a) Optimization: Allocation rule χ̄ maximizes Lagrangian (16) given measures M.
(b) Complementary slackness: The support of M is confined to constraints (15) that

hold with equality at χ̄, i.e., Si(θi, θ̂i; χ̄) = 0.

To see that these conditions imply the result, note that since M is a non-negative
measure, the expected revenue from any incentive-compatible and individually rational
direct auction with allocation rule χ cannot exceed the value of the Lagrangian (16) at
〈χ,M〉, which by (a) does not exceed the value of the Lagrangian at 〈χ̄,M〉, which by
(b) equals the expected revenue from χ̄.

We construct Lagrange multiplier measures Mi to penalize deviations that would
be profitable in the Vickrey auction with lazy reserves p1 ≥ . . . ≥ pn, of the kind that
emerged as a solution to the relaxed problem. In this auction, as we argued, bidder
i < n with value between pn and pi cannot win the object outright, and so would want
to underbid to increase the probability that the object is sold to another bidder, from
whom he can then buy in resale. Thus, we let the support of Mi(θi, θ̂i) for bidder i < n

be the trapezoid described by pn ≤ θi ≤ pi and θ̂i ≤ θi, and setMn ≡ 0 for the weakest
bidder. This ensures complementary slackness in the candidate-solution ACV auction:
Bidder i’s deviation in the support can only affect the auction’s outcome if i wins under
truthtelling but his deviation cedes the good to the next-highest bidder. Then, after the
deviation, i buys in resale at price θ(2), which is the same price at which he would have
won the auction by bidding truthfully. So, i is indifferent between truthful bidding and
the deviation.

We specifically aim to construct measuresMi of the following form: for appropriately
chosen one-dimensional measures Λi and Λ̂i with supports [pn, pi] and [0, pi] respectively,
take their product (a two-dimensional measure with support [pn, pi] × [0, pi]), and then

restrict to the lower half-plane θ̂i ≤ θi; this restriction is Mi. We denote the two
component measures’ distribution functions by Λi(θi) and Λ̂i(θ̂i), respectively.
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We then construct distribution functions Λi and Λ̂i to satisfy the Lagrangian
maximization condition (a). Once these are constructed, we verify (a) by expressing
Lagrangian (16), which is a linear functional of the allocation rule χ, in the form

Eθ̃

[∑
i

µi(θ̃)χi(θ̃)

]
. (17)

The coefficient µi(θ), which we refer to as the “modified virtual value” of bidder i,
combines the ordinary virtual value and the terms coming from incentive compatibility
constraints (15) weighted by the measures M. For the measures M we construct, we
derive an explicit formula for µi(θ) in the appendix (see (31)). Condition (a) then amounts
to requiring that with probability 1, the candidate allocation rule χ̄ allocate the object to
a bidder with the highest modified virtual value provided it is positive, and not allocate
at all if all bidders have negative modified virtual values.

To illustrate how condition (a) serves to pin down measures Λi and Λ̂i, focus for
simplicity on the two-bidder case, where we only need to construct a measure for bidder
1. In order for the proposed ACV auction to be optimal, we need two properties to be
satisfied:

1. When θ1 < p2 and θ2 = p2, bidder 2’s modified virtual value should be 0.

2. When θ1 ∈ (p2, p1) and θ2 = p2, bidder 1’s modified virtual value should be 0.

Each property is needed for condition (a) because a slight increase in θ2 should
lead the auctioneer to sell the good to the highest-value bidder (whose modified virtual
value must then be positive), while a slight decrease in θ2 should lead the auctioneer to
withhold the good (making the modified virtual value negative).

Property #1 pins down the density of Λ̂1 on [0, p2]. It turns out to be proportional
to f1(θ1) (we normalize the proportionality factor to 1). This occurs because selling to
bidder 2 in any such state (θ1, p2) has two effects on the Lagrangian: the direct effect on
revenue ν2(θ2), and the effect of tightening the binding non-local incentive constraints of
types of bidder 1 above p2, who could deviate to θ1 and then buy the good in resale. The
first effect appears with a weight proportional to the probability of state (θ1, p2), while
the second has weight proportional to Λ̂1(θ1); these two weights must be proportional in
order for these terms to cancel. Note that Property #1 does not pin down the density of
Λ̂1 on the rest of its domain, (p2, p1], but a natural guess is to take the density as f1(θ1)
here as well.

Property #2 requires that the weighted slack in non-local incentive constraints of
bidder 1’s types above θ1 induced by selling to θ1 ∈ (p2, p1) exactly offset bidder 1’s
negative virtual value ν1 (θ1). Once Λ̂1 is fixed, this condition pins down measure Λ1 on
its domain [p2, p1].

With more than two bidders, we need to similarly construct measures for each
bidder i < n. We again set Λ̂i to have the same density as i’s type distribution, fi,
restricted to the support [0, pi]. As for measures Λi, they are pinned down by requiring
the modified virtual value of the highest bidder i∗ to be exactly zero so that selling to him
could be made contingent on whether some other bidder j has beaten his reserve price,
similarly to the argument above. The explicit formula ((30) in the appendix) depends on
an auxiliary function H, constructed below. We show that under assumptions (A1)–(A3),
the constructed functions Λi are increasing, so that each Mi is in fact a non-negative
measure.
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Finally, we verify that with these measures, condition (a) holds, i.e., the ACV auction
maximizes the modified virtual surplus (expressed as (17)) at every type profile θ without
ties, and not just on the regions used in the indifference conditions nailing down the
measures. That is, we show that the highest-value bidder always has the highest modified
virtual value, and it is non-negative when some bidder’s value is above his reserve price
and non-positive otherwise.

Now, for the Corollary, letting Γ̄ be the described ACV auction, Theorem 3
establishes bound (4) with R̄ = R̄n, while bound (5) follows from Theorem 2. Thus,
by Lemma 1, Γ̄ solves the robust revenue maximization problem (and Bertrand resale
procedure v solves the worst-case resale problem).

4.6. Calculation of optimal reserves

We now indicate briefly how one might calculate the reserve prices pk in an application.
An interior solution pk to maximization problem (14) must satisfy the following

first-order condition:

νk (pk)
∏

j<k
Fj (pk) = R̄k−1 −Rk−1 (pk) . (18)

Intuitively, increasing pk by ε only matters when θj < pj for all j > k, and in that case
it has two first-order effects: (i) conditional on θk ∈ (pk, pk + ε), the change affects the
expected revenue from the k− 1 strongest bidders, changing it from Rk−1 (pk) (obtained
when bidder k beats his reserve price) to R̄k−1 (obtained when bidder k does not beat
his reserve price); and (ii) the change also affects the expected revenue from bidder
k when all stronger bidders’ values are below pk, changing it from pk(1 − Fk(pk)) to
(pk + ε)(1− Fk(pk + ε)). The first-order condition balances those two effects.

To avoid having to directly calculate R̄k−1 and Rk−1 (pk), we define function H on
p ∈ [pn, 1) by

H (p) =
R̄k−1 −Rk−1 (p)

Πj<kFj (p)
for p ∈ [pk, pk−1), k = 1, . . . , n, (19)

and thereby rewrite first-order conditions in the form

νk (pk) = H (pk) . (20)

Intuitively,H (p) reflects the shadow price of selling to a bidder with value p on all bidders’
non-local incentive constraints, and it is used in constructing the Lagrange weights on
these constraints in the proof of Theorem 3.

In Lemma 2 in Appendix D we show that function H is continuous, differentiable,
and satisfies the following differential equation:

d

dp
(H (p) Πj<kFj (p)) = (Πj<kFj (p))

∑
j<k

fj (p) νj (p)

Fj (p)
, for p ∈ [pk, pk−1] , k ≥ 2. (21)

Furthermore, we establish that the first-order conditions (20) must be satisfied regardless
of whether the solutions pk to (14) are interior.

Differential equation (21) together with conditions (20) and the boundary condition
H(p1) = 0 yield the following iterative construction of function H and the reserve prices:
First, p1 = r1 by the boundary condition and (20) for k = 1. Then for each k ≥ 2,
given pk−1, integrating (21) yields an explicit expression for H(p)

∏
j<k Fj(p) — and

therefore for H(p) — on the interval p ∈ [pk, pk−1], whose unknown left endpoint pk is
then identified as the unique solution to equation (20).



CARROLL & SEGAL AUCTIONS WITH UNKNOWN RESALE 17

In Appendix F, we apply this method to an example where each bidder i’s value is
distributed uniformly on [0, ai], with the upper limits satisfying a1 ≥ · · · ≥ an. We show
that (20) then takes the form of a kth-degree polynomial equation to compute the reserve
price pk. For example, p1 = r1 = a1/2, and then p2 is given by a quadratic equation,
whose positive root is

p2 =
1

2

[√
a2

1 + (a1 − a2)2 − (a1 − a2)

]
. (22)

With bidders having non-identical supports, the reserve pk may exceed ak, in which
case bidder k, as well as all the weaker bidders, are completely excluded from the
auction. In the uniform example, bidder 2 is excluded if a2 ≤ a1/4. Note that as long
as all bidders’ supports are overlapping, such exclusion cannot occur in the Myerson
optimal auction, nor even in the relaxed solution from Subsection 4.2. It is the non-local
incentive constraints involving stronger bidders buying from weaker bidders in resale
that sometimes make it optimal to exclude weak bidders (and more generally, make the
optimal auction take the ACV form).

5. DISCUSSION

We consider here in more detail the role of some of our modeling assumptions, and some
possible alternative models.

5.1. Robustness to information revelation

One might be concerned with an asymmetry in our model: we have allowed information
to be revealed exogenously after the auction, but assumed it is not revealed before the
auction.

A common perspective on optimal auction design is that ideally it should not make
assumptions on bidders’ information before the auction either. Indeed, without resale,
Myerson’s (1981) optimal auction, though derived under the assumption that bidders
share the auctioneer’s prior, can actually be implemented in dominant strategies, making
it robust to bidders’ beliefs about each other. Similarly, in our setting with resale, we could
imagine a seller who is concerned about bidders learning about each other both before and
after the auction, and desires robustness to information arising at either stage. We have
shown that an ACV auction is optimal when bidders share the designer’s prior before the
auction and learn each other’s values after it, following the worst-case resale procedure.
But since truthful bidding is an ex post equilibrium in the ACV auction, it satisfies
this stronger form of robustness. Thus, we get robustness to pre-auction information
revelation “for free,” without needing to require it explicitly in the seller’s problem.

One could alternatively try to restore symmetry to the model by assuming that
exogenous information revelation cannot happen either before or after the auction. In
this case, our basic conclusion — that robustness to resale implies the auctioneer should
not misallocate — no longer holds. For an example, it suffices to consider the must-sell
case, where we need not worry about (A1)–(A3). Suppose that there are two bidders,
with bidder 1’s value equal to 1 for sure, and bidder 2’s value being 1/3 or 2/3 with
probability 1/2 each. Consider the mechanism that offers the object to bidder 1 at a
fixed price p = 2/3−ε, and if he rejects, gives it to bidder 2 for free. Note that if bidder 1
rejects, he does not learn anything about bidder 2’s value, so the highest expected payoff
he could hope to get in resale is 1/3 (which he could obtain if he has all the bargaining
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power, by offering either a price of 1/3 or 2/3 to bidder 2). Thus, bidder 1 would prefer
to buy in the mechanism. This gives a revenue of 2/3 − ε, which exceeds the Vickrey
auction’s expected revenue of 1/2. This example involves discrete distributions, but it
can easily be perturbed to a continuous distribution with full support on [0, 1], and then
any efficient must-sell auction is revenue-equivalent to Vickrey; and still, the seller would
prefer our alternative auction over Vickrey, regardless of the resale procedure. So the
optimal must-sell auction must misallocate with positive probability, contradicting the
conclusion of Theorem 1.18

In summary, our main conclusion — that robustness to resale calls for no
misallocation — depends on allowing information to be revealed after the auction, but
does not depend on whether information can be revealed before the auction.

5.2. Robustness to value distributions

Another seeming asymmetry arises between the modeling assumptions of Bayesian priors
over bidders’ values and complete ignorance of the resale procedure. We may instead
consider a more symmetric model in which for each bidder i, there is a family of possible
distributions Fi ⊆ ∆([0, 1]), rather than a single distribution, and the designer’s robust
revenue maximization problem is

max
Γ

(
inf

v,F1∈F1,...,Fn∈Fn

Rev(Γ, v, F1, . . . , Fn)

)
where Rev(Γ, v, F1, . . . , Fn) stands for the supremum expected revenue in a Bayes-Nash
equilibrium of mechanism Γ with resale procedure v and distributions F1, . . . , Fn.19 For
this problem, our result about optimality of ACV auctions carries through. Specifically:

Proposition 1. Assume that for each i, there is a “lowest” distribution Fi ∈
Fi that is first-order stochastically dominated by every other F ′i ∈ Fi. Assume that
F1, . . . , Fn have continuous densities and satisfy assumptions (A1)–(A3). Then the robust
revenue maximization problem is solved by the ACV auction with reserves p1, . . . , pn
constructed in (13)-(14).

The proof is in the Online Appendix, as are the proofs for the other propositions in
this section. Proposition 1 is proven by showing that the lowest distributions combined
with resale procedure (8) constitute a worst case for the designer. For this we need to
verify that the optimal ACV auction for distributions F1, ..., Fn would not yield lower
expected revenue when bidders’ values are drawn from higher distributions. While this
kind of revenue monotonicity does not hold for an arbitrary ACV auction, we show that
it holds for the optimal ACV auction given distributions F1, ..., Fn.

The above result still requires the designer to know lower bounds on the possible
distributions in order to choose the reserves. With no knowledge of the distributions
at all, the maxmin problem formulated above becomes uninteresting: the worst case is

18. Solving for the optimal auction in worst case over all resale procedures without information
revelation is a difficult open question. We do know from Calzolari and Pavan (2006) that Myerson’s
optimal biased allocation is generically not implementable even for a given resale procedure.

19. An alternative way to avoid the asymmetry would be by interpreting our analysis as applying
to a fully Bayesian auctioneer who believes that resale takes the particular worst-case form v, joining
the literature on auction design for a given known resale procedure (cited in the Introduction). However,
our preferred interpretation is that the auctioneer does not presume any given specific resale procedure,
instead being completely ignorant about it.
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that each buyer just has value 0 with probability 1. Then there is no positive revenue
guarantee, and it is optimal to use any auction mechanism with non-negative payments,
in particular not to run an auction at all.20

However, we can give two arguments to indicate that optimization of reserve prices
has little benefit when there are sufficiently many bidders. This suggests that the Vickrey
auction with no reserves is a reasonable prior-free choice.21

First, we show that under uncertainty about resale, setting optimal reserve prices is
less valuable than adding just one bidder who is at least as strong as the existing bidders:

Proposition 2. Suppose the value distributions of the n bidders are regular.
Under our worst-case resale procedure, any auction has a lower expected revenue than
the Vickrey auction with one added bidder n+ 1, provided that the added bidder’s value
distribution first-order stochastically dominates the distributions of all other bidders.

The proposition extends the classic result of Bulow and Klemperer (1996) to
asymmetric settings with uncertainty about resale. In contrast, as noted by Hartline and
Roughgarden (2009), the result does not extend to asymmetric settings without resale,
in which Myerson’s optimal biased auction could yield substantially higher revenue than
the Vickrey auction with duplicate bidders.22

Second, we show that the difference in revenue between the optimal auction under
worst-case resale and the Vickrey auction is very small when the number of bidders n
is large: it shrinks to zero exponentially fast as n grows. (We require value distributions
to satisfy a particular bound uniformly in n, e.g., they could be drawn from some finite
family.) In contrast, if resale were impossible, Myerson’s optimal auction could attain
an improvement over Vickrey that shrinks only polynomially in n (even if just two
different value distributions are possible). This suggests that uncertainty about resale
is quantitatively more important for auction design than optimization of reserve prices.

Proposition 3.
(a) If all distributions are regular and Fi(rj) ≤ c < 1 for all i, j, then the difference

between the expected revenue from the optimal auction under worst-case resale and
the expected revenue from the Vickrey auction is at most n · cn−1.

(b) Let F , F̂ be regular distributions with respective twice-differentiable densities f , f̂

such that f (1) , f̂ (1) > 0 and f ′ (1) /f (1) < f̂ ′ (1) /f̂ (1). There is a constant c′ > 0
with the following property: if there are n/2 bidders drawn from distribution F and
n/2 from distribution F̂ , the expected revenue from the optimal Myerson auction
(without resale) exceeds that of the Vickrey auction by at least c′/n3.

20. One way to avoid this degeneracy is by considering a sequence of families of priors indexed

by k, F(k)
1 , . . . ,F(k)

n , representing increasing uncertainty as k → ∞. Namely, suppose that for each

k, these families satisfy the assumptions of Proposition 1, with lowest distributions F
(k)
1 , . . . , F

(k)
n . If

each bidder’s lowest distribution converges to zero in the “hazard rate” sense, i.e., for any fixed θ > 0,

(1 − F (k)
i (θ))/f

(k)
i (θ) → 0 as k → ∞, then it can be seen that the optimal reserve prices go to zero,

and the ACV auction converges to the Vickrey auction. (We are grateful to the editor for suggesting
this observation.) However, this conclusion does depend on distribution convergence in the hazard rate

sense; simply assuming that F
(k)
i converges weakly to 0 is not sufficient.

21. In the propositions below we do not impose assumptions (A1)-(A3), because they are proved
by showing that Vickrey does well even compared to the solution of the relaxed problem, which relied
only on regularity (a weakening of (A1)).

22. Namely, in their two-bidder Example 4.6, adding a third bidder with value c.d.f. F3 (θ) =

min {F1 (θ) , F2 (θ)} and using the Vickrey auction on the three bidders would only yield 3
4

of the revenue
of the optimal biased auction on the original two bidders.
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Note also that part (a) can be used to identify some scenarios where the gain from
using reserve prices is small relative to the overall revenue, even with a fixed number
of bidders: it can happen that Fi(rj) is arbitrarily close to zero for all i, j, while all rj
remain bounded away from 0.

5.3. Relaxing regularity

Our regularity assumptions (A1)-(A3) are not necessary for ACV auctions to be optimal.
For example, without these assumptions we can state23

Proposition 4. If all bidders’ virtual value functions νi(θi) cross zero just once
and all at the same point r, the Vickrey auction with symmetric reserve price r solves
the robust revenue maximization problem.

Indeed, this auction solves the relaxed problem in Section 4.2. From this (combined
with Theorem 2), the proposition follows immediately.

In particular, while we have focused on settings where the Myerson optimal auction
is inefficient due to bias, it can also be inefficient due to randomization: when bidders are
symmetric but have non-monotone virtual value functions, the Myerson auction calls for
random allocation when multiple bidders are in an ironing region. The above proposition
shows that in these cases, too, robustness to resale can make it optimal to allocate
efficiently.

However, we cannot dispense with distributional assumptions entirely: in the Online
Appendix, we describe an example with symmetric bidders where the optimal auction is
not of the ACV form. We do not know of any simple, general assumptions that nest all
known cases where ACV auctions are optimal.

5.4. Further possibilities

One might argue, as Börgers (2017) does, that the maxmin criterion used in (3) is too
permissive. Applied to our setting, his critique would say that the ACV mechanism we
have identified as maxmin optimal is weakly dominated, in the sense that there are other
mechanisms that do at least as well for every resale procedure, and strictly better for
some. For example, if the resale procedure is common knowledge among bidders, the
auctioneer can elicit it from them and then run an optimal auction tailored to that resale
procedure. However, this elicitation mechanism would not work if the resale procedure is
not common knowledge, while an ACV mechanism would still remain maxmin-optimal.24

While we have assumed the worst case with respect to resale procedures, we have
nonetheless focused on the best equilibrium, implicitly assuming that the seller gets to
choose the equilibrium played by the bidders (as is usual in mechanism design). However,
it is known that Vickrey auctions can have many equilibria when resale is possible,
including ones that are inefficient and have lower revenue than the truthful equilibrium
but are preferred by all bidders (Garratt and Tröger, 2006; Garratt, Tröger, and Zheng,

23. For another example, in the two-bidder case, assumption (A3) is not needed at all (it suffices to
assume that r1 > r2), while assumptions (A1)-(A2) could be replaced with the non-nested assumptions
that the function R1(p) = p(1 − F1(p)) is concave, and that ν2 is increasing. (The proof for this case
necessitates constructing a different Lagrange multiplier measure than the one we use.)

24. As Börgers (2017) notes, an undominated mechanism may not exist in this case, since in
addition to any mechanism the seller could run a side betting mechanism collecting commissions on bets
when bidders have heterogenous beliefs.
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2009). We expect the same for ACV auctions. It is an open question whether the ACV
auction can be modified in a way that makes its expected revenue guarantee robust to
equilibrium selection.25

Finally, we have presented here a model in which resale can occur only because the
outcome of the auction was inefficient. In practice, however, resale can occur for many
reasons, and it would be natural to consider robust auction design for situations where
resale is socially desirable: for example, buyers are uncertain about their own values and
will learn more about them after the auction (as in Haile, 2003). Presumably the optimal
auctions in such models would involve resale occurring in equilibrium.

6. SUMMARY

We began from the classic theory of optimal auctions, which suggests that it can be
optimal to bias the auction in favor of weaker bidders. A rough intuition suggests that
such misallocation is no longer advantageous when it can be undone by resale among the
bidders. A series of simple examples shows, however, that when the auctioneer knows
the resale procedure, it typically is still optimal to misallocate, even if resale is “perfect”
(contrary to the intuition of Ausubel and Cramton (1999)).

We provided a model in which resale makes it optimal not to misallocate. In our
model, the auctioneer does not know the resale procedure and desires revenue to be robust
to this uncertainty. In the must-sell version of the model, the optimal auction is simply
a Vickrey auction. In the can-keep version, the optimum (under appropriate regularity
conditions) is an ACV auction: The auctioneer boosts revenue by setting reserve prices,
as in the classic model, but never benefits from misallocating the good.

A. PROOF OF LEMMA 1

Relations (4)-(5) imply that for all auctions Γ, infv Rev(Γ, v) ≤ R̄ ≤ infv Rev(Γ̄, v), hence Γ̄ solves the

robust revenue maximization problem, and the problem’s value is R̄. Also, (4)-(5) imply that for all

resale procedures v, supΓ Rev(Γ, v) ≥ R̄ ≥ supΓ Rev(Γ, v), hence v solves the worst-case resale problem,

and the problem’s value is R̄. Plugging in Γ = Γ̄ and v = v into (4)-(5) yields Rev(Γ̄, v) = R̄.

B. PROOF OF THEOREM 1

Take any direct auction mechanism 〈χ, ψ〉 satisfying (6)-(7), and define interim expected payoffs Ui(θi)

as in (9). Rewrite incentive compatibility (6) as

Ui (θi)− Ui(θ̂i) ≥ Eθ̃−i
[vi(χ(θ̂i, θ̃−i); θi, θ̃−i)− vi(χ(θ̂i, θ̃−i); θ̂i, θ̃−i)] for all θi, θ̂i. (23)

Since
∑
j χj(θ̃) = 1 with probability 1, there exists arbitrarily small θ̂i such that

∑
j χj(θ̂i, θ̃−i) = 1 with

probability 1. Note that for any profile θ such that minj θj > θ̂i and x ≡ χ(θ̂i, θ−i) satisfies
∑
j xj = 1, we

have vi(x; θ)−vi(x; θ̂i, θ−i) ≥ θi−θ(2) if θi > θ(2) and vi(x; θ) ≥ vi(x; θ̂i, θ−i) otherwise, hence vi(x; θ)−
vi(x; θ̂i, θ−i) ≥ max

{
θi − θ(2), 0

}
. For any other θ,

∣∣∣vi(x; θ)− vi(x; θ̂i, θ−i)−max
{
θi − θ(2), 0

}∣∣∣ ≤ 2.

Hence, taking expectations, (23) implies

Eθ̃i
[
Ui(θ̃i)

]
− Ui(θ̂i) ≥ Eθ̃

[
max

{
θ̃i − θ̃(2), 0

}]
− 2

(
1−

∏
j

[
1− Fj(θ̂i)

])
.

25. In the absence of resale, it is possible to acheve robustness to equilibrium selection, as well as
stronger forms of bidder collusion: Laffont and Martimort (1997) and Che and Kim (2006) show how
this can be done with any Bayesian incentive-compatible auction, including Myerson’s (1981) optimal
auction. Che and Kim (2006, footnote 34) explain why their results on collusion do not also imply
robustness to resale.
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Since the inequality has to hold for arbitrarily small θ̂i, and Ui(θ̂i) ≥ 0 by individual rationality
(7), we must have

Eθ̃i
[
Ui(θ̃i)

]
≥ Eθ̃

[
max

{
θ̃i − θ̃(2), 0

}]
.

Therefore,

Eθ̃

[∑
i

ψi(θ̃)

]
= Eθ̃

[∑
i

vi(χ(θ̃); θ̃)

]
−
∑
i

Eθ̃i
[
Ui(θ̃i)

]

≤ Eθ̃
[
θ̃(1)

]
− Eθ̃

[∑
i

max
{
θ̃i − θ̃(2), 0

}]

= Eθ̃
[
θ̃(2)

]
,

which is the expected revenue in the Vickrey auction.

C. RESALE-PROOFNESS OF ACV AUCTIONS

In this appendix we prove Theorem 2, and in the process we formulate a generalization that applies
to a broader class of resale procedures, which may take place under asymmetric information. For this

purpose, we assume the auction has the ACV form, and we allow the outcome of the resale bargaining

to depend on bidders’ reports θ̂1, . . . , θ̂n in the auction, since these reports may affect bidders’ beliefs
about each other’s values and consequently their behavior in bargaining. Therefore, we now describe the

payoff that bidder i receives in post-auction bargaining by a function

vi(x; θ̂1, . . . , θ̂n; θ1, . . . , θn),

where θ1, . . . , θn are the bidders’ true values, θ̂1, . . . , θ̂n are the values that were reported in the auction,
and x was the allocation chosen by the auction.26,27 This formalism lets us distinguish the dependence

of i’s payoff on θ̂j (which can influence the bidders’ beliefs about j’s type at the time bargaining begins)

from the dependence on θj (which can influence how j actually behaves in bargaining).28

So a resale procedure is described by a profile of functions v1, . . . , vn : X × [0, 1]2n → R, satisfying
the conditions that total resale payoffs do not exceed the total surplus available among the bidders:

∑
i

vi(x; θ̂; θ) ≤ (max
i
θi) ·

(∑
i

xi

)
(24)

for all x, θ̂, θ; and are individually rational :

vi(x; θ̂; θ) ≥ θixi (25)

26. For simplicity, we assume that after the ACV auction is completed, the auctioneer discloses all
bids. This avoids the need to model a bidder’s inference about bids from imperfect information disclosed
in the auction (e.g., his own allocation).

27. Note that we continue modeling resale using reduced-form payoffs rather than as an explicit
non-cooperative game following the auction game. The problem with the latter approach is that to
ensure individual rationality in a non-cooperative resale game, each bidder should have access to a “non-
participation” action. However, then our formulation of the robust revenue maximization problem is too
weak: any auction that is incentive-compatible without resale — in particular the Myerson (1981) optimal
auction — has an equilibrium in which every agent always bids truthfully and then never participates in
resale. We could try to rule these out by restricting to equilibria satisfying some perfection requirement
in the definition of Rev(Γ, v). But we want to ensure that a reasonably broad class of mechanisms can
guarantee equilibrium existence for all v, and existence of perfect equilibria with infinite type spaces is
a thorny problem (see Myerson and Reny, 2015).

28. We comment that our approach to modeling resale payoffs here relies on having fixed the
mechanism and the proposed equilibrium. In a general mechanism, if we did not assume full information
in resale, then the effect of messages on resale bargaining would depend on the off-path beliefs they induce
within the equilibrium being played; thus we would have a circularity, with resale payoffs depending on
the choice of equilibrium and vice versa. Since these modeling technicalities are not our focus, we have
avoided them by focusing on full-information resale for the formal statement of the robust revenue
problem (3).



CARROLL & SEGAL AUCTIONS WITH UNKNOWN RESALE 23

for all i,x, θ̂, θ.29

Theorem 4. Consider an ACV auction with reserve prices p1, . . . , pn. For any resale payoff

functions v1, . . . , vn satisfying (24)–(25), it is an ex post equilibrium for all bidders to participate and

report their true values (after which no resale occurs). Formally, for any values θ1, . . . , θn, and any
possible deviation θ̂i ∈ [0, 1] ∪ {∅} for any bidder i,

θiχi(θ)− ψi(θ) ≥ vi(χ(θ̂i, θ−i); θ̂i, θ−i; θ)− ψi(θ̂i, θ−i). (26)

We now give a proof of the theorem. Note that we need not consider the non-participation message

θ̂i = ∅ separately, since it is treated by the mechanism as equivalent to reporting 0. We consider all
possible cases.

• Suppose that bidder i wins under truth-telling: χi(θ) = 1. Then the left-hand side of (26) is

θi − ψi(θ) ≥ 0.

– If i deviates to θ̂i such that he still wins, then he pays the same price (and no resale occurs).
– If i deviates to θ̂i such that some bidder j 6= i wins (and i then pays zero), this is only

possible if θj = maxk 6=i θk = ψi(θ) (i’s threshold price under truthtelling). Then (25) implies

that the resale payoff of bidder j is at least θj and the resale payoffs of all bidders k /∈ {i, j}
are non-negative, and therefore by (24) the resale payoff of bidder i is at most θi− θj . So the

right side of (26) is at most θi − θj which equals the left side.

– If i deviates to θ̂i such that the object goes unallocated, then no resale is possible, so the
right side of (26) is zero.

• Suppose that some bidder j 6= i wins under truth-telling: χj(θ) = 1. Then the left-hand side of

(26) is zero.

– If i deviates to a θ̂i that does not win the object, then either j still wins, or the object is
unsold. Either way, no resale occurs, and the right side of (26) is zero.

– If i deviates to win the object, he pays the threshold price ψi(θ̂i, θ−i) = θj = maxk θk. By

(25), the resale payoffs of all other bidders are non-negative, and therefore by (24) the resale
payoff of bidder i is at most maxk θk = θj . So the right side of (26) is at most θj − θj = 0.

• Suppose that the object is left unsold under truth-telling: χ(θ) = 0. Then the left-hand side of

(26) is zero.

– If i deviates such that the object remains unsold, then no resale is possible and the right side

of (26) is zero.
– If i deviates such that some bidder j 6= i wins the object, then allocating to j is efficient for

the reported value profile (θ̂i, θ−i), and θ̂i is above the reserve while the true value θi is not:

θj ≥ θ̂i > pi ≥ θi, and θj ≥ θk for all k 6= i.

So allocating to j is efficient for the true value profile θ, and no resale is possible, so the right

side of (26) is zero.
– If i deviates to win the object, he pays the threshold price ψi(θ̂i, θ−i) = max{pi,maxj 6=i θj}.

By (25), the resale payoffs of all other bidders are non-negative, and therefore by (24) the

resale payoff of bidder i is at most maxj θj . Since θi ≤ pi (because the object is unsold under

truth-telling), this expression does not exceed max{pi,maxj 6=i θj} = ψi(θ̂i, θ−i), so the right

side of (26) is at most zero.

D. A KEY LEMMA

The following lemma is key to constructing the multipliers used to prove Theorem 3.

Lemma 2. Under assumptions (A1)-(A3), there exist unique sequences p1 ≥ · · · ≥ pn and

R̄1, . . . , R̄n satisfying (13)-(14). The sequence of prices pk and the function H : [pn, 1)→ R defined by

(19) are jointly characterized by the following two properties:

29. Note that (25) is an ex post individual rationality constraint.
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(i) pk > 0 and (20) holds for each k ≥ 1,
(ii) H is differentiable and satisfies differential equation (21) and the boundary condition H(p) = 0

for p ∈ [p1, 1).

Furthermore,

(iii) the function H is non-increasing, and
(iv) the reserve prices satisfy pk ≥ rk for each k (with equality for k = 1).

The lemma follows from the following four claims:

Claim 1. There exist reserve prices and revenue levels satisfying (13)-(14).

Claim 2. When reserve prices and revenue levels satisfy (13)-(14) and the function H is defined

by (19), properties (i)-(ii) hold.

Claim 3. When properties (i)-(ii) hold, property (iii) also holds.

Claim 4. There is a unique price sequence p1, . . . , pn and a corresponding function H such that
properties (i)-(iii) hold. These prices satisfy (iv).

We prove these claims in turn.

D.1. Proof of Claim 1

The claim follows from the continuity of the objective function in (14).

D.2. Proof of Claim 2

First, note that H as defined by (19) is continuous at the endpoints of the intervals of its definition,

i.e. the points p = pk. This follows from (13). (It is immediate that H is continuous elsewhere.)

We now show properties (i)-(ii) in turn:

(i) First we argue that the derivative of the expected revenue Rk(p) in the Vickrey auction with
symmetric reserve p is given by the following formula:

R′k(p) = −
k∑
i=1

 k∏
j=1
j 6=i

Fj(p)

 fi(p)νi(p). (27)

Indeed, we can express the value of this Vickrey auction as the integral of virtual surplus, as in

(12):

Rk(p) = Eθ̃
[
1
{
θ̃i ≥ p for some i

}
· νi∗(θ̃)(θ̃i∗(θ̃))

]
.

Equivalently, this is the integral of νi∗(θ)(θi∗(θ)) over the region where bidder i∗(θ) has value at

least p. As p increases marginally, the region shrinks by losing the surface where one bidder’s value

is p and all other bidders’ values are below p. Therefore, the derivative of Rk is the negative of the
integral of virtual surplus over this surface. For each bidder i, there is one portion of the surface

where i’s value is p (and other bidders are below p), and the virtual surplus is νi(p).
Now, we show that property (i) holds, and in addition that R̄k > Rk (0), by induction on

k ≥ 1. This holds for k = 1, as the optimal price must satisfy p1 ∈ (0, 1) to achieve revenue
R̄1 > R1 (0) = 0, and must satisfy the first-order condition ν1 (p1) = H (p1) = 0. Now, suppose
that the inductive hypothesis holds for k − 1. Using (27), express

R′k (p) = Fk (p)R′k−1 (p)−
(
k−1∏
i=1

Fi (p)

)
νk (p) fk (p) ,
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and calculate the derivative of the objective function in (14) for p ∈ [0, pk−1] as

Dk (p) ≡ R′k (p) + fk (p)
[
R̄k−1 −Rk−1 (p)

]
− Fk (p)R′k−1 (p)

= fk (p)
(
R̄k−1 −Rk−1 (p)− νk (p)

∏k−1
i=1 Fi (p)

)
.

In particular, Dk (0) = fk (0)
(
R̄k−1 −Rk−1 (0)

)
> 0 by the inductive hypothesis for k − 1, and

therefore we have R̄k > Rk (0) and pk > 0.

Now we can express

Dk (pk) = fk (pk) (H (pk)− νk (pk))

k−1∏
i=1

Fi (pk) ,

where H is given by (19). Consider two remaining cases:

– If pk ∈ (0, pk−1) then the necessary first-order condition for maximization (14) is Dk (pk) = 0,
and therefore H (pk) = νk (pk).

– If pk = pk−1 then the necessary first-order condition for maximization (14) is Dk (pk) ≥ 0,

and therefore H (pk) ≥ νk (pk). On the other hand, we have

H (pk) = H (pk−1) = νk−1 (pk−1) ≤ νk (pk−1) = νk (pk) ,

where the second equality uses the inductive hypothesis and the inequality uses assumption
(A3). Combined with the above, we again have H (pk) = νk (pk) .

(ii) From (19) and the observation that H is continuous at the interval endpoints, H(p)
∏
j<k Fj(p) =

R̄k−1 −Rk−1(p) for p ∈ [pk, pk−1]. It is then immediate from (27) that (21) holds on the interval

[pk, pk−1], where we take the derivative to be the right-hand derivative at pk and the left-hand
derivative at pk−1. (The fact that H is zero on [p1, 1) is immediate from the definition.)

It remains to check that H is in fact differentiable at the interval endpoints, i.e. that the left-
hand and right-hand derivatives are equal at each pk. For this purpose, and for future use more

generally, it is useful to rewrite (21) in the form

H′(p) =
∑
j<k

fj(p)

Fj(p)
[νj(p)−H(p)] for p ∈ [pk, pk−1] (28)

(where, again, we use one-sided derivatives at interval endpoints). To derive this equation, simply

expand the derivative on the left side of (21) using the product rule, then rearrange.

Then the fact that the left-hand and right-hand derivatives agree at pk is immediate, since the

right side of (28) on interval [pk+1, pk] differs from the formula for interval [pk, pk−1] only by

inclusion of the j = k term, which is zero at pk by property (i).

D.3. Proof of Claim 3

Using equation (28) above and assumption (A3), we see that for any p ∈ [pk, pk−1] such that
H (p) ≥ νk−1 (p) we have H′ (p) ≤ 0, and the inequality is strict if H (p) > νk−1 (p).

Now, by property (i), H (pk−1) = νk−1 (pk−1), and therefore H′ (pk−1) ≤ 0, hence for p in a
left-neighborhood of pk−1,

H (p)− νk−1 (p) ≥ νk−1 (pk−1) + o (pk−1 − p)− νk−1 (p)

≥ pk−1 − p+ o (pk−1 − p)
> 0,

where the second inequality uses (A1). Thus, we can choose p̂ < pk−1 close enough to pk−1 such that
H(p) > νk−1 (p) for all p ∈ [p̂, pk−1), and therefore H′ (p) < 0 on this interval. In particular this implies
H(p̂) > H(pk−1). But then H (p) cannot cross νk−1 (pk−1) anywhere in the interval [pk, pk−1]: indeed,

otherwise, letting p◦ = max {p ∈ [pk, p̂] : H (p) ≤ νk−1 (pk−1)} we would have

0 = H(pk−1)− νk−1 (pk−1) < H(p̂)− νk−1 (pk−1) =

∫ p̂

p◦
H′ (p) dp, (29)
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while on the other hand we would have H(p) ≥ νk−1 (pk−1) ≥ νk−1 (p) for all p ∈ (p◦, p̂) and therefore
H′ (p) ≤ 0 for all p ∈ (p◦, p̂), making the right-hand side of (29) non-positive – a contradiction.

Therefore, H(p) ≥ νk−1(pk−1) ≥ νk−1(p) for all p ∈ [pk, pk−1], and therefore H′ (p) ≤ 0 on this
interval. Since this holds for each k > 1, H is non-increasing on [pn, p1].

D.4. Proof of Claim 4

We prove by induction on k ≥ 1 that price pk is uniquely determined and satisfies pk ≥ rk. First, the claim
holds for k = 1, since the boundary condition H(p1) = 0 implies that (20) takes the form ν1 (p1) = 0,

and this uniquely determines p1 = r1. Now, suppose that the claim holds for all j ≤ k − 1, and in

particular that prices p1, . . . , pk−1 are uniquely determined. Then by using property (ii) and integrating,
the function H is uniquely determined on the interval [pk, 1), whatever pk may be. Furthermore, by (i),

pk must solve (20). Observe that:

• Any value of pk satisfying (20) must lie in pk ∈ [rk, pk−1]. Indeed, suppose for contradiction that

pk < rk. Then, using properties (i) and (iii), and strict monotonicity of νk (from (A1)), we have
νk(pk) < νk(rk) = 0 = H(r1) ≤ H(pk) = νk(pk), a contradiction.

• (20) has at most one solution on pk ∈ [0, pk−1]. This holds because νk is strictly increasing by
(A1) and H is non-increasing by property (iii).

The two observations together imply that (20) has a unique solution pk ∈ [0, pk−1], which satisfies
pk ≥ rk. Thus, the inductive statement also holds for k.

E. PROOF OF THEOREM 3

The proof of Theorem 3 depends on Lemma 2 in Appendix D. Henceforth we take this lemma, and the

steps of its proof, as given.

We also find it useful to write vi(x; θ) =
∑
j vij(θ)xj , where vij(θ) = max{θi, θ(2)} if i = j and

= max{0, θi− θ(2)} otherwise. Write v′ij(θ) for the derivative with respect to θi (which is defined almost

everywhere).

Now, to prove the theorem, for each i = 1, . . . , n − 1, define one-dimensional measures Λi, Λ̂i,

with supports [pn, pi] and [0, pi] respectively, whose distribution functions are Λ̂i(θ̂i) = Fi(θ̂i) and

Λi(θi) = Λ̄i(pn)− Λ̄i(θi), where

Λ̄i(θi) =


fi(pn)
Fi(pn)

[H(pn)− νi(pn)] if θi < pn,
fi(θi)
Fi(θi)

[H(θi)− νi(θi)] if θi ∈ [pn, pi],

0 if θi > pi.

(30)

Note that by (A1) and Lemma 2(iii), the difference H (θi) − νi(θi) is non-increasing, and in
particular H (θi)−νi(θi) ≥ H(pi)−νi(pi) = 0. Using in addition (A2), we see that Λ̄i is non-increasing,
hence Λi is non-decreasing, so it indeed describes a measure. Furthermore, by construction, Λ̄i (θi), and

so Λi (θi), is constant on θi < pn and on θi > pi, hence Λi is supported on [pn, pi].

Define Mi(θi, θ̂i) to be the restriction of the product measure Λi × Λ̂i to the half-plane θ̂i ≤ θi.

Also, define Λ̄n, Mn ≡ 0. We already argued in Subsection 4.5 that the conditions (a)–(b) stated there
suffice to prove the theorem, and thatMi as defined here satisfies the complementary slackness condition

(b), so the rest of the proof focuses on establishing the optimization condition (a).

First we rewrite the Lagrangian in terms of modified virtual values. For this purpose, note that

the slack in (15) is absolutely continuous in θi, and

∂Si(θi, θ̂i;χ)/∂θi = Eθ̃−i
[v′i(χ(θi, θ̃−i); θi, θ̃−i)− v′i(χ(θ̂i, θ̃−i); θi, θ̃−i)].

Then we can write, using integration by parts and the fact that Λ̄i (1) = Si(θ̂i, θ̂i;χ) = 0,∫ 1

θ̂i

Si(θi, θ̂i;χ) dΛi(θi) =

∫ 1

θ̂i

Λ̄i(θi)Eθ̃−i
[v′i(χ(θi, θ̃−i); θi, θ̃−i)− v′i(χ(θ̂i, θ̃−i); θi, θ̃−i)] dθi.
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Integrating this expression with dΛ̂i(θ̂i), which equals dFi(θ̂i) for θ̂i ≤ pi while elsewhere the expression

is zero (since Λ̄i(θi) = 0 for θi > pi), we obtain∫∫
Si(θi, θ̂i;χ) dMi(θi, θ̂i) =

∫ 1

0

∫ 1

θ̂i

Λ̄i(θi)Eθ̃−i
[v′i(χ(θi, θ̃−i); θi, θ̃−i)] dθi dFi(θ̂i)

−
∫ 1

0

∫ 1

θ̂i

Λ̄i(θi)Eθ̃−i
[v′i(χ(θ̂i, θ̃−i); θi, θ̃−i)] dθi dFi(θ̂i).

The first term can be rewritten using integration by parts as∫ 1

0
Fi(θi)Λ̄i(θi)Eθ̃−i

[v′i(χ(θi, θ̃−i); θi, θ̃−i)] dθi = Eθ̃

[
Fi(θ̃i)

fi(θ̃i)
Λ̄i(θ̃i)v

′
i(χ(θ̃); θ̃)

]
,

while the second term can be rewritten as

−Eθ̃

[∫ 1

θ̃i

Λ̄i(τ i)v
′
i(χ(θ̃); τ i, θ̃−i) dτ i

]
.

Adding these two terms across bidders i and adding the sum to the first part of Lagrangian (16),

representing vi(x, θ) =
∑
j vij (θ)xj , and taking into account that

∑
i vij(θ) = θ(1) for any j yields the

Lagrangian in the form (17), where

µj(θ) = θ(1) −
∑
i

{
1− Fi(θi)
fi(θi)

−
Fi(θi)

fi(θi)
Λ̄i(θi)

}
v′ij(θ)−

∑
i

∫ pi

θi

Λ̄i (τ i) v
′
ij(τ i, θ−i) dτ i. (31)

Now to show optimality condition (a), we show that the ACV auction maximizes the modified

virtual surplus (17) pointwise with probability 1. In symbols, we will show that at each value profile θ
that does not have ties:

(a-1) µi∗(θ)(θ) ≥ 0 if θi > pi for some i, and ≤ 0 otherwise;
(a-2) µi∗(θ)(θ) ≥ µj(θ) for all other bidders j.

To show (a-1), consider (31) for bidder j = i∗ = i∗(θ). For the second term of (31), note that
v′ii∗ (θ) = 1 when i = i∗ and = 0 otherwise. For the last term of (31), note that v′i∗i∗ (τ i∗ , θ−i∗ ) = 1 for

all τ i∗ > θi∗ , while for any i 6= i∗, v′ii∗ (τ i, θ−i) = 1 when τ i > θi∗ (since i then buys from i∗ in resale)

and = 0 otherwise. Thus

µi∗ (θ) = θi∗ −
1− Fi∗ (θi∗ )

fi∗ (θi∗ )
+
Fi∗ (θi∗ )

fi∗ (θi∗ )
Λ̄i∗ (θi∗ )−

∑
i

∫ pi

θi∗
Λ̄i(τ i) dτ i. (32)

We evaluate (32) in three different cases depending on where θi∗ lies, and show that in every case,

the sign of µi∗ (θ) is consistent with (a-1).

• If θi∗ ∈ [pn, pi∗ ], then using (30) we see that the first three terms in (32) add up to H(θi∗ ), and

so

µi∗ (θ) = H(θi∗ )−
∑
i

∫ pi

θi∗
Λ̄i(τ i) dτ i.

The derivative of this expression with respect to θi∗ is

H′(θi∗ ) +
∑
i

Λ̄i(θi∗ ) = H′(θi∗ ) +
∑

i: θi∗<pi

fi(θi∗ )

Fi(θi∗ )
[H(θi∗ )− νi(θi∗ )] ,

which equals zero by (28). Since the expression equals H (p1) = 0 at θi∗ = p1, it follows that

µi∗ (θ) = 0 whenever θi∗ ∈ [pn, pi∗ ].
• If θi∗ > pi∗ , the analysis is the same as in the previous case, except that the third term in (32) is

zero instead of H(θi∗ )−νi∗ (θi∗ ), hence µi∗ (θ) = νi∗ (θi∗ )−H(θi∗ ). Since νi∗ is weakly increasing,

H is weakly decreasing, and νi∗ (pi∗ ) = H (pi∗ ), we have µi∗ (θ) ≥ 0 when θi∗ > pi∗ , which is

consistent with (a-1).
• If θi∗ < pn, then θi < pn ≤ pi for all i, so (a-1) requires that µi∗ (θ) ≤ 0. The first three terms in

(32) add up to

νi∗ (θi∗ ) +
Fi∗ (θi∗ )

fi∗ (θi∗ )

(
fi∗ (pn)

Fi∗ (pn)
[H(pn)− νi∗ (pn)]

)
.
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This expression is increasing in θi∗ , since νi∗ is increasing, Fi∗/fi∗ is increasing (by (A2)), and
H(pn) = νn(pn) ≥ νi∗ (pn) using Lemma 2. Meanwhile the last term in (32) is clearly decreasing

in θi∗ . Therefore, µi∗ (θi∗ , θ−i∗ ) is increasing in θi∗ for θi∗ ≤ pn. Since we already saw that it is

0 at pn, we get (a-1) as needed.

Now to prove (a-2), consider µj(θ) for a bidder j 6= i∗. Note that v′ij(θ) = 0 unless i = i∗ or
i = j. Also, in the last term of (31), v′jj(τ j , θ−j) = 1 for τ j > θ(2) and = 0 otherwise, while for i 6= j,

v′ij(τ i, θ−i) = 1 for τ i > θi∗ and = 0 otherwise. So,

µj(θ) = θi∗ −
1− Fi∗ (θi∗ )

fi∗ (θi∗ )
+
Fi∗ (θi∗ )

fi∗ (θi∗ )
Λ̄i∗ (θi∗ )−

{
1− Fj(θj)
fj(θj)

−
Fj(θj)

fj(θj)
Λ̄j(θj)

}
v′jj (θ)

−
∑
i6=j

∫ pi

θi∗
Λ̄i(τ i)dτ i −

∫ pj

θ(2)

Λ̄j(τ j)dτ j .

Subtracting from (32), we have

µi∗ (θ)− µj(θ) =

{
1− Fj(θj)
fj(θj)

−
Fj(θj)

fj(θj)
Λ̄j(θj)

}
v′jj (θ) +

∫ θi∗

θ(2)

Λ̄j(τ j)dτ j . (33)

The last term in (33) is clearly non-negative, as is v′jj . So we focus on the expression in curly

braces, and consider different cases depending on where θj lies:

• If θj > pj then Λ̄j(θj) = 0 and so the term is non-negative.

• If θj ∈ [pn, pj ], the term equals

1− Fj(θj)
fj(θj)

−
Fj(θj)

fj(θj)
·
fj(θj)

Fj(θj)
[H(θj)− νj(θj)] = θj −H(θj),

and

θj −H(θj) ≥ pn −H(pn) ≥ νn(pn)−H(pn) = 0

where we have used Lemma 2(iii) and (i).

• For θj ≤ pn, the term equals

1− Fj(θj)
fj(θj)

−
Fj(θj)

fj(θj)
Λ̄j(pn).

By (A1) and (A2), the expression is non-increasing in θj , and since we already saw that it is
non-negative at θj = pn, it must be non-negative for θj < pn.

Thus, (33) is non-negative, establishing (a-2).

F. EXAMPLE WITH UNIFORM DISTRIBUTIONS

We illustrate here the calculation technique from Subsection 4.6, by considering the case where bidder
i’s value is uniformly distributed on [0, ai], with a1 ≥ · · · ≥ an. While offering a convenient analytical

illustration, this example also forces us to extend the main model to allow the bidders’ distributions
to have different supports. We argue that our formal results can be extended to cover such cases. For

this purpose, assumptions (A1) and (A2) can be interpreted as stipulating the concavity of functions

log (1− Fi) and logFi, respectively, which in particular requires the supports to be intervals, while
allowing function values −∞ outside the supports. Assumption (A3) then implies that the supports of
different bidders are ordered as we have specified.30

One substantive issue arising with different upper limits is that for some bidder k, the maximization
problem (14) may be solved by setting pk ≥ ak. According to the first-order condition (20), this occurs if

30. In some places in the proofs, expressions appear that have an fi in the denominator, which
is zero outside the support. However, all such expressions are then of the form 0/0 and the arguments
remain valid if we interpret this ratio as zero. For example, bidder i’s virtual value can be extended

above his support as νi (θi) = θi − 1−Fi(θi)
fi(θi)

= θi.
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and only if H(ak) ≥ νk(ak) = ak.31 Then, for each bidder j > k we also have H(ak) ≥ νj(ak), making it

optimal to set pj ≥ ak ≥ aj . Thus, in this case bidder k as well as all the weaker bidders are completely
excluded from the auction.

In our uniform-distribution example, if bidder k is not excluded from the auction, then we can

plug in fj(p) = 1/aj , Fj(p) = p/aj , and νj(p) = 2p− aj into formula (21), integrate the formula on the

interval [pk, pk−1], and multiply through by
∏
j<k aj to obtain

H(pk−1)pk−1
k−1 −H(pk)pk−1

k =

∫ pk−1

pk

pk−1

∑
j<k

(
2−

aj

p

) dp.

Integrating, using (20) to plug in H(pk) = νk(pk) = 2pk − ak and likewise H(pk−1), and rearranging

yields (
pk

pk−1

)k−1
 2

k
pk +

1

k − 1

∑
j<k

aj − ak

 =
2

k
pk−1 +

1

k − 1

∑
j<k

aj − ak−1. (34)

This kth-degree polynomial equation determines the reserve price pk.

Note that if bidder k is excluded, (34) is not equivalent to (20) and so is not the right formula for

pk. However, it is still the case that k is excluded if and only if the solution to (34) exceeds ak, since
the left-hand side of (34) is an increasing function of pk, and so bidder k is excluded if and only if this

left-hand side falls below the right-hand side at pk = ak.

For example, for two bidders, we have p1 = r1 = a1/2, and for k = 2 equation (34) reads

p2 [p2 + a1 − a2] = p2
1 = a2

1/4.

The positive root p2 of this quadratic equation is given by formula (22) in the text. Bidder 2 is excluded

if a2a1 ≤ a2
1/4, or a2 ≤ a1/4.
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