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Abstract

This supplementary file provides proofs for some auxiliary results
in Carroll and Segal (2018), as well as an additional example.

This document supplements the paper of Carroll and Segal (2018) on
robustly optimal auctions with unknown resale opportunities. It provides
proofs for Propositions 1, 2, and 3 stated in Section 5 of that paper. It
also includes a counterexample to show that without any assumptions on
the bidders’ value distributions, the optimal auction may not be of the ACV
form.

To avoid excessive repetition, we assume familiarity with the model from
the main paper (stated in Section 2), and all terminology and notation from
that paper. Only the propositions to be proved will be restated here. Also,
we will frequently need to make reference to equations and results from the
main paper. To avoid ambiguity, all sections, equations, results, and fig-
ures introduced in this document will be referenced with the prefix “OA”;
references without this prefix refer to the main paper.

∗See main paper for acknowledgments.
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OA-A Proof of Proposition 1

Proposition 1. Supppose that for each bidder i, there is a family of possible
distributions Fi ⊆ ∆([0, 1]), and the designer’s robust revenue maximization
problem is

max
Γ

(
inf

v,F1∈F1,...,Fn∈Fn

Rev(Γ, v, F1, . . . , Fn)

)
.

Assume that for each i, there is a “lowest” distribution Fi ∈ Fi that is
first-order stochastically dominated by every other F ′i ∈ Fi. Assume that
F1, . . . , Fn have continuous densities and satisfy assumptions (A1)–(A3).
Then the robust revenue maximization problem is solved by the ACV auc-
tion with reserves p1, . . . , pn constructed in (13)–(14).

To prove this, we will first show the following:

Lemma OA-1. Let Γ̄ =
〈
χ̄, ψ̄

〉
be the optimal ACV auction for distributions

F1, . . . , Fn as characterized in (13)–(14). If, for each i, distribution F ′i first-

order stochastically dominates distribution Fi, then R′n ≡ EF
′
1,...,F

′
n

θ̃

[∑
i ψ̄i(θ̃)

]
≥

EF1,...,Fn

θ̃

[∑
i ψ̄i(θ̃)

]
= R̄n.

Together with Theorem 2, the lemma implies that Rev(Γ̄, v, F ′1, . . . , F
′
n) ≥

R̄n for any resale procedure v. Since Theorem 3 establishes that any mecha-
nism Γ satisfies Rev(Γ, v, F1, . . . , Fn) ≤ R̄n under the Bertrand resale proce-
dure v, the argument of Lemma 1 establishes the proposition.

We prove the lemma by induction on the number n of bidders. For n = 0,
R′0 = R̄0 = 0. Now, suppose the inductive hypothesis holds for n−1 bidders.

Let z (θn) = EF1,...,Fn−1

θ̃−n

[∑
i ψ̄i(θn, θ̃−n)

]
and z′ (θn) = EF

′
1,...,F

′
n−1

θ̃−n

[∑
i ψ̄i(θn, θ̃−n)

]
.

Observe that:

• z (θn) ≤ z′ (θn) for each θn. Indeed, for θn < pn, z (θn) = R̄n−1 ≤
R
′
n−1 = z′ (θn) by the inductive hypothesis, and otherwise

z (θn) = EF1,...,Fn−1

θ̃−n

[
max

{
pn, (θn, θ̃−n)(2)

}]
≤ EF

′
1,...,F

′
n−1

θ̃−n

[
max

{
pn, (θn, θ̃−n)(2)

}]
= z′ (θn) .
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• z (θn) is a nondecreasing function. For this, note that z (θn) is inde-
pendent of θn when θn < pn and nondecreasing in θn when θn > pn.
But as θn moves across pn, z(θn) jumps from R̄n−1 to Rn−1(pn) +
pn
∏

j<n Fj(pn). (The argument is the same as the argument for (18),
the first-order condition for the optimal reserve pk.) Using (18) (which
was shown to hold in Lemma 2), we get

Rn−1(pn) + pn
∏
j<n

Fj(pn)− R̄n−1 = (pn − νn(pn))
∏
j<n

Fj(pn) ≥ 0

which means that the jump in z is upward, as needed.

Using the two observations, we see that

R
′

n = EF
′
n

θ̃n

[
z′(θ̃n)

]
≥ EF

′
n

θ̃n

[
z(θ̃n)

]
≥ EFn

θ̃n

[
z(θ̃n)

]
= R̄n,

establishing the inductive hypothesis for n.

OA-B Proof of Proposition 2

Proposition 2. Suppose the value distributions of the n bidders are regu-
lar. Under our worst-case resale procedure, any auction has a lower expected
revenue than the Vickrey auction with one added bidder n+ 1, provided that
the added bidder’s value distribution first-order stochastically dominates the
distributions of all other bidders.

For convenience, let θ̃
′
1, . . . , θ̃

′
n be n random variables, with distributions

F1, . . . , Fn, independent of θ̃1, . . . , θ̃n+1. We continue to write θ for the profile
(θ1, . . . , θn) (excluding θn+1). Also, for brevity we let i∗ = i∗(θ), and ĩ∗ for
the corresponding random variable.

The expected revenue from the optimal auction on the original n bidders
is at most the revenue from the relaxed problem, by maximizing (12), which
is simply

Eθ̃[max{ν ĩ∗(θ̃ĩ∗), 0}]

So it suffices to show this latter is bounded above by the revenue from Vickrey
with bidders 1, . . . , n+ 1.
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We have

E
[
max{ν ĩ∗(θ̃ĩ∗), 0}

]
≤ E

[
max{ν ĩ∗(θ̃ĩ∗), ν ĩ∗(θ̃

′
ĩ∗)}
]

= E
[
ν ĩ∗(θ̃ĩ∗) + 1

ν ĩ∗ (θ̃
′
ĩ∗ )≥ν ĩ∗ (θ̃ĩ∗ )

(
ν ĩ∗(θ̃

′
ĩ∗)− ν ĩ∗(θ̃ĩ∗)

)]
= E

[
ν ĩ∗(θ̃ĩ∗) + 1

θ̃
′
ĩ∗≥θ̃ĩ∗

(
ν ĩ∗(θ̃

′
ĩ∗)− ν ĩ∗(θ̃ĩ∗)

)]
= E

[
ν ĩ∗(θ̃ĩ∗) + 1

θ̃
′
ĩ∗≥θ̃ĩ∗

(
θ̃ĩ∗ − ν ĩ∗(θ̃ĩ∗)

)]
≤ E

[
ν ĩ∗(θ̃ĩ∗) + 1θ̃n+1≥θ̃ĩ∗

(
θ̃ĩ∗ − ν ĩ∗(θ̃ĩ∗)

)]
= E

[
1θ̃n+1<θ̃ĩ∗

ν ĩ∗(θ̃ĩ∗) + 1θ̃n+1≥θ̃ĩ∗
θ̃ĩ∗
]
.

We justify these calculations as follows:

• The first line holds because, conditional on θ, the random variable

νi∗(θ̃
′
i∗) has mean zero, and the function max{νi∗(θi∗), ·} is convex.

• The third line holds because each νi is an increasing function.

• The fourth line holds by conditioning on θ, and observing that
∫ 1

z
νi(θ

′
i)fi(θ

′
i) dθ

′
i =∫ 1

z
z fi(θ

′
i) dθ

′
i, and taking i = i∗, z = θi∗ .

• The fifth line holds because, conditional on θ, the event θ̃n+1 ≥ θi∗ is

at least as likely as θ̃
′
i∗ ≥ θi∗ (by first-order stochastic dominance).

Finally, the last line is simply the expected revenue from the Vickrey
auction on bidders 1, . . . , n+ 1: the first term inside the expectation reflects
the revenue from bidders 1, . . . , n (expressed in terms of virtual values as in
(12)), and the last term is the revenue from bidder n+ 1.

OA-C Proof of Proposition 3

Proposition 3.

(a) If all n bidders’ distributions are regular and Fi(rj) ≤ c < 1 for all i, j,
then the difference between the expected revenue from the optimal auc-
tion under worst-case resale and the expected revenue from the Vickrey
auction is at most n · cn−1.

4



(b) Let F , F̂ be regular distributions with respective twice-differentiable den-
sities f , f̂ such that f (1) , f̂ (1) > 0 and f ′ (1) /f (1) < f̂ ′ (1) /f̂ (1).
There is a constant c′ > 0 with the following property: if there are n/2
bidders drawn from distribution F and n/2 from distribution F̂ , the
expected revenue from the optimal Myerson auction (without resale)
exceeds that of the Vickrey auction by at least c′/n3.

Part (a): The revenue from the optimal auction under worst-case resale is
bounded above by the relaxed solution from Subsection 4.2. So it suffices to
show that the revenue from this relaxed solution exceeds the Vickrey revenue
by at most n · cn−1. The former can be calculated by assuming the relaxed
solution is implemented using threshold payments. Since each auction always
yields revenue at most 1, the difference between the two auctions’ expected
revenue is at most the probability of realizing a type profile θ for which the
relaxed solution yields higher revenue ex-post than Vickrey. This can happen
only when there is at most one bidder i with θi > ri; this in turn implies there
is at most one i with θi > maxj rj. For each i, the event that θi′ ≤ maxj rj
for all i′ 6= i has probability at most cn−1. Since there are n possible choices
of i, the bound n · cn−1 follows.

Part (b): Let ν(θi), ν̂(θi) be the virtual value functions corresponding
to the two distributions. Using the given condition, one can check that
ν (1) = ν̂ (1), ν ′ (1) = ν̂ ′ (1), while ν ′′ (1) > ν̂ ′′ (1). Hence, ν (θi) − ν̂ (θi) is
quadratic in 1 − θi, for θi near 1. Consequently, by taking a small enough
ε > 0, we can assume that

ν(θi)− ν̂(θ̂i) > ε(1− θi)2 (OA-1)

whenever
1− ε < θi < θ̂i < θi + ε2(1− θi)2.

Fix such an ε.
Let i∗∗(θ) denote the bidder with the highest virtual value at the type

profile θ. Since the revenue from an auction is given by the expected virtual
value of the winning bidder, in comparing the revenue from the Myerson auc-
tion (which awards the good to i∗∗(θ) whenever his virtual value is positive)
against the Vickrey auction (which awards to i∗(θ)), it suffices to show that
the virtual value of bidder i∗∗(θ) exceeds that of i∗(θ) by at least c′/n3 on
average.
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For any realization of θ, let θi∗[F ] denote the highest of the n/2 values
drawn from distribution F , and θi∗[F̂ ] similarly. Write ξ = 1 − θi∗[F ], and

similarly ξ̂.
Consider the probability that

(i) ξ ∈ (1/n− ε/n, 1/n); and moreover

(ii) ξ − ξ̂ ∈ (0, ε2ξ2).

By standard extreme value theory, as n→∞, the distributions of nξ and
nξ̂ converge to exponential distributions (see e.g. Falk, Hüsler, and Reiss
(2010), Theorem 2.1.1(ii) with β = −1). Event (i) is equivalent to nξ ∈
(1 − ε, 1), hence its probability is bounded below by a positive constant as
n → ∞. Similarly, one can write event (ii) as nξ̂ ∈ (nξ − ε2(nξ)2/n, nξ);
so conditional on (i), its probability is bounded below by a constant times
1/n. And when both (i) and (ii) hold, the bidder with highest value is i∗[F̂ ],
while the one with highest virtual value is i∗[F ], and (OA-1) implies that
their virtual values differ by an amount on the order of 1/n2. The assertion
follows.

OA-D Non-Optimality of ACV AuctionWith-

out Regularity

This final section gives an example to show that, if we make no regularity as-
sumptions on the distributions, then the robust-revenue-maximizing auction
may not be of the ACV form. Moreover, this example is symmetric. (We do
not know the optimal auction in this case; we simply show that one can do
better than the best ACV auction.)

Consider a distribution F on [0, 1], and two values r < s, satisfying the
following properties:

• The one-buyer revenue function R1 has two maxima, at r and s.

• There are just three points where the virtual value ν(θ) is zero, namely
r, s, and one in between (a local minimum of the revenue function).

• F (r) > 1/2.
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Clearly this can be constructed.
Suppose there are two bidders, with both values distributed according to

F . We claim that among all ACV auctions, the unique optimal auction is
the symmetric auction with p1 = p2 = s, yielding revenue R2 (s). Indeed,
first suppose in negation that an optimal ACV auction has p2 < p1. Then
local optimality with respect to p1 implies that either p1 = r or p1 = s.
In the former case, we cannot satisfy the first-order condition (18) for local
optimality of p2 < p1 = r, since its left-hand side is negative while its right-
hand side is positive. In the latter case, note that raising bidder 2’s reserve
price from p2 to p1 = s would raise the expected revenue by

F (p2) [R1 (s)−R1 (p2)] + 2

∫ s

p2

[R1 (s)−R1 (θ)] f (θ) dθ, (OA-2)

where the first term accounts for the change in expected revenue on bidder 2
when θ1 < p2, and the second term accounts for the change in expected rev-
enue on bidder 2 when θ1 ∈ [p2, s] and for the symmetric change in expected
revenue on bidder 1 when θ2 ∈ [p2, s]. Both terms are strictly positive since
R1 (θ) < R1 (s) for all θ < s, θ 6= r. Thus, the symmetric Vickrey auction
with reserve price s would be a strict improvement.

Next, note that the Vickrey auction with symmetric reserve price p > s
cannot be optimal, since the first-order condition for the reserve price to
maximize R2(p) is 2F (p)f(p)ν(p) = 0 implying ν(p) = 0. Finally, for the
symmetric Vickrey auction with reserve price p < s, raising the reserve price
to s would raise the expected revenue by

2F (p) [R1 (s)−R1 (p)] + 2

∫ s

p

[R1 (s)−R1 (θ)] f (θ) dθ, (OA-3)

with the first term accounting for the change in expected revenue on bidder
2 when θ1 < p, and symmetrically on bidder 1 when θ2 < p, and the second
term accounting for the change in expected revenue on bidder 2 when θ1 ∈
[p, s], and symmetrically on bidder 1 when θ2 ∈ [p, s]. Again, both terms are
strictly positive since R1 (θ) < R1 (s) for all θ < s, θ 6= r. Thus, the Vickrey
auction with reserve price s is the unique optimal ACV auction.

Now, we can perturb F slightly to make r be the unique maximum of R1,
while holding fixed the stationary points of F and still having both (OA-2)
and (OA-3) strictly positive, so that the Vickrey auction with reserve s is still
the unique optimal ACV auction. From now on we consider this perturbed
F .
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Note that the optimal ACV auction is now not described by (13)–(14)
(which requires, in particular, p1 = r). But more importantly, for this distri-
bution F , the seller can strictly improve upon the optimal ACV auction by
the auction using the following allocation rule (and threshold prices):

• If θ1 > θ2, then buyer 1 receives the good either if θ1 ≥ max{θ2, s}, or
if θ2 ≤ r ≤ θ1.

• If θ2 > θ1, the conditions for allocating to buyer 2 are symmetric.

Figure OA-1 shows the allocation rule, with the regions where the good
is allocated to bidder 1, bidder 2, and not at all (0).

0

0

r s

1

2

Figure OA-1: Allocation rule for alternative auction that outperforms ACV.

Note that if bidders tell the truth, the revenue from this auction differs
from that of the optimal ACV auction in two cases: when θ1 < r, then the
expected revenue from bidder 2 is R1(r) instead of R1(s), and similarly for
the expected revenue from bidder 1 when θ2 < r. Thus, the revenue of this
new auction exceeds that of the optimal ACV auction by

2F (r)(R1(r)−R1(s)) > 0.

So indeed this auction does strictly better.
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It remains to check that truthful bidding in this auction is (Bayesian)
incentive-compatible, for any resale procedure. By symmetry, it suffices to
check deviations by bidder 1. Overbidding is not profitable since it can cause
bidder 1 to win only in situations where the price he pays is higher than both
his actual value and bidder 2’s value. What about underbidding? Downward
deviations to any bid above s can never be profitable, even with resale; the
argument is the same as in the ACV auction. Downward deviations from a
true value above s to a bid between r and s cannot be better than bidding
exactly s, since the only change is that when θ2 ∈ (r, s), the good now goes
unsold instead of being sold to bidder 1. And downward deviations from a
bid in (r, s) to a bid in (r, s) have no effect. Likewise, downward deviations
from below r to below r have no effect.

Finally, consider downward deviations from a true value θ1 ≥ r to a bid
below r. These deviations can potentially be beneficial ex post, because they
may result in bidder 2 winning the good (and then bidder 1 maybe buying
it from him) when θ2 ∈ (r, s). However, the gain in any such instance is at
most θ1 − θ2 ≤ θ1 − r, so the total expected value of these gains is at most
(F (s)− F (r))(θ1 − r). Meanwhile, there is an expected loss of F (r)(θ1 − r),
resulting from the fact that whenever θ2 < r, the outcome changes from
bidder 1 winning the good at price r to no sale. Since F (r) > 1/2, clearly
F (r) > F (s)−F (r) which implies that the loss from deviation outweighs the
gain.

Note that this counterexample also shows that Ausubel and Cramton’s
(1999) “monotonicity in aggregate” is not actually a necessary condition for
incentive-compatibility with resale, as long as agents have no information
about each other’s values at the time of the auction.

References

[1] Ausubel, L. M., and P. Cramton (1999), “The Optimality of Being Ef-
ficient,” working paper, Department of Economics, University of Mary-
land, College Park.

[2] Carroll, G., and I. Segal (2018), “Robustly Optimal Auctions with Un-
known Resale Opportunities,” Review of Economic Studies, forthcom-
ing.

9
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