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Abstract

There are n agents who have von Neumann-Morgenstern utility functions on

a finite set of alternatives A. Each agent i’s utility function is known to lie in

the nonempty, convex, relatively open set Ui. Suppose L is a lottery on A that is

undominated, meaning that there is no other lottery that is guaranteed to Pareto

dominate L no matter what the true utility functions are. Then, there exist utility

functions ui ∈ Ui for which L is Pareto efficient. This result includes the ordinal

efficiency welfare theorem as a special case.
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1 Introduction

The purpose of this note is to prove an theorem on efficiency when agents’ preferences are

not perfectly known. Loosely put, the result says that when agents have expected-utility

preferences over lotteries, any lottery that is not guaranteed to be Pareto dominated by

some specific other lottery may in fact be Pareto efficient. To help provide context, we

begin by discussing a special case, the ordinal efficiency welfare theorem.

Let A be a finite set of possible policies, and suppose each of n agents, i = 1, . . . , n,

has a known preference ordering %i over these policies, where indifferences are allowed.

Given two lotteries L,L′ over A, we say that L′ ordinally dominates L if L′ first-order

stochastically dominates L with respect to every agent’s preference ordering, with strict

domination for at least one agent. That is, writing L(a) for the probability of a under

lottery L, we say that L′ ordinally dominates L if, for every agent i and policy a ∈ A,

∑

b %i a

L′(b) ≥
∑

b %i a

L(b)

and the inequality is strict for at least one choice of i, a. Equivalently, for every choice of

von Neumann-Morgenstern utilities for the agents consistent with the preference orderings

%i, L′ Pareto dominates L (in ex ante expected utility). We say that L is ordinally efficient

if it is not ordinally dominated by any other lottery. There has been much interest in

ordinal efficiency in the particular context of the random assignment problem, in which

there are n indivisible objects to be given out to the n agents, and the set A consists of all

n! possible assignments of objects to agents, e.g. [5, 2, 9]. However, the definition applies

much more generally.

The ordinal efficiency welfare theorem says that if L is ordinally efficient, then there

exists some choice of von Neumann-Morgenstern utility functions, consistent with the

preference orderings, for which L is Pareto efficient. This result was first proved by

McLennan [10] for the random assignment problem (though his proofs easily extend to

the general setting). Manea [8] gave another proof specific to the random assignment

problem.

The ordinal efficiency welfare theorem can be interpreted as follows. Suppose a social

planner knows that the agents evaluate lotteries according to expected utilities, but she

does not know the agents’ utility functions; she only knows each agent’s (ordinal) ranking

of the alternatives in A. A lottery L is ordinally dominated by L′ if L′ is guaranteed

to Pareto dominate L no matter what the true utility functions are. The theorem says
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that, if L is ordinally efficient (not dominated by any L′), then it may in fact be Pareto

efficient.

In this interpretation, each agent i has a set Ui of “plausible” utility functions, namely

those functions that are consistent with the ordering %i. Our result generalizes this theo-

rem by allowing freer specifications for the planner’s knowledge about agents’ preferences:

We allow each Ui to be any nonempty, convex, relatively open set. The result will again

be that, if there is no L′ that is guaranteed to Pareto dominate L for every choice of

utility functions ui ∈ Ui, then there exist utility functions ui ∈ Ui such that L is Pareto

efficient. This provides a justification for using undominatedness as a natural efficiency

criterion when preferences are incompletely known.

There are various situations where one might reasonably suppose that the planner’s

incomplete knowledge about an agent’s utility function consists of something other than

the agent’s ordinal ranking of alternatives. It could happen that even the ordinal ranking

is not fully known; for example, the planner might only know the agent’s top k choices

(as in the school choice mechanisms used by some school districts [1, 7, 12]). On the

other hand, some cardinal information might be available. For example, the agents may

have expressed preferences by making some pairwise choices between lotteries. Or there

might be a priori reasons to impose other restrictions on the plausible utility functions:

for instance, when allocating multiple objects to agents, where some of the objects are

identical, one might assume that agents have decreasing marginal utility for identical

goods.

The proof of our theorem uses the same separating-hyperplane machinery as in McLen-

nan.

2 The result

Now let’s formally state our result. Let A be a finite set, whose elements are called policies.

A utility function is a function u : A → R. Evidently the space of possible utility functions

can be identified with R|A|, so it makes sense, for example, to talk about convex sets of

utility functions. Let L(A) be the set of all lotteries (probability distributions) on A. If u

is a utility function and L a lottery on A, we can naturally define u(L) =
∑

a∈A L(a)u(a),

where L(a) is the probability assigned to a by L.

For each of n agents, i = 1, . . . , n, let Ui be a set of utility functions. We require that

Ui be nonempty, convex, and relatively open. (A subset of Euclidean space is relatively

open if it is open in the relative topology of an affine subspace containing it.) We say that
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a lottery L′ dominates lottery L (with respect to the Ui) if, for every choice of a utility

function ui ∈ Ui for each i, we have ui(L
′) ≥ ui(L) for all i, with strict inequality for some

i. 1

Theorem 1 Let A be a finite set, and U1, . . . , Un nonempty, convex, relatively open sets

of utility functions on A. Suppose L is a lottery on A that is not dominated by any lottery

L′. Then, there exist functions ui ∈ Ui and positive weights λi such that

L ∈ argmaxL̃∈L(A)

n∑
i=1

λiui(L̃),

that is, L is Pareto efficient in L(A).2

There is also a converse, which is trivial: if there exist functions ui ∈ Ui and weights

λi for which L maximizes the sum
∑

i λiui, then L is not dominated by any other lottery

L′.

Once again, we point out that the ordinal efficiency welfare theorem, as stated in the

introduction, is a special case of Theorem 1. Suppose that for each agent i, we are given

a preference relation %i, a weak ordering on A. Let Ui be the set of utility functions

consistent with %i: Ui = {ui : A → R | ui(a) ≥ ui(b) ⇔ a %i b}. One easily checks

that Ui is nonempty and convex. Ui is also relatively open, since it is an open subset

of the affine (in fact, linear) space {ui : A → R | ui(a) = ui(b) whenever a ∼i b}. It

is straightforward to check that ui(L
′) ≥ ui(L) for all ui ∈ Ui if and only if L′ weakly

stochastically dominates L with respect to the ordering %i, and ui(L
′) > ui(L) for all

ui if and only if L′ strictly stochastically dominates L with respect to %i. Therefore,

L′ dominates L (with respect to all the sets Ui) if and only if it ordinally dominates L

with respect to the preference orders %i. Consequently, we can apply Theorem 1 in this

context, and we recover the ordinal efficiency welfare theorem.

Threre are some interesting connections between Theorem 1 and the existing literature

on multi-utility representations of incomplete preferences over lotteries. We discuss these

connections in the concluding section.

1Or, equivalently: for all i and all ui ∈ Ui, we have ui(L′) ≥ ui(L); and there is some i such that for
all ui ∈ Ui, ui(L′) > ui(L).

2The referee points out that this form of optimality is properly credited to Negishi [11]. In our context,
Negishi optimality for some positive weights λi is equivalent to Pareto efficiency if the true utility functions
are indeed the ui.
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3 The proof

We need a little bit of geometric machinery, for which we largely follow the exposition in

McLennan [10]. For sets S, T ⊆ Rd, let S + T = {s + t | s ∈ S, t ∈ T}.
A polyhedron in Rd is a subset of Rd that can be represented as the intersection of

finitely many closed half-spaces. A polytope is the convex hull of a finite set of points in

Rd. A polyhedral cone is a set of the form {a1x1 + · · · + arxr | ai ≥ 0}, where x1, . . . , xr

are some fixed elements of Rd. (Taking r = 0, the set {0} is a polyhedral cone.) The

“main theorem” on polyhedra (credited to Motzkin in [13]) states:

Theorem 2 [13, p. 30] A nonempty set P ⊆ Rd is a polyhedron if and only if it is of the

form Q + C, where Q is a polytope and C is a polyhedral cone.

If S ⊆ Rd, the affine hull of S is the set of all affine combinations of elements of S:

aff(S) = {a1x1 + · · ·+ arxr | xi ∈ S; a1 + · · ·+ ar = 1}.

Equivalently, this is the smallest affine space containing S. For any convex S ⊆ Rd, the

relative interior of S is the interior of S in the relative topology of aff(S). S is relatively

open if and only if it equals its own relative interior.

We will need a strengthened version of the separating hyperplane theorem for polyhe-

dra:

Lemma 3 Let P be a polyhedron and x ∈ P . Suppose x is not in the relative interior

of P . Then there is a hyperplane H containing x, such that P is contained in one of the

closed half-spaces bounded by H, and moreover x lies in the relative interior of P ∩H.

This follows immediately from Lemma 2 and Theorem 2 of McLennan [10]. (It can

also be proven using classical facts about the face lattice of a polytope, see [13, pp. 51-61].)

We will use this result in a way similar to the second proof of the ordinal efficiency

welfare theorem in [10] (which is credited to Zhou). We will also need a simple lemma on

relatively open sets:

Lemma 4 (a) If U ⊆ Rd is relatively open, then the set U+ = {λu | λ > 0, u ∈ U} is

also relatively open. If U is convex, then so is U+.

(b) If U1, . . . , Un ⊆ Rd are relatively open, then U1 + · · ·+ Un is also relatively open. If

U1, . . . , Un are convex, then so is U1 + · · ·+ Un.
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The proof of this lemma is straightforward and is omitted.

The essence of the proof of Theorem 1 lies in the following geometric result. Here the

symbol · denotes the usual Euclidean inner product.

Lemma 5 Let U, V ⊆ Rd be nonempty convex sets such that U is relatively open and V

is a polyhedron. Let v0 ∈ V . Suppose that for every v ∈ V , there exists u ∈ U such that

u · (v− v0) ≤ 0. Then, there exists a single u ∈ U such that u · (v− v0) ≤ 0 for all v ∈ V .

Before proving this result, we will first show how it is used to prove the main theorem.

Notice that we can think of lotteries on A and utility functions on A both as elements of

R|A|, in which case the expected utility u(L) equals the inner product u · L.

Proof of Theorem 1: Let V = L(A), the set of lotteries over A. V can be naturally

represented as a polytope in R|A|, so is a polyhedron by Theorem 2. Let U ⊆ R|A| be the

set of all Pareto-weighted sums of plausible utility functions:

U = {λ1u1 + · · ·+ λnun | λi > 0; ui ∈ Ui}.

U is nonempty because each Ui is. And each Ui is convex and relatively open, so by

Lemma 4, so is U .

Take v0 ∈ V to be the lottery L that is assumed undominated. For every v ∈ V , the

fact that v does not dominate v0 means that there are utility functions ui ∈ Ui such that

either ui · v0 > ui · v for some i, or ui · v0 = ui · v for all i. In the former case, choose

arbitrary uj ∈ Uj for j 6= i and let u =
∑

j λjuj where λi is sufficiently large relative to all

the other λj; then u ·v0 > u ·v. In the latter case, let u =
∑

j uj and we have u ·v0 = u ·v.

Either way, we have u ∈ U such that u · (v − v0) ≤ 0.

So we have verified all the hypotheses of Lemma 5. Therefore, there exists some u ∈ U

such that u · v ≤ u · v0 for all v ∈ V . Expressing things back in terms of utility functions,

with u =
∑

i λiui, this says exactly that
∑

i λiui(L
′) ≤ ∑

i λiui(L) for all lotteries L′ —

the desired result. ¤
It remains to prove Lemma 5.

The idea behind the proof is as follows. We can think of U as a set of linear utility

functions on Rd. Let W be the set of utility functions for which v0 is optimal in V . We

wish to show that U and W intersect. If they fail to intersect, we can use the separating

hyperplane theorem to find a direction x that provides decreasing utility under every

function in U but increasing utility under every function in W . The former property

implies that starting at v0 and walking along the ray with direction −x takes us outside
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of V . But then we can use another hyperplane separating V from this ray to produce a

utility function y ∈ W for which x is a direction of decreasing utility — contradicting the

construction of x.

Proof of Lemma 5: By translating V , we may assume that v0 = 0, so we will do so

henceforth. We first prove the lemma under the extra assumption that U is not contained

in any proper linear subspace of Rd.

Let W = {u | u · v ≤ 0 for all v ∈ V }. Note that W is nonempty, because it contains

0, and it is convex. Our goal is to show that U ∩W is nonempty.

Suppose U ∩ W is empty. By the usual separating hyperplane theorem, there is a

hyperplane separating U from W — that is, there exists some nonzero vector x ∈ Rd and

some constant c such that u · x ≤ c for all u ∈ U , and u · x ≥ c for all u ∈ W . From the

facts that W is invariant under positive scalar multiplication and 0 ∈ W , it follows that

we may take c = 0.

Now we consider two cases, depending on whether or not V contains any negative

multiple of x.

• Suppose ax /∈ V for all real a < 0. Let V ′ = V + {ax | a ≥ 0}. Then V ′ is a

polyhedron. (Proof: By Theorem 2, V = Q + C where Q is a polytope and C is

a polyhedral cone. Then C ′ = C + {ax | a ≥ 0} is again a polyhedral cone, and

applying Theorem 2 again gives that V ′ = Q+C ′ is a polyhedron.) And 0 ∈ V ⊆ V ′.

Moreover, the affine hull of V ′ contains the line L = {ax | a ∈ R}, and V ′ does

not contain any neighborhood of 0 in L (because, by assumption, V contains no

negative multiple of x). So, 0 is not in the relative interior of V ′.

Therefore, by Lemma 3, there is some hyperplane H passing through 0 such that

V ′ lies on one side of H, and 0 lies in the relative interior of V ′ ∩H. This implies

x /∈ H: otherwise 0 could not be in the relative interior of V ′ ∩ H, by the same

reasoning as in the preceding paragraph. Now let y be a vector perpendicular to H,

signed so that v · y ≤ 0 for v ∈ V ′. In particular, x ∈ V ′ and x /∈ H means that in

fact x · y < 0. On the other hand, we know that for all v ∈ V ⊆ V ′, v · y ≤ 0, so

y ∈ W . This implies x · y ≥ 0, by the construction of x. So we have x · y < 0 and

x · y ≥ 0 — a contradiction.

• Suppose there does exist a < 0 with ax ∈ V . Now, the hypotheses of the lemma

imply that there exists u ∈ U with u · ax ≤ 0, therefore u · x ≥ 0. But we also know

u · x ≤ 0 since u ∈ U ; therefore u · x = 0.
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By assumption, U is not contained in the hyperplane through 0 perpendicular to

x, so aff(U) contains some vector u′ with u′ · x 6= 0. Since U is relatively open,

u + ε(u′ − u) ∈ U as long as |ε| is sufficiently small. But by choosing ε small and

of the appropriate sign so that εu′ · x > 0, we get (u + ε(u′ − u)) · x > 0. This

contradicts the fact that every element of U has nonpositive inner product with x.

So in both cases, we get a contradiction. This completes the proof of Lemma 5 under

the assumption that U is not contained in any proper linear subspace of Rd.

For the general case, let S be the linear span of U , let π : Rd → S be the orthogonal

projection, and let V = π(V ). By Theorem 2, write V = Q + C where Q is a polytope

and C a polyhedral cone; one easily sees that π(Q) is a polytope and π(C) is a polyhedral

cone, so V = π(Q) + π(C) is again a polyhedron. For any v ∈ V , choose v with π(v) = v.

There exists u ∈ U with u · v ≤ 0. But the definition of π gives u · (v − π(v)) = 0, so

u ·v = u ·v ≤ 0. It follows that the hypotheses of the lemma hold with U, V ⊆ Rd replaced

by U, V ⊆ S. And now U is not contained in any proper linear subspace of S, so the case

we have already proven applies: there exists u ∈ U such that u · v ≤ 0 for all v ∈ V .

Therefore, for any v ∈ V , we have u · v = u · π(v) ≤ 0, as desired.

¤

4 Comments

None of the hypotheses of Theorem 1 is dispensable. To see that the convexity assumption

is required, let A = {a, b}, and consider just one agent, with U1 = {u1 | u1(a) 6= u1(b)}.
Then the lottery L = (1/2, 1/2) placing probability 1/2 on each of a and b is undominated

— for any L′ 6= L, L is preferred by a utility function that favors the policy that is less

likely under L′. But there is no one utility function in U1 for which L is optimal.

To see that relative openness is required, let A = {a, b, c}, and consider one agent with

U1 = {u1 | u1(a) < u1(b) or u1(a) = u1(b) < u1(c)}.

This set is convex, but not relatively open. To see that the conclusion of Theorem 1 fails

in this case, check that the lottery L = (1, 0, 0) is undominated. Indeed, consider any

L′ 6= L. If L′ places positive probability on c, then by choosing u1 with u1(a) < u1(b)

and u1(c) sufficiently low, we get u1(L
′) < u1(L). And if L′ places zero probability on

c, then we can choose u1 with u1(a) = u1(b), which ensures indifference between L and

L′. Thus, in neither case can L′ dominate L. However, for any choice of u1 ∈ U1 there is
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some lottery L′ which is preferred to L: if u1(a) < u1(b) then take L′ = (0, 1, 0), and if

u1(a) = u1(b) < u1(c) then take L′ = (0, 0, 1).

It is possible to drop the relative openness hypothesis of Theorem 1 by strengthening

the non-dominance hypothesis. Namely, suppose each set Ui is merely nonempty and

convex, and for each lottery L′ 6= L there exist some i and ui ∈ Ui with ui(L
′) < ui(L).

Then the conclusion of Theorem 1 holds. The proof is almost the same as that we have

given: in the proof of (the analogue of) Lemma 5, in the case where V contains ax for

some a < 0, the hypothesis implies that U contains some u with u · ax < 0, and the

contradiction with u · x ≤ 0 is reached immediately.

The hypothesis that A is finite is also necessary, since the application of Lemma 5

requires the hypothesis that V is a polyhedron. For a counterexample with infinitely

many policies, let A be the interval [0, 1] ⊆ R, and consider one agent with

U1 = {ua,b | a, b > 0} where ua,b(x) = ax− bx2.

We can take L(A) to be (say) the space of all Borel probability measures on A. The

lottery L putting probability 1 on the policy 0 is undominated: For any other lottery L′,

we have EL′ [x], EL′ [x
2] > 0, where EL′ denotes expectation with respect to L′. So there

exist a, b > 0 with EL′ [ax− bx2] < 0, showing that L′ does not dominate L. However, for

any choice of u1 = ua,b, we can consider the lottery L′ which puts probability 1 on some

x with 0 < x < a/b, and then u1 prefers L′ over L.

As mentioned above, Theorem 1 is related to the literature on representing incom-

plete preferences over lotteries, pioneered by Aumann [3, 4] and recently placed on firm

foundations by Dubra, Maccheroni, and Ok [6]. We have here taken the sets of utility

functions as primitive; by contrast, that literature takes incomplete preference relations

over lotteries as primitive and derives utility functions from them. In particular, [6] shows

that a reflexive, transitive (but not necessarily complete) preference relation % on L(A),

satisfying independence and continuity axioms, can be represented by a set of utility func-

tions on A, such that L′ % L if and only if u(L′) ≥ u(L) for every u in the set; and this

representation is unique up to appropriately defined equivalence. The connections with

our work are twofold.

First, as suggested by the referee, an alternative proof of Theorem 1 can be obtained

via these results. Define a preference relation % on L(A) by L′ % L if either L′ dominates

L, or ui(L
′) = ui(L) for all i and ui ∈ Ui. Theorem B of [4] shows that if L is undominated,

then there is a linear utility function u on L such that L maximizes u. By applying the
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uniqueness theorem of [6], one can then show that u is representable in the form
∑

i λiui,

although a little extra work is needed to show that the λi are strictly positive. This proof

is ultimately not so different from ours, since the results of [4] and [6] are proven using

similar separation arguments. We have chosen not to present this alternative proof here

in favor of a more self-contained approach, but the details are available from the author.

Second, our Theorem 1 can be easily translated into a context where preference orders

are taken as the primitives. Suppose each agent i has an (incomplete) preference relation

%i on L(A) satisfying the independence and continuity axioms, and suppose L is a lottery

that is not dominated with respect to these preference relations. Applying the results of

[6], we can find a maximal set U i of utility functions that represents %i, and each U i is

convex. Let Ui be the relative interior of U i and apply Theorem 1, then translate the

utility functions ui back into preference orders %′
i. We thus obtain completions %′

i of the

relations %i, again satisfying independence and continuity, such that L is Pareto efficient

with respect to the %′
i. Moreover, relative interiority ensures that these completions

preserve strict preference: if L′ Âi L then L′ Â′i L.

Finally, it is worth mentioning that the problem we have considered in this note can

be viewed as a special case of a more general problem: Given a set C of choices and sets

U1, . . . , Un of plausible utility functions over C for agents 1, . . . , n respectively, suppose

some choice c ∈ C has the property that no other choice c′ is guaranteed to Pareto

dominate c. What conditions on C and the Ui suffice to ensure that there must exist

utility functions ui ∈ Ui for which c is Pareto efficient? (Even more generally, one can

again ask this question when the Ui are sets of incomplete preference relations rather than

utility functions.)

We have addressed this problem in the context of von Neumann-Morgenstern utility

functions over lotteries, but it would be interesting to find non-expected utility models,

or more general social choice models, in which analogous results hold. Since the approach

used in this paper depends crucially on linearity, it seems that attacking more general

models would require other techniques.
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