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This Supplemental Material contains additional results and examples. Section S-1

gives details about the connection between XPE and SPE outcomes that was overviewed

briefly in Section 5.4 of the main paper. Section S-2 provides versions of the counterex-

amples from Section 6 that have a stationary structure.

S-1 Details of XPE-SPE connection

We flesh out here the results described in Section 5.4. Throughout this section, we assume

for simplicity that A is finite, i.e., the set of stage games and the action spaces are all

finite.

We first consider the setting where the long-run player has expected utility with re-

spect to some belief about the evolution of the stage games. We start by developing the

formalism.

The long-run player’s belief is described by a stage game process, which consists of

a specification of π(G0,...,Gt) ∈ ∆(G) for each initial history of stage games (G0, . . . , Gt),

determining the distribution over Gt+1 given the previous realizations. We denote such

a process by π.1 Histories and strategies are defined exactly as in the main model. At

any history of stage games, the transition probabilities given by π recursively determine

1Alternatively, we could define a stage game process directly as an ex-ante distribution over environ-
ments E, but then we would need to add a full-support assumption to avoid the difficulty of defining
expectations about the future stage games at probability-zero histories.
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a conditional distribution over (Gt+1, Gt+2, . . .), which allows us to define the expected

payoffs from a strategy profile at any history (with the understanding that the public ran-

dom signals (ω0, ω1, . . .) are drawn independently of the stage game transitions). Strategy

profile s is an SPE for π if, at each history, no player can improve his expected payoff by

deviating.

The definitions of realizable (and full) outcomes, and strategies supporting such out-

comes, are exactly as in the main text. Then, the statement that s supports the realizable

outcome (E, z) can be interpreted as saying that z describes the actions played conditional

on E realizing.

Evidently, any strategy profile that is an XPE is an SPE for any stage game process:

since deviating can never increase the payoff in any environment, it cannot increase the

payoff in expectation either. A fortiori, any XPE-supportable outcome is SPE-supportable

for every stage game process. Below is the example showing that the converse is not true.

Example S-1.1. Consider two possible stage games, G and G′, as shown in Figure S-1.

As with Figure 3 in the main text, part (a) presents them in the usual matrix form, while

part (b) just shows the values of u and û on the action profiles in A∗(G), A∗(G′).

G :

a b c d
a 24, 1 0, 0 0, 0 −22, 0
b 40, 0 8, 1 0, 0 −40, 0
c 0, 0 15, 0 0, 1 −40, 0
d 0, 0 0, 0 0, 0 −40, 1

G′ :

e f
e 16, 1 0, 0
f 16, 0 0, 1

(a)

G :
aa bb cc dd

u 24 8 0 −40
û 40 15 0 −22

G′ :
ee ff

u 16 0
û 16 0

(b)

Figure S-1: Example with a realizable outcome that is supportable in SPE for any stage
game process, but not supportable in XPE.

We take the discount factor δ = 1/2. This leads to w∗ = 16, A∗(G,w∗) = {aa, bb, cc}
and A∗(G′, w∗) = A∗(G′) = {ee, ff}. In particular, û(a(G)) = û(a(G′)) = 0.

Consider the deterministic realizable outcome in which G arises every period, and the

action profiles played are (bb, cc, bb, aa, aa, aa, aa, . . .). This outcome does not satisfy (5.2)
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with t = 0, t = 2, so it cannot be supported in XPE. However, we claim that it can always

be supported in SPE for any stage game process π. To see this, write q for the probability

of G2 = G given that (G0, G1) = (G,G), and consider two cases:

Case 1: q ≤ 1/2.

Consider the following strategy profile. For the “on-path” actions (as long as there

have been no deviations), as long as G has arisen in every period, play according to the

target outcome; once G′ realizes, play ee, and then play either aa or ee in every subsequent

period. If there is ever a deviation by player 1, play the punishment actions cc or ff in

every subsequent period. (Further deviations can be ignored.)

Let us check that there is never an incentive to deviate. During the punishment phase,

there is no gain from deviating. During the on-path phase, if G′ has ever arisen, or if only

G has ever arisen and the current period is t ≥ 2, then the deviation brings a short-run

gain of at most 16 but a loss of at least 16 in each subsequent period, so is not optimal.

If only G has ever arisen and t = 1, then there is no myopic gain, only a subsequent loss.

This leaves only the case t = 0, when playing G in the initial period. The myopic gain

is 7. We consider two possibilities:

• Conditional on G1 = G′, the deviation in period 0 leads to a loss of at least 16 in

each subsequent period, so a loss overall.

• Conditional on G1 = G, the punishment entails no loss in period 1, but it entails a

loss in period 2 of either 8 or 16 depending on whether G2 = G or G′, and then a

loss of at least 16 in every subsequent period. Hence, the total net gain, in period-0

payoff terms, is at most

(1− δ)[7− δ2 · (q · 8 + (1− q) · 16)− (δ3 + δ4 + · · · ) · 16] =

(
1

2

)
[7− (4− 2q)− 4] ≤ 0.

Case 2: q ≥ 1/2.

In this case, we first consider the following strategy profile, call it sd, for the subgame

from period 1 onwards: If G1 = G, we play dd in period 1, and then on-path play aa

or ee in all subsequent periods. If there is ever a deviation, punish using cc or ff in all

subsequent periods (and ignore further deviations). If G1 = G′, play ff in period 1, and

then cc or ff in all subsequent periods (and ignore deviations).

We claim that sd is an SPE of the subgame starting in period 1 conditional on G0 = G.

There is no incentive to deviate whenever cc, ee, or ff is specified. When aa is indicated,

deviating brings a short-run gain of at most 16 and a loss at least 16 in each subsequent
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period. This leaves us only to check the incentive to deviate from d in period 1 when

G1 = G. This deviation brings an immediate gain of 18, and a loss of at least 16 in

each subsequent period, including a loss of 24 in period 2 if G2 = G (which happens with

probability q), hence an overall net gain at most

(1− δ)[18− δ · (q · 24 + (1− q) · 16)− (δ2 + δ3 + · · · ) · 16] =

(
1

2

)
[18− (8 + 4q)− 8] ≤ 0.

With this in mind, we consider the following strategy profile for the overall game.

On-path actions are as in Case 1. A deviation in period 0, if G0 = G, is punished by

switching to sd in subsequent periods. Any other deviation is punished by playing cc or

ff in all subsequent periods (and further deviations are ignored).

As in Case 1, it is easy to check there is no incentive to deviate at all histories except

at the initial period when playing G. For this last, the short-run gain from deviating is

7. Conditional on G1 = G′, the loss in every period from 1 onward is at least 16, so the

deviation is not beneficial. And conditional on G1 = G, the loss in period 1 is 40 and

there is no further gain except possibly of 16 in period 2 (if G2 = G), so the net effect is

at best (1− δ)[7 + δ · (−40) + δ2 · 16] < 0.

4

We now proceed to broaden the allowed preferences of the long-run player to accom-

modate ambiguity aversion. We adapt the dynamic variational preferences of Maccheroni,

Marinacci and Rustichini (2006) to our setting. Such preferences are parameterized by a

dynamic ambiguity index c, which specifies, for each t ≥ 0 and each initial history of stage

games (G0, . . . , Gt), a function c(G0,...,Gt) : ∆(G∞) → R ∪ {∞} that is convex, bounded

below, and not everywhere infinite.

Given a dynamic ambiguity index c, at any history ht = (G0, ω0, a0; . . . ;Gt, ωt), we

define the subgame payoff for a strategy profile s by

U(s|c, ht) = (1− δ) inf
ψ∈∆(G∞)

(
Eψ

[
∞∑
t′=t

δt
′−tu(at

′
)

]
+ c(G0,...,Gt)(ψ)

)
. (S-1)

Here, the expectation is with respect to future stage games (Gt+1, Gt+2, . . .) drawn from

distribution ψ and signals (ωt+1, ωt+2, . . .) drawn independently U [0, 1], and at
′

are the

actions played by following s starting at ht, as usual. (In particular, while we allow

ambiguity over the stage games, the public randomization device remains unambiguous.)

Note that expected utility with respect to a particular stage game process π is a special
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case of such preferences, where we simply take c(G0,...,Gt)(ψ) to be 0 if ψ coincides with

the distribution over future stage games generated by π after (G0, . . . , Gt), and ∞ for

any other ψ. Other commonly-studied special cases include maxmin utility with multiple

priors (Epstein and Schneider, 2003) and multiplier preferences (Hansen and Sargent,

2001).

We then say that s is an SPE for c if, for every history ht and any possible deviation

s′1, U(s|c, ht) ≥ U(s′1, s−1|c, ht), and the short-run players’ incentives are always satisfied.

Let us also define a one-shot SPE for c by the same conditions except that we require

U(s|c, ht) ≥ U(s′1, s−1|c, ht) only for strategies s′1 that coincide with s1 at every history

except ht.

Preferences (S-1) are not dynamically consistent in general, and therefore the one-

shot deviation principle need not apply: a one-shot SPE may not be an SPE.2 However,

it remains the case that if s is an XPE then it is also an SPE (and not just a one-shot

SPE) for any such preferences. This follows since a deviation from s1 to any alternate

strategy s′1 can never increase the expression inside the infimum for any particular ψ,

and therefore cannot increase the value of the infimum. This observation is also made by

Krasikov and Lamba (2023).

With this broader class of preferences, we do have our desired “converse” result: any

outcome that is supportable in SPE for all preferences of the form (S-1) is in fact support-

able in XPE. Moreover, this result holds even if SPE is relaxed to one-shot SPE; thus, it

is not relying on the dynamic inconsistency as a device to rule out potential SPE’s.

Theorem S-1. If a realizable outcome (E•, z) is not supported by any XPE, then there

exists a dynamic ambiguity index c such that (E•, z) is not supported by any one-shot SPE

for c.

Proof. Write E• = (G0
•, G

1
•, . . .). Let w0, w1, . . . be the sequence from Lemma 4.3.

By Theorem 5.1, z must violate either (5.1) or (5.2). The former case is easy to

dispose of: In this case, there exist some t and ω0,...,t such that at = z(ω0,...,t) satisfies

û(at)−u(at) > δ
1−δwk for some k. (Or one of the short-run players’ incentives is violated,

but then our conclusion is immediate.) Lemma 4.4 gives an environment Ẽ = (G̃0, G̃1, . . .)

in which any two SPE payoffs differ by less than wk. Consider the environment E =

(G0
•, G

1
•, . . . , G

t
•, G̃

0, G̃1, G̃2, . . .). The proof of Lemma 4.5 shows that, in any SPE for this

2Maccheroni, Marinacci and Rustichini (2006) do identify a subclass of dynamic variational preferences
that are dynamically consistent. However, this subclass is generally incompatible with our maintained
assumption that future stage games are independent of future random signals; and if we were to drop
this assumption, we would lose the result that every XPE is always an SPE.
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environment, at can never be played at time t. So our conclusion follows, with c actually

given by expected utility for the (degenerate) stage game process that always follows E.

This leaves us with the case where (5.2) is violated for some t < t and ω0,...,t. Again,

(5.2) will remain violated if its right side is replaced by δt+1−t

1−δ wk for large enough k. Also,

our finiteness assumption implies that for all G ∈ G we have A∗(G,wk) = A∗(G,w∗) for

k large enough, so assume this holds as well. As above, let Ẽ = (G̃0, G̃1, . . .) be the

environment given by Lemma 4.4 for wk. Let Ũ be the infimum of payoffs of SPE’s for Ẽ,

so by the lemma, any SPE for Ẽ has payoff at most Ũ + wk. Also, write G for the stage

game that was Gk+1 in the proof of Lemma 4.4, so that B(wk;G) < wk+1 < wk.

We construct the ambiguity index c as follows:

• For each t > t and any (G0, . . . , Gt), let c(G0,...,Gt) be the function that assigns value

0 to ψ if ψ places probability 1 on the future stage games (Gt+1, Gt+2, Gt+3, . . .)

being equal to (G̃t−t, G̃t−t+1, G̃t−t+2, . . .), and assigns ∞ to any other ψ.

• For each t ≤ t and any (G0, . . . , Gt), let c(G0,...,Gt) be the function that assigns ∞
to ψ if ψ places positive probability on Gt′ 6= G̃t′−t−1 for some t′ > t, and otherwise

assigns ψ a value equal to −Eψ
[∑t

t′=t δ
t′−tû(a(Gt′))

]
. (Note that this sum includes

a term for Gt, which is already determined by the history, as well as terms for future

stage games drawn from ψ.)

This function is indeed convex, since it is finite-valued only for a convex set of ψ’s

and is affine on this set.

The affineness for t ≤ t means that the infimum in (S-1) is attained at a corner of the

set of possible ψ’s, which allows us to simplify (S-1) as follows. Given history ht, say that

an environment E = (G0, G1, . . .) is valid for ht if the stage games of E from time 0 to

t agree with those of ht and the stage games from t + 1 onward are (G̃0, G̃1, . . .). (The

intervening stage games may be arbitrary.) Then, for t ≤ t,

U(s|c, ht) = min
E valid for ht

(
U(s|E, ht)− (1− δ)

t∑
t′=t

δt
′−tû(a(Gt′))

)
. (S-2)

Denote the minimand in (S-2) as Ǔ(s|E, ht), and note for future reference the recursion

Ǔ(s|E, ht) = (1− δ)(u(s(ht))− û(a(Gt))) + δEt[Ǔ(s|E, (ht, s(ht), Gt+1, ωt+1))] (S-3)

when t < t.
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Let s be any one-shot SPE. At any history at time t, the continuation game starting

in the next period is expected to deterministically follow the environment Ẽ, and so

continuation play will be an SPE for this environment. Now we make the following claim:

for any t ≤ t, at any history ht, ending in any stage game Gt, we have s(ht) ∈ A∗(Gt, wk),

and U(s|c, ht) ∈ [δt+1−tŨ , δt+1−tŨ +B(wk;G
t)].

We show this claim by downward induction on t. Suppose the claim holds for all times

from t+ 1 to t (this hypothesis is vacuous in the base case t = t). We prove that it holds

for t. Consider any time-t history ht, ending in some stage game Gt. Consider the specific

valid environment in which G realizes at every date t + 1, . . . , t (again, if t = t there are

no such dates). Applying this particular environment in (S-2), we have

U(s|c, ht) ≤ (1− δ)

(
∞∑
t′=t

δt
′−tEt[u(at

′
)]−

t∑
t′=t

δt
′−tû(a(Gt′))

)

= (1− δ)

(
(u(at)− û(a(Gt))) +

t∑
t′=t+1

δt
′−t
(
Et[u(at

′
)]− û(a(G))

))
+δt+1−tEt[U(s|c, ht+1)].

Since each at
′

for t < t′ ≤ t always lies in A∗(G,wk) by the induction hypothesis, each

term
(
Et[u(at

′
)]− û(a(G))

)
is at most (B(wk;G)− δwk)/(1− δ) < wk; and the final term

is at most δt+1−t(Ũ + wk) because continuation play starting at time t + 1 must be an

SPE for Ẽ. Combining gives

U(s|c, ht) ≤ (1− δ)(u(at)− û(a(Gt))) + (δ − δt+1−t)wk + δt+1−t(Ũ + wk). (S-4)

Meanwhile, consider the strategy s′1 that myopically deviates at ht and follows s1

everywhere else. Still writing at = s(ht), we have, for any valid environment E, that

Ǔ(s′1, s−1|E, ht) ≥ (1− δ)(û(at)− û(a(Gt))) + δ · δt+1−(t+1)Ũ ,

where if t = t the last term follows from the lower bound for SPE payoffs in environment

Ẽ, and otherwise it comes from (S-3) and the induction hypothesis for the continuation

payoffs from time t+ 1 onward. Since this holds for each E, we have

U(s′1, s−1|c, ht) ≥ (1− δ)(û(at)− û(a(Gt))) + δt+1−tŨ . (S-5)

Since s is a one-shot SPE, U(s|c, ht) ≥ U(s′1, s−1|c, ht); combining with (S-4) and (S-5)
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and rearranging gives

(1− δ)(û(at)− u(at)) ≤ δwk.

Consequently, at ∈ A∗(Gt, wk), giving the first part of the claim for t. As for the second

part, now that at ∈ A∗(Gt, wk) = A∗(Gt, w∗), we know û(at)− û(a(Gt)) ≥ 0 so that (S-5)

gives the lower bound, and likewise (1− δ)(u(at)− û(a(Gt))) + δwk ≤ B(wk;G
t) so that

(S-4) gives the upper bound.

This completes the proof of the claim.

Now consider the particular history ht = (G0
•, ω

0, a0; . . . ;Gt
•, ωt), where the stage

games so far are as in the target environment E•, the random signals are those for which

(5.2) is violated, and the actions so far are as specified by z. Suppose the one-shot SPE s

supports (E•, z). Consider the valid environment E = (G0
•, . . . , G

t
•, G̃

0, G̃1, . . .). We have

U(s|c, ht) ≤ Ǔ(s|E, ht) = (1− δ)

 t∑
t=t

δt−t
(
Et[u(at)]− û(a(Gt

•))
)

+
∞∑

t=t+1

δt−tEt[u(at)]


(where the future actions at are as generated by s)

< (1− δ)(û(at)− û(a(Gt
•)))− δt+1−twk + (1− δ)

∞∑
t=t+1

δt−tEt[u(at)]

by applying the assumed violation of (5.2) (with the right side replaced by δt+1−t

1−δ wk)

≤ (1− δ)(û(at)− û(a(Gt
•)))− δt+1−twk + δt+1−t(Ũ + wk)

since play from period t+ 1 onward is an SPE of Ẽ and so has payoff at most Ũ + wk.

On the other hand, consider the strategy s′1 given by a one-shot optimal deviation at

ht. For any valid environment E, applying (S-3) and the claim for the continuation payoff

from date t+ 1, we have

Ǔ(s′1, s−1|E, ht) ≥ (1− δ)(û(at)− û(a(Gt
•))) + δ · δt+1−(t+1)Ũ .

Since this holds for any E, we have U(s′1, s−1|c, ht) ≥ (1−δ)(û(at)−û(a(Gt
•)))+δt+1−tŨ >

U(s|c, ht). So the deviation at date t is strictly profitable, a contradiction.

Finally, our converse result holds for full outcomes as well:
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Theorem S-2. If a full outcome z is not supported by any XPE, then there exists a

dynamic ambiguity index c such that z is not supported by any one-shot SPE for c.

Proof. If z is not supportable in XPE, then by Theorem 5.3, one of its constituent realiz-

able outcomes is not either. By Theorem S-1, there is some dynamic ambiguity index for

which this realizable outcome is not supportable in one-shot SPE, and a fortiori the full

outcome z is not either.

S-2 Stationary versions of counterexamples

We sketch here constructions analogous to Examples 6.1 and 6.2, but retaining the sta-

tionary structure of the original model (including infinite horizon and discounting).

Example S-2.1. We consider two long-run players. There are four possible stage games,

shown in Figure S-2. We assume both players use a discount factor of δ = 1/10.

G1 :

q r
a 0, 0 0, 0
b 1, 0 0, 0
c 0, 0 10000, 10000

G2 :

s t u
d 10, 10 0, 0 0, 0
e 0, 0 0, 0 10000, 10000

G3 :

v w x
f 0, 0 0, 0 0, 0
g 0, 0 100, 0 0, 0
h 0, 0 0, 0 30000, 10000

G4 :

y z
i 0, 0 10000, 0
j 0, 10000 10000, 10000

Figure S-2: Stationary example of no universal penal code with two long-run players.

We will use the term “reward” for the high-payoff action profile in each stage game

(cr, eu, hx, jz), which is always stage Nash, and “punishment” for bq, ds, fv, iy, which

achieves the lowest payoff for player 1 among stage-Nash profiles.

Let ss be the XPE that always plays the punishment action profile. Deviations are

simply ignored. This is an XPE since it plays a stage Nash in every period and deviations

do not affect future play.

Let st be the XPE that does the following: If G2 is drawn in the initial period, then

dt is to be played. If player 2 does not deviate from t, then in the next period, cr, eu, hx,
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or jy is to be played depending on the stage game (i.e. the reward profile, except that

we play jy instead of jz in G4); and after that, the punishment profile is played in all

subsequent periods. If 2 does deviate in the initial period, then the punishment profile is

played in all subsequent periods. If the initial stage game is not G2, then we simply play

the punishment profile in every period. All deviations are ignored except deviation by 2

in the initial period as described above. Note that this is an XPE: it specifies stage Nash

in every period, except in the initial period if G2 is drawn, but the punishment the next

period is sufficient to deter 2 from deviating to s.

Now, we can use these to support two different (deterministic) realizable outcomes that

begin with aq being played in G1 in period 0. First, consider as a target the realizable

outcome (aq, ds, gw, fv, fv, fv, . . .). (For brevity, we suppress the list of stage games

involved.) It can be supported as follows. If “Nature deviates” by choosing a stage game

different from those in the target outcome (and player 1 has not deviated in the past),

play reward profiles forever. Deviations by players are ignored unless they bring a short-

run gain, as usual. So we need only worry about deviation by player 1 to b in period 0,

and we specify that this deviation is punished by switching to ss. We can check that this

punishment deters the deviation in every environment (note that there are multiple cases

to check, depending when the stage games first diverge from those in the target outcome).

Second, the realizable outcome (aq, ds, iy, iy, iy, . . .) can be supported by specifying

that a deviation by Nature is followed with reward profiles, while a deviation by player 1

in period 0 is punished by following with st. Again, this punishment deters the deviation

in all environments (with several cases to check).

Finally, we cannot support both (aq, ds, gw, fv, fv, fv, . . .) and (aq, ds, iy, iy, iy, iy, . . .)

using the same XPE s to punish player 1 for a period-0 deviation in both cases; this shows

the nonexistence of a universal penal code for this game. If such an s did exist, it would

have to give a payoff to player 1 of at most 9 in the environment (G2, G3, G3, G3, . . .) and

at most 0 in the environment (G2, G4, G4, G4, . . .). The latter implies that in the initial

period, in G2, only action profiles with payoffs (0, 0) can be played with positive proba-

bility (accounting for the ability to use public randomization). However, player 2 needs

to be guaranteed a total payoff at least 9 in environment (G2, G3, G3, G3, . . .), since she

can get this much by myopically deviating in the initial period. This means that in this

environment, s has to give player 1 an expected payoff of at least 27, because 1’s payoff

is always at least three times 2’s payoff (in the initial period this holds because both are

getting payoff 0, as argued above, and in subsequent periods it holds because every action

profile in G3 satisfies this relation). This contradicts the requirement that 1’s payoff from
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s in this environment should be at most 9.

4

Example S-2.2. We assume only one long-run player but no public randomization. We

assume G consists of five stage games as shown in Figure S-3. The discount factor is

again δ = 1/10. For brevity, we avoid writing out the games in traditional matrix form,

and instead just directly name the action profiles assumed to comprise A∗(G) and list the

values of u and û, as in Figure 3(b).

G1 :
a b v

u 0 0 10000
û 0 4 10000

G2 :
c d e w

u 0 60 110 10000
û 50 70 110 10000

G3 :
f g x

u 0 100 10000
û 0 100 10000

G4 :
h i y

u 0 500 10000
û 0 500 10000

G5 :
j z

u 0 1000000
û 0 1000000

Figure S-3: Stationary example of no universal penal code without public randomization.

As in Example S-2.1, we will refer to v, w, x, y, z as “reward” actions and a, e, f, h, j

as “punishment” actions.

There exists an XPE that supports the realizable outcome (c, i, j, j, j, . . .). In partic-

ular, specify that if Nature deviates, then reward actions are played from then onward;

if player 1 deviates from c in the first period, then punishment actions are played subse-

quently. All other deviations can be ignored since there are no short-run gains. Refer to

this XPE as sc.

There exists an XPE that supports the realizable outcome (d, g, j, j, j, . . .). If Nature

ever deviates, use reward actions as above; if player 1 deviates from d in the first period,

then use punishment actions in all subsequent periods. Refer to this XPE as sd.

These, in turn, can be used to support two different realizable outcomes that start with

b being played in G1 in period 0. First, we can support (b, e, f, j, j, j, . . .) by specifying

that reward actions are to be played if Nature deviates, and a deviation from b by player 1

is punished as follows: in period 1, if the stage game drawn is G2, we play sd henceforward,

and otherwise we simply play punishment actions in every period. It is straightforward to

check that this deters the deviation to b in every possible environment (once again, there

are several cases to check depending when the environment first differs from the target

outcome).
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Second, we can support (b, e, h, j, j, j, . . .) by specifying that reward actions are to

be played if Nature deviates, and a deviation from b by player 1 is punished as follows:

in period 1, if G2 is drawn, then play sc henceforward, and otherwise play punishment

actions in every period.

Finally, we claim there is no XPE punishment s that can support both the (b, e, f, j, j, j, . . .)

and (b, e, h, j, j, j, . . .) outcomes, and thus no universal penal code. Indeed, to be an ef-

fective deterrent, s would have to give a total payoff of at most 63 in both environments

(G2, G3, G5, G5, G5, . . .) and (G2, G4, G5, G5, G5, . . .). We show that no XPE s can have

this property.

Evidently, if G2 is drawn initially then either c or d must be played. Suppose that c

is played. In the continuation environment (G3, G5, G5, . . .), the total payoff needs to be

at most 630. This means that play should begin with f or g, and j must be played for at

least the next three periods. But this in turn means that if the continuation environment

turns out to be instead (G3, G5, G5, G5, G3, G3, G3, . . .), then the total payoff is at most

(1 − δ)(100 + (δ4 + δ5 + · · · ) · 10000) = 91, which is not enough reward to prevent the

deviation from c in the preceding period. Correspondingly, if s begins by playing d in

G2, then the continuation in environment (G4, G5, G5, G5, . . .) needs to have payoff at

most 90. It therefore needs to begin with h followed by at least three copies of j. This

means that if the continuation environment is instead (G4, G5, G5, G5, G3, G3, . . .) then

this continuation has payoff no more than 1, which means it cannot prevent the deviation

from d in the initial period.

4
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