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This file is an appendix to Carroll et al. (2008). We provide an analysis of the model of

procrastination and optimal 401(k) enrollment regimes introduced in Section 4 of that paper,

including proofs of all the results mentioned there. The reader is referred to the main paper

for an exposition of the model. Equations and propositions in this appendix are numbered

in sequence, continuing the numbering from the main paper.

More extensive analysis can be found in an earlier version of the paper (Carroll et al.

2007). That version allows general values of the long-run discount factor δ and gives some

results for arbitrary distributions of the preferred savings rate s over the population; here

we maintain the assumptions that δ = 1 and s is uniformly distributed.

A.1 The Employee’s Problem

For the first set of results, we do not need the assumption that c is uniformly distributed; we

assume only that it has a continuous, positive density f with support [c, c̄]. We will restrict
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L to be strictly positive; clearly the employee never enrolls if L = 0.

We are concerned mainly with identifying the stationary equilibria of the game played

by the employee’s various selves, where a fixed cutoff c∗ is used in all periods. As in the

main text of the paper, we let φ be the expected total utility loss over all periods, measured

without β-discounting. φ is given by equation (1) of the main text, which we rewrite as

φ = E(c|c < c∗) + L · P (c > c∗)/P (c < c∗). (3)

The cutoff c∗ will be chosen so that that the present-biased agent is indifferent between

incurring transactions cost c∗ and continuing to wait, except that c∗ is constrained to lie in

the interval [c, c̄]. That is:

c∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c if β(L+ φ) < c

β(L+ φ) if c ≤ β(L+ φ) ≤ c̄

c̄ if β(L+ φ) > c̄.

Proposition 4 The agent’s game has a unique stationary equilibrium:

• if L ≥ c̄/β − E(c), then c∗ = c̄ (the agent acts immediately no matter what the cost);

• otherwise, c∗ is the unique solution to the equation

c∗ = β[L+E(c|c < c∗)P (c < c∗)] + c∗P (c > c∗). (4)

Proof. We never have an equilibrium at c∗ = c, because this would lead to φ =∞, inducing

the agent to act. A cutoff of c∗ = c̄ yields φ = E(c). This cutoff is an equilibrium if and only

if β(L + φ) ≥ c̄, which is equivalent to L ≥ c̄/β − E(c). And any given value of c∗ in the

middle is an equilibrium if and only if c∗ = β(L+φ), where φ is given by (3). This equation
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simplifies to c∗ = β[E(c|c < c∗) + L/P (c < c∗)]. Rearranging gives (4).

For each c∗ ∈ [c, c̄], let

g(c∗) = β[L+E(c|c < c∗)P (c < c∗)] + c∗P (c > c∗).

To complete the existence-uniqueness proof, we need to check that equation (4), which states

that c∗ = g(c∗), has exactly one solution on (c, c̄) if 0 < L < c̄/β−E(c), and none otherwise.

The function g is differentiable, with g0(c∗) = βc∗f(c∗)(1 − 1/β) + P (c > c∗) ≤ P (c >

c∗) ≤ 1; equality is possible only if c∗ = c. This implies that g(c∗) = c∗ has one root in (c, c̄)

if g(c) > c and g(c̄) < c̄, and no root otherwise. Since g(c) = βL+ c and g(c̄) = β(L+E(c)),

the result follows.

In Carroll et al. (2007) we also consider the possibility of nonstationary equilibria, which

we allow to be time-varying but otherwise history-independent. We show that if

β > 1− min
c∗∈[c,c̄]

P (c > c∗) + 1

c∗f(c∗)
,

then the only equilibrium is the stationary one. If c is uniformly distributed, the condition

reduces to β > c/c̄, which holds if the range of transactions costs is wide.

Next, we have an important corollary to Proposition 4:

Corollary 5 The cutoff c∗ of the stationary equilibrium is a continuous function of β and

L, and it is differentiable except at L = c̄/β −E(c). The same holds for φ.

Proof. Continuity of c∗ at the kink L = c̄/β−E(c) is straightforward to check. Differentia-

bility of c∗ away from the kink is easily checked by writing out c∗ = g(c∗) and differentiating

implicitly with respect to β and L (on which the value of g depends). Continuity and

differentiability of φ then follow from equation (3).
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Next, we prove comparative statics on c∗ and φ.

Proposition 6 1. In the region where c∗ < c̄ , c∗ is strictly increasing in L and β.

2. In this region, φ is strictly decreasing in β.

3. If β = 1 then φ is weakly increasing in L. However, if β < 1, then there exist values

of L for which φ > E(c).

4. If β is sufficiently low, then φ ≥ E(c) for all L.

Proof. For part 1, use c∗ = g(c∗). If we hold c∗ constant but increase either L or β, then

g(c∗) increases. Since g(c∗) − c∗ is a decreasing function of c∗, the new value c∗∗ such that

g(c∗∗) = c∗∗ must be greater than c∗.

For part 2, first take equation (4) and differentiate implicitly with respect to β. This

gives us

∂c∗

∂β
=

L+ E(c|c < c∗)P (c < c∗)

1 + (1− β)c∗f(c∗)− P (c > c∗)
=

P (c < c∗)c∗/β

P (c < c∗) + (1− β)c∗f(c∗)
≤ c∗/β,

where the second equality comes from rearranging (4) and substituting into the numerator.

Now rearrange the indifference condition for c∗ to get φ = c∗/β − L, and differentiate

with respect to β: ∂φ/∂β = (∂c∗/∂β)/β − c∗/β2 ≤ 0. Note that equality holds if and only

if β = 1.

For part 3, note that ∂φ/∂L = (∂c∗/∂L) /β − 1. If β = 1, then we can differentiate (4)

implicitly with respect to L to get ∂c∗/∂L = 1/P (c < c∗) ≥ 1. Therefore, ∂φ/∂L ≥ 0.

However, if β < 1, then consider L = c̄− E(c). For this L , at β = 1 we have φ = E(c).

As β falls, by part 2, φ will strictly increase.

Finally, for part 4, pick β < minc∗[c
∗/E(c|c > c∗)]. We know c∗ > c because never

acting leads to an infinite present value of losses. If c∗ = c̄ then φ = E(c). Otherwise, the
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indifference condition gives c∗ = β(L+ φ) ≤ c∗(L+ φ)/E(c|c > c∗), or E(c|c > c∗) ≤ L+ φ.

Hence

φ = E(c|c < c∗)P (c < c∗) + (L+ φ)P (c > c∗)

≥ E(c|c < c∗)P (c < c∗) +E(c|c > c∗)P (c > c∗) = E(c).

We will use the following two results later:

Corollary 7 If L > c̄−E(c), then φ(L) ≥ E(c).

Proof. Exactly as for part 3 of Proposition 6.

Proposition 8 Suppose β < 1. As L→ 0 (and all other parameters stay constant), c∗ → c.

Proof. Rewrite (4) as

[c∗ − βE(c|c < c∗)]P (c < c∗) = βL. (5)

If c∗ is bounded away from c, then both factors on the left side are bounded away from zero,

so the right side is also. Therefore, if the right side tends to zero we must have c∗ → c.

We now return to the assumption that c is uniformly distributed on [c, c̄], and study the

employee’s welfare in more detail, with attention to how φ varies with ∆ = s − d. Recall

that L = κ∆2, and we write Φ(∆) for the welfare loss φ as a function of ∆.

Lemma 1

1. If β = 1, then Φ(∆) is weakly increasing in |∆| .

2. If 2− c̄/c < β < 1, then (a) there exist 0 < ∆m < ∆̄ such that Φ(∆) is increasing on

(0,∆m], decreasing on [∆m, ∆̄], and constant at E(c) = (c + c̄)/2 on [∆̄,∞], and (b)

there is at most one value ∆e ∈ (0, ∆̄) such that Φ(∆e) = E(c).
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3. If β ≤ 2− c̄/c, then there exists ∆̄ such that Φ(∆) is decreasing on (0, ∆̄] and constant

at E(c) on [∆̄,∞].

Proof. Part 1 follows from part 3 of Proposition 6, and part 2(b) is immediate from 2(a),

so we need only prove parts 2(a) and 3.

It suffices to show the analogous statements for φ as a function of L: if 2− c̄/c < β < 1,

there exist 0 < Lm < L̄ such that φ(L) is increasing on [0, Lm], decreasing on [Lm, L̄], and

constant at E(c) on [L̄,∞]; if β ≤ 2− c̄/c then there exists L̄ such that φ(L) is decreasing

on (0, L̄] and constant at E(c) on [L̄,∞]. Then ∆m =
p
Lm/κ and ∆̄ =

p
L̄/κ. Clearly we

should set L̄ = c̄/β − E(c), since φ is constant above this L̄.

We wish to compute dφ/dL for L < L̄. To do this, first rewrite equation (3) using the

indifference condition c∗ = β(L+ φ), and rearrange to get

φ = E(c|c < c∗)P (c < c∗) +
c∗

β
P (c > c∗). (6)

We can treat this as an expression for φ in terms of c∗ only. The derivative is

dφ

dc∗
= c∗f(c∗) (1− 1/β) + P (c > c∗)/β =

c∗(1− 2/β) + c̄/β

c̄− c
.

This is decreasing in c∗, zero at c∗ = c̄/(2− β) < c̄ (hence negative at c∗ = c̄), and positive

at c∗ = c if and only if c < c̄/(2− β), which is equivalent to β > 2− c̄/c.

Now viewing φ and c∗ as functions of L, dφ/dL = dφ/dc∗ · dc∗/dL, and c∗ is increasing in

L (for L < L̄) by Proposition 6. So dφ/dL has the same sign as dφ/dc∗, which was computed

in the previous paragraph. It follows that if β > 2 − c̄/c then φ is increasing in L up until

the (unique) value for which c∗ = c̄/(2−β) (this value exists by Corollary 5 and Proposition

8), and decreasing for higher values of L; if β ≤ 2− c̄/c then φ is always decreasing in L.

It is straightforward to calculate the values of ∆̄, ∆m, and ∆e (if it exists) explicitly.
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We present these values here; since we will not actually need to use them, we omit the

computations:

∆̄ =

r
c̄/β − (c̄+ c)/2

κ
, ∆m =

s
(c̄− βc)(c̄− (2− β)c)

2β(2− β)(c̄− c)κ
, ∆e =

s
βc̄− (2− β)c

2(2− β)κ
.

Now, we need a technical detail: when 2 − c̄/c < β < 1, so that the function Φ has

humps, the outer portion of the humps is steeper than the inner portion.

Lemma 9 For 0 < ∆ < ∆̄, d3Φ/d∆3 < 0.

Proof. Write out the condition (4) for c∗ explicitly, using the uniform distribution. This

condition is a quadratic equation for c∗, whose constant term is a linear function of L and

whose other coefficients are independent of L. So c∗ can be written in the form
√
A+BL+C,

where A, B, and C are constants.31 Next, φ = c∗/β − L =
¡√

A+BL+ C
¢
/β − L, where

A+BL ≥ 0 on the relevant range.

Finally, using L = κ∆2, we see we can write Φ(∆) in the form
¡√

A+Bκ∆2 + C
¢
/β −

κ∆2. By taking ∆→ 0, we see A ≥ 0. It is straightforward to check that the third derivative

of this function is −3AB2κ2∆/[β(A + Bκ∆2)5/2] < 0. (We can check that A is strictly

greater than zero: by differentiating (4) implicitly we can check that dc∗/dL 6→∞ as L→ 0,

whereas A = 0 would imply dc∗/dL→∞ as L→ 0. )

Proposition 10 If 0 < ∆1 < ∆2 < ∆̄ and Φ(∆1) = Φ(∆2), then Φ0(∆1) + Φ0(∆2) < 0.

(Note that ∆1 is on the inside of the hump and ∆2 is on the outside.)

Proof. Let Ψ(∆) = dΦ/d∆. By Lemma 9, Ψ is strictly concave. Jensen’s inequality implies

that the average value of Ψ on the interval [∆1,∆2] is greater than the average of its values

31The explicit expression is c∗ = [c+
p
(1− β)2c2 + 2β(2− β)(c̄− c)L]/(2− β). One can check that the

lower root of the quadratic is less than c.
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at the two endpoints. But
R ∆2

∆1
Ψ(∆) d∆ = Φ(∆2)−Φ(∆1) = 0, so the average value of Ψ on

the interval is zero. Hence, the average of the values of Ψ at ∆1 and ∆2 must be negative.

A.2 Socially Optimal Default Policies

Now we are ready to consider the social planner’s problem. As in Figure IX in the main

paper, we will allow only β, s, s̄ to vary; all other exogenous parameters will be considered

fixed from now on.

Lemma 11 If β is sufficiently close to 1, then active decisions are never optimal.

Proof. Let ∆̄ be the value given by Lemma 1, so that Φ(∆) = E(c) when ∆ > ∆̄. When

β = 1, we know that Z ∆̄

−∆̄
[Φ(∆)−E(c)] d∆ < 0, (7)

since Φ(∆) is always ≤ E(c), with strict inequality when ∆ is near zero. Using Corollary 5,

this integral is continuous in β. So for β close to 1, the integral remains less than 0.

Consider any such β. We will show that

Z r

−r
[Φ(∆)−E(c)] d∆ < 0, (8)

where r = (s̄ − s)/2. This will imply that setting a default of d = (s + s̄)/2 is better

than active decisions, since the former yields welfare cost
R r
−r Φ(∆) d∆ and the latter yields

2rE(c).

If r > ∆̄ then (8) is immediate from (7), because Φ(∆) = E(c) when |∆| > ∆̄. Next,

we know (8) holds when r = ∆̄. The derivative of the left-hand side with respect to r is

2[Φ(r)− E(c)], which is positive when r ≥ ∆e (when ∆e exists; or for all r ≥ 0 otherwise).
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So as we lower r, (8) will continue to hold as long as r ≥ ∆e. Finally, if r ≤ ∆̄ and

Φ(r) < E(c), then Lemma 1 implies that Φ(∆) < E(c) for |∆| ≤ r, and it follows directly

that the left-hand side of (8) is negative.

Lemma 12 If β is sufficiently low, then active decisions are always optimal.

Proof. Immediate from part 4 of Proposition 6: that proposition says active decisions are

best for each individual employee (except for the measure-zero subset who are already at

their optimum savings rate), so they are also socially optimal.

Lemma 13 If active decisions are optimal at some parameter values, then when β is de-

creased (and all other parameters unchanged), active decisions are still optimal.

Proof. Proposition 6, part 2 implies that, for any given ∆, Φ(∆) cannot decrease when β

decreases. Integrating over ∆, we see that the welfare loss from any given default d can only

increase when β decreases, so no such d can become better than active decisions.

Now we are finally prepared to prove the classification of optimal defaults.

Proposition 2 If β < 1, then the optimal default is one of the following three types:

• the center default d = (s+ s̄)/2;

• an offset default, such that s− d = −∆e and s̄− d ≥ ∆̄ (or its symmetric equivalent,

s̄− d = ∆e and s− d ≤ −∆̄);

• active decisions, which correspond to any d with s− d ≥ ∆̄ or s̄− d ≤ −∆̄ .

Proof. For the purposes of this proof, we redefine Φ(0) to equal lim∆→0Φ(∆). This makes

Φ continuous everywhere and (by Corollary 5) differentiable except at ∆ = 0,±∆̄.

The optimal default is the d that minimizes
R s̄
s
Φ(s−d) ds. This integral is continuous in

d and constant (at (s̄− s)E(c)) when |d| is large, so the minimum exists. By differentiating
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with respect to d, we get the first-order condition Φ(s−d)−Φ(s̄−d) = 0, which any optimum

must satisfy. The second-order condition is −Φ0(s−d)+Φ0(s̄−d) ≥ 0, which must also hold

if both derivatives are defined.

Consider now the common value Φ(s̄− d) = Φ(s − d) that emerges from the first-order

condition. We use Lemma 1 to draw conclusions about where s̄ − d and s − d are located

for a given common value:

• If the common value is < E(c), then there are only two points ±∆ where Φ takes on

this value. So s̄− d = −(s− d) , and we have a center default.

• If the common value is > E(c), then we may again have just two points where Φ

takes on this value. At most, there are four such points, of the form ±∆1,±∆2, where

0 < ∆1 < ∆m < ∆2 < ∆̄. If s − d, s̄ − d are equal to ±∆1 then we have a center

default. Otherwise, assume s̄ − d = ∆2. (By symmetry, the argument is equivalent

when s− d = −∆2.)

If s−d = −∆2 we have a center default. If s−d = −∆1, then −Φ0(s−d)+Φ0(s̄−d) =

Φ0(∆1) + Φ0(∆2) < 0 by Proposition 10. This violates the second-order condition.

And if s− d = ∆1 then the entire interval [s− d, s̄− d] lies within the hump, so that

Φ(s−d) > E(c) for each s in the interval, and this default is strictly worse than active

decision.

• If the common value is equal to E(c), then the possible values for the two endpoints

are ±∆e and ±∆ for any ∆ ≥ ∆̄. If the endpoints are ±∆e then we have a center

default. Otherwise, without loss of generality, assume s̄− d ≥ ∆̄.

If s−d ≤ −∆̄ then the interval [s−d, s̄−d] contains both humps and the valley between

them. We can increase d until the upper endpoint s̄− d hits ∆e, thus eliminating one
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hump and replacing it with a plateau. This changes the integral of Φ by
R ∆̄

∆e
[E(c) −

Φ(∆)] d∆ < 0. Thus, total social loss is decreased, so the original d was not optimal.

If s − d = −∆e then we have an offset default. And if s − d = ∆e then the interval

contains one hump and a plateau, which is again strictly inferior to active decisions.

Proposition 3 Fix κ, c, and c̄. Then there exist values 0 < βac < βoc < 1, and a function

w : (βac, 1]→ (0,∞], with the following properties:

1. for β ≤ βac, active decisions are always optimal;

2. for βac < β < βoc, active decisions are optimal when s̄−s > w(β) and a center default

is optimal when s̄− s < w(β);

3. for βoc < β < 1, an offset default is optimal when s̄− s > w(β) and a center default

is optimal when s̄− s < w(β);

4. w is increasing on (βac, βoc].

Proof. First, fix any β < 1. Define w(β) to be the supremum of values s̄ − s for which a

center default is optimal, or 0 if a center default is never optimal. This supremum is finite;

for example, if s̄ − s > 2∆̄, then a center default implies that the interval [s − d, s̄ − d]

contains both humps of the function Φ, and this is strictly worse than the offset default,

which contains only one of the humps.

Now suppose a center default is optimal for some width s̄−s. We claim it is also optimal

for all narrower widths. First we check that a center default remains better than active

decisions. We are given Z r

−r
Φ(∆) d∆ ≤ 2rE(c) (9)
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for r = (s̄ − s)/2, and we want to show it remains true for all lower r. This is exactly the

argument we gave in the proof of Lemma 11.

Next we check that a center default remains better than an offset default (if the offset

default is defined): if s̄− s ≥ ∆e + ∆̄ and

Z r

−r
Φ(∆) d∆ ≤

Z 2r−∆e

−∆e

Φ(∆) d∆ (10)

for r = (s̄ − s)/2, then it also holds for all lower r ≥ (∆e + ∆̄)/2. This is an analogous

argument: for all r in the relevant range, the derivative of the left side of (10) is 2Φ(r) ≥

2E(c), while the derivative of the right side is 2Φ(2r −∆e) = 2E(c). So as r decreases, the

left side decreases faster than the right side, and (10) remains true.

This shows that if a center default is optimal, it remains optimal when the range of s is

narrowed. Therefore, a center default is optimal whenever s̄ − s < w(β). By definition, a

center default is not optimal for s̄− s > w(β), so the optimal default here is either offset or

active decisions.

A similar argument to the above shows that if active decisions are better than an offset

default, then this remains the case when the width s̄ − s is increased, and similarly if an

offset default is preferred to active decisions. (The marginal employee is in the plateau of

the function Φ(∆) in both cases and is thus indifferent between the two policies.) So for

fixed β, either active decisions are best for all s̄− s > w(β), or offset defaults are best for all

s̄− s > w(β). Call β an “active value” or an “offset value” accordingly. Lemma 13 implies

that if some β is an active value, then all lower β are also active values.

By Lemma 12, for sufficiently low β, active decisions are optimal for all s̄ and s. Define

βac to be the supremum of all such β. Part 1 of Proposition 3 immediately holds. Conversely,

by Lemma 11, when β is high enough, active decisions are never optimal. Define βoc to be

the supremum of all β such that active decisions are optimal for some width s̄− s. Thus we
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have 0 < βac ≤ βoc < 1; moreover, all β < βoc are active values, and all β > βoc are offset

values. We have now proven parts 2 and 3 of the proposition. We still need to check that

βac < βoc strictly. When β = βoc and s̄− s > w(β), the planner must be indifferent between

offset defaults and active decisions; that is,

Z ∆̄

−∆e

Φ(∆) d∆ = (∆̄+∆e)E(c). (11)

This indifference follows from the definition of βoc and the fact that both sides of the equation

are continuous in β. But (11) implies that Φ(∆) < E(c) for some ∆, since the integral

includes a hump where Φ(∆) > E(c). This implies that active decisions are not optimal

when s̄− s is sufficiently small, and this remains true when β is decreased slightly. Hence,

β can be decreased slightly from βoc and still be ≥ βac, proving βac < βoc.

Finally, Lemma 13 implies that the set of values s̄ − s for which active decisions are

optimal can only grow when β decreases. Part 4 of the proposition follows.

The last bit of our analysis is the case β = 1. The function Φ(∆) now consists of a

valley with no humps; the optimal default always takes as much advantage of this valley as

possible.

Proposition 14 Assume β = 1. Then

• if s̄− s ≤ 2∆̄, then a center default d = (s̄+ s)/2 is the unique optimum;

• otherwise, the set of optimal defaults consists of all d ∈ [s+ ∆̄, s̄− ∆̄].

(The value of ∆̄ simplifies to
p
(c̄− c)/2κ when β = 1.)

Proof. We carry out the same analysis as in Proposition 2. When β = 1, Lemma 1 tells

us that Φ is increasing in |∆| for |∆| ≤ ∆̄, and then becomes flat at E(c) for |∆| ≥ ∆̄. We

want to identify the d that minimizes
R s̄
s
Φ(s− d) ds.

13



The first-order condition is Φ(s − d) = Φ(s̄ − d). If this common value is < E(c), then

by monotonicity, there are only two values ±∆ at which Φ takes on this value. Hence,

s− d = −(s̄− d), and we have a center default.

Otherwise, the common value is E(c), which is Φ(∆) for all ∆ ≤ −∆̄ or ∆ ≥ ∆̄. By

symmetry we may assume s̄− d ≥ ∆̄. If s− d ≥ ∆̄ then we have an active decision regime,

which cannot be optimal (by Lemma 11). Hence s − d ≤ −∆̄. Then the social welfare

integral is equal to Z ∆̄

−∆̄
Φ(∆) d∆+ (s̄− s− 2∆̄)E(c),

and this value is independent of the choice of default d as long as s−d ≤ −∆̄ and s̄−d ≥ ∆̄;

that is, d ∈ [s+ ∆̄, s̄− ∆̄]. So if one such d is optimal, all of them are.

All possible optima are of one of these two types. The first type of optimum only exists

for s̄ − s < 2∆̄, while the second type only exists for s̄ − s ≥ 2∆̄. The proposition follows

immediately.
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