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This online appendix gives a more detailed study of conditions under which the

basic method of proof used for the sufficiency results in the main paper can be applied,

with an eye to understanding how much the method might potentially be further

generalized, and whether the results still hold when the method does not apply. We

restrict ourselves to cardinal type spaces and no transfers, as in Subsection 3.1.

All of the proofs of sufficiency results in the main paper follow the general method

of showing that the linear inequality corresponding to any desired incentive constraint

can be obtained by adding up inequalities corresponding to local incentive constraints.

We show here that for finite type spaces, whenever a set S of incentive constraints

is sufficient, there exists a proof of sufficiency by adding up (Lemma OA-1 below).

Moreover, with minor exceptions, whenever an incentive constraint (u, v) is provable

by adding up, there exists such a proof that uses only types along the line segment

[u, v], or types cardinally equivalent to them (Proposition OA-1). The conclusion,

then, is that for finite type spaces, there exist essentially no sufficiency results beyond

those that can be proven using the method of Proposition 1.

On the other hand, for infinite type spaces, the conclusions are not as tight. We

give an example (Proposition OA-2) of a type space where local incentive constraints

are sufficient, but sufficiency cannot be proven by adding up. In that example, we

prove sufficiency by a combination of adding-up arguments and limiting arguments

exploiting the compactness of the space ∆(X).

To begin the investigation, we must first be precise about what it means for an

incentive constraint to be provable by adding up other constraints. Let T be a cardinal
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type space, and let S be a set of incentive constraints. Let 1 ∈ R
m denote the vector

all of whose components are 1, and let ep denote the pth unit vector for p = 1, . . . ,m.

For any mechanism f , we have

1 · f(u) = 1 (1)

for all u ∈ T , and

ep · f(u) ≥ 0 (2)

for p = 1, . . . ,m and all u ∈ T . If f satisfies S, then we also have

u · (f(u)− f(v)) ≥ 0 (3)

for each (u, v) ∈ S.

We say that an incentive constraint (u∗, v∗) ∈ T × T is provable from S by adding

up if the inequality

u∗ · (f(u∗)− f(v∗)) ≥ 0 (4)

can be obtained as a finite linear combination of the equations (1) and inequalities

(2), (3), with nonnegative coefficients on the inequalities. That is, (u∗, v∗) is provable

from S by adding up if there exist real numbers

• au for u ∈ T ,

• bpu for p = 1, . . . ,m, u ∈ T , and

• cuv for (u, v) ∈ S,

such that all but finitely many of these numbers are zero, all the bpu and cuv are

nonnegative, and such that adding up au times (1), bpu times (2), and cuv times

(3) gives (4). (For notational convenience, we will assume cuv to be defined for all

u, v ∈ T , with cuv = 0 whenever (u, v) /∈ S.)

We can write out the adding-up conditions explicitly, by comparing coefficients

of f(u), for each u ∈ T . Assume u∗ 6= v∗ (otherwise (4) just reads 0 = 0 which is

trivially provable by adding up). Then the adding-up condition says that for each u,

we have

au1+
m
∑

p=1

bpuep +
∑

v∈T

cuvu−
∑

v∈T

cvuv =











u∗ if u = u∗

−u∗ if u = v∗

0 otherwise.

(5)
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Also, for the constant terms, the adding-up condition is simply

∑

u∈T

au = 0. (6)

We say that the set S of incentive constraints implies the incentive constraint

(u∗, v∗) ∈ T × T if every mechanism that satisfies S also satisfies (u∗, v∗).

The present question is: If S implies (u∗, v∗), must the constraint (u∗, v∗) neces-

sarily be provable from S by adding up? When S is finite, the answer is affirmative;

this is just a form of the theorem of the alternative.

Lemma OA-1 If T is a cardinal type space and S a finite set of incentive constraints

that implies the incentive constraint (u∗, v∗), then (u∗, v∗) is provable from S by adding

up.

Proof: We may as well assume that T consists only of u∗, v∗, and the types

that appear in constraints of S. Thus, T is finite. A mechanism f satisfying S then

consists simply of a choice of m·|T | real numbers — the components of the |T | vectors

f(u) for u ∈ T — satisfying (1), (2), and also (3) for (u, v) ∈ S. The hypothesis is

that any such numbers must also satisfy (4).

This can be recast as a linear programming statement: for any choice of m · |T |

real numbers satisfying the nonnegativity constraints (2) and the linear equations (1)

and inequalities (3), the minimum value of the linear function u∗ · (f(u∗) − f(v∗))

is 0. (This minimum is attained, for example, by any mechanism such that f(u) is

constant across all u.) The duality theorem of linear programming then tells us that

(4) is expressible as a linear combination of (1), (2), (3), with nonnegative coefficients

on the inequalities. That is, (u∗, v∗) is provable from S by adding up. �

To proceed further, it will be helpful to have an alternative, cleaner definition

of provability by adding up. Let Π ⊆ R
m be the hyperplane orthogonal to 1, as in

Section 4. For any u ∈ R
m, let u denote its orthogonal projection onto Π.

Lemma OA-2 Assume u∗ 6= v∗. Then (u∗, v∗) is provable from S by adding up if

and only if there exist numbers cuv ≥ 0, finitely many of which are nonzero, such that

the equation

∑

v∈T

cuvu−
∑

v∈T

cvuv =











u∗ if u = u∗

−u∗ if u = v∗

0 otherwise.

(7)
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holds for each u ∈ T , and cuv = 0 unless (u, v) ∈ S.

Proof: First suppose that (u∗, v∗) is provable from S by adding up under the

original definition; let au, bpu, cuv be the coefficients satisfying (5). By summing (5)

over all choices of u we get
∑

u au1 +
∑

p

∑

u bpuep = 0. (On the left side, each cuv

occurs once multiplied by u and once multiplied by −u. On the right side, we get one

u∗, one −u∗, and all zeroes otherwise.) From (6), this reduces to
∑

p

∑

u bpuep = 0.

Since the bpu are nonnegative, they must all be zero. Once we know this, then, taking

(5) and projecting orthogonally onto Π gives (7).

Conversely, suppose there are coefficients cuv satisfying (7). Put bpu = 0 for all p

and all u. Note that (7) implies that for each u, the expression











∑

v cuvu−
∑

v cvuv − u∗ if u = u∗

∑

v cuvu−
∑

v cvuv + u∗ if u = v∗
∑

v cuvu−
∑

v cvuv otherwise

must be some multiple of 1. Choose au so that this expression is equal to −au1.

Then it is immediate that (5) is satisfied for each u. Moreover, summing (5) across

all u ∈ T , the cuv terms cancel as in the previous paragraph, and we are simply left

with
∑

u au1 = 0; hence, with this choice of au, (6) is satisfied as well. Finally, au 6= 0

only when u = u∗, v∗ or when cuv or cvu is nonzero for some v; thus, only finitely

many of the au are nonzero. Thus, the original definition of provability by adding up

is satisfied. �

We need just a few more definitions. Say that two types u, v are equivalent if

v = αu+ β1 for some α, β ∈ R, α > 0, and a type is indifferent if it is equivalent to

0. For u∗, v∗ ∈ T , let T[u∗,v∗] be the set of all types in T that are equivalent to some

type on the segment [u∗, v∗], and let

S[u∗,v∗] = {(u, v) ∈ S | u, v ∈ T[u∗,v∗]}.

We now arrive at the main result of this appendix.

Proposition OA-1 Let T be a cardinal type space and S a set of incentive con-

straints such that (u∗, v∗) is provable from S by adding up. Assume that v∗ is not

equivalent to −u∗. Then (u∗, v∗) is provable from S[u∗,v∗] by adding up.
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This result says that if an incentive constraint (u∗, v∗) can be proved by adding

up constraints in S, then it can be proved by adding up in a way that only uses types

equivalent to convex combinations of u∗ and v∗. Thus, the method used to prove

Proposition 1 is (almost) the only possible adding-up argument.

The proof of Proposition OA-1 is a bit long, but the main idea is straightforward.

It consists of taking the coefficients cuv satisfying (7) and successively replacing them

by zeroes, checking that (7) still holds at each step, until only constraints in S[u∗,v∗]

have nonzero coefficients.

Proof: We may assume that u∗ is not indifferent, since otherwise the conclusion

is immediate: (7) holds with all cuv equal to 0. We also assume u∗ 6= v∗; otherwise

the conclusion is again trivial.

Let cuv be the coefficients satisfying (7), with cuv > 0 only if (u, v) ∈ S. We may

as well assume that S consists only of the (finitely many) incentive constraints (u, v)

for which cuv > 0, and T consists only of the types appearing in these constraints.

Now consider any fixed vector w ∈ Π with the following properties:

(i) w · u∗ > 0;

(ii) w · v∗ ≥ 0;

(iii) if u ∈ T and w · u = 0, then u = 0.

We claim that if (u, v) ∈ S such that either

(a) w · u > 0 and w · v < 0, or

(b) w · u > 0 and w · v = 0 and v 6= v∗, or

(c) w · u < 0 and w · v ≥ 0,

then cuv = 0.

Proof: Consider any u ∈ T such that w · u < 0. Take the dot product of w with

(7). We get
∑

v∈T

cuv(w · u)−
∑

v∈T

cvu(w · v) = 0

(note that u 6= u∗, v∗). Now sum over all u such that w · u < 0. For each incentive

constraint (u, v) ∈ S such that w · u < 0 and w · v < 0, the term cuv(w · u) appears
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once with a + sign and once with a − sign, so these cancel out. The remaining terms

give us
∑

w·u<0; w·v≥0

cuv(w · u)−
∑

w·u<0; w·v≥0

cvu(w · v) = 0.

Since each cuv is nonnegative, every term in the first sum is ≤ 0 and every term in

the second sum is ≥ 0. Hence, every term must be equal to zero. This implies that

whenever w · u < 0 and w · v ≥ 0, cuv = 0, and when moreover w · v > 0, we also have

cvu = 0.

This covers (a) and (c). For (b), when w · v = 0 and v 6= v∗, (7) for v gives
∑

u cvuv −
∑

u cuvu = 0. Dotting with w gives
∑

u cuv(w · u) = 0 (after canceling).

We have already established that cuv = 0 if w · u < 0, so all the terms on the left are

nonnegative, and hence they must all be zero. So cuv = 0 whenever w · u > 0.

This proves the claim.

Next, for each u, v ∈ T , define c′uv = cuv if w · u ≥ 0 and w · v ≥ 0; and c′uv = 0

otherwise. Then we again have, for each u,

∑

v

c′uvu−
∑

v

c′vuv =











u∗ if u = u∗

−u∗ if u = v∗

0 otherwise.

(8)

Proof: If u is such that w · u < 0 then (8) is trivial since both sides are zero. If

w ·u > 0, then the left side of (8) differs from the left side of (7) by the terms cuvu and

−cvuv for w · v < 0. These are all zero, by cases (a) and (c) of the claim, respectively;

thus (8) follows from (7). If w · u = 0 and u 6= v∗, then again all the left-hand-side

terms of (8) are zero:

• all the c′uvu are zero because u = 0, by condition (iii) on w;

• c′vuv = 0 for w · v > 0 by (b) of the claim;

• c′vuv = 0 for w · v = 0 again by (iii) on w;

• c′vuv = 0 for w · v < 0 by definition of c′vu.

So both sides of (8) are zero, and it again holds.

Thus, (8) is verified for all u except possibly for u = v∗. But summing (8) over

all u ∈ T gives the identity 0 = 0; so if it holds for all u except u = v∗, it must hold

for u = v∗ as well.
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At this point, we have shown the following: If we start with coefficients cuv for

which (7) holds, pick any w ∈ Π satisfying (i)-(iii), and replace cuv by 0 whenever

w · u < 0 or w · v < 0, then (7) still holds.

If we find any finite set of vectors w1, . . . , wq ∈ Π, each satisfying conditions (i)-

(iii), and for each wk we successively replace cuv by 0 whenever wk ·u < 0 or wk ·v < 0,

then the resulting coefficients will still satisfy (7).

Now let T[u∗,v∗]+ consist of the types in T[u∗,v∗] together with all indifferent types

(alternatively stated, all types that are equivalent to αu∗ + βv∗ for some α, β ≥ 0);

and let S[u∗,v∗]+ = {(u, v) ∈ S | u, v ∈ T[u∗,v∗]+}. We will show that, for any u ∈ T

that is not in T[u∗,v∗]+ , there is some w ∈ Π satisfying (i)-(iii) with w · u < 0. If we

consider each such w in turn, and successively replace cuv’s by 0 as in the previous

paragraph, we will be left with coefficients cuv ≥ 0 that still satisfy (7), and such that

cuv = 0 unless u, v ∈ T[u∗,v∗]+ . Therefore, we will have shown that (u, v) is provable

from S[u∗,v∗]+ by adding up.

Thus, consider any u ∈ T \ T[u∗,v∗]+ . We wish to show that there exists w ∈ Π

satisfying (i)-(iii) with w · u < 0. The assumptions that v∗ is not equivalent to −u∗

and u∗ is not indifferent imply that there exists w′ ∈ Π with

w′ · u∗ > 0, w′ · v∗ ≥ 0

and the latter inequality holding strictly unless v∗ = 0. The assumption u /∈ T[u∗,v∗]+

implies that u is not a nonnegative combination of u∗ and v∗; hence there is some

w′′ ∈ Π such that

w′′ · u∗ ≥ 0, w′′ · v∗ ≥ 0, w′′ · u < 0.

Taking w = w′+κw′′ for large κ will give (i), (ii), and w ·u < 0. Finally, by perturbing

w slightly, we can ensure w · v 6= 0 for all v ∈ T , v 6= 0, without breaking any of the

strict inequalities; thus we get (iii) as well.

At this point we have finished showing that (u∗, v∗) is provable from S[u∗,v∗]+ by

adding up.

If v∗ is indifferent, then S[u∗,v∗]+ = S[u∗,v∗] and so we are done. Otherwise, we have

to do just a little more work.

Let cuv now be the coefficients used to prove (u∗, v∗) from S[u∗,v∗]+ by adding up

(i.e. the coefficients satisfying (7)). Whenever u = 0, we can replace cuv by 0 without
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affecting the validity of (7) (since cuv only ever appears as part of the product cuvu).

So we may assume cuv = 0 whenever u is indifferent.

Since u∗, v∗ are both non-indifferent and v∗ is not equivalent to −u∗, we can find

w ∈ Π such that w · u∗ > 0 and w · v∗ > 0. Thus, for any element of T[u∗,v∗]+ that is

not indifferent, its projection has positive dot product with w.

Now for any indifferent u, taking (7) and dotting with w gives −
∑

v cvu(w ·v) = 0.

Each term in the sum is nonnegative, so they must all be zero. Hence cvu = 0 whenever

v has positive dot product with w; and the remaining v ∈ T[u∗,v∗]+ are indifferent, so

cvu = 0 for them too by assumption. Thus, if u is indifferent then cuv, cvu = 0 for all

v.

But this means that (7) holds with cuv zero unless u, v ∈ T[u∗,v∗], so in fact (u∗, v∗)

is provable from S[u∗,v∗] by adding up.

�

Proposition OA-1 is stated as a description of the form of proofs by adding up.

However, it also provides us with a tool to show show when a particular constraint

is not provable by adding up. In particular, we can apply it to give an example of

an infinite type space and a set of local incentive constraints that are sufficient, but

whose sufficiency cannot be proven by adding up, as promised at the beginning of this

appendix. In fact, we will give a stronger example: a type space such that any set

of local incentive constraints is sufficient, yet there exist fairly large such sets whose

sufficiency cannot be proven by adding up.

Let X have four elements, and let w be some utility function on X that is not

indifferent. Let Tw+ be the set of all cardinal types that are either indifferent or

equivalent to w, and let T = R
4 \ Tw+ be the set of cardinal types not in Tw+ . Say

that two types u, v ∈ T are Tw+-opposed if [u, v]∩ Tw+ 6= ∅. Let S be any set of local

incentive constraints such that if u and v are Tw+-opposed, then (u, v) /∈ S.

This requirement on S can be easily satisfied. Indeed, for each u ∈ T , start with

any neighborhood Nu, and let d(u, Tw+) > 0 be the Euclidean distance from u to Tw+ .

Then the set N ′
u = {v ∈ Nu | d(u, v) < d(u, Tw+)} is again an open neighborhood of

u, not containing any types Tw+-opposed to u. So S = {(u, v) | u ∈ N ′
v or v ∈ N ′

u} is

a set of local incentive constraints meeting our requirement.

Proposition OA-2 With T, S as above, S is sufficient. However, for any u∗, v∗ ∈ T

that are Tw+-opposed, with u∗ not equivalent to −v∗, the constraint (u∗, v∗) is not

provable from S by adding up.
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Proof: First we show that S is sufficient. Let f be any mechanism that satisfies

S. For any possible incentive constraint (u, v), if u and v are not Tw+-opposed, then

the entire line segment from u to v is contained in T . Therefore, the usual argument

from Proposition 1 of the main paper shows that f satisfies (u, v).

So we need only deal with the case where u, v are Tw+-opposed. In this case,

notice that we can choose uk ∈ T arbitrarily close to (u + v)/2 such that uk is not

Tw+-opposed to either u or v. (Any type Tw+-opposed to u must lie on the hyperplane

Πuw generated by u, w, and 1. Similarly, any type Tw+-opposed to v must lie on the

hyperplane generated by v, w,1, which is again Πuw. There are types in T arbitrarily

close to (u + v)/2 not lying on this hyperplane.) For any such uk, then, we have

already shown that f satisfies the constraints (u, uk), (v, uk), (uk, v); that is:

u · (f(u)− f(uk)) ≥ 0, (9)

v · (f(v)− f(uk)) ≥ 0, (10)

uk · (f(uk)− f(v)) ≥ 0. (11)

So we can choose a sequence of types u1, u2, . . . in T with uk → (u+ v)/2, such that

(9)-(11) are satisfied for each uk. Moreover, because the image of f is contained in the

compact set ∆(X), we may assume by passing to a subsequence that f(uk) converges

to some limit f ∗. Then, taking limits, we get

u · (f(u)− f ∗) ≥ 0, (12)

v · (f(v)− f ∗) ≥ 0, (13)
u+ v

2
· (f ∗ − f(v)) ≥ 0. (14)

Adding (12), (13), and twice (14) gives

u · (f(u)− f(v)) ≥ 0

so f satisfies the constraint (u, v).

This shows that S is sufficient.

It remains to prove that if u∗, v∗ ∈ T are Tw+-opposed, and u∗ is not equivalent

to −v∗, then (u∗, v∗) is not provable from S by adding up. By Proposition OA-1, if

(u∗, v∗) were provable from S by adding up, then it would be provable from S[u∗,v∗]
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by adding up. So we just need to show that the latter is not the case.

For any α ∈ [0, 1], let uα = (1−α)u∗+αv∗. Let α∗ ∈ (0, 1) be such that uα∗ ∈ Tw+ .

Notice that if u, v are equivalent to uα, uβ respectively, and (u, v) ∈ S, then α, β are

either both less than α∗ or both greater than α∗: otherwise u, v are Tw+-opposed.

Suppose that (u∗, v∗) is provable from S[u∗,v∗] by adding up. Let cuv be the co-

efficients that satisfy (7). Let T< be the set of types in T[u∗,v∗] that are equivalent

to some uα for α < α∗. The observation of the previous paragraph implies that if

cuv > 0, and one of u, v is in T<, then the other is as well.

Sum up (7) over all u ∈ T<. The cuvu terms on the left side appear in pairs of

opposite sign, which cancel; thus we are left with 0 = u∗. Since u∗ ∈ T cannot be

indifferent, we have a contradiction. �
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