Discussion of RED 2018 “Institutions for Productivity: Towards a Better Business Environment”

Diego Restuccia
University of Toronto
and NBER

FLAR-CAF Meeting
Cartagena de Indias, Colombia
June 6, 2019
In This Report

- Income per capita remains low in Latin America (around 20 percent of the US level)
- Income gap due to productivity gap, even after accounting for differences in human capital quality
- Key question: What accounts for the productivity gap?
- Productivity differences are large in all sectors, hence focus on productivity at the micro level
- Similar findings in “The Latin American Productivity Problem,” Economía, Spring 2013
- Characterizes institutions affecting productivity at the micro level, where Latin America lags behind developed countries: competition, access to inputs, labor markets, financial markets
My discussion

- Focus on connecting institutions with micro-level productivity
- Describe simple framework to emphasize potential channels of low productivity: misallocation, selection, and technology
- Highlight characteristics of policies/institutions driving low productivity:
 - **Idiosyncratic** distortions across establishments (misallocation)
 - **Systematic** idiosyncratic distortions, where more productive establishments face larger distortions (selection, technology)
In each period, a single good produced by \(M \) potential heterogeneous production units indexed by \(i \)

Output \(y_i \) is produced according to

\[
y_i = A_i \cdot h_i^\gamma, \quad \gamma \in (0, 1)
\]

where \(A_i \) reflects productivity differences across producers, \(h_i \) is labor input, and \(\gamma \) measures the extent of decreasing returns to scale at the establishment level

Fixed cost of operation \(c \) in units of output
Efficient allocation:

- Consider the efficient allocation of labor across producers that maximizes aggregate output net of operation costs.
- Given aggregate labor H, there is unique threshold \bar{A} such that producers with $A_i \geq \bar{A}$ operate, producers with $A_i < \bar{A}$ do not operate.
- Among operating producers, those with higher A_i are allocated greater amount of labor, producers with the same productivity operate at the same scale.
Stylized Efficient Allocation

- Any deviation from this allocation would lower aggregate output and hence aggregate TFP
Stylized Misallocation

![Graph showing stylized misallocation with log Ai and log hi axes.]
Misallocation and Selection/Technology

Efficient Data

Restuccia
Institutions and Productivity
FLAR-CAF Meeting
Simple Framework of TFP Differences

- Holding the amount of aggregate resources constant, three channels can account for aggregate TFP differences across countries:
 - Distribution of A_i’s differs across countries (technology)
 - Countries choose different set of producers to operate (selection)
 - Countries allocate inputs differently across producers (misallocation)

- Remark: specific policies/institutions generating misallocation can have larger effects on TFP by affecting technology/selection channels (Restuccia and Rogerson, 2017)
Virtue of Production Heterogeneity

- Aggregate production function:

\[Y = \sum_{i=1}^{O} y_i = AO^{1-\gamma} H^\gamma = \text{TFP} \times F(\text{factors}) \]

- Limited scope for policies/institutions that drive TFP differences across countries (aggregate institutions)

- Recognizing production heterogeneity opens the door for many policies/institutions to drive idiosyncratic effects across producers that are potentially measurable
Key insight: to maximize aggregate output, the marginal (or average) product of factors should equalize across producers

\[(1 - \tau_i)\gamma \frac{y_i}{h_i} = w \Rightarrow TFPR_i \equiv \frac{y_i}{h_i} \propto \frac{1}{(1 - \tau_i)}\]

Value of marginal output

- Suggests two broad approaches to assess the empirical relevance of misallocation:
 - Indirect: measure deviations in TFPR \(_i\) across producers using data on output and inputs
 - Direct: Measure specific policies and institutions that generate \((1 - \tau_i)\) differences

- Policies/institutions can have aggregate productivity effects (low TFP) even if no impact on aggregate prices or aggregate resources
Examples

- **Indirect**: Evidence points to substantial misallocation, large TFP loses (e.g. Hsieh and Klenow 2009, Pages 2010 for Latin America context)

<table>
<thead>
<tr>
<th>Country</th>
<th>SD (log TFPR<sub>i</sub>)</th>
<th>TFP gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>China (1998)</td>
<td>0.74</td>
<td>115%</td>
</tr>
<tr>
<td>India (1994)</td>
<td>0.67</td>
<td>128%</td>
</tr>
<tr>
<td>United States (1997)</td>
<td>0.49</td>
<td>43%</td>
</tr>
</tbody>
</table>

- **Direct**: Land institutions
 - Poor countries characterized by lack of well-defined property rights over land, land-use rights distributed uniformly across rural households, restrictions to sales/rentals
 - Result: land not allocated to best uses
 - Institution resulting in implicit wedges
Adamopoulos et al (2017): Efficient reallocation of operated land can increase agricultural productivity by 57%
(2) **Systematic Idiosyncratic Effects**

- **Idiosyncratic** effects from policies/institutions: dispersion in effective prices (wedges) across producers
 - Generate misallocation
 - Note that a tax/wedge common to all producers has no effect on aggregate productivity (given factors)

- **Systematic** idiosyncratic effects: policies/institutions that effectively penalize more productive producers (correlated distortions)
 - Affecting aggregate productivity via selection and technology channels
 - Altering occupational/production choices
 - Effectively lowering the return to technology adoption/productive investments
Implicit Agricultural Distortions in China

- Large implied correlated distortions in the agricultural sector
 $\sigma(\log\text{TFPR})=0.78, \rho(\log\text{TFPR}, \log\text{TFP})=0.86$
(2) **Systematic Idiosyncratic Effects**

- Systematic idiosyncratic effects common, most often implicit/effective, not designed

- Example 1: a regulation that applies to all producers in a market but...in practice is enforced more strictly among larger (more productive) producers, connects to informality

- Example 2: land institutions

- Example 3: labor market policies, firing costs

- Example 4: financial development

- Example 5: trade policy
Broader Consequences of Misallocation

- A prevalent property of policies/institutions that create misallocation in developing countries: disproportionately affect more productive producers (correlated distortions)
- In models of firm dynamics these distortions effectively lower the return to productivity growth
 - Connection between misallocation and technology/selection channels
 - Establish a connection to the average size of establishments
Plant Life-Cycle Growth

Source: Hsieh and Klenow (2014)
Average Establishment Size

(a) Manufacturing

(b) Services

Source: Bento and Restuccia (2017, 2018)
(3) The Pitfalls of Well-Intended Policies

- Report suggest numerous areas for policy action
- A key insight of the misallocation literature is that size is deeply confounded by distortions, making policy implementation challenging
- Even if policy makers can identify productivity at the micro level, difficult to assess “optimal” size
- My take on policy:
 - Focus on better rather than more policy: review policy framework to minimize systematic idiosyncratic effects
 - Foster the development and efficiency of markets for the allocation of productive resources
 - Delink resource allocation from redistribution: for instance, operational scales achieved via efficient rental markets