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Abstract

We examine how resource allocation across production units shapes technology adop-
tion and productivity growth, combining a unique panel dataset of the universe of
Canadian farms spanning 1986 to 2006 with a quantitative model of heterogeneous
producers. The period features the advent and rapid diffusion of a major new seeding
technique, zero tillage, whose use expanded from zero percent of cultivated land in 1986
to 60 percent by 2006. We document substantial technology adoption, land consolida-
tion, and productivity growth, facilitated by an economic environment characterized
by relatively high allocative efficiency, whereby more productive farms operate at a
larger scale. Empirically, we find that adopting zero-tillage raises farm-level productiv-
ity substantially. Through quantitative analysis, we estimate that zero-tillage adoption
accounts for roughly 35 percent of the near doubling of agricultural productivity over
the period and 45-70 percent of the observed structural transformation. We show that
high allocative efficiency was crucial for the widespread adoption of technology, which
would have nearly disappeared with correlated distortions commonly documented in
developing countries. We also show that technological progress can be a powerful driver
of catch-up growth in developing economies with low correlated distortions.
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1 Introduction

An essential research question in the economics of growth and development is what accounts
for the great disparities in aggregate productivity across countries, which are at the core of
international differences in income per capita (Klenow and Rodriguez-Clare, 1997; Prescott,
1998; Jones, 2016). There are two broad explanations for lower aggregate productivity in
developing countries. First, due to a variety of distortions and frictions, factors of produc-
tion are less efficiently allocated across firms in developing countries, depressing aggregate
productivity (Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009). Second, developing
countries feature substantial gaps relative to developed countries in the adoption and diffu-
sion of new technologies (Comin and Hobijn, 2010; Comin and Mestieri, 2018; Ayerst, 2025).
We examine the role of resource allocation across production units for technology adoption
and productivity following a recent literature linking distortions to technology decisions by
firms (Restuccia and Rogerson, 2017; Ayerst, 2025; Ayerst et al., 2024).

We provide direct empirical evidence and a quantitative assessment of the role of re-
source allocation across production units on technology adoption by exploiting a unique
panel dataset of the universe of Canadian farms spanning a period during the advent of a
new seeding technology in agriculture, its adoption and diffusion by Canadian farms. While
the share of employment and output in agriculture nowadays is low in developed countries,
agriculture plays a disproportionate role in the aggregate outcomes of developing countries
(Gollin et al., 2002; Restuccia et al., 2008), as a result, technology gaps in agriculture are
essential in understanding low aggregate productivity in the developing world.

Using panel data from the Canadian Census of Agriculture during the period between
1986 and 2006, we characterize misallocation and technology diffusion of the zero-tillage
technology. Zero-tillage is a new seeding technique developed in the 1970s that enables the
preparation of soil and the planting of seeds in one operation with minimum soil disruption,
saving on time and resources in addition to a more efficient use of land. Consistent with the

historical experience on the decline in the number of farms in Canada and the process of



land consolidation into larger farms, between 1986 and 2006, the number of farms declined
by 43 percent and average farm size increased by 46 percent. During the period, there
was widespread diffusion of zero-tillage among Canadian farms, from zero percent of the
land cultivated in 1986 to around 60 percent by 2006. The process of land consolidation
and technology diffusion during the period is associated with a substantial increase in the
agricultural yield (70 percent) and agricultural output per farm (149 percent, equivalent to
4.7 percent annual growth). At the farm level, the adoption of the zero-tillage technology had
a significant positive effect on farm productivity, a result robust to many controls. Moreover,
more productive farms adopted the zero-tillage technology in greater proportion, by 1996 the
adoption rate among the most productive farms was double the rate of the least productive
farms.

An important context in the process of land consolidation and technology adoption among
Canadian farms, is the relatively high allocative efficiency in agriculture which we document,
the ratio of actual to efficient agricultural output. Allocative efficiency is relatively constant
during the period at 83-85 percent nationwide, 87-88 percent within narrow Census subdi-
visions, and 95 percent both nationwide and within narrow Census subdivisions when using
the panel to control for potential measurement error in the data. High allocative efficiency
results from a strong positive relationship between farm operational size and productivity,
which is summarized by a relatively high elasticity of farm land and capital with respect to
farm productivity. This feature of resource allocation contrasts markedly with the evidence
of substantial resource misallocation of land and other factors of agricultural production in
developing countries where farm size and productivity are much less aligned (Chen et al.,
2023; Adamopoulos et al., 2022; Aragén et al., 2024).

To quantify how resource allocation across production units shapes technology adoption,
productivity growth, and structural transformation, we develop a two-sector model of agricul-
ture and non-agriculture, where individuals make occupational (sector) choices and farmers

decide on scale, operation, and technology adoption in agriculture. In this framework, dis-



tortions affect the allocation of factors across farms and their operation decision (selection),
which in turn act as an effective tax on technology adoption (technology). These effects work
to lower agricultural productivity and to hinder structural transformation. We calibrate a
benchmark distorted economy to Canadian data in 1986 and 2006. Of particular interest is
the parameter determining the cost of zero-tillage adoption. We then conduct counterfac-
tual experiments to isolate the quantitative effect of zero-tillage technology on structural
transformation and agricultural productivity growth during the period. We also examine the
quantitative effect of higher distortions in the benchmark economy for technology diffusion,
agricultural productivity, and structural transformation. Because land reforms typically span
a long period of time (Adamopoulos and Restuccia, 2020), with varying degrees of success
in reallocating resources to the most productive use in developing countries (Chari et al.,
2021; Chen et al., 2022), the examination of distortions in a successful developed economy
is novel and informative of the depressing effects of correlated distortions on the return to
technology adoption and productivity growth.

Our quantitative analysis reveals that the adoption of the zero-tillage technology in
Canada between 1986 and 2006 contributed to 35 percent of the near doubling of agricultural
productivity, between 45 to 70 percent of the reallocation of employment out of agriculture
(structural transformation), and all the increase in average farm size observed in the data.
We also find that a relatively high allocative efficiency in Canada (in particular the relatively
low correlated distortions), was essential in facilitating the adoption and diffusion of zero-
tillage. In a counterfactual experiment with the same technology shock associated with zero
tillage, but where we change the correlated distortion parameter as documented in develop-
ing countries (high distortions), the adoption of zero-tillage technology would have been only
5 percent of cultivated land in 2006 instead of 63 percent in the Canadian economy with
low distortions; and growth in agricultural productivity would have been 5 percent, only one
sixth of the agricultural productivity growth from technology adoption in the low distortion

Canadian economy. We also show that correlated distortions, as opposed to lower economy-



wide and sectoral productivity, are key in dampening the return to technology adoption and
growth since the same technological progress has much larger effect in a developing economy
with low distortions. Moreover, we show that technological progress can be a powerful driver
of catch up to advanced economies in productivity, structural transformation, and farm size
in developing economies with low distortions.

We contribute to three broad branches of the literature. First, we relate to a large liter-
ature on production heterogeneity and misallocation (Restuccia and Rogerson, 2008; Guner
et al., 2008; Hsieh and Klenow, 2009) and more specifically misallocation in agriculture
(Adamopoulos and Restuccia, 2014; Chen et al., 2023; Ayerst et al., 2020). We contribute
to this literature by examining empirically and in a quantitative model the effect of mis-
allocation on technology adoption and productivity. Second, we relate to the literature on
technology adoption and productivity in agriculture (Yang and Zhu, 2013; Caunedo and
Keller, 2021; Chen, 2020). We contribute to this literature by analyzing an episode of adop-
tion and diffusion of technology using micro-level data and a quantitative model. Third,
we connect to the literature linking misallocation with effects on selection and technology
(Pavenik, 2002; Bustos, 2011; Khandelwal et al., 2013; Yang, 2021; Majerovitz, 2023; Ayerst
et al., 2024). We contribute to this literature by analyzing a specific episode of technology
adoption.

The remainder of the paper proceeds as follows. In the next section, we provide details
of the data we use and empirical findings on allocative efficiency and the adoption and pro-
ductivity effect of zero-tillage technology. In Section 3, we describe the model and section 4
calibrates the model to Canadian data for 1986 and 2006. We perform quantitative experi-
ments to assess the effect of the adoption of zero-tillage technology in the Canadian economy

and in counterfactual alternative developing economies. We conclude in Section 5.



2 Empirical Findings

We focus on the period between Census years 1986 and 2006 for which we have access to a
panel data of farms in Canada. We describe the data and present a number of facts related

to farm productivity, resource misallocation, and the adoption of the zero-tillage technology.

2.1 Data

We use the Canadian Longitudinal Census of Agriculture (L-CEAG) that provides informa-
tion on all operating farms in Canada every 5 years between 1986 and 2006. Our analysis
focuses on the cropping sector, which accounts for most of the output and land in Cana-
dian agriculture. The data include information on farm characteristics, such as output, land,
capital, and input use. We construct farm-level total factor productivity (TFP) and distor-
tions using the data and a standard structural framework. Below we provide details on the
data and variables used in our analysis. All the real variables are reported in 1986 Canadian

dollars.

Real gross output. We measure output using the real gross output of crop farms. Nominal
gross farm receipts are deflated using the farm-level output price index obtained from the

Census of Agriculture.

Real capital. We measure capital using the real capital stock of crop farms. The reported
market value of farm machinery and equipment is deflated using the Machinery and Motor

Vehicles Price Index from the Canada Farm Input Price Index provided by Statistics Canada.

Land input and by crops. We measure land input using the total cultivated area of
farms in acres. We also measure the total area of cultivated land by major crops in acres,

including wheat, barley, canola, and rye.



Zero-tillage and other farm characteristics. We measure the total area of cultivated
land using the zero-tillage technology in acres. We also use information on farm character-
istics, including farm identification for the panel, age of farm operators, and location by

Census Consolidated Subdivision (CCS), henceforth census subdivision or CCS for short.

Sample selection. We restrict our sample to crop farms. We exclude farms with missing
values for output, land, or capital. We also exclude farms with zero output, land, or capital.
Following Brown et al. (2020), to focus on grain farms of sufficient scale and to exclude
hobby or lifestyle operations, we restrict the sample to farms with gross farm income of at
least 10,000 constant 1986 Canadian dollars. To limit the influence of outliers, we trim the
top and bottom 1% of the farms based on productivity as is common in the misallocation

literature.

2.2 Aggregate Statistics

Table 1 presents aggregate statistics for Canadian farms producing crops during the period
1986-2006.

Table 1: Aggregate Statistics - Canadian Agriculture from 1986 to 2011

Year Output Farms Land Capital TFP  Average
Farm Size
1986 6.69 107,980 86.29 10.91  1.00 800
1991 7.72 90,685 79.44 10.75 1.15 876
1996 5.78 81,185 78.10 12.83  0.91 961
2001 7.35 69,670 71.94 13.74 1.23 1,033
2006 9.50 61,665 72.11 15.19 1.62 1,169

Ratio (06/86) 1.42 0.57 0.84 1.39 1.62 1.46

Notes: Output and capital are reported in real terms (1986 prices) in billions of Canadian dollars. Total land

is reported in unit of millions of acres. Average farm size is reported in acres.

During this period, real agricultural crop output increased by 42%, rising from 6.69 billion

in 1986 to 9.50 billion in 2006. Meanwhile, the total number of farms declined by 43%,



dropping from 107,980 in 1986 to 61,690 in 2006. Despite a slight decline in the total amount
of cultivated land by around 16%, the substantial decline in the number of farms associated
with a process of land consolidation resulted in a substantial increase in average farm size by
approximately 46%. Additionally, the total amount of capital increased by 39%, from 10.91
billion in 1986 to 15.19 billion in 2006.

Agricultural total factor productivity (TFP) is measured as a residual assuming the fol-

lowing aggregate production function:
Y = AMI—'y (}(Ole—cx)’Y7

where Y is agricultural output, M is number of operating farms, L is land, K is capital and
A is measured agricultural TFP. Parameters v and « are set to 0.54 and 0.67. The TFP index
represents measured TFP relative to 1986, which increases 60% between 1986 and 2006 (an
annualized growth rate of 2.38%). We note that the number of farms in Canada is closely
linked to agricultural employment. On average, there were approximately 1.5 workers per
farm during the period from 1976 to 2021.

Figure 1 documents the distribution of farms by land size in 1986 and 2006. As noted
earlier with the average farm size, there is a substantial shift in the size distribution of farm
during this period. In panel A, while most farms were smaller than 500 acres in 1986, the
share of farms larger than 500 acres increased substantially by 2006. Specifically, the share of
farms larger than 500 acres rose from 27% in 1986 to 38% in 2006, while the share of farms
smaller than 500 acres decreased from 73% to 62%. Panel B documents the share of land by
farm size. The proportion of land held by farms larger than 500 acres increased from 60%
in 1986 to 80% in 2006. Conversely, the share of land held by farms smaller than 500 acres
decreased from 40% in 1986 to 20% in 2006.



Figure 1: Farm Size Distribution
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Notes: Distribution of farms by size in 1986 and 2006. Panel (a) shows the share of farms by size. Panel (b)

shows the share of land by farm size.

2.3 Farm-level Productivity and Resource Misallocation

We consider a standard framework for evaluating productivity and misallocation in agricul-
ture following Lucas (1978) and Adamopoulos and Restuccia (2014). We document key facts
about the distribution of farm-level productivity and resource misallocation across Canadian
farms from 1986 to 2006. Our findings indicate that resources are allocated close to efficient
levels among Canadian farms. We identify a strong positive correlation between input fac-
tors (land and capital) and farm productivity, contrasting with prior studies in developing
countries that report weak or negligible relationships Adamopoulos et al. (2022); Chen et al.
(2023); Aragén et al. (2024).

Over the sample period, we observe minimal changes in the efficiency of resource allocation
among Canadian farms. The majority of improvements in agricultural TFP at aggregate level

are driven by enhancements in the distribution of farm-level productivity.

Basic framework. We consider a standard framework to evaluate the extent of resource
misallocation in Canadian agriculture using micro-level farm data. The framework and data

are employed to measure farm-level total factor productivity (TFP) and to quantify the



potential agricultural productivity gains that could be achieved from factor reallocation
across farms.
We consider M farms and measure farm-level productivity s; as the residual from the

following farm-level production function,
yi=s; (kG av € (0,1), (1)

where y; is real output, k; is capital, ¢; is the amount of operated land, and («, ) are input
elasticities. Following Valentinyi and Herrendorf (2008), we choose a = 0.67 and = 0.54 to
match the capital and land income share in agriculture in advanced economies such as the
United States and Canada.

Farm-level total factor productivity (TFP) is computed as the residual from equation
(1), using farm-level output and input data. We define farm-level distortions as the average

product of factor inputs,
Yi
ket;—

distortion; =
which should equalize across farms in the absence of frictions or distortions. This measure
of average products is proportional to the marginal product given our production function
specification. Our measure of farm distortions relates to revenue productivity (TFPR) in
Hsieh and Klenow (2009) in that it is the object that equalizes across production units in
the absence of distortions.
We characterize the efficient allocation of capital and land across a fixed set of M producers
with different productivity s; as the allocation that maximizes aggregate output subject to
the resource constraints:

Y¢ = max Z s (kf‘@_a)y,

{ki,t;>0} ‘



subject to

The efficient allocation equates the marginal product of capital and land across farms and

is characterized as

S; S;

e 1 e 1
k=K, 6= = —
ijl Sj Zj:l Sj

Note that the efficient allocation implies a strong positive relationship between farm-

L.

level productivity and size where more productive farms operate more inputs. However,
previous studies examining resource misallocation in agriculture in less developed countries
(Adamopoulos et al., 2022; Chen et al., 2023) document that this positive relationship is
weak or nonexistent, providing evidence of severe misallocation of resources in agriculture in
less developed countries. To the best of our knowledge, no such analysis has been conducted
for the agricultural sector in developed countries. Hence, our analysis of Canadian farms
provides a first opportunity to assess systematic evidence of resource misallocation in a
developed country.

We assess the extent of misallocation by allocative efficiency, a standard measure widely
used in the misallocation literature. Allocative efficiency (AE) is defined as the ratio of
the actual output (Y) in the distorted economy to the aggregate output given the efficient

allocation (Y€):
Y
AE - ﬁ.
Allocative efficiency ranges from 0 to 1, with 1 representing perfect resource allocation
across producers, while values closer to 0 indicate greater inefficiencies in resource allocation.

Previous studies on resource misallocation in low-income countries have found low allocative

efficiency values, indicating a great extent of misallocation.

Farm-level productivity. We document the evolution of farm-level TFP distribution

over time. Figure 2 plots the distribution of farm-level TFP in 1986 and 2006. There is

10



a substantial improvement in the distribution of farm productivity during this period. On

average, farm-level TFP increased by 67% (0.51 log-points) from 1986 to 2006.

Figure 2: Distribution of Farm TFP
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Notes: The distribution of farms by TFP in 1986 and 2006.

Table 2: Dispersion of Farm-level TFP

Dispersion Measures 1986 1991 1996 2001 2006
Standard deviation of log 0.55 0.57 0.53 0.62 0.64
Ratio of p90 to p10 4.53 476 431 570 6.82

Notes: Dispersion in farm TFP measured by the standard deviation (std) of log farm TFP and by the ratio
of percentile 90 to percentile 10 farm TFP.

Table 2 reports a summary of farm-level productivity and distortions for the period 1986-
2006. The measures on the standard deviation of the log and the inter-decile difference
indicate that TFP dispersion across farms has increased over time: the standard deviation
of log TFP rises from 0.55 to 0.64, and the 90-10 percentile difference grows from 1.51 to
1.92.

Resource misallocation. Table 3 presents a summary of key measures of resource mis-
allocation across Canadian farms over time. The dispersion of distortions remains relatively

stable throughout the sample period (1986-2006), with both the standard deviation and
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the 90-10 percentile difference showing little change. The elasticity of farm distortions with
respect to farm TFP, another common measure of misallocation, is 0.76 in 1986 and declines

slightly to 0.68 in 2006.

Table 3: Measures of Resource Misallocation

log(distortion) Distortion Allocative Efficiency
Year std p90-pl0 Elasticity Nationwide Within CCS

1986 0.56 1.65 0.76 0.83 0.88
1991 0.56 1.56 0.73 0.83 0.87
1996 0.52 1.49 0.68 0.85 0.88
2001 0.57 1.63 0.66 0.83 0.87
2006 0.59 1.64 0.68 0.83 0.87

Notes: The first two columns report the standard deviation (std) and the difference between the 90 and 10 per-
centile of log distortions. Distortion Elasticity refers to the elasticity coefficient from regressing log(distortion)
on log(TFP).

We examine resource allocation among Canadian farms and study the agricultural impli-
cations of reallocation at different levels of aggregation: nationwide, within Census Consoli-
dated Subdivisions (CCS), and across time during our sample period. To ensure the results
are not driven by outliers, we follow standard practices in the misallocation literature and
trim our sample by the top and bottom 1% of farm-level TFP and farm-level distortion
measures. However, the results are robust to different trimming thresholds, such as 2% or
5%.

Table 3 reports allocative efficiency at both the nationwide and within CCS levels. Dur-
ing this period, allocative efficiency remained around 0.83-0.85 at the nationwide level and
around 0.87-0.88 at the CCS level. These results indicate that there is little misallocation
across CCS locations, instead the bulk of nationwide misallocation stems from misallocation
across farms within CCS.

Our findings indicate that resource allocation among Canadian farms is close to the ef-
ficient allocation and remains stable throughout the sample period from 1986 to 2006. The

substantial increase in aggregate agricultural TFP during this time is primarily driven by
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shifts in farm-level productivity distribution rather than improvements in resource allocation

efficiency.

Measurement error. The measures of TFP and distortions (TFPR) may reflect mea-
surement error, transitory output or input shocks, and unobserved location-specific char-
acteristics, which can impact the measures of misallocation. Following Adamopoulos et al.
(2022), as a robustness exercise, we address these concerns by estimating permanent farmer
fixed-effect measures of TFP and distortions. In particular, we decompose the logarithm of

farm-level TFP and distortions,

log(TFPiet) = i " 4 " + €i "

: : . distortion distortion distortion
log(distortion;.) = p; + + ejny )

where pI'F and pdistortion are a year fixed effect component that captures the common shocks

TFP

to all farms at time ¢, u;

distortion
7

and are a farm’s fixed-effect components that do not

TFP
ict

distortion
ict

vary over time; e and e capture the idiosyncratic shocks specific to the farmer in
a given year t.

We next examine resource allocation among Canadian farms using farm-level fixed-effect
estimates of productivity and distortions. Our analysis considers factor allocation at two
levels: (1) across the entire country and (2) within Census Consolidated Subdivisions (CCS).
Table 4 reports summary statistics for productivity, distortions, and measures of resource
misallocation among Canadian farms.

The estimates in Table 4 show a substantial decline in the dispersion of both log TFP
and distortions when moving from cross-sectional to fixed-effects estimates. The standard
deviation of log TFP is 0.33 for the permanent component of farm productivity (u7 %), and
further declines to 0.26 when CCS location fixed effects are removed. Similarly, the standard
distortion )

deviation of log distortions is 0.28 for the permanent component of distortions (s

Y
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Table 4: Measures of Misallocation Based on Farm Fixed-Effect Components

(1) (2)
Nationwide Within CCS

Standard deviation

log TFP 0.33 0.26

log distortion 0.28 0.26
Elasticity

Distortion to TFP 0.59 0.57

Land to TFP 0.96 1.04

Capital to TFP 0.85 0.87
Allocative Efficiency 0.95 0.95

Notes: In efficient allocation, elasticity of distortion to TFP is 0 while elasticity of inputs (land and capital)
to TFP is 1/(1 — ) = 2.17. Statistics for column (1) are computed based the fixed effect estimation of
the permanent components of farm productivity and distortions. Statistics for column (2) are derived by
removing CCS location fixed effect from the farm-level fixed effect, following the approach of Adamopoulos
et al. (2022).

falling to 0.26 after controlling for CCS fixed effects.

The elasticity of distortions with respect to productivity is estimated to be 0.59 and
0.57. In contrast, the elasticities of land and capital with respect to farm TFP are high
and significantly positive. Specifically, the elasticity of land to TFP is estimated at 0.96 and
1.04, while the elasticity of capital to TFP is 0.85 and 0.87. These estimates indicate a much
stronger relationship between productivity and size at the farm level than those documented
for low-income countries in previous studies.

Measuring productivity and distortions using farm fixed effects yields higher implied al-
locative efficiency. In both the national and CCS-level analyses, allocative efficiency is es-
timated at 0.95, suggesting an allocation very close to the efficient allocation. This implies
potential gains from reallocation are only slightly above 5 percent (1/0.95 — 1).

Figure 3 plots farm inputs (land and capital) against farm-level productivity for two
countries: Canada and China. Due to data confidentiality restrictions, we do not report the

raw Canadian data. Instead, using the estimated moments, we simulate 10,000 farms to
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Figure 3: Factor Allocations by Farm Productivity in Canada and China
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Notes: The data on inputs and productivity refer to the panel farm fixed effect. The data for Canada
are generated from simulations of 10,000 farms using estimated moments, whereas the data for China are
from Adamopoulos et al. (2022). The solid dark-blue line is the estimated relationship between inputs and
farm productivity whereas the dashed red line is the efficient allocation associated with each level of farm
productivity.

visually represent the factor allocation among Canadian farms. These results are compared
to the corresponding figures for China reported in Adamopoulos et al. (2022).

Under efficient allocation, there should be a strong positive relationship between farm
inputs and productivity, with an expected elasticity of one. For Canada, we find that both
land and capital are more intensively allocated to more productive farms, as indicated by
a significantly positive slope. In contrast, Adamopoulos et al. (2022) report that in China,

there is little to no correlation between land inputs and productivity, and in the case of

capital, the relationship is even negative. These findings suggest substantial deviations from
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an efficient allocation in China, while providing strong evidence of a more efficient resource

allocation among Canadian farms.

2.4 Adoption of Zero-Tillage Technology

The 1990s saw the widespread adoption of a new seeding technique known as zero tillage in
Canada (Brown et al., 2020). This technology enabled the preparation of the seedbed and the
planting of seeds in a single operation, while minimally disturbing the soil. Traditional seeding
involves multiple tilling passes, which dries the soil and removes previous crop residue, leading
to erosion issues, especially under windy conditions. Zero tillage offers numerous benefits,
including reduced fuel consumption, soil moisture conservation, decreased soil erosion, and
lower labor requirements. Zero-tillage is an advancement over ”minimum tillage” technology,
which involves less tillage than conventional methods but still disturbs the soil more than
zero tillage.

The moisture conservation benefits of zero tillage allows farms to plant crops annually,
rather than leaving fields fallow every second or third year, a practice known as ”"summer-
fallowing.” Summer-fallowing was traditionally used to conserve moisture for future crops
and to control weeds through tillage. By enabling annual planting, zero tillage helps farmers
utilize their land more efficiently. However, zero tillage also requires the application of more
fertilizer, as leaving the soil idle increased plant-available nitrogen levels through the natural
process of mineralization. In addition, zero tillage relies on herbicides for weed control, which
was traditionally managed by conventional tillage.

Zero tillage gradually became the dominant seeding technology in Canada, increasing from
0 percent of cultivated land in 1986 to around 60 percent of cultivated land in 2006. The
share of farms utilizing zero tillage technology increased from 0 percent in 1986 to around
45 percent in 2006.

We next examine the relationship between the adoption of the zero-tillage technology and

farm-level productivity. Table 5 reports the impact of zero-tillage adoption on farm-level
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productivity by regressing the change in log farm TFP on a dummy variable indicating zero-
tillage technology adoption. The regressions control for log farm TFP in the initial period,
changes in the share of cultivated land by crop type, as well as time and CCS location fixed

effects.

Table 5: Zero-Tillage Adoption and Farm TFP Growth

Alog(TFP)
ZTAdOptzoog 0. 47Kk
(0.0087)
Controls v
Observations 18,275

Adj. R-squared 0.28

Notes: Standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. The dependent variables
is the 20-year changes in farm log(TFP) defined as Alog(TFP) = log(TFP2o0s) — log(TFP19s6). The key
explanatory variable ZT Adoptagps is the dummy indicating whether the farm adopted the technology in
the later period (2006). Controls include initial log(TFP19g6), changes in land shares by crop types (wheat,
canola, barley, and rye), and location (CCS) fixed effects.

To capture the longer-run impact of the zero-tillage technology, we focus on the change
in farm-level TFP over the available 20-year period. In particular, we restrict the sample
to farms observed in both the initial period (1986) and the final sample period (2006),
allowing us to examine changes over the 20-year horizon. Since no farms had adopted zero-
tillage technology in 1986, we compare the outcomes in 2006 between farms that adopted
the technology and those that did not. We find that the change in log TFP is 0.24 log points
higher for adopters relative to non-adopters.

It is important to note that this result should not be interpreted as causal, as the deci-
sion to adopt the technology may be endogenous and correlated with unobserved farm-level
characteristics. Nevertheless, the findings provide suggestive evidence that farms adopting
zero-tillage technology tend to experience significantly higher TFP growth.

Figure 4 presents the average adoption rates of zero-tillage across deciles of farm-level TFP
in 1986. The figure reveals a positive relationship between initial productivity and subsequent

adoption: farms with higher TFP in 1986 were more likely to adopt zero-tillage technology
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Figure 4: Adoption Rate by Deciles of Initial TFP in 1986
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Notes: Adoption rate is computed as the share of farms adopting zero-tillage technology in each decile of
intial TFP in 1986. The blue line shows the adoption rate in 1996 and the red line shows the adoption rate
in 2006.

in both 1996 and 2006. Among farms in the bottom 10% of the initial TFP distribution, only
about 16% had adopted by 1996 and 40% by 2006. In contrast, adoption rates were substan-
tially higher among farms in the top 10% of the initial TFP distribution—approximately
30% in 1996 and 56% in 2006.

Table 6 presents the relationship between farm characteristics and the adoption of zero-
tillage technology. The regression analysis examines the adoption of zero-tillage technology
between 1986 and 2006, considering initial farm-level TFP, distortion, and the age of opera-
tors in 1986. The results indicate that more productive farms adopt the zero-tillage technol-
ogy to a greater extent. Farms facing greater distortions and those farm managed by older

operators show lower adoption rates of the zero-tillage technology.

3 Model

We develop a model of structural transformation between agriculture and non-agriculture

building on Gollin et al. (2002) and Restuccia et al. (2008). Production in agriculture takes
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Table 6: Determinants of Zero-Tillage Adoption

(1) OLS (2) Logit
ZTAdopt,.s ZT Adopt,s

log(TFP,) 0,175 1.13%5

(0.0045) (0.0291)
log(distortion,) —0.11%* -0.68%**

(0.0046) (0.0305)
Age of operators ~ —0.002%** -0.01%*%

(0.0001) (0.0008)
Controls v v
Observations 72,090 72,090
Adj. R-squared 0.12

Notes: Standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Dependent variable is the
dummy whether the farm first adopt zero-tillage technology in the later period (¢4 5). Independent variables
include the farm-level log(TFP), log(distortion), and the age of operators in the initial period ¢. Sample
includes only farms that do not adopt zero-tillage technology in initial period ¢. Controls include land shares
by crop types (wheat, canola, barley, and rye), as well as time and location (CCS) fixed effects.

place among heterogeneous farms as in Adamopoulos and Restuccia (2014). Farmers make a
technology adoption decision in addition to the farm size operation. We examine how distor-
tions and technological progress affect the operation (selection) and adoption (technology)

decisions of farms and their implications on agricultural productivity, structural transforma-

tion, and aggregate productivity.

3.1 Economic Environment

Technologies. At each date, a homogeneous agricultural good is produced by farms in-

dexed by i. The production function of farm ¢ is given by

Y = A/w,»ail_vﬁz, v € (0,1),

where y; is agricultural output, ¢; is the land input, A is economy-wide productivity, s is

agricultural specific productivity, and Via; ~7 is the farm’s idiosyncratic productivity. The

~

term a? 7 is a permanent component of total factor productivity while v; is a transitory
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component of total factor productivity with Er; = 1 that is drawn each period from an
iid cumulative distribution function H(v) after production decisions are made (Boar et al.,
2022). We note that the transitory component v; could also capture measurement error in
the data which similarly leads to a disconnect between the reported output and labor inputs.
Farm idiosyncratic productivity a; is determined by two components: farm’s ability s; and a

technology adoption choice z; as follows:

log(ai(si, z;)) = log(s;) + log(z;).

Adopting technology z; faces a convex cost in units of labor. We describe in detail below the
technology adoption decision.
Non-agricultural output is produced by a representative firm using labor as the only input

according to the following constant returns to scale production function:

Y, = AN,

where A is economy-wide productivity and N, is the labor input.

Preferences and endowments. There is a representative household of measure one com-
prising of individuals with different farm operating ability s; drawn from a distribution F'(s)
and endowed with one unit of time each period supplied inelastically for production. The
household owns L units of land also supplied inelastically to farms for agricultural pro-
duction. The household has Stone-Geary preferences over agricultural and non-agricultural
goods:

u(cq, cn) = alog(c, —a) + (1 — a)log(cy,),

where ¢, and ¢, are consumption of agricultural and non-agricultural goods, respectively.
The parameter a represents the minimum consumption (subsistence) of agricultural goods

and a is a weight parameter.
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Market structure. We assume competitive markets in both sectors and normalize the
price of agriculture to one (numeraire). We denote by p,, the relative price of non-agriculture,
q the rental rate of land, and w the wage rate in non-agriculture. Farms face idiosyncratic
distortions which we model as proportional revenue taxes 7 as in Restuccia and Rogerson
(2008). Following Bento and Restuccia (2017) and Ayerst et al. (2024), we parameterize
idiosyncratic distortions as a function of farm-level productivity and a random component
in order to capture the relationship between farm land size and farm productivity observed

in the data. Specifically, we assume that the farm-level distortion 7(a,€) is given by

log(1 — 7(a,€)) = (1 = 7) [~ploga — log ],

where p is the elasticity of farm distortions with respect to farm productivity and € is drawn

from G(€), which we assume is log normal with zero mean and standard deviation o..

Occupational choice. Individuals with farm operating ability s; ~ F(s) and random
distortions €; ~ G(¢€), choose whether to operate a farm or to work in the non-agricultural
sector. Income in agriculture is determined by the value from operating a farm given by
V' (s, €;). Income in the non-agricultural sector is given by wage w. Individuals choose to
operate a farm if the income from operating a farm is greater than the income from working
in the non-agricultural sector. Denote the occupational choice of operating a farm by an

indicator function o(s, €) given by

0 if V(s,e) <w,

o(s,€) =
1 if V(s,e) > w.

We denote the income of individual i as I(s;, €;):

I(si,€) = o(si,€)V (si, ) + (1 — o4, €))w.
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The household’s total income is given by

I= /S/E](s,e)dF(s)dG(e) +qL.

Household’s consumption. The household chooses consumption of agricultural and non-
agricultural goods to maximize utility subject to the budget constraint:

max  u(Cq, ) St Cot ppCn = //I(s, €)dF(s)dG(e) + qL + T,

Ca,Cn

where p,, is the relative price of the non-agricultural good and T is a total transfer from the

government.

3.2 Equilibrium

The model is static and we consider a competitive equilibrium in which households, farms,

and firms take prices as given, and prices clear the markets.

Incumbent farms. An incumbent farm i is characterized by idiosyncratic productivity a;

and distortions 7;. The farm’s expected per-period profit is given by

) = _ T l=vpy _
m(a;, 7;) I?Zag( E, [(1 7;)Arva; 'l qﬁ},

— 1 —7)Aka, 70 — gt
max (1 —7)Ara;, 707 —qt

The optimal land choice and output of an incumbent farm is given by

1

Ua;,7;) = (g) v (1 —7)Ar) 7 a;,

~
1

y(ai, vi, 1) = (1> B (1-— Ti)ﬁ(Am)ﬁyiai.
q
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The optimal expected profit of an incumbent farm is given by

y

w(anm) = (1—7) (g) (1= ) AR) Ry

Technology choice. The farm chooses the adoption of technology level z; to maximize its
value net of technology adoption cost:
Vadort (s, ¢;) = max |m(a;, 7(a;, €;)) —pnwzid)] ,

ZZZO

(2)
s.t. log(a;) = log(s;) + log(z;),

where ¢ is a parameter that determines the level of adoption costs and ¢ > 1 is the elasticity
of technology adoption cost with respect to technology adoption level.

If the farm chooses not to adopt technology (equivalent to z = 1), the value of the farm
is given by

vroradrt(s, ;) = m(a;, 7(ai,€)), st log(a;) = log(ss). (3)

The optimal value of an entering farm is given by
V(Si7 €i> = Imax {Vad()pt(Si, EZ‘), VnOt adopt(si’ 61)} .

We generically denote the optimal farm technology adoption level by z(s;, €;) with the con-

vention that z = 1 is no technology adoption.

Definition of equilibrium. A competitive equilibrium comprises prices (p,, w, q); de-
cision functions for farms: land demand ¢(a,7), output y(a,v, ), expected profits m(a, ),
technology adoption z(s, €), net value of farm V (s, €), farm operating decision o(s, €); mass of
non-agricultural workers N,,; household’s consumption (¢,, ¢,) and income I; and lump-sump

transfer T" such that:

(i) Given prices, household’s income I and transfer 7', the allocation (cq,c,) solves the
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household’s problem.

ii) Given w and ¢, decision function ¢(a,7) solves the incumbent farm’s problem, deter-
q p

mining expected farms’ profit 7(a, 7) and realized output y(a, v, 7).

(i) Given w and ¢, farms choose technology adoption z(s, €) to maximize the value of the

farm V' (s, €).

(iv) Given w and ¢, farm operating decision o(s, €) solves the individual occupational choice

problem.

(v) The government’s budget is balanced:

T = / / / o(s, 7 (a,€) y (a, v, 7(a, €)) dH ()G (e)dF (s),

where a = a(s, z(s, €)).

(vi) The agricultural and non-agricultural goods markets clear:
oo [ [ [ os.llavria.) ateaGOir (),
where a = a(s, z2(s,¢€)),

and

Cn + //o(s, €)Lo(s.0>1)02(8,€)?dG(€)dF (s) = AN,,.

(vii) The land and labor markets clear:

/8/50(576)6 (a,7(a,€)) dF(s)dG(e) = L,

where a = a(s, z(s,¢€)),

and

//o(s,e)dF(s)dG(e) + N, =1.

S €
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4 Quantitative Analysis

We calibrate a distorted benchmark economy in two periods: before and after zero-tillage
technology adoption to match data for Canada in 1986 and 2006. We then use the calibrated
economies to perform experiments in order to assess the contribution of the zero-tillage
technology on productivity and structural transformation; and to assess the potential role

of distortions on technology diffusion and other aggregate outcomes.

4.1 Calibration

We first calibrate a distorted benchmark economy to micro, sectoral, and aggregate data
for the Canadian economy in the initial period 1986. We parameterize the distributions of
ability s and random distortions € to be independently log normal with normalized means
and standard deviations o, and o, respectively. There are 12 parameters to calibrate: the
decreasing returns to scale ~, the dispersion in farming ability o, the level and curvature
parameters of the innovation cost function ¢ and v, the productivity elasticity of distortions
p, the dispersion of the random component of distortions o, the dispersion of transitory
productivity o,, the agricultural consumption weight a, the subsistence level of agricultural
consumption a, relative productivity in agriculture s, economy-wide productivity A, and the
aggregate land endowment L.

A set of b parameters are either normalized or assigned values from outside evidence. We
set the decreasing returns to scale to v = 0.65 based on factor income shares in agricul-
ture from Valentinyi and Herrendorf (2008) commonly used in the agricultural misallocation
literature for advanced economies, the curvature of the investment cost function to ¢ = 2
(Acemoglu et al., 2018). We assume that the zero-tillage technology is not available or prof-
itable in the 1986 economy (19 = 00) based on the fact that no farm in Canada had adopted
the technology at this time. Aggregate productivity terms (Ao, ko) are each normalized to 1.

We jointly calibrate the remaining 7 parameters (p,os, o, 0,,a,a, Ly) to match 6 mo-

25



ments from the 1986 data plus an assumed long-run share of employment in agriculture of
1.5%. The six moments we target from the 1986 data are: (1) the measured elasticity of
distortions with respect to farm productivity, (2) the standard deviation of log land, (3) the
standard deviation of log farm distortions, (4) the standard deviation of log farm TFP, (5)

the agricultural employment share, and (6) the average farm size.

Table 7: Calibration of Benchmark Economy in 1986 (Initial Period)

Parameter Value Targeted moments Model Data
p 0.27 Elasticity of distortions 0.76  0.76
O 4.10 Sd log land 0.94 0.93
Oc 2.20 Sd log farm distortions 0.53 0.54
oy 0.05 Sd log farm TFP 0.56  0.55
a 19.10 Agricultural employment share 0.04 0.04
Lo 31.96 Average farm size (acres) 800 800
a 0.10 Long-run agricultural employment share 0.015 0.015

We note that the resulting calibrated distortions parameter p = 0.27 implies a measured
elasticity of distortions of 0.76, hence there is a substantial gap between the model parameter
and the measured elasticity due to strong operation selection of farms, a feature discussed in
detail in Ayerst et al. (2024) using a similar model of misallocation featuring selection and
technology channels across production units.

We then calibrate the same distorted benchmark economy in the later period to Canadian
data in 2006 where the zero-tillage technology has been adopted by many Canadian farms
(11 < 00). We keep all parameter values the same as in the initial period benchmark economy
except we jointly calibrate 4 parameters (A, k1,11, L1) to match 4 moments in 2006: (1)
the growth in non-agricultural labor productivity from 1986 to 2006, (2) the agricultural
employment share, (3) the fraction of cultivated land operated under zero-tillage technology,
and (4) the average farm size. We note that these moments are informative in identifying the
parameters of interest. For instance, the technology cost shifter, 1/, has a first order effect on
the share of land operated under the zero-tillage technology, total cultivated land L; implies

a change in the agricultural land per labor between 1986 and 2006, and the exogenous
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technology components (A, k1) have first-order implications on productivity growth in non-

agriculture and structural transformation during the period.

Table 8: Calibration of Benchmark Economy in 2006 (Later Period)

Parameter Value Targeted moments Model Data
Ay 1.30 Non-agricultural labor productivity (2006/1986)  1.30  1.30
K1 1.20 Agricultural employment share 0.02 0.02
(% 2.20 Fraction of land using zero-tillage 0.60  0.60
Ly 23.38 Average farm size 1,169 1,169

We validate the calibrated economy by examining other important moments that are not
targeted in the calibration. Table 9 reports three relevant moments: allocative efficiency,

agricultural TFP growth, and the impact on farm-level TFP of adopting the zero-tillage

technology.
Table 9: Model Validation in Untargeted Moments
Untargeted moments Model Data
Allocative efficiency in 1986 0.83  0.83
Agricultural TFP growth 1986-2006 94%  94%

Regression A log(farm TFP) on farm adoption dummy  0.36  0.24

Regarding allocative efficiency, which is the ratio of actual to efficient agricultural output,
we find that the model matches quite closely the allocative efficiency in the Canadian data in
1986 even though the model uses simple parametric assumptions on farm ability and distor-
tions. The model also matches agricultural TF'P growth between 1986 and 2006, even though
the model only targeted the agricultural employment share, the aggregate land endowment,
and non-agricultural labor productivity. This alignment is not mechanical, as the model’s
implied changes in agricultural output could diverge from the actual data. Similarly, even
though the curvature parameter of the adoption cost function ¢ was set at the outset from
the literature, we find that the farm-level impact of technology adoption on TFP is quite

close to our empirical finding.
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These results suggest that our calibrated economy provides a reasonable abstract repre-
sentation of the Canadian data and, as a result, is useful for quantitative analysis assessing
economic forces of variation over time. In the next section, we implement relevant coun-
terfactual experiments to asses the contribution of technology adoption and distortions for

aggregate outcomes.

4.2 Experiments

We examine the aggregate impact of the adoption of zero-tillage technology in the Canadian
economy. We use the calibrated model to measure the contribution of zero-tillage technology
adoption on agricultural productivity and other outcomes. Table 10 reports the results for the
benchmark economies in 1986 and 2006 on the agricultural employment share, agricultural
TFP, and average farm size. Recall that these two benchmark economies differ only on four
parameters (A, K, 1, L).

To decompose the sources of variation, we conduct two counterfactual experiments. First,
we consider the benchmark economy in the initial period 1986 and change only the cost of
the zero-tillage technology v to that calibrated in the later period (2006), hence we change
Yo to ¥y in the benchmark economy in 1986, reflecting the technological progress associated
with the zero-tillage technology. We find that the technological progress associated with the
adoption of zero-tillage technology between 1986 and 2006 in isolation accounts for 70% of
the structural change observed in the data ((4%-2.6%)/(4%-2%)), about 35% of the actual
growth in agricultural TFP (log(1.26)/log(1.94)), and more than the observed increase in
the average farm size.

Recall that total land per capita L declined by 27 percent between 1986 and 2006. To assess
the relevance of this decline when measuring the contribution of the zero-tillage technology,

we conduct a second experiment, where in addition to the change in zero-tillage technology we

'We note that agricultural TFP in the model is defined as TFP, = Y/(L?N}!~7) since we abstract from
capital. We find that the increase in agricultural TFP in the model of 94% is consistent with the agricultural
TFP increase in the data when measured in the same way.

28



Table 10: Impact of Zero-Tillage Technology 1986-2006

Agricultural Emp. Agricultural Average Farm

Share (%) TFP Size (acres)
Benchmark economy:
1986 (Ao, Ko, wo, LU) 4.0 1.00 800
Experiments:
(1) (Ao, ko, ¥1, Lo) 2.6 1.26 1,294
Contribution (%) 70 35 -
(2) (A(),K,O”(Dl,[/l) 3.1 1.26 791
Contribution (%) 49 35 -

also change the total amount of land from L to L, as calibrated for the benchmark economies
in the two periods. We find that the decrease in total agricultural land diminishes the effect
of technology adoption on structural transformation, with the overall effect accounting for
45 percent of the decline in the share of employment in agriculture compared with 70 percent
when the land input is constant in the previous experiment. However, the contribution of
technology adoption to the increase in agricultural TFP remains the same, accounting for 35
percent of the increase in agricultural TFP in the data. We note that in this experiment the
implied change in average farm size is negative, highlighting the role of other factors on the
increase in farm size during the period, such as residual productivity growth in agriculture
(A, k) and its effect on agricultural employment.

We also use the calibrated model to examine the impact of distortions on technology adop-
tion. To do so, we assess the aggregate impact of the zero-tillage technology in hypothetical
economies with varying idiosyncratic distortions. We focus on differences in the systematic
component of distortions p a prevalent form of distortions in developing countries and known
to effectively discourage investment (Ayerst, 2025; Ayerst et al., 2024). We consider p = 0.80
(instead of p = 0.29 in the benchmark economy), which generates a productivity elasticity
of distortions of around 0.90 consistent with measured elasticity of distortions in developing

countries (Adamopoulos et al., 2022; Chen et al., 2022). Table 11 reports the results of the
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zero-tillage technology (the change in vy to v;) in the benchmark economy (p = 0.27), and

contrasts these results with those of an economy facing higher distortions (p = 0.80).

Table 11: The Effect of Distortions (Higher p) on Technology Adoption

Adoption Agricultural — Agricultural Share  Average

Rate (%) TFP of Employment (%) Farm Size
Benchmark p = 0.27
1986 (Ao, ko, 1o, Lo) 0.0 1.00 4.0 800
2006 (AQ, Ko, l,/)l, Lo) 63.0 1.30 2.5 1,294
Change (%) — 30 —38 62
Experiment p = 0.80
1986 (Ao, Ko, ¢0, Lo) 0.0 0.39 29.0 111
2006 (Ao, ko, U1, Lo) 5.0 0.41 25.0 130
Change (%) — 5 -1 17

Notes: Results of isolating technology adoption in more distorted economies. We consider an increase in p
from 0.27 in the benchmark economy to 0.80. The adoption rate refers to the fraction of land operated under
zero-tillage.

In the initial period, the more distorted economy (p = 0.80) features higher agricultural
employment (29% versus 4% in the benchmark economy), lower agricultural TFP (39% of the
benchmark economy), lower average farm size (14% of the benchmark economy), and lower
aggregate productivity (75% of the benchmark economy), even though the only difference
between these economies is the value of correlated distortions p. These effects of idiosyncratic
distortions on aggregate outcomes are well studied in the misallocation literature. What is
novel is the effect of distortions on technology adoption. When we apply the same change
across these economies in the cost of zero-tillage associated with technological progress (1o
to 1), we find that higher distortions dampen substantially the rate of technology adoption
in agriculture, an adoption rate of only 5% in the more distorted economy compared with
63% in the benchmark economy. Even with the same technological progress on zero-tillage
technology, distortions dampen the growth of agricultural TFP, an increase between 1986
and 2006 of 5% compared with 30% in the benchmark economy; slows down the process of

structural transformation whereby the share of employment in agriculture falls only by 14%

30



in the more distorted economy compared with 38% in the benchmark economy; and slows
down the growth in average farm size, an increase in average farm size of 17% compared
with 62 percent increase in the benchmark economy.

We can also evaluate the impact of technological progress in less developed economies
more generally. In particular, we consider two counterfactual economies that both feature
low relative aggregate productivity (31% of the benchmark economy in the initial period
and a high share of employment in agriculture (70% in the initial period relative to 4% in
the benchmark economy). But the two counterfactual developing economies differ on the
drivers of variation relative to the benchmark economy. In counterfactual economy 1, the
high employment share in agriculture relative to the benchmark arises from high distortions
p = 0.80 and relatively low agricultural productivity Ax = 0.875. In counterfactual economy
2, distortions are the same as in the benchmark economy so the high employment share in
agriculture arises from much lower agricultural productivity Ax = 0.60. In each of these
developing economies, we study technological progress through a reduction in the cost of
zero-tillage technology, from 1 to ;.

Table 12: Technological Progress in Alternative Developing Economies

Agriculture Share  Adoption Agricultural  Average

of Employment (%) Rate (%) TFP Farm Size
Counterfactual 1: p = 0.80
(A =0.30, k = 2.92)
Initial ¥y = o0 70 0.0 0.28 46
Later ¢y = 1.85 48 7.6 0.32 66
Change (%) —22 - 1 43
Counterfactual 2: p = 0.27
(A=0.30,xk = 1.98)
Initial ¥y = oo 70 0.0 0.28 45
Later ¢y = 1.85 8 60.2 0.62 395
Change (%) —62 - 121 778

The results of these experiments are reported in Table 12. We find that the counterfactual

developing economy with higher distortions experiences much less technological diffusion
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and as a result much less agricultural and aggregate productivity growth and structural
transformation than an equivalent developing economy with low distortions. In particular,
the same technological progress (a reduction in ) implies an adoption rate of zero-tillage
in the later period of 8% in the more distorted economy compared to 60% in the developing
economy with lower distortions. The higher diffusion of zero-tillage in agriculture translates
into a much lower share of employment in the less distorted economy in the later period
(8% versus 48%), faster convergence in agricultural TFP relative to the benchmark in the
less distorted economy (0.62 versus 0.32), and a substantial catch up in average farm size
relative to the distorted economy in the less distorted economy (growth in average farm size
of 778% versus 43% in the more distorted economy).

Underneath these aggregate results, there are important differences in the micro mo-
ments between the high and low distortion economies worth discussing. Whereas dispersion
in farm-level TFP remains roughly the same in the high distortion economy after zero-tillage
technology, in the low distortion economy, technology adoption substantially changes the pro-
ductivity distribution and land consolidation across farms. For instance, the percentile 10
farm TFP increases from 0.24 in the initial period to 1.47 in the later period, illustrating the
effect of stronger selection at the bottom of the productivity distribution; and the percentile
90 farm TFP increases from 3.8 to 8.3, reflecting the effect of increased productivity in-
vestment by farms at the top of the productivity distribution. Stronger selection and higher
productivity investment generate an overall reduction in productivity dispersion (p90/p10
ratio falls from 16-fold to 5.6-fold) and a shift to the right in the productivity distribu-
tion accounting for the substantial 121% increase in agricultural TFP in the less distorted
economy.

These results suggest that distortions, especially distortions that are correlated with pro-
ducer productivity, substantially mitigate the aggregate impact from the same technologi-
cal progress in less developed countries. The results are consistent with empirical evidence

from policy reforms that find reductions in misallocation are accompanied by changes in
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the productivity distribution through improved selection of operating units and technology

upgrading (Pavenik, 2002; Bustos, 2011; Khandelwal et al., 2013).

5 Conclusions

Using a unique panel dataset of the universe of Canadian farms between 1986 and 2006 and a
standard framework of production heterogeneity, we find a relatively high level of allocative
efficiency compared to other agricultural contexts in developing countries, and even relative
to other advanced countries in the manufacturing sector. Specifically, allocative efficiency in
Canadian farms is roughly constant across time between 1986 and 2006, measuring around
82% nationwide, 85% within Census subdivisions, and 95% when using the panel to control
for potential measurement error in the cross-section of farms.

We document that between 1986 and 2006 Canadian agriculture featured the adoption
and diffusion of a new seeing technique, the zero-tillage technology, from zero percent of the
cultivated land in 1986 to 60 percent in 2006. We use the data together with a quantitative
model of agricultural production and structural transformation to measure the contribution
of technology adoption on agricultural productivity and structural transformation. We find
technological progress alone associated with the adoption of the zero-tillage technology con-
tributed to 35 percent of the growth in agricultural productivity, leading also to important
changes in structural transformation and land consolidation among farms.

We also used the model to quantify the importance of distortions for technology adop-
tion. In Canada, the rapid adoption of zero-tillage was supported by a strong institutional
environment where more productive farms and farms adopting the technology could grow
their size. We find that distortions, in particular distortions that constrain the size of more
productive farms, substantially affect the rate of technology adoption, dampening the im-
pact of technological progress on agricultural productivity and structural transformation. In

particular, in a counterfactual Canadian economy featuring high distortions (a high produc-
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tivity elasticity of distortions) as widely documented for developing countries, the adoption
rate of zero-tillage would have only been 5 percent instead of 63 percent and growth in
agricultural productivity growth only one sixth of that in an economy with low distortions.
This result suggests that correlated farm distortions are effectively a barrier to the diffusion
of new technologies, an effect which we find is quantitatively important. We also show that
technological progress can be a powerful driver of catch-up growth in developing economies

with low correlated distortions.
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