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Abstract

We examine how resource allocation across production units shapes technology adop-
tion and productivity growth, combining a unique panel dataset of the universe of
Canadian farms spanning 1986 to 2006 with a quantitative model of heterogeneous
producers. The period features the advent and rapid di!usion of a major new seeding
technique, zero tillage, whose use expanded from zero percent of cultivated land in 1986
to 60 percent by 2006. We document substantial technology adoption, land consolida-
tion, and productivity growth, facilitated by an economic environment characterized
by relatively high allocative e”ciency, whereby more productive farms operate at a
larger scale. Empirically, we find that adopting zero-tillage raises farm-level productiv-
ity substantially. Through quantitative analysis, we estimate that zero-tillage adoption
accounts for roughly 35 percent of the near doubling of agricultural productivity over
the period and 45–70 percent of the observed structural transformation. We show that
high allocative e”ciency was crucial for the widespread adoption of technology, which
would have nearly disappeared with correlated distortions commonly documented in
developing countries. We also show that technological progress can be a powerful driver
of catch-up growth in developing economies with low correlated distortions.
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1 Introduction

An essential research question in the economics of growth and development is what accounts

for the great disparities in aggregate productivity across countries, which are at the core of

international di!erences in income per capita (Klenow and Rodriguez-Clare, 1997; Prescott,

1998; Jones, 2016). There are two broad explanations for lower aggregate productivity in

developing countries. First, due to a variety of distortions and frictions, factors of produc-

tion are less e”ciently allocated across firms in developing countries, depressing aggregate

productivity (Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009). Second, developing

countries feature substantial gaps relative to developed countries in the adoption and di!u-

sion of new technologies (Comin and Hobijn, 2010; Comin and Mestieri, 2018; Ayerst, 2025).

We examine the role of resource allocation across production units for technology adoption

and productivity following a recent literature linking distortions to technology decisions by

firms (Restuccia and Rogerson, 2017; Ayerst, 2025; Ayerst et al., 2024).

We provide direct empirical evidence and a quantitative assessment of the role of re-

source allocation across production units on technology adoption by exploiting a unique

panel dataset of the universe of Canadian farms spanning a period during the advent of a

new seeding technology in agriculture, its adoption and di!usion by Canadian farms. While

the share of employment and output in agriculture nowadays is low in developed countries,

agriculture plays a disproportionate role in the aggregate outcomes of developing countries

(Gollin et al., 2002; Restuccia et al., 2008), as a result, technology gaps in agriculture are

essential in understanding low aggregate productivity in the developing world.

Using panel data from the Canadian Census of Agriculture during the period between

1986 and 2006, we characterize misallocation and technology di!usion of the zero-tillage

technology. Zero-tillage is a new seeding technique developed in the 1970s that enables the

preparation of soil and the planting of seeds in one operation with minimum soil disruption,

saving on time and resources in addition to a more e”cient use of land. Consistent with the

historical experience on the decline in the number of farms in Canada and the process of
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land consolidation into larger farms, between 1986 and 2006, the number of farms declined

by 43 percent and average farm size increased by 46 percent. During the period, there

was widespread di!usion of zero-tillage among Canadian farms, from zero percent of the

land cultivated in 1986 to around 60 percent by 2006. The process of land consolidation

and technology di!usion during the period is associated with a substantial increase in the

agricultural yield (70 percent) and agricultural output per farm (149 percent, equivalent to

4.7 percent annual growth). At the farm level, the adoption of the zero-tillage technology had

a significant positive e!ect on farm productivity, a result robust to many controls. Moreover,

more productive farms adopted the zero-tillage technology in greater proportion, by 1996 the

adoption rate among the most productive farms was double the rate of the least productive

farms.

An important context in the process of land consolidation and technology adoption among

Canadian farms, is the relatively high allocative e”ciency in agriculture which we document,

the ratio of actual to e”cient agricultural output. Allocative e”ciency is relatively constant

during the period at 83-85 percent nationwide, 87-88 percent within narrow Census subdi-

visions, and 95 percent both nationwide and within narrow Census subdivisions when using

the panel to control for potential measurement error in the data. High allocative e”ciency

results from a strong positive relationship between farm operational size and productivity,

which is summarized by a relatively high elasticity of farm land and capital with respect to

farm productivity. This feature of resource allocation contrasts markedly with the evidence

of substantial resource misallocation of land and other factors of agricultural production in

developing countries where farm size and productivity are much less aligned (Chen et al.,

2023; Adamopoulos et al., 2022; Aragón et al., 2024).

To quantify how resource allocation across production units shapes technology adoption,

productivity growth, and structural transformation, we develop a two-sector model of agricul-

ture and non-agriculture, where individuals make occupational (sector) choices and farmers

decide on scale, operation, and technology adoption in agriculture. In this framework, dis-
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tortions a!ect the allocation of factors across farms and their operation decision (selection),

which in turn act as an e!ective tax on technology adoption (technology). These e!ects work

to lower agricultural productivity and to hinder structural transformation. We calibrate a

benchmark distorted economy to Canadian data in 1986 and 2006. Of particular interest is

the parameter determining the cost of zero-tillage adoption. We then conduct counterfac-

tual experiments to isolate the quantitative e!ect of zero-tillage technology on structural

transformation and agricultural productivity growth during the period. We also examine the

quantitative e!ect of higher distortions in the benchmark economy for technology di!usion,

agricultural productivity, and structural transformation. Because land reforms typically span

a long period of time (Adamopoulos and Restuccia, 2020), with varying degrees of success

in reallocating resources to the most productive use in developing countries (Chari et al.,

2021; Chen et al., 2022), the examination of distortions in a successful developed economy

is novel and informative of the depressing e!ects of correlated distortions on the return to

technology adoption and productivity growth.

Our quantitative analysis reveals that the adoption of the zero-tillage technology in

Canada between 1986 and 2006 contributed to 35 percent of the near doubling of agricultural

productivity, between 45 to 70 percent of the reallocation of employment out of agriculture

(structural transformation), and all the increase in average farm size observed in the data.

We also find that a relatively high allocative e”ciency in Canada (in particular the relatively

low correlated distortions), was essential in facilitating the adoption and di!usion of zero-

tillage. In a counterfactual experiment with the same technology shock associated with zero

tillage, but where we change the correlated distortion parameter as documented in develop-

ing countries (high distortions), the adoption of zero-tillage technology would have been only

5 percent of cultivated land in 2006 instead of 63 percent in the Canadian economy with

low distortions; and growth in agricultural productivity would have been 5 percent, only one

sixth of the agricultural productivity growth from technology adoption in the low distortion

Canadian economy. We also show that correlated distortions, as opposed to lower economy-
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wide and sectoral productivity, are key in dampening the return to technology adoption and

growth since the same technological progress has much larger e!ect in a developing economy

with low distortions. Moreover, we show that technological progress can be a powerful driver

of catch up to advanced economies in productivity, structural transformation, and farm size

in developing economies with low distortions.

We contribute to three broad branches of the literature. First, we relate to a large liter-

ature on production heterogeneity and misallocation (Restuccia and Rogerson, 2008; Guner

et al., 2008; Hsieh and Klenow, 2009) and more specifically misallocation in agriculture

(Adamopoulos and Restuccia, 2014; Chen et al., 2023; Ayerst et al., 2020). We contribute

to this literature by examining empirically and in a quantitative model the e!ect of mis-

allocation on technology adoption and productivity. Second, we relate to the literature on

technology adoption and productivity in agriculture (Yang and Zhu, 2013; Caunedo and

Keller, 2021; Chen, 2020). We contribute to this literature by analyzing an episode of adop-

tion and di!usion of technology using micro-level data and a quantitative model. Third,

we connect to the literature linking misallocation with e!ects on selection and technology

(Pavcnik, 2002; Bustos, 2011; Khandelwal et al., 2013; Yang, 2021; Majerovitz, 2023; Ayerst

et al., 2024). We contribute to this literature by analyzing a specific episode of technology

adoption.

The remainder of the paper proceeds as follows. In the next section, we provide details

of the data we use and empirical findings on allocative e”ciency and the adoption and pro-

ductivity e!ect of zero-tillage technology. In Section 3, we describe the model and section 4

calibrates the model to Canadian data for 1986 and 2006. We perform quantitative experi-

ments to assess the e!ect of the adoption of zero-tillage technology in the Canadian economy

and in counterfactual alternative developing economies. We conclude in Section 5.
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2 Empirical Findings

We focus on the period between Census years 1986 and 2006 for which we have access to a

panel data of farms in Canada. We describe the data and present a number of facts related

to farm productivity, resource misallocation, and the adoption of the zero-tillage technology.

2.1 Data

We use the Canadian Longitudinal Census of Agriculture (L-CEAG) that provides informa-

tion on all operating farms in Canada every 5 years between 1986 and 2006. Our analysis

focuses on the cropping sector, which accounts for most of the output and land in Cana-

dian agriculture. The data include information on farm characteristics, such as output, land,

capital, and input use. We construct farm-level total factor productivity (TFP) and distor-

tions using the data and a standard structural framework. Below we provide details on the

data and variables used in our analysis. All the real variables are reported in 1986 Canadian

dollars.

Real gross output. Wemeasure output using the real gross output of crop farms. Nominal

gross farm receipts are deflated using the farm-level output price index obtained from the

Census of Agriculture.

Real capital. We measure capital using the real capital stock of crop farms. The reported

market value of farm machinery and equipment is deflated using the Machinery and Motor

Vehicles Price Index from the Canada Farm Input Price Index provided by Statistics Canada.

Land input and by crops. We measure land input using the total cultivated area of

farms in acres. We also measure the total area of cultivated land by major crops in acres,

including wheat, barley, canola, and rye.
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Zero-tillage and other farm characteristics. We measure the total area of cultivated

land using the zero-tillage technology in acres. We also use information on farm character-

istics, including farm identification for the panel, age of farm operators, and location by

Census Consolidated Subdivision (CCS), henceforth census subdivision or CCS for short.

Sample selection. We restrict our sample to crop farms. We exclude farms with missing

values for output, land, or capital. We also exclude farms with zero output, land, or capital.

Following Brown et al. (2020), to focus on grain farms of su”cient scale and to exclude

hobby or lifestyle operations, we restrict the sample to farms with gross farm income of at

least 10, 000 constant 1986 Canadian dollars. To limit the influence of outliers, we trim the

top and bottom 1% of the farms based on productivity as is common in the misallocation

literature.

2.2 Aggregate Statistics

Table 1 presents aggregate statistics for Canadian farms producing crops during the period

1986-2006.

Table 1: Aggregate Statistics - Canadian Agriculture from 1986 to 2011

Year Output Farms Land Capital TFP Average
Farm Size

1986 6.69 107,980 86.29 10.91 1.00 800
1991 7.72 90,685 79.44 10.75 1.15 876
1996 5.78 81,185 78.10 12.83 0.91 961
2001 7.35 69,670 71.94 13.74 1.23 1,033
2006 9.50 61,665 72.11 15.19 1.62 1,169

Ratio (06/86) 1.42 0.57 0.84 1.39 1.62 1.46

Notes: Output and capital are reported in real terms (1986 prices) in billions of Canadian dollars. Total land

is reported in unit of millions of acres. Average farm size is reported in acres.

During this period, real agricultural crop output increased by 42%, rising from 6.69 billion

in 1986 to 9.50 billion in 2006. Meanwhile, the total number of farms declined by 43%,
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dropping from 107,980 in 1986 to 61,690 in 2006. Despite a slight decline in the total amount

of cultivated land by around 16%, the substantial decline in the number of farms associated

with a process of land consolidation resulted in a substantial increase in average farm size by

approximately 46%. Additionally, the total amount of capital increased by 39%, from 10.91

billion in 1986 to 15.19 billion in 2006.

Agricultural total factor productivity (TFP) is measured as a residual assuming the fol-

lowing aggregate production function:

Y = AM
1→ω

(
K

ε
L
1→ε

)ω
,

where Y is agricultural output, M is number of operating farms, L is land, K is capital and

A is measured agricultural TFP. Parameters ω and ε are set to 0.54 and 0.67. The TFP index

represents measured TFP relative to 1986, which increases 60% between 1986 and 2006 (an

annualized growth rate of 2.38%). We note that the number of farms in Canada is closely

linked to agricultural employment. On average, there were approximately 1.5 workers per

farm during the period from 1976 to 2021.

Figure 1 documents the distribution of farms by land size in 1986 and 2006. As noted

earlier with the average farm size, there is a substantial shift in the size distribution of farm

during this period. In panel A, while most farms were smaller than 500 acres in 1986, the

share of farms larger than 500 acres increased substantially by 2006. Specifically, the share of

farms larger than 500 acres rose from 27% in 1986 to 38% in 2006, while the share of farms

smaller than 500 acres decreased from 73% to 62%. Panel B documents the share of land by

farm size. The proportion of land held by farms larger than 500 acres increased from 60%

in 1986 to 80% in 2006. Conversely, the share of land held by farms smaller than 500 acres

decreased from 40% in 1986 to 20% in 2006.
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Figure 1: Farm Size Distribution

(a) Share of farms by size (b) Land share by farm size

Notes: Distribution of farms by size in 1986 and 2006. Panel (a) shows the share of farms by size. Panel (b)

shows the share of land by farm size.

2.3 Farm-level Productivity and Resource Misallocation

We consider a standard framework for evaluating productivity and misallocation in agricul-

ture following Lucas (1978) and Adamopoulos and Restuccia (2014). We document key facts

about the distribution of farm-level productivity and resource misallocation across Canadian

farms from 1986 to 2006. Our findings indicate that resources are allocated close to e”cient

levels among Canadian farms. We identify a strong positive correlation between input fac-

tors (land and capital) and farm productivity, contrasting with prior studies in developing

countries that report weak or negligible relationships Adamopoulos et al. (2022); Chen et al.

(2023); Aragón et al. (2024).

Over the sample period, we observe minimal changes in the e”ciency of resource allocation

among Canadian farms. The majority of improvements in agricultural TFP at aggregate level

are driven by enhancements in the distribution of farm-level productivity.

Basic framework. We consider a standard framework to evaluate the extent of resource

misallocation in Canadian agriculture using micro-level farm data. The framework and data

are employed to measure farm-level total factor productivity (TFP) and to quantify the
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potential agricultural productivity gains that could be achieved from factor reallocation

across farms.

We consider M farms and measure farm-level productivity si as the residual from the

following farm-level production function,

yi = s
1→ω
i

(
k
ε
i ϑ

1→ε
i

)ω
, ε, ω → (0, 1), (1)

where yi is real output, ki is capital, ϑi is the amount of operated land, and (ε, ω) are input

elasticities. Following Valentinyi and Herrendorf (2008), we choose ε = 0.67 and ω = 0.54 to

match the capital and land income share in agriculture in advanced economies such as the

United States and Canada.

Farm-level total factor productivity (TFP) is computed as the residual from equation

(1), using farm-level output and input data. We define farm-level distortions as the average

product of factor inputs,

distortioni =
yi

k
ε
i ϑ

1→ε
i

.

which should equalize across farms in the absence of frictions or distortions. This measure

of average products is proportional to the marginal product given our production function

specification. Our measure of farm distortions relates to revenue productivity (TFPR) in

Hsieh and Klenow (2009) in that it is the object that equalizes across production units in

the absence of distortions.

We characterize the e”cient allocation of capital and land across a fixed set ofM producers

with di!erent productivity si as the allocation that maximizes aggregate output subject to

the resource constraints:

Y
e = max

{ki,ϑi↑0}

∑

i

s
1→ω
i

(
k
ε
i ϑ

1→ε
i

)ω
,
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subject to

K =
∑

i

ki, L =
∑

i

ϑi.

The e”cient allocation equates the marginal product of capital and land across farms and

is characterized as

k
e
i =

si∑M
j→1 sj

K, ϑ
e
i =

si∑M
j=1 sj

L.

Note that the e”cient allocation implies a strong positive relationship between farm-

level productivity and size where more productive farms operate more inputs. However,

previous studies examining resource misallocation in agriculture in less developed countries

(Adamopoulos et al., 2022; Chen et al., 2023) document that this positive relationship is

weak or nonexistent, providing evidence of severe misallocation of resources in agriculture in

less developed countries. To the best of our knowledge, no such analysis has been conducted

for the agricultural sector in developed countries. Hence, our analysis of Canadian farms

provides a first opportunity to assess systematic evidence of resource misallocation in a

developed country.

We assess the extent of misallocation by allocative e”ciency, a standard measure widely

used in the misallocation literature. Allocative e”ciency (AE) is defined as the ratio of

the actual output (Y ) in the distorted economy to the aggregate output given the e”cient

allocation (Y e):

AE =
Y

Y e
.

Allocative e”ciency ranges from 0 to 1, with 1 representing perfect resource allocation

across producers, while values closer to 0 indicate greater ine”ciencies in resource allocation.

Previous studies on resource misallocation in low-income countries have found low allocative

e”ciency values, indicating a great extent of misallocation.

Farm-level productivity. We document the evolution of farm-level TFP distribution

over time. Figure 2 plots the distribution of farm-level TFP in 1986 and 2006. There is
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a substantial improvement in the distribution of farm productivity during this period. On

average, farm-level TFP increased by 67% (0.51 log-points) from 1986 to 2006.

Figure 2: Distribution of Farm TFP

(a) Histogram of log(TFP) (b) log(TFP) by percentiles

Notes: The distribution of farms by TFP in 1986 and 2006.

Table 2: Dispersion of Farm-level TFP

Dispersion Measures 1986 1991 1996 2001 2006

Standard deviation of log 0.55 0.57 0.53 0.62 0.64
Ratio of p90 to p10 4.53 4.76 4.31 5.70 6.82

Notes: Dispersion in farm TFP measured by the standard deviation (std) of log farm TFP and by the ratio

of percentile 90 to percentile 10 farm TFP.

Table 2 reports a summary of farm-level productivity and distortions for the period 1986-

2006. The measures on the standard deviation of the log and the inter-decile di!erence

indicate that TFP dispersion across farms has increased over time: the standard deviation

of log TFP rises from 0.55 to 0.64, and the 90–10 percentile di!erence grows from 1.51 to

1.92.

Resource misallocation. Table 3 presents a summary of key measures of resource mis-

allocation across Canadian farms over time. The dispersion of distortions remains relatively

stable throughout the sample period (1986–2006), with both the standard deviation and
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the 90–10 percentile di!erence showing little change. The elasticity of farm distortions with

respect to farm TFP, another common measure of misallocation, is 0.76 in 1986 and declines

slightly to 0.68 in 2006.

Table 3: Measures of Resource Misallocation

log(distortion) Distortion Allocative E”ciency
Year std p90-p10 Elasticity Nationwide Within CCS

1986 0.56 1.65 0.76 0.83 0.88
1991 0.56 1.56 0.73 0.83 0.87
1996 0.52 1.49 0.68 0.85 0.88
2001 0.57 1.63 0.66 0.83 0.87
2006 0.59 1.64 0.68 0.83 0.87

Notes: The first two columns report the standard deviation (std) and the di!erence between the 90 and 10 per-

centile of log distortions. Distortion Elasticity refers to the elasticity coe”cient from regressing log(distortion)

on log(TFP).

We examine resource allocation among Canadian farms and study the agricultural impli-

cations of reallocation at di!erent levels of aggregation: nationwide, within Census Consoli-

dated Subdivisions (CCS), and across time during our sample period. To ensure the results

are not driven by outliers, we follow standard practices in the misallocation literature and

trim our sample by the top and bottom 1% of farm-level TFP and farm-level distortion

measures. However, the results are robust to di!erent trimming thresholds, such as 2% or

5%.

Table 3 reports allocative e”ciency at both the nationwide and within CCS levels. Dur-

ing this period, allocative e”ciency remained around 0.83-0.85 at the nationwide level and

around 0.87-0.88 at the CCS level. These results indicate that there is little misallocation

across CCS locations, instead the bulk of nationwide misallocation stems from misallocation

across farms within CCS.

Our findings indicate that resource allocation among Canadian farms is close to the ef-

ficient allocation and remains stable throughout the sample period from 1986 to 2006. The

substantial increase in aggregate agricultural TFP during this time is primarily driven by
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shifts in farm-level productivity distribution rather than improvements in resource allocation

e”ciency.

Measurement error. The measures of TFP and distortions (TFPR) may reflect mea-

surement error, transitory output or input shocks, and unobserved location-specific char-

acteristics, which can impact the measures of misallocation. Following Adamopoulos et al.

(2022), as a robustness exercise, we address these concerns by estimating permanent farmer

fixed-e!ect measures of TFP and distortions. In particular, we decompose the logarithm of

farm-level TFP and distortions,

log(TFPict) = µ
TFP
t + µ

TFP
i + e

TFP
ict ,

log(distortionict) = µ
distortion
t + µ

distortion
i + e

distortion
ict ,

where µTFP
t and µ

distortion
t are a year fixed e!ect component that captures the common shocks

to all farms at time t, µTFP
i and µ

distortion
i are a farm’s fixed-e!ect components that do not

vary over time; eTFP
ict and e

distortion
ict capture the idiosyncratic shocks specific to the farmer in

a given year t.

We next examine resource allocation among Canadian farms using farm-level fixed-e!ect

estimates of productivity and distortions. Our analysis considers factor allocation at two

levels: (1) across the entire country and (2) within Census Consolidated Subdivisions (CCS).

Table 4 reports summary statistics for productivity, distortions, and measures of resource

misallocation among Canadian farms.

The estimates in Table 4 show a substantial decline in the dispersion of both log TFP

and distortions when moving from cross-sectional to fixed-e!ects estimates. The standard

deviation of log TFP is 0.33 for the permanent component of farm productivity (µTFP
i ), and

further declines to 0.26 when CCS location fixed e!ects are removed. Similarly, the standard

deviation of log distortions is 0.28 for the permanent component of distortions (µdistortion
i ),
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Table 4: Measures of Misallocation Based on Farm Fixed-E!ect Components

(1) (2)
Nationwide Within CCS

Standard deviation
log TFP 0.33 0.26
log distortion 0.28 0.26

Elasticity
Distortion to TFP 0.59 0.57
Land to TFP 0.96 1.04
Capital to TFP 0.85 0.87

Allocative E”ciency 0.95 0.95

Notes: In e”cient allocation, elasticity of distortion to TFP is 0 while elasticity of inputs (land and capital)

to TFP is 1/(1 ↑ ω) = 2.17. Statistics for column (1) are computed based the fixed e!ect estimation of

the permanent components of farm productivity and distortions. Statistics for column (2) are derived by

removing CCS location fixed e!ect from the farm-level fixed e!ect, following the approach of Adamopoulos

et al. (2022).

falling to 0.26 after controlling for CCS fixed e!ects.

The elasticity of distortions with respect to productivity is estimated to be 0.59 and

0.57. In contrast, the elasticities of land and capital with respect to farm TFP are high

and significantly positive. Specifically, the elasticity of land to TFP is estimated at 0.96 and

1.04, while the elasticity of capital to TFP is 0.85 and 0.87. These estimates indicate a much

stronger relationship between productivity and size at the farm level than those documented

for low-income countries in previous studies.

Measuring productivity and distortions using farm fixed e!ects yields higher implied al-

locative e”ciency. In both the national and CCS-level analyses, allocative e”ciency is es-

timated at 0.95, suggesting an allocation very close to the e”cient allocation. This implies

potential gains from reallocation are only slightly above 5 percent (1/0.95↑ 1).

Figure 3 plots farm inputs (land and capital) against farm-level productivity for two

countries: Canada and China. Due to data confidentiality restrictions, we do not report the

raw Canadian data. Instead, using the estimated moments, we simulate 10,000 farms to
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Figure 3: Factor Allocations by Farm Productivity in Canada and China

(a) Land – Canada (b) Capital – Canada

(c) Land – China (d) Capital – China

Notes: The data on inputs and productivity refer to the panel farm fixed e!ect. The data for Canada

are generated from simulations of 10,000 farms using estimated moments, whereas the data for China are

from Adamopoulos et al. (2022). The solid dark-blue line is the estimated relationship between inputs and

farm productivity whereas the dashed red line is the e”cient allocation associated with each level of farm

productivity.

visually represent the factor allocation among Canadian farms. These results are compared

to the corresponding figures for China reported in Adamopoulos et al. (2022).

Under e”cient allocation, there should be a strong positive relationship between farm

inputs and productivity, with an expected elasticity of one. For Canada, we find that both

land and capital are more intensively allocated to more productive farms, as indicated by

a significantly positive slope. In contrast, Adamopoulos et al. (2022) report that in China,

there is little to no correlation between land inputs and productivity, and in the case of

capital, the relationship is even negative. These findings suggest substantial deviations from
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an e”cient allocation in China, while providing strong evidence of a more e”cient resource

allocation among Canadian farms.

2.4 Adoption of Zero-Tillage Technology

The 1990s saw the widespread adoption of a new seeding technique known as zero tillage in

Canada (Brown et al., 2020). This technology enabled the preparation of the seedbed and the

planting of seeds in a single operation, while minimally disturbing the soil. Traditional seeding

involves multiple tilling passes, which dries the soil and removes previous crop residue, leading

to erosion issues, especially under windy conditions. Zero tillage o!ers numerous benefits,

including reduced fuel consumption, soil moisture conservation, decreased soil erosion, and

lower labor requirements. Zero-tillage is an advancement over ”minimum tillage” technology,

which involves less tillage than conventional methods but still disturbs the soil more than

zero tillage.

The moisture conservation benefits of zero tillage allows farms to plant crops annually,

rather than leaving fields fallow every second or third year, a practice known as ”summer-

fallowing.” Summer-fallowing was traditionally used to conserve moisture for future crops

and to control weeds through tillage. By enabling annual planting, zero tillage helps farmers

utilize their land more e”ciently. However, zero tillage also requires the application of more

fertilizer, as leaving the soil idle increased plant-available nitrogen levels through the natural

process of mineralization. In addition, zero tillage relies on herbicides for weed control, which

was traditionally managed by conventional tillage.

Zero tillage gradually became the dominant seeding technology in Canada, increasing from

0 percent of cultivated land in 1986 to around 60 percent of cultivated land in 2006. The

share of farms utilizing zero tillage technology increased from 0 percent in 1986 to around

45 percent in 2006.

We next examine the relationship between the adoption of the zero-tillage technology and

farm-level productivity. Table 5 reports the impact of zero-tillage adoption on farm-level
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productivity by regressing the change in log farm TFP on a dummy variable indicating zero-

tillage technology adoption. The regressions control for log farm TFP in the initial period,

changes in the share of cultivated land by crop type, as well as time and CCS location fixed

e!ects.

Table 5: Zero-Tillage Adoption and Farm TFP Growth

# log(TFP)

ZTAdopt2006 0.24***
(0.0087)

Controls ↭
Observations 18,275
Adj. R-squared 0.28

Notes: Standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. The dependent variables

is the 20-year changes in farm log(TFP) defined as # log(TFP) ↓ log(TFP2006) ↑ log(TFP1986). The key

explanatory variable ZTAdopt2006 is the dummy indicating whether the farm adopted the technology in

the later period (2006). Controls include initial log(TFP1986), changes in land shares by crop types (wheat,

canola, barley, and rye), and location (CCS) fixed e!ects.

To capture the longer-run impact of the zero-tillage technology, we focus on the change

in farm-level TFP over the available 20-year period. In particular, we restrict the sample

to farms observed in both the initial period (1986) and the final sample period (2006),

allowing us to examine changes over the 20-year horizon. Since no farms had adopted zero-

tillage technology in 1986, we compare the outcomes in 2006 between farms that adopted

the technology and those that did not. We find that the change in log TFP is 0.24 log points

higher for adopters relative to non-adopters.

It is important to note that this result should not be interpreted as causal, as the deci-

sion to adopt the technology may be endogenous and correlated with unobserved farm-level

characteristics. Nevertheless, the findings provide suggestive evidence that farms adopting

zero-tillage technology tend to experience significantly higher TFP growth.

Figure 4 presents the average adoption rates of zero-tillage across deciles of farm-level TFP

in 1986. The figure reveals a positive relationship between initial productivity and subsequent

adoption: farms with higher TFP in 1986 were more likely to adopt zero-tillage technology
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Figure 4: Adoption Rate by Deciles of Initial TFP in 1986

Notes: Adoption rate is computed as the share of farms adopting zero-tillage technology in each decile of

intial TFP in 1986. The blue line shows the adoption rate in 1996 and the red line shows the adoption rate

in 2006.

in both 1996 and 2006. Among farms in the bottom 10% of the initial TFP distribution, only

about 16% had adopted by 1996 and 40% by 2006. In contrast, adoption rates were substan-

tially higher among farms in the top 10% of the initial TFP distribution—approximately

30% in 1996 and 56% in 2006.

Table 6 presents the relationship between farm characteristics and the adoption of zero-

tillage technology. The regression analysis examines the adoption of zero-tillage technology

between 1986 and 2006, considering initial farm-level TFP, distortion, and the age of opera-

tors in 1986. The results indicate that more productive farms adopt the zero-tillage technol-

ogy to a greater extent. Farms facing greater distortions and those farm managed by older

operators show lower adoption rates of the zero-tillage technology.

3 Model

We develop a model of structural transformation between agriculture and non-agriculture

building on Gollin et al. (2002) and Restuccia et al. (2008). Production in agriculture takes
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Table 6: Determinants of Zero-Tillage Adoption

(1) OLS (2) Logit
ZTAdoptt+5 ZTAdoptt+5

log(TFPt) 0.17*** 1.13***
(0.0045) (0.0291)

log(distortiont) ↑0.11** -0.68***
(0.0046) (0.0305)

Age of operators ↑0.002*** -0.01***
(0.0001) (0.0008)

Controls ↭ ↭
Observations 72,090 72,090
Adj. R-squared 0.12

Notes: Standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1. Dependent variable is the

dummy whether the farm first adopt zero-tillage technology in the later period (t+5). Independent variables

include the farm-level log(TFP), log(distortion), and the age of operators in the initial period t. Sample

includes only farms that do not adopt zero-tillage technology in initial period t. Controls include land shares

by crop types (wheat, canola, barley, and rye), as well as time and location (CCS) fixed e!ects.

place among heterogeneous farms as in Adamopoulos and Restuccia (2014). Farmers make a

technology adoption decision in addition to the farm size operation. We examine how distor-

tions and technological progress a!ect the operation (selection) and adoption (technology)

decisions of farms and their implications on agricultural productivity, structural transforma-

tion, and aggregate productivity.

3.1 Economic Environment

Technologies. At each date, a homogeneous agricultural good is produced by farms in-

dexed by i. The production function of farm i is given by

yi = Aϖϱia
1→ω
i ϑ

ω
i , ω → (0, 1),

where yi is agricultural output, ϑi is the land input, A is economy-wide productivity, ϖ is

agricultural specific productivity, and ϱia
1→ω
i is the farm’s idiosyncratic productivity. The

term a
1→ω
i is a permanent component of total factor productivity while ϱi is a transitory
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component of total factor productivity with Eϱi = 1 that is drawn each period from an

iid cumulative distribution function H(v) after production decisions are made (Boar et al.,

2022). We note that the transitory component ϱi could also capture measurement error in

the data which similarly leads to a disconnect between the reported output and labor inputs.

Farm idiosyncratic productivity ai is determined by two components: farm’s ability si and a

technology adoption choice zi as follows:

log(ai(si, zi)) = log(si) + log(zi).

Adopting technology zi faces a convex cost in units of labor. We describe in detail below the

technology adoption decision.

Non-agricultural output is produced by a representative firm using labor as the only input

according to the following constant returns to scale production function:

Yn = ANn,

where A is economy-wide productivity and Nn is the labor input.

Preferences and endowments. There is a representative household of measure one com-

prising of individuals with di!erent farm operating ability si drawn from a distribution F (s)

and endowed with one unit of time each period supplied inelastically for production. The

household owns L units of land also supplied inelastically to farms for agricultural pro-

duction. The household has Stone-Geary preferences over agricultural and non-agricultural

goods:

u(ca, cn) = a log(ca ↑ ā) + (1↑ a) log(cn),

where ca and cn are consumption of agricultural and non-agricultural goods, respectively.

The parameter ā represents the minimum consumption (subsistence) of agricultural goods

and a is a weight parameter.
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Market structure. We assume competitive markets in both sectors and normalize the

price of agriculture to one (numeraire). We denote by pn the relative price of non-agriculture,

q the rental rate of land, and w the wage rate in non-agriculture. Farms face idiosyncratic

distortions which we model as proportional revenue taxes ς as in Restuccia and Rogerson

(2008). Following Bento and Restuccia (2017) and Ayerst et al. (2024), we parameterize

idiosyncratic distortions as a function of farm-level productivity and a random component

in order to capture the relationship between farm land size and farm productivity observed

in the data. Specifically, we assume that the farm-level distortion ς(a, φ) is given by

log(1↑ ς(a, φ)) = (1↑ ω) [↑↼ log a↑ log φ] ,

where ↼ is the elasticity of farm distortions with respect to farm productivity and φ is drawn

from G(φ), which we assume is log normal with zero mean and standard deviation ↽ϖ.

Occupational choice. Individuals with farm operating ability si ↔ F (s) and random

distortions φi ↔ G(φ), choose whether to operate a farm or to work in the non-agricultural

sector. Income in agriculture is determined by the value from operating a farm given by

V (si, φi). Income in the non-agricultural sector is given by wage w. Individuals choose to

operate a farm if the income from operating a farm is greater than the income from working

in the non-agricultural sector. Denote the occupational choice of operating a farm by an

indicator function o(s, φ) given by

o(s, φ) =






0 if V (s, φ) < w,

1 if V (s, φ) ↗ w.

We denote the income of individual i as I(si, φi):

I(si, φi) = o(si, φi)V (si, φi) + (1↑ o(si, φi))w.
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The household’s total income is given by

I =

∫

s

∫

ϖ

I(s, φ)dF (s)dG(φ) + qL.

Household’s consumption. The household chooses consumption of agricultural and non-

agricultural goods to maximize utility subject to the budget constraint:

max
ca,cn

u(ca, cn) s.t. ca + pncn =

∫

s

∫

ϖ

I(s, φ)dF (s)dG(φ) + qL+ T,

where pn is the relative price of the non-agricultural good and T is a total transfer from the

government.

3.2 Equilibrium

The model is static and we consider a competitive equilibrium in which households, farms,

and firms take prices as given, and prices clear the markets.

Incumbent farms. An incumbent farm i is characterized by idiosyncratic productivity ai

and distortions ςi. The farm’s expected per-period profit is given by

⇀(ai, ςi) = max
ϑ↑0

Eϱ

[
(1↑ ςi)Aϖϱa

1→ω
i ϑ

ω ↑ qϑ
]
,

= max
ϑ↑0

(1↑ ςi)Aϖa
1→ω
i ϑ

ω ↑ qϑ.

The optimal land choice and output of an incumbent farm is given by

ϑ(ai, ςi) =

(
ω

q

) 1
1→ω

((1↑ ςi)Aϖ)
1

1→ω ai,

y(ai, ϱi, ςi) =

(
ω

q

) ω
1→ω

(1↑ ςi)
ω

1→ω (Aϖ)
1

1→ω ϱiai.
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The optimal expected profit of an incumbent farm is given by

⇀(ai, ςi) = (1↑ ω)

(
ω

q

) ω
1→ω

((1↑ ςi)Aϖ)
1

1→ω ai.

Technology choice. The farm chooses the adoption of technology level zi to maximize its

value net of technology adoption cost:

V
adopt(si, φi) = max

zi↑0

[
⇀(ai, ς(ai, φi))↑ pn⇁z

ς
i

]
,

s.t. log(ai) = log(si) + log(zi),

(2)

where ⇁ is a parameter that determines the level of adoption costs and φ > 1 is the elasticity

of technology adoption cost with respect to technology adoption level.

If the farm chooses not to adopt technology (equivalent to z = 1), the value of the farm

is given by

V
not adopt(si, φi) = ⇀(ai, ς(ai, φi)), s.t. log(ai) = log(si). (3)

The optimal value of an entering farm is given by

V (si, φi) = max

V

adopt(si, φi), V
not adopt(si, φi)


.

We generically denote the optimal farm technology adoption level by z(si, φi) with the con-

vention that z = 1 is no technology adoption.

Definition of equilibrium. A competitive equilibrium comprises prices (pn, w, q); de-

cision functions for farms: land demand ϑ(a, ς), output y(a, ϱ, ς), expected profits ⇀(a, ς),

technology adoption z(s, φ), net value of farm V (s, φ), farm operating decision o(s, φ); mass of

non-agricultural workersNm; household’s consumption (ca, cn) and income I; and lump-sump

transfer T such that:

(i) Given prices, household’s income I and transfer T , the allocation (ca, cn) solves the
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household’s problem.

(ii) Given w and q, decision function ϑ(a, ς) solves the incumbent farm’s problem, deter-

mining expected farms’ profit ⇀(a, ς) and realized output y(a, ϱ, ς).

(iii) Given w and q, farms choose technology adoption z(s, φ) to maximize the value of the

farm V (s, φ).

(iv) Given w and q, farm operating decision o(s, φ) solves the individual occupational choice

problem.

(v) The government’s budget is balanced:

T =

∫

s

∫

ϖ

∫

ϱ

o(s, φ)ς (a, φ) y (a, ϱ, ς(a, φ)) dH(ϱ)dG(φ)dF (s),

where a = a(s, z(s, φ)).

(vi) The agricultural and non-agricultural goods markets clear:

ca =

∫

s

∫

ϖ

∫

ϱ

o(s, φ)y (a, ϱ, ς(a, φ)) dH(ϱ)dG(φ)dF (s),

where a = a(s, z(s, φ)),

and

cn +

∫

s

∫

ϖ

o(s, φ)1z(s,ϖ)>1)⇁z(s, φ)
ς
dG(φ)dF (s) = ANn.

(vii) The land and labor markets clear:

∫

s

∫

ϖ

o(s, φ)ϑ (a, ς(a, φ)) dF (s)dG(φ) = L,

where a = a(s, z(s, φ)),

and ∫

s

∫

ϖ

o(s, φ)dF (s)dG(φ) +Nn = 1.
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4 Quantitative Analysis

We calibrate a distorted benchmark economy in two periods: before and after zero-tillage

technology adoption to match data for Canada in 1986 and 2006. We then use the calibrated

economies to perform experiments in order to assess the contribution of the zero-tillage

technology on productivity and structural transformation; and to assess the potential role

of distortions on technology di!usion and other aggregate outcomes.

4.1 Calibration

We first calibrate a distorted benchmark economy to micro, sectoral, and aggregate data

for the Canadian economy in the initial period 1986. We parameterize the distributions of

ability s and random distortions φ to be independently log normal with normalized means

and standard deviations ↽s and ↽ϖ, respectively. There are 12 parameters to calibrate: the

decreasing returns to scale ω, the dispersion in farming ability ↽s, the level and curvature

parameters of the innovation cost function φ and ⇁, the productivity elasticity of distortions

↼, the dispersion of the random component of distortions ↽ϖ, the dispersion of transitory

productivity ↽ϱ , the agricultural consumption weight a, the subsistence level of agricultural

consumption ā, relative productivity in agriculture ϖ, economy-wide productivity A, and the

aggregate land endowment L.

A set of 5 parameters are either normalized or assigned values from outside evidence. We

set the decreasing returns to scale to ω = 0.65 based on factor income shares in agricul-

ture from Valentinyi and Herrendorf (2008) commonly used in the agricultural misallocation

literature for advanced economies, the curvature of the investment cost function to φ = 2

(Acemoglu et al., 2018). We assume that the zero-tillage technology is not available or prof-

itable in the 1986 economy (⇁0 = ↘) based on the fact that no farm in Canada had adopted

the technology at this time. Aggregate productivity terms (A0,ϖ0) are each normalized to 1.

We jointly calibrate the remaining 7 parameters (↼, ↽s, ↽ϖ, ↽ϱ , a, ā, L0) to match 6 mo-
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ments from the 1986 data plus an assumed long-run share of employment in agriculture of

1.5%. The six moments we target from the 1986 data are: (1) the measured elasticity of

distortions with respect to farm productivity, (2) the standard deviation of log land, (3) the

standard deviation of log farm distortions, (4) the standard deviation of log farm TFP, (5)

the agricultural employment share, and (6) the average farm size.

Table 7: Calibration of Benchmark Economy in 1986 (Initial Period)

Parameter Value Targeted moments Model Data

↼ 0.27 Elasticity of distortions 0.76 0.76
↽s 4.10 Sd log land 0.94 0.93
↽ϖ 2.20 Sd log farm distortions 0.53 0.54
↽ϱ 0.05 Sd log farm TFP 0.56 0.55
ā 19.10 Agricultural employment share 0.04 0.04
L0 31.96 Average farm size (acres) 800 800
a 0.10 Long-run agricultural employment share 0.015 0.015

We note that the resulting calibrated distortions parameter ↼ = 0.27 implies a measured

elasticity of distortions of 0.76, hence there is a substantial gap between the model parameter

and the measured elasticity due to strong operation selection of farms, a feature discussed in

detail in Ayerst et al. (2024) using a similar model of misallocation featuring selection and

technology channels across production units.

We then calibrate the same distorted benchmark economy in the later period to Canadian

data in 2006 where the zero-tillage technology has been adopted by many Canadian farms

(⇁1 < ↘). We keep all parameter values the same as in the initial period benchmark economy

except we jointly calibrate 4 parameters (A1,ϖ1,⇁1, L1) to match 4 moments in 2006: (1)

the growth in non-agricultural labor productivity from 1986 to 2006, (2) the agricultural

employment share, (3) the fraction of cultivated land operated under zero-tillage technology,

and (4) the average farm size. We note that these moments are informative in identifying the

parameters of interest. For instance, the technology cost shifter, ⇁1, has a first order e!ect on

the share of land operated under the zero-tillage technology, total cultivated land L1 implies

a change in the agricultural land per labor between 1986 and 2006, and the exogenous
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technology components (A1,ϖ1) have first-order implications on productivity growth in non-

agriculture and structural transformation during the period.

Table 8: Calibration of Benchmark Economy in 2006 (Later Period)

Parameter Value Targeted moments Model Data

A1 1.30 Non-agricultural labor productivity (2006/1986) 1.30 1.30
ϖ1 1.20 Agricultural employment share 0.02 0.02
⇁1 2.20 Fraction of land using zero-tillage 0.60 0.60
L1 23.38 Average farm size 1,169 1,169

We validate the calibrated economy by examining other important moments that are not

targeted in the calibration. Table 9 reports three relevant moments: allocative e”ciency,

agricultural TFP growth, and the impact on farm-level TFP of adopting the zero-tillage

technology.

Table 9: Model Validation in Untargeted Moments

Untargeted moments Model Data

Allocative e”ciency in 1986 0.83 0.83
Agricultural TFP growth 1986-2006 94% 94%
Regression # log(farm TFP) on farm adoption dummy 0.36 0.24

Regarding allocative e”ciency, which is the ratio of actual to e”cient agricultural output,

we find that the model matches quite closely the allocative e”ciency in the Canadian data in

1986 even though the model uses simple parametric assumptions on farm ability and distor-

tions. The model also matches agricultural TFP growth between 1986 and 2006, even though

the model only targeted the agricultural employment share, the aggregate land endowment,

and non-agricultural labor productivity. This alignment is not mechanical, as the model’s

implied changes in agricultural output could diverge from the actual data. Similarly, even

though the curvature parameter of the adoption cost function φ was set at the outset from

the literature, we find that the farm-level impact of technology adoption on TFP is quite

close to our empirical finding.
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These results suggest that our calibrated economy provides a reasonable abstract repre-

sentation of the Canadian data and, as a result, is useful for quantitative analysis assessing

economic forces of variation over time. In the next section, we implement relevant coun-

terfactual experiments to asses the contribution of technology adoption and distortions for

aggregate outcomes.

4.2 Experiments

We examine the aggregate impact of the adoption of zero-tillage technology in the Canadian

economy. We use the calibrated model to measure the contribution of zero-tillage technology

adoption on agricultural productivity and other outcomes. Table 10 reports the results for the

benchmark economies in 1986 and 2006 on the agricultural employment share, agricultural

TFP, and average farm size. Recall that these two benchmark economies di!er only on four

parameters (A,ϖ,⇁, L).

To decompose the sources of variation, we conduct two counterfactual experiments. First,

we consider the benchmark economy in the initial period 1986 and change only the cost of

the zero-tillage technology ⇁ to that calibrated in the later period (2006), hence we change

⇁0 to ⇁1 in the benchmark economy in 1986, reflecting the technological progress associated

with the zero-tillage technology. We find that the technological progress associated with the

adoption of zero-tillage technology between 1986 and 2006 in isolation accounts for 70% of

the structural change observed in the data ((4%-2.6%)/(4%-2%)), about 35% of the actual

growth in agricultural TFP (log(1.26)/log(1.94)), and more than the observed increase in

the average farm size.1

Recall that total land per capita L declined by 27 percent between 1986 and 2006. To assess

the relevance of this decline when measuring the contribution of the zero-tillage technology,

we conduct a second experiment, where in addition to the change in zero-tillage technology we

1We note that agricultural TFP in the model is defined as TFPa ↓ Y/(LωN1→ω
a ) since we abstract from

capital. We find that the increase in agricultural TFP in the model of 94% is consistent with the agricultural
TFP increase in the data when measured in the same way.
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Table 10: Impact of Zero-Tillage Technology 1986-2006

Agricultural Emp. Agricultural Average Farm
Share (%) TFP Size (acres)

Benchmark economy:
1986 (A0,ϖ0,⇁0, L0) 4.0 1.00 800
2006 (A1,ϖ1,⇁1, L1) 2.0 1.94 1,132

Experiments:
(1) (A0,ϖ0,⇁1, L0) 2.6 1.26 1,294

Contribution (%) 70 35 ↑
(2) (A0,ϖ0,⇁1, L1) 3.1 1.26 791

Contribution (%) 45 35 ↑

also change the total amount of land from L0 to L1 as calibrated for the benchmark economies

in the two periods. We find that the decrease in total agricultural land diminishes the e!ect

of technology adoption on structural transformation, with the overall e!ect accounting for

45 percent of the decline in the share of employment in agriculture compared with 70 percent

when the land input is constant in the previous experiment. However, the contribution of

technology adoption to the increase in agricultural TFP remains the same, accounting for 35

percent of the increase in agricultural TFP in the data. We note that in this experiment the

implied change in average farm size is negative, highlighting the role of other factors on the

increase in farm size during the period, such as residual productivity growth in agriculture

(A,ϖ) and its e!ect on agricultural employment.

We also use the calibrated model to examine the impact of distortions on technology adop-

tion. To do so, we assess the aggregate impact of the zero-tillage technology in hypothetical

economies with varying idiosyncratic distortions. We focus on di!erences in the systematic

component of distortions ↼ a prevalent form of distortions in developing countries and known

to e!ectively discourage investment (Ayerst, 2025; Ayerst et al., 2024). We consider ↼ = 0.80

(instead of ↼ = 0.29 in the benchmark economy), which generates a productivity elasticity

of distortions of around 0.90 consistent with measured elasticity of distortions in developing

countries (Adamopoulos et al., 2022; Chen et al., 2022). Table 11 reports the results of the
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zero-tillage technology (the change in ⇁0 to ⇁1) in the benchmark economy (↼ = 0.27), and

contrasts these results with those of an economy facing higher distortions (↼ = 0.80).

Table 11: The E!ect of Distortions (Higher ↼) on Technology Adoption

Adoption Agricultural Agricultural Share Average
Rate (%) TFP of Employment (%) Farm Size

Benchmark ↼ = 0.27
1986 (A0,ϖ0,⇁0, L0) 0.0 1.00 4.0 800
2006 (A0,ϖ0,⇁1, L0) 63.0 1.30 2.5 1,294

Change (%) ↑ 30 ↑38 62

Experiment ↼ = 0.80
1986 (A0,ϖ0,⇁0, L0) 0.0 0.39 29.0 111
2006 (A0,ϖ0,⇁1, L0) 5.0 0.41 25.0 130

Change (%) ↑ 5 ↑14 17

Notes: Results of isolating technology adoption in more distorted economies. We consider an increase in ε
from 0.27 in the benchmark economy to 0.80. The adoption rate refers to the fraction of land operated under
zero-tillage.

In the initial period, the more distorted economy (↼ = 0.80) features higher agricultural

employment (29% versus 4% in the benchmark economy), lower agricultural TFP (39% of the

benchmark economy), lower average farm size (14% of the benchmark economy), and lower

aggregate productivity (75% of the benchmark economy), even though the only di!erence

between these economies is the value of correlated distortions ↼. These e!ects of idiosyncratic

distortions on aggregate outcomes are well studied in the misallocation literature. What is

novel is the e!ect of distortions on technology adoption. When we apply the same change

across these economies in the cost of zero-tillage associated with technological progress (⇁0

to ⇁1), we find that higher distortions dampen substantially the rate of technology adoption

in agriculture, an adoption rate of only 5% in the more distorted economy compared with

63% in the benchmark economy. Even with the same technological progress on zero-tillage

technology, distortions dampen the growth of agricultural TFP, an increase between 1986

and 2006 of 5% compared with 30% in the benchmark economy; slows down the process of

structural transformation whereby the share of employment in agriculture falls only by 14%
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in the more distorted economy compared with 38% in the benchmark economy; and slows

down the growth in average farm size, an increase in average farm size of 17% compared

with 62 percent increase in the benchmark economy.

We can also evaluate the impact of technological progress in less developed economies

more generally. In particular, we consider two counterfactual economies that both feature

low relative aggregate productivity (31% of the benchmark economy in the initial period

and a high share of employment in agriculture (70% in the initial period relative to 4% in

the benchmark economy). But the two counterfactual developing economies di!er on the

drivers of variation relative to the benchmark economy. In counterfactual economy 1, the

high employment share in agriculture relative to the benchmark arises from high distortions

↼ = 0.80 and relatively low agricultural productivity Aϖ = 0.875. In counterfactual economy

2, distortions are the same as in the benchmark economy so the high employment share in

agriculture arises from much lower agricultural productivity Aϖ = 0.60. In each of these

developing economies, we study technological progress through a reduction in the cost of

zero-tillage technology, from ⇁0 to ⇁1.

Table 12: Technological Progress in Alternative Developing Economies

Agriculture Share Adoption Agricultural Average
of Employment (%) Rate (%) TFP Farm Size

Counterfactual 1: ↼ = 0.80
(A = 0.30,ϖ = 2.92)
Initial ⇁0 = ↘ 70 0.0 0.28 46
Later ⇁1 = 1.85 48 7.6 0.32 66
Change (%) ↑22 ↑ 14 43

Counterfactual 2: ↼ = 0.27
(A = 0.30,ϖ = 1.98)
Initial ⇁0 = ↘ 70 0.0 0.28 45
Later ⇁1 = 1.85 8 60.2 0.62 395
Change (%) ↑62 ↑ 121 778

The results of these experiments are reported in Table 12. We find that the counterfactual

developing economy with higher distortions experiences much less technological di!usion
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and as a result much less agricultural and aggregate productivity growth and structural

transformation than an equivalent developing economy with low distortions. In particular,

the same technological progress (a reduction in ⇁) implies an adoption rate of zero-tillage

in the later period of 8% in the more distorted economy compared to 60% in the developing

economy with lower distortions. The higher di!usion of zero-tillage in agriculture translates

into a much lower share of employment in the less distorted economy in the later period

(8% versus 48%), faster convergence in agricultural TFP relative to the benchmark in the

less distorted economy (0.62 versus 0.32), and a substantial catch up in average farm size

relative to the distorted economy in the less distorted economy (growth in average farm size

of 778% versus 43% in the more distorted economy).

Underneath these aggregate results, there are important di!erences in the micro mo-

ments between the high and low distortion economies worth discussing. Whereas dispersion

in farm-level TFP remains roughly the same in the high distortion economy after zero-tillage

technology, in the low distortion economy, technology adoption substantially changes the pro-

ductivity distribution and land consolidation across farms. For instance, the percentile 10

farm TFP increases from 0.24 in the initial period to 1.47 in the later period, illustrating the

e!ect of stronger selection at the bottom of the productivity distribution; and the percentile

90 farm TFP increases from 3.8 to 8.3, reflecting the e!ect of increased productivity in-

vestment by farms at the top of the productivity distribution. Stronger selection and higher

productivity investment generate an overall reduction in productivity dispersion (p90/p10

ratio falls from 16-fold to 5.6-fold) and a shift to the right in the productivity distribu-

tion accounting for the substantial 121% increase in agricultural TFP in the less distorted

economy.

These results suggest that distortions, especially distortions that are correlated with pro-

ducer productivity, substantially mitigate the aggregate impact from the same technologi-

cal progress in less developed countries. The results are consistent with empirical evidence

from policy reforms that find reductions in misallocation are accompanied by changes in

32



the productivity distribution through improved selection of operating units and technology

upgrading (Pavcnik, 2002; Bustos, 2011; Khandelwal et al., 2013).

5 Conclusions

Using a unique panel dataset of the universe of Canadian farms between 1986 and 2006 and a

standard framework of production heterogeneity, we find a relatively high level of allocative

e”ciency compared to other agricultural contexts in developing countries, and even relative

to other advanced countries in the manufacturing sector. Specifically, allocative e”ciency in

Canadian farms is roughly constant across time between 1986 and 2006, measuring around

82% nationwide, 85% within Census subdivisions, and 95% when using the panel to control

for potential measurement error in the cross-section of farms.

We document that between 1986 and 2006 Canadian agriculture featured the adoption

and di!usion of a new seeing technique, the zero-tillage technology, from zero percent of the

cultivated land in 1986 to 60 percent in 2006. We use the data together with a quantitative

model of agricultural production and structural transformation to measure the contribution

of technology adoption on agricultural productivity and structural transformation. We find

technological progress alone associated with the adoption of the zero-tillage technology con-

tributed to 35 percent of the growth in agricultural productivity, leading also to important

changes in structural transformation and land consolidation among farms.

We also used the model to quantify the importance of distortions for technology adop-

tion. In Canada, the rapid adoption of zero-tillage was supported by a strong institutional

environment where more productive farms and farms adopting the technology could grow

their size. We find that distortions, in particular distortions that constrain the size of more

productive farms, substantially a!ect the rate of technology adoption, dampening the im-

pact of technological progress on agricultural productivity and structural transformation. In

particular, in a counterfactual Canadian economy featuring high distortions (a high produc-
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tivity elasticity of distortions) as widely documented for developing countries, the adoption

rate of zero-tillage would have only been 5 percent instead of 63 percent and growth in

agricultural productivity growth only one sixth of that in an economy with low distortions.

This result suggests that correlated farm distortions are e!ectively a barrier to the di!usion

of new technologies, an e!ect which we find is quantitatively important. We also show that

technological progress can be a powerful driver of catch-up growth in developing economies

with low correlated distortions.
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