
Online Appendix for “Geography and Agricultural
Productivity: Cross-Country Evidence from Micro

Plot-Level Data”∗

Tasso Adamopoulos
York University

Diego Restuccia
University of Toronto

and NBER

July 2021

∗Contact: Tasso Adamopoulos, aadamo@yorku.ca; Diego Restuccia, diego.restuccia@utoronto.ca

1

mailto:aadamo@york.ca
mailto:diego.restuccia@utoronto.ca


A Country Sample

Table A.1 lists all 162 countries in our data set, along with the corresponding country code, the

number of cells covering the country, and the level of real GDP per capita in 2000.

Table A.1: List of Countries and Other Information

Country Code Cell Count GDP per capita

Afghanistan AFG 9000 327

Albania ALB 444 3177

Algeria DZA 30751 5276

Angola AGO 14988 2901

Antigua and Barbuda ATG 5 14522

Argentina ARG 40080 12519

Armenia ARM 451 4333

Australia AUS 100208 30240

Austria AUT 1447 31574

Azerbaijan AZE 1311 3722

Bahamas BHS 160 24593

Bangladesh BGD 1759 1794

Belarus BLR 4057 12188

Belgium BEL 558 29693

Belize BLZ 271 7910

Benin BEN 1374 1336

Bhutan BTN 523 2817

Bolivia BOL 13284 3346

Bosnia and Herzegovina BIH 836 5798

Botswana BWA 7297 7219

Brazil BRA 101847 8391

Brunei Darussalam BRN 65 48210

Bulgaria BGR 1754 6374

Burkina Faso BFA 3262 1121

Burundi BDI 312 706

Cambodia KHM 2184 1764

Continued on next page...

2



Table A.1 — Continued from previous page

Country Code Cell Count GDP per capita

Cameroon CMR 5470 2448

Canada CAN 244154 31471

Central African Republic CAF 7287 918

Chad TCD 15448 1445

Chile CHL 11199 14309

China CHN 136881 4076

Colombia COL 13318 6620

Congo COG 4032 3835

Costa Rica CRI 609 9463

Cote d’Ivoire CIV 3795 2761

Croatia HRV 919 9775

Cuba CUB 1381 7636

Cyprus CYP 129 20275

Czech Republic CZE 1419 16044

Democratic Republic of the Congo ZAR 27327 312

Denmark DNK 898 30468

Dominican Republic DOM 598 7559

Ecuador ECU 2996 4894

Egypt EGY 13029 4690

El Salvador SLV 253 5192

Equatorial Guinea GNQ 314 8820

Eritrea ERI 1469 668

Estonia EST 1015 10405

Ethiopia ETH 13365 892

Fiji FJI 230 5784

Finland FIN 9008 26402

France FRA 9266 27311

Gabon GAB 3056 8504

Gambia GMB 132 1289

Georgia GEO 1099 4310

Germany GER 6608 29051

Ghana GHA 2819 1359

Continued on next page...
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Table A.1 — Continued from previous page

Country Code Cell Count GDP per capita

Greece GRC 1970 20708

Guatemala GTM 1326 5530

Guinea GIN 2908 3235

Guinea-Bissau GNB 403 657

Guyana GUY 2475 2457

Haiti HTI 336 1655

Honduras HND 1360 3062

Hungary HUN 1590 13025

India IND 40163 2687

Indonesia IDN 22138 4151

Iran (Islamic Republic of) IRN 22489 8049

Iraq IRQ 6069 5403

Ireland IRL 1334 31389

Israel ISR 285 22356

Italy ITA 4774 27142

Jamaica JAM 135 7877

Japan JPN 5488 28341

Jordan JOR 1220 4329

Kazakhstan KAZ 47485 7641

Kenya KEN 6800 1943

Korea, Republic of KOR 1434 18597

Kuwait KWT 225 36146

Kyrgyzstan KGZ 3098 3310

Lao People’s Democratic Republic LAO 2847 1777

Latvia LVA 1371 8119

Lebanon LBN 144 7505

Lesotho LSO 414 1770

Liberia LBR 1125 492

Libyan Arab Jamahiriya LBY 21221 14674

Lithuania LTU 1325 8566

Luxembourg LUX 47 63392

Madagascar MDG 7353 965

Continued on next page...
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Table A.1 — Continued from previous page

Country Code Cell Count GDP per capita

Malawi MWI 1425 1032

Malaysia MYS 3856 14178

Mali MLI 15355 1108

Malta MLT 6 19442

Mauritania MRT 12944 2085

Mexico MEX 25084 10339

Mongolia MNG 26562 2008

Montenegro MNE 214 4877

Morocco MAR 5529 4574

Mozambique MOZ 9647 1245

Namibia NAM 10397 5531

Nepal NPL 1944 1783

Netherlands NLD 677 31927

New Zealand NZL 4206 21437

Nicaragua NIC 1538 2058

Niger NER 14499 811

Nigeria NGA 10772 1275

Norway NOR 8617 41777

Oman OMN 3849 23752

Pakistan PAK 11827 2696

Panama PAN 888 7124

Papua New Guinea PNG 5470 2194

Paraguay PRY 5062 4556

Peru PER 15324 4975

Philippines PHL 3538 3955

Poland POL 5882 10834

Portugal PRT 1381 19606

Puerto Rico PRI 113 25955

Qatar QAT 142 61389

Republic of Moldova MDA 576 2420

Romania ROM 3958 6151

Russia RUS 421168 8305

Continued on next page...
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Table A.1 — Continued from previous page

Country Code Cell Count GDP per capita

Rwanda RWA 293 994

Saudi Arabia SAU 25034 19207

Senegal SEN 2372 1732

Sierra Leone SLE 863 1171

Singapore SGP 7 35424

Slovakia SVK 858 11844

Slovenia SVN 341 19043

Solomon Islands SLB 334 1318

Somalia SOM 7490 480

South Africa ZAF 16282 8441

Spain ESP 7727 24945

Sri Lanka LKA 793 4603

Sudan SDN 30052 1546

Suriname SUR 1706 7490

Swaziland SWZ 228 6587

Sweden SWE 11321 27174

Switzerland CHE 704 34414

Syrian Arab Republic SYR 2672 2446

Taiwan TWN 464 21513

Tajikistan TJK 2120 1902

Thailand THA 6227 7058

The former Yugoslav

Republic of Macedonia MKD 396 6358

Togo TGO 682 984

Tunisia TUN 2186 7572

Turkey TUR 11699 6428

Turkmenistan TKM 7077 8716

Uganda UGA 2834 1094

Ukraine UKR 10587 5644

United Arab Emirates ARE 908 38604

United Kingdom GBR 4857 27032

United Republic of Tanzania TZA 11088 681

Continued on next page...
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Table A.1 — Continued from previous page

Country Code Cell Count GDP per capita

United States USA 160841 39241

Uruguay URY 2467 11426

Uzbekistan UZB 6960 1477

Vanuatu VUT 157 5607

Venezuela VEN 10758 10553

Viet Nam VNM 3970 2407

Yemen YEM 5148 1129

Zambia ZMB 9045 1038

Zimbabwe ZWE 4813 4528

Notes: The cell count of each country is from GAEZ (2000), and refers to the number of 5-arc-minute cells

covering the country. Real GDP per capita is from Heston et al. (2009).

B GAEZ Data

B.1 Cell-Level Actual Data

The GAEZ (2000) methodology for estimating output and harvested land by crop for each cell in

the world uses a downscaling methodology that combines aggregate and cell-level data. GAEZ first

estimates for each cell, cultivated land and the split between rainfed and irrigated, using GIS land-

cover datasets at the 5-arc minute resolution. The procedure ensures that the land class coverage

is consistent with aggregate FAOSTAT (2000) land statistics (arable land) and land cover patterns

obtained from remotely sensed data. To allocate crops to cells, GAEZ uses for each country, data

on output and harvested area by crop at the national level from the FAO and at the sub-national

level (regions, states, provinces, districts, counties, etcetera) from Monfreda et al. (2008). The

downscaling procedure employs an iterative optimization algorithm that is initialized by feeding in

a prior distribution of crops production allocation to cells that is based on cell-level information on

the amount of cultivated land, bio-physical suitability for the production of the different crops, and

socio-economic factors such as farming zone system, population density, and distance to market.

Then each iteration step determines the discrepancy between statistical totals available at the sub-

national (or national) unit level and the respective totals calculated by summing harvested areas and

production over cells. The magnitude of these deviations is then used to revise the land and crop
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allocation and to recalculate discrepancies. The process is continued until all accounting constraints

are met, that is, output and harvested land sum up to the aggregates sub-nationally and nationally.

B.2 Input Assumptions for Potential Yields

Low inputs. Under this scenario GAEZ (2000) assumes a subsistence-based farming system, with

traditional management, that does not necessarily produce for the market. Production is based

on the use of traditional cultivars, labor intensive techniques, no mechanization, and minimum

conservation measures. There is no application of nutrients, and no use of chemicals for pest or

disease control. The assumed water supply under this scenario is fully rainfed farming.

Mixed inputs. Under this scenario GAEZ (2000) assumes that the highest quality land (very suitable

and suitable) uses high inputs, the moderately suitable land uses an intermediate level of inputs,

and the marginal land uses low inputs. Under intermediate inputs the farming system is partly

market oriented involving both subsistence and commercial farming; use of improved varieties;

intermediate labor intensity with hand tools and/or animal traction and some mechanization; some

fertilizer application; and some chemical pest, disease, and weed control. Under high inputs the

there is advanced management; the farming system is primarily market oriented with commercial

production; high yield varieties are used; fully mechanized; low labor intensity; optimum application

of nutrients and chemical pest, disease and weed control. This scenario covers all land, both under

rainfed and irrigated water supply. GAEZ considers the mixed input scenario as a “reasonable

reflection of actual agricultural input and management circumstances.” (page 97, GAEZ Model

Documentation, 2012).

C Within-country Dispersion of Potential Yields

We document a measure of the variability of land quality across countries. In particular, we compute

the standard deviation of log potential yields across cells with agricultural production and report

this dispersion across countries by real GDP per capita in Figure C.1. We report two measures

of dispersion. The first, in panel (a), for all crops, that is the simple average of potential yields

across crops within a cell; the second, in panel (b), only for maize which is the most prevalent crop

produced around the world. We use the potential-yield under the rainfed low-input scenario as this

most closely reflects land quality productivity.

We find that while the dispersion in land quality within a country differs quite substantially across
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Figure C.1: Within-country Dispersion in Land Quality

(a) All crops (b) Maize
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Notes: Dispersion in potential yields across cells within a country under the rainfed low-input scenario. Panel (a)

reports the simple average of yields across all crops within a cell, whereas panel (b) is only for maize in each cell.

countries, the dispersion is not systematically associated with the level of development, there is

only a modest positive association. Hence, land quality endowment in poor countries is not worse

than rich countries, not just in terms of averages from aggregate potential yields, but also in terms

of the dispersion of land quality within the country. This finding is relevant to the extent that

poor countries may not optimize on the location of production or the number of locations with

agricultural production.

D Robustness and Validation

Our construction of the country-level potential yields does not rely on actual output or yields at

the crop-cell level. In the case of the production-potential counterfactual, however, the aggregate

potential yield uses the cell-level land allocation by crop in each country as weights. We examine

the bias and reliability of the cell-level land weights, conduct our own external validation, and show

the robustness of our results to alternative land weighting schemes.

Lower and middle income countries do not tend to have less detailed data. GAEZ uses the most

spatially disaggregated data available from Monfreda et al. (2008), at the sub-national level. One

natural concern is that the prevalence of spatially disaggregated agricultural statistics that GAEZ

uses is disproportionate for developed countries than for lower and middle income countries. Using
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sub-national data availability from Monfreda et al. (2008) (from their Table 2), in Figure D.2 we plot

the percentage of land covered by sub-national data across countries against their GDP per capita.

There is no systematic relationship of sub-national data availability and the level of income. There

are rich and poor countries with substantial sub-national coverage and there rich and poor countries

with no sub-national coverage. We conclude that GAEZ does not have more detailed information

for the richer countries than for the poorer countries, that can inherently bias their downscaling

methodology of attributing national and sub-national statistics to cells across countries.

Figure D.2: Subnational Data Availability
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GAEZ validation. A general limitation of cell-level estimated data is that because they require

substantial amounts of crop statistics and other data at the finest level of disaggregation, there is

not much “out-of-sample” data remaining in order to externally validate the results. Although, not

in a systematic fashion, GAEZ has done some testing of the reliability of its actual agricultural

estimates: “Tests in China and Brazil by comparing downscaled results based on statistics available

on national level, with detailed sub-national statistics on county and micro region level revealed

strong correlations between downscaled national statistics and county/micro-region level statistics

of harvested areas, yields and crop production.” (GAEZ-FAO website, under “FAQs,” www.fao.

org/nr/gaez/faqs/en/.)

Our own validation. We conduct our own validation exercise to confirm that the crops GAEZ
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attributes as being produced to the different cells are actually produced there. In particular, we

use survey farm-level data from UNPS (2009), the World Bank’s Living Standards Measurement

Study (LSMS) for Uganda for the earliest year with GPS data in the survey of 2009. To make the

comparison we use the GPS coordinates of the locations of farms in the LSMS data to assign farm

households to pixels in the GAEZ rasters (5 arc minute resolution). Given that the LSMS data are

survey data, the observations are sparse with some pixels having multiple households, others very

few, and most none. For the pixels for which there is any LSMS household we compute a series

of dummies, one for each of the 18 GAEZ crops and for each of the LSMS and GAEZ. In the set

of dummies for LSMS (GAEZ), the dummy in a pixel takes the value of 1 if the crop is produced

in LSMS (GAEZ). Then we create a third dummy that takes the value of 1 for a crop in a given

pixel if the crop is produced in both GAEZ and LSMS. Finally we compute the fraction of the

aligned crops in total GAEZ crops for every pixel. For the median pixel 60 percent of all the crops

GAEZ attributes to a cell are also confirmed to be produced according to the LSMS. If we focus

only on maize, one of the most widely produced crops in Uganda 77 percent of the cells that GAEZ

attributes maize production is also confirmed by the LSMS data. This is remarkable given that the

LSMS data are survey data, are spatially sparse, and are 9 years later than the GAEZ data. For

these reasons we could not make more direct comparisons of land allocations and yields.

Our conclusions do not change if we weigh crops within cells equally. Please refer to Robustness

Section 4.4 in the main text.

Our conclusions do not change if we use crop-cell land allocations from IFPRI’s Harvest Choice

project. The International Food Policy Research Institute’s (IFPRI) Harvest-Choice (2012) is an-

other project that uses crop statistics at the national and subnational levels across the world for the

year 2005 to estimate crop yields and harvested land at the 5 arc-minute grid cell level. Their model

for downscaling agricultural statistics, called “Spatial Production Allocation Model (SPAM),” uses a

cross-entropy optimization approach that uses information on cropland surface, location of irrigated

areas, crop suitability, rural population densities, production systems and crop prices. In this sense,

even though distinct from GAEZ, Harvest-Choice (2012)’s disaggregation methodology is similar in

nature and uses similar types of disaggregate information to estimate the same cell-level resolution

as GAEZ. Harvest-Choice (2012) however uses data that reflect the year 2005 (rather than 2000 in

GAEZ), and includes a finer set of crops. The underlying crop suitability surfaces that SPAM uses

are from GAEZ, but uses a more updated cropland surface, and has made an effort to use more

district-level agricultural statistics within countries. While the cell-level data from Harvest-Choice

(2012) are also estimates at the 5 arc-minute resolution, and involve a five year gap from GAEZ,

we compare the cell-level land allocations across crops (which determine the cell-level weights in
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our methodology) between GAEZ (2000) and Harvest-Choice (2012). The cell-by-cell correlation

of harvested land for all crops between GAEZ and Harvest Choice for the entire world is 0.71. The

same correlation for the three most popular crops, wheat, rice, and maize is 0.69. The correlation

for rice alone is 0.84. While these correlations are high, we go a step further and re-compute each

country’s potential yield with our methodology, aggregating GAEZ potential yields, but using the

cell-level land allocations across crops from Harvest Choice instead (rather than the GAEZ ones).

Just as in the alternative with equal weights across all produced crops above, with the Harvest

Choice weights our conclusions are the same.

Figure D.3: Potential Yields with Harvest Choice Weights
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Figure D.3 displays the aggregate potential yield for each country (against GDP per capita) using

the cell-by-cell Harvest-Choice (2012) weights. The cell-level potential yields from GAEZ used are

for low inputs and rainfed water supply. The lack of a systematic relationship of aggregate potential

yields with income is true here as well.
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