Discussion of “The Life-Cycle Growth of Plants in Colombia: Fundamentals vs. Distortions,” by Marcela Eslava and John Haltiwanger

Diego Restuccia
University of Toronto
and NBER

NBER Summer Institute
Productivity, Development, and Entrepreneurship
Cambridge July 19, 2017
What They Do and Find

1. Decompose growth over the life-cycle of plants into fundamentals (physical productivity, demand, ...) versus distortions (residual)
 - Distortions weaken the link between fundamentals and size (static accounting)

2. Exploit detailed panel micro data for Colombia (prices available at the plant level)

3. Fundamentals account for 70% of the variability of output growth across plants whereas the remaining 30% attributed to distortions
 - Demand and physical productivity equally important in fundamentals part
 - Contribution of distortions falls with plant’s age
Why interested in plant’s life-cycle?

- Many reasons, firm dynamics interesting per se
- My focus is on life cycle growth as a potential amplification channel to productivity differences across countries
- Similar focus in growing literature exploring the dynamic implications of misallocation
Output of a single homogeneous good y_i is produced according to

$$y_i = A_i \cdot h_i^\gamma, \quad \gamma \in (0, 1)$$

where A_i reflects productivity differences across producers.

Three channels can account for aggregate TFP differences across countries:

- Distribution of A_i’s differs across countries (technology)
- Countries choose different set of producers to operate (selection)
- Countries allocate inputs differently across producers (misallocation)
From accounting perspective, misallocation may be less than 1/4 of the differences in TFP across countries.

Recent work considers dynamic implications of misallocation.

Policies/institutions causing misallocation can generate larger effects on aggregate productivity by altering the productivity distribution via technology and selection channels.
Plant Life-Cycle Employment Growth

Misallocation and Dynamic Implications

- Why would there be a connection between static misallocation and dynamic decisions?
- Prevalent pattern of distortions (wedges or actual policies/institutions): higher productivity elasticity of distortions in poor countries
- Evidence from Hsieh and Klenow (2009, 2014): USA (0.09), India (0.5), Mexico (0.66) for manufacturing industries
- Similar evidence from census of manufacturing in Africa, elasticity between 0.5-0.7
- Broader evidence across countries for manufacturing industries, Bento and Restuccia (2017)
Productivity Elasticity of Distortions

Source: Bento and Restuccia (2017)
Financial Frictions

- Large literature (see survey in Buera, Kaboski, and Shin, 2015)
- Country-level institution, idiosyncratic effects
- Importantly: credit constraints disproportionately affect more productive producers that should operate at larger scale
Land Market Institutions

- Land institutions in poor countries characterized by:
 - Lack of well-defined property rights over land
 - Land use-rights are distributed in a fairly egalitarian basis...
 - ...coupled with difficulty of adjusting operational scales

- As a result, land is misallocated, distortions more severe for productive farmers
Land Misallocation in China

Source: Adamopoulos, Brandt, Leight, and Restuccia (2017)
Implicit Agricultural Distortions in China

Large implied correlated distortions in the agricultural sector

\[\sigma(\log(TFPR)) = 0.97, \quad \rho(\log(TFPR), \log(TFP)) = 0.88 \]
Misallocation and Dynamic Implications

- How correlated distortions affect technology/investment?
 - Not easy question to answer, but a starting point should be a dynamic model

- Key issue: how a given pattern of TFPQ growth is high or low compared to an alternative pattern of distortions
 - Importance and interpretation of static accounting
What should we expect the pattern of static distortions and plant growth?

- Not obvious pattern, may depend on source of distortions
- For some wedges (e.g. fixed land, can’t grow in size), then we should not expect a lot of growth
- If wedges arising from credit/collateral constraints, then wedges should ease out with plant age
- Pattern may be different than what really drives productivity growth for the plant

Bottom line: to assess importance of distortions, static growth accounting is not sufficient, a model that connects distortions to plant growth is needed
Importance of Life-Cycle Growth

- How important is life-cycle growth for overall dispersion in productivity across countries?
- Exploit panel dimension to assess contribution in Colombia
- Hsieh and Klenow (2014): moving from US to Indian life-cycle can generate a 25% drop in productivity
- Countervailing effects of lower life-cycle growth though entry and misallocation leave productivity gap roughly unchanged
- Similar finding in Bento and Restuccia (2017)
Bento and Restuccia (2017): Standard monopolistic competition framework extended to include endogenous entry and entry-level and life-cycle productivity investment

<table>
<thead>
<tr>
<th>Prod. elasticity of distortions:</th>
<th>0.09 (US)</th>
<th>0.50 (India)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Establishment Size</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>Entrant Productivity</td>
<td>1.00</td>
<td>0.42</td>
</tr>
<tr>
<td>Life-cycle growth (%)</td>
<td>5.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Prod. investment share (%)</td>
<td>13.5</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Decomposition of agg. output:

(a) Static misallocation	1.00	0.63
(c) Endogenous life-cycle growth	1.00	0.70
(d) Entrant investment	1.00	0.47
Changes from Economic Reforms

- Colombia went through serious market-oriented reforms during the 90s
- Comparison between 80s and 00s contain valuable evidence that points in the direction of improved resource allocation, faster plant growth
- Exploit and emphasize more the interesting patterns of changes
Compare with Restricted Data

- Colombian data unique
- Likely to remain as such for some time
- Valuable comparisons with analysis of the more common restricted data
- Examples: without plant-level prices, only cross-section, etc.
Conclusions

- Very interesting paper with amazing data
- To assess role of distortions, need a dynamic model of plant productivity growth...
- Can go beyond plant growth: panel data and dynamic model can be used to make empirical connection of misallocation with selection/technology channels
- Can exploit more policy changes over time