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Abstract

We assess the extent of misallocation in agriculture in less-developed countries com-
paring the analysis at the plot and farm levels. Using detailed data from Uganda, we
show that the plot-level analysis leads to substantially larger estimates of reallocation
gains, even after adjusting for measurement error and unobserved heterogeneity. These
discrepancies arise due to greater measurement error in plot-level data and different
production function estimates. Our findings suggest caution is needed when extrapo-
lating insights obtained using plot-level analysis to results obtained at the farm level.
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1 Introduction

A growing literature documents substantial dispersion in measures of marginal products

of inputs across production units. This finding has been interpreted as evidence of factor

misallocation (Hsieh and Klenow, 2009; Restuccia and Rogerson, 2017). A relevant con-

cern, however, is that the observed dispersion might reflect other factors such as overhead

costs, unobserved heterogeneity, or measurement error (Bartelsman et al., 2013; Asker et

al., 2014; Foster et al., 2016). There are several emerging approaches to deal with these

issues. For instance, an ambitious line of research models specific sources of misallocation

to identify their quantitative importance using microdata (Midrigan and Xu, 2014; David

and Venkateswaran, 2019; Yang, 2021). Another method exploits the availability of panel

data to purge measures of marginal products from time-invariant measurement error and

overhead costs (Bils et al., 2017).

In the context of small-scale agriculture, a complementary approach emphasizes using

granular data, at plot-level (Gollin and Udry, 2021; Abay et al., 2019; Desiere and Jolliffe,

2018). The intuition behind this approach is simple. If farmers can freely allocate inputs

across plots within their farm operation, then the marginal productivity of inputs should

be equalized across operated plots. Thus, observed within-farm dispersion in measures of

marginal productivity can be attributed to other sources rather than misallocation. This

approach, however, contrasts with the existing literature on misallocation in agriculture,

which focuses on the household farm as the unit of analysis.

In this paper, we examine empirically whether the assessment of misallocation in agri-

culture (and therefore the role of mismeasurement) is affected by the level of analysis: plots

or farms. Our analysis uses data and previous estimates from Uganda and, similar to re-

cent work in the literature, assess misallocation using efficiency gains, i.e., the increase in

aggregate output that could be obtained from reallocating resources across production units
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according to an efficient benchmark. Our main insight is that the level of data aggregation

matters, and can lead to quantitatively different conclusions.

We find that efficiency gains at the plot level are extremely high, even after adjusting

for measurement error. Plot-level estimates suggest efficiency gains of reallocation at the

national level of more than 2,200%. After adjusting for measurement error using Gollin and

Udry (2021)’s methodology, efficiency gains are still greater than 500%. These estimates

imply an extent of misallocation far greater than previously documented in the literature.

As a comparison, previous studies using farm-level data from China, Ethiopia and Malawi

document efficiency gains ranging from 53% to 259%. Estimates using the same Ugandan

dataset, but aggregated at the farm-level, also suggest more modest gains of around 175%.

The large discrepancy in assessed misallocation cast doubts on the validity of extrapo-

lating insights obtained using plot-level analysis to results obtained at the farm level. This

issue becomes apparent when assessing the role of measurement error. For example, a re-

searcher using plot-level data to assess measurement error would observe that it explains a

large fraction of the productivity dispersion. The researcher could then conclude that misal-

location is not important and that previous estimates (using farm-level data) overstated its

magnitude. This conclusion, however, would be misplaced: given the large initial estimates,

even a substantial reduction in dispersion still leaves sizeable levels of misallocation.

Which is the right level of analysis then? Even though plot-level analysis promises a way

to address measurement error and unobserved heterogeneity, we argue that it suffers from

two empirical limitations. First, granular data may actually exacerbate measurement error.

We compare self-reported area of landholdings to their GPS measure and show evidence of

substantial and systematic measurement error. The magnitude of this error, however, is

attenuated when aggregating data at farm level.

Second, using plot-level data makes it difficult to implement estimation methods based

on panel data. This can lead to substantially different production function estimates. In the
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Uganda case, plot-level IV estimates suggest near constant returns to scale (0.91). These

results contrast with panel-data estimates from Uganda and other Sub-Saharan countries

which suggest smaller values around 0.71. These differences are economically relevant. For

instance, simply changing the assumed returns to scale from 0.91 to 0.71 leads to a massive

drop in efficiency gains calculated with plot-level data from 23.9-fold to 5.3-fold.

In addition to the methodological implications of using plot or farm measures, there

are important implications for understanding and addressing misallocation. From a policy

standpoint, the focus on the farm is relevant given the fact that land institutions in many

developing countries allocate land rights at the household level (Restuccia, 2020). Also, in

the context of small-scale agriculture, the presence of fixed factors shared across plots makes

the household farm the appropriate production unit (De Janvry et al., 1991).

2 Does the level of microdata aggregation matter?

We start by comparing estimates of productivity dispersion and reallocation gains across

plots and across farms. In our analysis, a farm is the set of plots cultivated by the household.

The data comprises three waves from the Uganda Panel Survey (2009-2014), a household

survey collected as part of the World Bank’s Integrated Surveys of Agriculture (LSMS-ISA).

Gollin and Udry (2021) and Aragón et al. (2022) provide a detailed description of the data.

2.1 Measuring misallocation

We measure the extent of misallocation by calculating efficiency gains, i.e., the ratio of

efficient to actual aggregate output. This ratio quantifies the increase in aggregate output

that could be obtained if resources (such as land and labor) were assigned across production

units according to an efficient benchmark. Following the literature on misallocation, we use

as benchmark the allocation that maximizes the aggregate output subject to the available
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resources,

In the special case studied in Hsieh and Klenow (2009), the efficiency gains can be sum-

marized by the dispersion of log TFPR (a weighted average of marginal revenue products).

However, in a more general case, estimating efficiency gains requires computing the output

and input allocation in the efficient benchmark.

To do so, we consider an economy comprised of a given set of production units with the

following Cobb-Douglas technology,

Yi = si(Li)αL(Xi)αX , αL, αX > 0, αL + αX < 1, (1)

where Li and Xi are the amounts of land and labor used in production unit i, and si denotes

its productivity.

The efficient allocation equates marginal products of land and labor across production

units. Denoting zi ≡ s
1/(1−αL−αX)
i , we can characterize the efficient allocation as:

T ei = zi∑
i zi

T, Lei = zi∑
i zi

L, (2)

where T and L are the aggregate amounts of land and labor. The efficiency gain, our measure

of misallocation, is the ratio ∑
i Y

e
i /

∑
i Yi where Y e

i is production-unit output associated with

the efficient input allocation, and Yi is the observed output.

There are three observations relevant to the empirical analysis. First, the efficient allo-

cation implies a positive relation between production-unit productivity and input use. The

slope of this relation is proportional to the return to scale (αL + αX). Second, deviations

from this positive relation are indicative of the extent of misallocation. Finally, to calculate

efficiency gains we need estimates of the production-unit productivity si and parameters αL

and αX .
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2.2 Estimates of misallocation using plot-level data

To assess misallocation at the plot level, we rely on estimates from Gollin and Udry (2021).

They use state-of-the-art methods to estimate plot-level productivity and adjust it for mea-

surement error and unobserved heterogeneity. For our analysis, we use their two-stage least

squares (2SLS) estimates. The results are, however, robust to using the alternative instru-

mental variables correlated random coefficients (IVCRC) estimates.

Table 1 presents the efficiency gains and productivity dispersion assuming input realloca-

tion at different geographic levels, and using alternative measures of productivity. Column 1

uses the baseline plot productivity. This variable is called TFPA in Gollin and Udry (2021).

Column 2 uses the measure of plot productivity adjusted for measurement error and unob-

served heterogeneity, called TFPB. Column 3 aggregates plot productivity (TFPA) at the

farm level by calculating a weighted average.1

We emphasize three relevant observations from Table 1.

Observation 1: Efficiency gains estimated using plot-level data are extremely

large The estimates in Column 1 imply that if the allocations of land and labor were to

change to the efficient allocation at the national level, agricultural output would increase

by a factor of 23.9-fold, or more than 2,200%. Efficiency gains remain large even when

reallocation is limited to smaller geographical areas: 1,540% within regions and 303% within

villages. These results imply a very large magnitude of factor misallocation.

These estimates are much larger than those documented in the macroeconomic literature

using the farm as the unit of analysis. For example, the estimated reallocation gains (at

the national level) in China, Ethiopia and Malawi are 53%, 97% and 259%, respectively

(Adamopoulos et al., 2022; Chen et al., 2022; Restuccia and Santaeulalia-Llopis, 2017).
1Denoting sij the unadjusted productivity of plot j in farm i, and given the Cobb-Douglas technology on

land and labor, aggregated farm productivity is given by
∑
j sij(φLij)αL(φXij )αX , where φLij and φXij are the

shares of farm i’s total land and labor used in plot j.
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Reallocation gains are comparatively large even within narrower geographical areas. For

instance, the within-village reallocation is 305% using plot-level data in Uganda whereas

only 24% in China (Adamopoulos et al., 2022).

Observation 2: Estimated efficiency gains remain high even after adjusting for

measurement error and unobserved heterogeneity Column 2 replicates the analysis

using estimates of productivity adjusted by measurement error and unobserved heterogeneity

as suggested by Gollin and Udry (2021). The adjustment dramatically reduces the disper-

sion of productivity by almost two-thirds. The reduction in dispersion is associated with

a proportional drop in the implied efficiency gains. Nevertheless, the adjusted reallocation

gains are still sizable (ranging from 147% to 568%) and well-above previous estimates of

misallocation in agriculture.

This observation is particularly relevant when studying the importance of measurement

error in assessments of misallocation. To see this, consider a researcher observing the relative

changes in columns 1 and 2. Since measurement error seems to account for a large bulk of the

efficiency gains and productivity dispersion, the researcher would conclude that misallocation

in agriculture is not quantitatively important.

This conclusion, however, would be misplaced. Given the large initial estimates, even

a substantial reduction in dispersion still leaves sizeable levels of efficiency gains. In this

particular example, they are actually greater than estimates from previous studies.

Observation 3: The larger estimates seem to be driven by the level of analysis

A possible interpretation of the results is that the plot-level analysis is picking up effectively

larger misallocation in Uganda. Two pieces of evidence suggest that this is not the case, but

instead that the results are driven by the level of analysis.

First, we aggregate the unadjusted plot-level estimates of productivity (TFPA) at the

farm level (column 3). This simple aggregation accomplishes a sizeable reduction in pro-
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ductivity dispersion and implied efficiency gains. The efficiency gains are almost half the

estimated gains using plot-level productivity in column 1. In the case of reallocation gains at

village level, the estimates using the aggregated productivity (110%) are even smaller than

after adjusting by measurement error in column 2 (147%).

Second, we replicate the analysis using estimates for Uganda from Aragón et al. (2022)

(column 4). These estimates are obtained from the same dataset, but using the farm (house-

hold) as unit of analysis. This change in unit of analysis allows us not only to aggregate

output and inputs at farm level, but also to use a panel data approach to estimate the

production function.

The estimated reallocation gains are substantially smaller: 175% at the national level

and 69% at the village level. These gains are much smaller than any estimate obtained using

plot-level analysis. However, they are closer in magnitude to estimates from macroeconomic

studies in other contexts.

This substantial reduction in assessed misallocation occurs despite that dispersion of

farm-productivity being greater than the dispersion of plot-productivity (after adjusting

for measurement error). This finding also illustrates the limitation of using productivity

dispersion alone to assess misallocation. In general, the magnitude of efficiency gains is

not only a function of productivity dispersion, but also of economies of scale and of the

relationship between input allocation and productivity across production units.

The main takeaway is that focusing on the plot as unit of analysis is not a useful starting

point for the study of misallocation in agriculture. The large discrepancy in assessed effi-

ciency gains casts doubts on the validity of extrapolating insights obtained using plot-level

analysis to results obtained at the farm level.
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Table 1: Efficiency gains and productivity dispersion in plot- and farm-level analysis

Plot-level data Farm-level data
Plot Plot Plot Farm

productivity productivity productivity productivity
(adjusted) aggregated

at farm level
(1) (2) (3) (4)

A. Efficiency gains
Nationwide 23.96 6.68 14.28 2.75
Region 16.40 5.38 8.35 2.66
Parish (Village) 4.03 2.47 2.10 1.69
B. Dispersion
Variance of log 1.26 0.53 0.78 0.99

Notes: Efficiency gain is the ratio of aggregate output in the efficient allocation to actual output averaged
over season-years. Columns 1-3 use 2SLS estimates of plot productivity from Gollin and Udry (2021).
Column 1 uses the baseline (unadjusted) productivity measure (TFPA), whereas Column 2 uses the adjusted
productivity measure (TFPB). Column 3 aggregates TFPA at the farm level by computing a weighed average.
Column 4 uses direct estimates of farm productivity from Aragón et al. (2022).

3 What explains the different results?

We highlight two important empirical limitations of using plot-level analysis when assessing

misallocation in agriculture.2 First, plot-level analysis can exacerbate measurement error.

Second, plot-level analysis may lead to different production function estimates. Together,

these issues might increase the magnitude of assessed misallocation, and overstate the con-

tribution of measurement error.

3.1 Greater measurement error in more disaggregated data

Most survey data on smallholder agriculture are based on farmers’ self-reporting. This fea-

ture creates the possibility of misreporting and measurement error: farmers may round-up

quantities, or simply provide guesstimates instead of actual values. In some cases, measure-
2Conceptually, it is not clear what it means to reallocate resources, including land, across plots since the

plot is not an administrative unit of production.
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ment error can also be introduced when allocating indirect costs (such as capital expenses

or management labor) among particular activities or crops. This issue is a concern because

measurement error can bias estimates of the production function, or be included as part of

the residual often attributed to productivity.

We focus on measurement error on land. To assess whether the level of analysis matter,

we compare two measures of size of land holdings: self-reported by the farmer, and a GPS

measure collected by enumerators. Albeit not exempt from measurement error, this last

measure is arguably more precise and less prone to farmer’s misreporting (Carletto et al.,

2017). For each variable, we aggregate the data at both farm-level and at parcel-level.

A parcel is a set of plots and thus less dissagregated than plot-level analysis. The GPS

measures, however, are only available at this level of resolution.

Figure 1 displays the distribution of land holdings using both measures. Panel (a) shows

the distribution of the original data at the parcel level, while panel (b) shows the distribution

of the data aggregated at the farm level. There are three relevant observations.

Figure 1: Distribution of landholding size, self-reported and GPS measured

(a) Parcel level (b) Farm level

Notes: Distribution of the log area of landholdings at the parcel level (panel a) and aggregated to the farm
level (panel b). Solid lines represent self-reported values, while red-dashed lines represent GPS measures.

First, there are evident discrepancies between both measures. This discrepancy has
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been documented by other studies and interpreted as evidence of measurement error in self-

reported values (see, for instance, Judge and Schechter, 2009; Carletto et al., 2015; Gourlay

et al., 2019; Abay et al., 2021). Interestingly, the GPS measure follows a smooth bell-

shaped distribution, while the self-reported measures are heaped around certain values. The

observed ‘heaping’ is indicative of respondents (or enumerators) rounding the reported size

(Abay et al., 2019, 2021; Carletto et al., 2013).

Second, the discrepancy between both measures is more pronounced among smaller units,

on the left side of the distribution. This evidence suggests that the measurement error is not

classical, but correlated to unit size. This pattern has been documented in other studies. For

instance, Abay et al. (2021) reports a negative correlation between plot size and measurement

error in land in four Sub-Saharan African countries.

Finally, the differences between self-reported and GPS measures are greater when using

more granular data. This observation suggests that using parcel-level data can exacerbate

measurement error. To quantitatively assess this issue, we measure the distance between

self-reported and GPS measures using their absolute relative difference (ARD).3 The average

ARD using farm-level data is 0.678. However, this value increases to 0.891 when using parcel-

level data. This corresponds to an increase of almost a third in this measure of distance.

3.2 Different production function estimates

Production function estimates are key inputs to assess factor misallocation. The main econo-

metric challenge in estimating the production function parameters is the presence of determi-

nants of production, such as productivity shocks, that are unobserved to the econometrician

but observed by the farmer.

Panel data offer a way to address this endogeneity problem. For instance, if the un-

observed productivity shocks are time-invariant (such as location, soil quality, or farming
3Formally, we define ARD = abs[ selfi−GPSi

GPSi
], where i is the unit of observation (farm or parcel).
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ability), the production function can be consistently estimated using a panel data model

with fixed effects (Ackerberg et al., 2015). In contexts with imperfect input markets, a

simplified dynamic panel model can also address auto-regressive, time-varying, productivity

shocks (Shenoy, 2017, 2020).4

Plot-level analysis, however, limits the use of panel data methods. This occurs because

the available plot-level data is mostly cross-sectional.5 In contrast, there are several agri-

cultural surveys, such as the World Banks’ Integrated Surveys of Agriculture, that already

include a panel of households. For instance, in the case of Uganda, Gollin and Udry (2021)

are unable to use panel data methods with their plot-level data. Instead, they rely on a clever

instrumental variable approach using self-reported productivity shocks on nearby plots. In

contrast, Aragón et al. (2022) use the same dataset aggregated at the household level and

estimate a panel-data model with fixed effects.

These methodological differences can generate substantially different estimates of returns

to scale and productivity. To see this, we display the production function estimates from

these two studies (see Table 2). Note that are sizable differences in the contributions of land

and labor, and in the implied returns to scale. In particular, the IV estimates using plot-

level data suggest a larger contribution of land, and returns to scale closer to unity. This is

consistent with the farm being an aggregation of constant-return-to-scales’ plots with some

fixed factors.

These differences in production function estimates matter for the empirical assessment of

misallocation. We illustrate this point in two ways. First, we re-calculate the efficiency gains

(obtained in column 1 of Table 1) using the same estimates of plot-level productivity from
4Proxy variables methods such as Olley and Pakes (1996), Levinsohn and Petrin (2003) and Ackerberg

et al. (2015) also exploit panel data. However, they are of limited use in contexts with suspect factor
misallocation because, as shown by Shenoy (2020), their identification assumptions fail when market frictions
distort input choices.

5Collecting a panel dataset at the plot level does not necessarily address this concern, given the endo-
geneity of plot formation, which would likely introduce additional biases.
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Table 2: Production function estimates at the plot and farm levels

IV (2SLS) Panel data with
fixed effects

(1) (2)

Land contribution (αL) 0.69 0.37
Labor contribution (αX) 0.22 0.34
Returns to scale (αL + αX) 0.91 0.71

Aggregation level Plot Household

Notes: Column 1 displays 2SLS estimates reported in Table 9 (column 3) in Gollin and Udry (2021). Column
2 display estimates reported in Table A.1 (column 1) in Aragón et al. (2022).

Gollin and Udry (2021) but using the land and labor contributions estimated using panel-

data methods in Aragón et al. (2022). This change implies a reduction in returns to scale

from 0.91 to 0.71. This last value is similar to returns to scale documented by recent studies

using farm-level data such as Shenoy (2017), Restuccia and Santaeulalia-Llopis (2017) and

Manysheva (2021). This small change leads to a substantial reduction in the efficiency gains

at the national level from 23.9-fold to 5.3-fold. A similar pattern is found for gains at the

regional level (from 16.4 to 4.6-fold) and the parish (village) level (from 4 to 2.3-fold).

Second, we report the relationship between land use and productivity across production

units using both plot-level and farm-level analysis (see Figure 2). As shown in equation (2),

the efficient allocation requires a strong positive relationship between productivity and input

use. Deviations from this benchmark would be indicative of the extent of misallocation and

have been the focus of an expanding literature in development and agricultural economics

(Adamopoulos and Restuccia, 2014; Restuccia, 2020).

Based on the estimated returns to scale in Table 2, the slope of the (log) land-productivity

relationship in the efficient allocation should be 11.1 across plots and 3.4 across farms. In

both cases, the main observation from Figure 2 is that the slope of the relationship between

productivity and land input is much smaller than that required in the efficient allocation.
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While the farm estimates (Panel b) show a weak but positive relationship, i.e. a slope of 0.26,

the plot-level estimates (Panel a) actually show a negative relationship, i.e. an elasticity of

-0.16.

This result implies an even larger deviation from the efficient benchmark in the plot-

level analysis, and thus a greater implied factor misallocation. Note that the same pattern

between land input and productivity arises when adjusting plot-productivity by the within-

farm dispersion across plots as in Gollin and Udry (2021) since the adjustment in this

approach amounts to a scalar reduction in variance which is proportional to the productivity

variance across plots within farm households.

Figure 2: Land size and productivity across production units

(a) IV estimates (plots) (b) Panel estimates (farms)

Notes: Both panels display the scatter-plot of size of production unit (measured by area planted) and
productivity, and a fitted linear regression. Panel (a) uses plot-level measures of size and productivity from
2SLS estimates in Gollin and Udry (2021). Panel (b) uses farm-level measures of size and productivity from
a panel data model in Aragón et al. (2022).

4 Measurement error and misallocation

If plot-level data is problematic, how can we assess the extent of measurement error in

measures of misallocation? A growing literature have instead turned to approaches exploiting
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panel data. We follow Bils et al. (2017) in exploiting time-variation in the data to address

measurement error. The extent to which variation over time in inputs is not reflected in

variation in output, which varies across levels of measured distortions, provides a metric of

the extent of measurement error.

For comparison, Gollin and Udry (2021) argue that measurement error and other sources

of unobserved heterogeneity play a substantial role in accounting for the apparent misallo-

cation in agriculture. Using plot-level data, they show that adjusting for measurement error

by the within-farm dispersion in productivity, reduces estimates of misallocation by almost

two thirds. As discussed earlier, the implied large reduction in misallocation is due in great

part to the exceptionally large estimates of misallocation at the plot level.

This method to identify mismeasurement, however, is not applicable to the farm level

since it relies on the assumption of efficient within-farm allocation of resources. An alterna-

tive approach, proposed by Bils et al. (2017), exploits panel data to quantify the extent to

which misallocation reflects additive measurement error. The starting point is the observa-

tion that the ratio of first differences (i.e., the change in revenue divided by the change in

inputs) is a measure of marginal product purged from constant measurement error. Based on

this insight, they develop a metric, λ, that captures the fraction of the dispersion in revenue

productivity (TFPR) that is due to true variation in distortions.

Using the panel household-farm data for Uganda from Aragón et al. (2022), we find

that the estimate of λ is fairly high (0.926), implying that only about 7.4% of the variation

in misallocation can be ascribed to measurement error. This result is consistent with the

findings in Adamopoulos et al. (2022) using Chinese panel data, where this method detects

only 4% measurement error in farm-level measures and 10% in cross sectional farm-level

data.

The extent of farm-level measurement error is substantially smaller than that implied

by an analysis at the plot level. It is also much smaller than that in the manufacturing
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sector analyzed in Bils et al. (2017) for India and the United States, which suggests caution

is needed when making comparisons of measurement error across sectors, countries, and

applications.

5 Conclusion

Does exploiting granularity in micro data provide a better assessment of misallocation in de-

veloping economies? We address this question using a common dataset for Uganda analyzed

at two levels of aggregation: plots versus farms.

We show that the plot-level analysis produces larger estimates of misallocation, even after

controlling for unobserved heterogeneity and measurement error. The large discrepancy in

assessed efficiency gains suggest that caution is needed when extrapolating insights obtained

from plot-level analysis, such as the importance of measurement error, to results obtained at

the farm level. We trace the differential results between the plot and the farm level analyses

to greater measurement error in dissagregated data, and differences in the estimates of

production function parameters.

Overall, our analysis suggest that, despite their potential advantages to purge data from

measurement error and unobserved heterogeneity, plot-level analysis might not be appropri-

ate to assess misallocation in agriculture. Instead, focusing on the farm provides a more

accurate assessment, particularly in the context of small-scale farming in low-income coun-

tries.
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