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ABSTRACT: Motivated by markets for “expertise,” we study a bandit model where a

principal chooses between a safe and risky arm. A strategic agent controls the risky

arm and privately knows whether its type is high or low. Irrespective of type, the

agent wants to maximize duration of experimentation with the risky arm. However,

only the high type arm can generate value for the principal. Our main insight is that

reputational incentives can be exceedingly strong unless both players coordinate on

maximally inefficient strategies on path. We discuss implications for online content

markets, term limits for politicians and experts in organizations.

“One forgets that though a clown never imitates a wise man, the wise man can

imitate the clown.”
—Malcolm X

Attention is currency for much of the advertising driven Internet. Typically, consumers do

not pay for content and instead revenue is generated by their continued attention in the form

of clicks. A consequence is that content providers need to sustain interest as consumers can

freely withdraw their attention at any time. This creates a dilemma: since genuine content

(which varies in quality) can only be generated periodically, how do content providers bal-

ance the quality and the frequency of the new content they provide with the aim of retaining

both interest and trust? Specifically, how do they manage reputation in an environment where
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“fake” content can be generated at will? And how does this revenue model (as opposed to

traditional subscription payments) affect market functioning?

Although it is a very different context, similar incentives are faced by elected politicians.

The ability of the politician determines whether or not he has effective policy ideas to address

the changing economic and social needs of his constituents. A politician trying to stay in office

could feel pressured into enacting risky policies that are unlikely to succeed in an attempt to

appear proactive. How does this reelection incentive affect the politician’s policy choices? On

balance, are institutions like terms limits (that dampen reputational forces) efficient given that

good politicians are forced to leave office?

Finally, similar incentives are also faced by “experts” employed in organizations. To fix

ideas, consider a scientist working at a pharmaceutical company. The scientist’s ability deter-

mines the frequency at which he receives research ideas. These ideas may ultimately lead to

new products after successful drug trials. Even a talented scientist, when under pressure to

keep his job, may choose to recommend a costly drug trial for a new compound which is very

unlikely to succeed. After all, this may help create the impression that he is generating new

ideas. How does the company’s decision of when to fire the scientist and their bonus struc-

ture (for successful trials) balance their dual goals of giving a talented scientist a sufficient

amount of time to succeed (and reveal himself to be of high ability), but also prevent costly

failed trials?

What is common to these (and numerous other) seemingly disparate examples is that they

are environments in which (1) a principal wants to dynamically screen an agent with a pri-

vately known type (good or bad) (2) the type determines the rate at which she receives infor-

mation that is payoff relevant for the principal, and, (3) the agent acts strategically based on

this information in an effort to manage his reputation. We develop and study a novel repeated

game to analyze such environments. Because both players are long lived and the lack of com-

mitment implies that incentives are provided only via continuation value, our framework is

effectively a relational contracting setting where the agent has persistent (and periodic) pri-

vate information.

Our main insight is that the agent’s reputational incentives are so strong that they can

destroy the relationship unless both players can coordinate on “maximally inefficient” strate-

gies. Perhaps paradoxically, this shows that what helps relationship functioning is precisely
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the players’ ability to mutually agree to terminate it at the point where uncertainty is resolved

and, as a result, the relationship is at its most valuable.

Summary of Model and Results

Our model is perhaps easiest to describe as a bandit model with a strategic arm and we use

this metaphor throughout the paper. In the description that follows, we link various elements

of the model to the first application. In Section 5, we develop in detail the implications of our

results for all the three settings mentioned above.

In each period, the principal (online content consumer) chooses between experimenting

with a costly risky arm of unknown type (visiting the website) and a costless safe arm (not

visiting, the outside option). The risky arm’s type is privately known by the agent (con-

tent provider) who also controls its output. If the arm is the good type, it stochastically re-

ceives private project ideas (news stories) that vary in quality (the accuracy of reporting); the

bad type never receives any ideas. If the principal decides to experiment, the agent chooses

whether or not to costlessly implement the project (publish a story) based on the idea he re-

ceived (if any). An implemented project generates a public success or failure (the veracity of

the story once cross-checked by other news outlets), the probability of which depends on the

quality of the idea. In our model, good projects always succeed, bad projects (implemented

despite not receiving an idea) never succeed, while implementing a risky project sometimes

results in a success (and sometimes in a failure). The principal wants to simultaneously maxi-

mize the number of successes (true stories) and minimize failures, whereas the agent wants to

maximize the duration of experimentation by the principal (that is, maximize the number of

website visits). To make the model interesting, we assume that implementing risky projects is

myopically inefficient, in that, it generates a negative expected payoff for the principal. This

way, there is a tension between the agent’s need to establish reputation (generate successes)

and the principal’s desire to avoid failures.

Since implementing a project is costless to the agent, there are no frictions in our environ-

ment if the agent’s type is publicly known. In this “first-best” benchmark (Theorem 1), the

principal-optimal Nash equilibrium strategy is for her to always experiment with the good

type agent, and, in response, the agent (who is indifferent between all strategies) acts effi-

ciently, that is, only implements good projects. These Nash equilibrium strategies also gener-

ate the unique Pareto-efficient outcome. Conversely, if the agent is known to be the bad type,
3
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there is a unique Nash equilibrium outcome in which the principal never experiments. This

is because experimentation is costly and the bad type can never generate positive payoffs for

the principal.

Despite the lack of frictions, there are a multiplicity of Nash equilibria even when the agent

is known to be the good type. Indeed, there is a Nash equilibrium in which there is complete

relationship breakdown: the good type never runs a project and, in response, the principal

never experiments. Our main insight is to show that such maximal inefficiency, on path, can be

necessary for the relationship to function.

To see why, now suppose there is uncertainty about the agent’s type. We first examine

Nash equilibrium outcomes with the following (mild) refinement, the sole purpose of which

is to rule out the maximal inefficiency identified above. The refinement requires that, at all

on-path histories where the principal first learns that the agent is the good type (for sure),

the continuation equilibrium is nontrivial (that is, the principal experiments at some continu-

ation history with positive probability). To put it differently, whenever the agent first proves

himself to be the good type, he receives positive continuation utility because the relationship

does not completely break down. Continuation play at these histories can be inefficient as

long as it is not maximally so. In what follows, this refinement is implicit whenever we refer

to equilibrium without using the additional “Nash” qualifier.

When there is type uncertainty, the principal may experiment with the risky arm in or-

der to give the agent a chance to reveal himself to be the good type by generating a success.

Of course, whether or not experimentation is worthwhile depends on how many failures the

principal must suffer along the way. The key tradeoff in our model is that, absent any dynamic

enforcement, the good type always wants to implement risky projects to generate successes

since he does not bear the cost of failures. To make this tradeoff between the agent’s action

strategy and the principal’s decision to experiment explicit, we consider a second “static”

benchmark which captures the highest payoff that the principal can achieve from experiment-

ing for a single period subject to the refinement.1 Here, the principal experiments for the first

period and stops experimenting if no success is generated. Conversely, a success (reveals the

agent to be the good type and) is followed by first-best continuation play (which yields the

highest possible continuation value for the principal). Since only a success guarantees pos-

itive continuation value, the good type (strictly) best responds by implementing both good

1We term this as static because screening only occurs for one period.
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and risky projects; being indifferent, he does not run bad projects (which avoids unnecessary

failures for the principal).

The sign of the principal’s payoff in this benchmark determines her tolerance for what

we call a lack of quality control; that is, when the good type agent always implements risky

projects. If, and only if, the principal’s payoff in this benchmark is positive, the strategies

described above constitute an equilibrium and, hence, the principal is willing to experiment

even when the good type agent always runs risky projects (Theorem 2).2 Conversely, when

the payoff in this benchmark is negative, we say quality control is necessary for experimentation.

In our applications, this corresponds to an unwillingness to visit a website with a consistently

low standard of reporting etc. In this case, the principal has to provide dynamic incentives to

police the agent’s actions in order to receive an overall positive value from experimentation;

simple static strategies of the sort described above will not work.

So what can we say about the set of equilibria in our model? Our first main result (part 1 of

Theorem 3) shows that the principal can never completely prevent the agent from choosing

inefficient actions in any equilibrium. Specifically, in every nontrivial equilibrium, the agent

implements both risky and bad projects on path. Part 2 of Theorem 3 shows that the surplus

loss from this inefficiency can be large. Specifically, we show that, whenever quality control is

necessary for experimentation, the unique equilibrium outcome is one in which the principal

never experiments. This result shows that whenever the principal needs to discipline the

agent to make experimentation worthwhile, the agent’s need to establish reputation makes

this impossible!

What makes our result stark is that breakdown can occur even with arbitrarily small amounts

of uncertainty or even if “minimal quality control” can make experimentation profitable. We

discuss each of these and their implications in turn. First, observe that there are parameter

values such that quality control might be necessary even when the agent is almost surely

known to be the good type. For instance, when failures are very costly to the principal, ex-

perimentation will not be profitable even with a high belief if the good type agent always

implements risky projects. However, when the principal’s belief is high, it might be natural

2One needs to carefully specify the strategy of the bad type: he must also act with positive probability as oth-
erwise acting alone will cause the principal’s belief to jump to one and so, per the refinement, the continuation
equilibrium after a failure must also be nontrivial. However, because our refinement only bites if beliefs jump
to exactly 1, this probability can be taken to be arbitrarily small so that the principal’s loss from the bad type is
correspondingly small.
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to expect that the agent’s reputational incentives are weaker and that he can be incentivized

to act efficiently sufficiently often to make experimentation worthwhile. An implication of

our main result is that this is not the case: the principal’s equilibrium payoff discontinuously

drops from that of the first-best to zero as there is infinitesimal uncertainty about whether

the agent is the good type. Returning to our first application, this implies that even a small

amount of doubt in the veracity of a content provider (like a news source) can have a large

impact for consumers. Specifically, the incentives that drive relationship breakdown in our

model mirror the oft-cited criticism of the news media: the need to constantly generate new

content drives down the quality of reporting. This in turn engenders public mistrust, which

contributes to the environment of dwindling web traffic.

When the principal’s payoff in the static benchmark is negative but small, this corresponds

to the case where the principal would not experiment if the agent acts inefficiently at every

opportunity but experimentation would be profitable if the agent chose to behave efficiently

even a small fraction of the time. Our result implies that the principal cannot even provide

the long run incentives to make efficient play occur at a small fraction of histories. In this

sense, the loss of surplus due to reputational concerns can be large relative to the first best.

In Section 4, we show how coordination on maximal inefficiency can restore relationship

functioning. We examine strategies in which the principal experiments at least for three peri-

ods (on path). If the agent generates a success in the first two periods, he is granted “tenure”

and first best continuation play follows. If not, the principal experiments for one additional

“grace period.” Critically, and in violation of the refinement, the principal stops experiment-

ing after this grace period irrespective of whether or not a success arises in this period. In

this grace period, the agent acts efficiently—this is a best response because he is indifferent

over all strategies (since he is guaranteed to be employed for exactly this grace period regard-

less of what he does). We identify parameter values for which quality control is necessary,

and nevertheless, these strategies are a Nash equilibrium. Further, we show that in this Nash

equilibrium, both players get at least a fraction of the first-best payoff (irrespective of their

discount factors).

We then develop the applied implications of these results. In Section 5.1, we discuss the

online content market and argue that moving from advertising driven revenue to subscription

based payment can potentially incentivize higher quality, instead of clickbait, journalism. In

Section 5.2, we argue that a slight variant of the model (to which the same insights apply) can
6
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be used to demonstrate that term limits can improve policy making not despite, but precisely

because, even proven good politicians must leave office at the end of their term. In Section 5.3,

we discuss the implications of our results to how, and which, experts should be hired in

organizations. Additionally, our model allows us to take a nuanced view of employee job

terminations.

Finally, in the discussion Section 6, we argue that our main insight is robust to perturb-

ing various assumptions of the model. Specifically, we allow for one-sided transfers, costly

actions and costly information acquisition. Finally, we show that commitment power can

benefit the principal.

Related Literature

This paper is most closely related to two strands of the repeated games literature. The first

is the literature on “bad reputation” which builds on the work of Ely and Välimäki (2003)

(henceforth EV). They consider a two player repeated game and show that the reputational

incentives of a long-lived agent with a privately known type can cause the loss of all surplus

when faced with a sequence of short-lived principals. The game we analyze is distinct from

theirs in that our model does not not have the payoff structure of a bad reputation game in

the sense of Ely, Fudenberg, and Levine (2008). More importantly, our paper is the first to

establish a bad reputation result in a model with two long-lived players (one of whom has

multiple strategic types) and in which the principal’s discount factor is intermediate. More-

over, our result does not depend on the agent’s discount factor at all. We postpone a more

detailed discussion of the differences to Sections 3 and 4. As we argue, these properties are

not just of theoretical interest but are also important to capture the applications our model

speaks to.

These features also distinguish our result from the broader reputation literature which

demonstrates how a long-lived player with a privately known type, facing a sequence of

short-lived players, can attain her Stackelberg payoff for sufficiently high discount factors (by

mimicking commitment types). There is a substantially smaller fraction of this literature that

identifies classes of games in which this result obtains with two long-lived patient players.

Early examples are Schmidt (1993) and Cripps and Thomas (1997), more recent papers are

Atakan and Ekmekci (2012, 2013). As we discuss, our main result (Theorem 3) combines key

ideas from both literatures.
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Our paper can also be thought of as an instance of a relational contracting problem. Like

our setting, Levin (2003) studies a model with both adverse selection and strategic actions but

importantly, his agent draws his private cost type independently in each period. This absence

of persistent private information for the informed player is the main distinction between our

paper and the vast majority of this literature. In Halac (2012), the principal has a privately

known persistent outside option. This qualitatively differs because this private information

does not affect the total surplus and instead determines the amount that the principal can

credibly promise to the agent. Malcomson (2016) is a recent instance of a paper with persis-

tent payoff-relevant private types; his main result is that full separation of the agent’s types

is not possible via a relational contract. All of the papers in this strand of the literature study

substantially different economic settings from this work but an important additional differ-

ence is that our model features periodic (in addition to the persistent) private information.

This difference is not merely cosmetic and the latter ingredient is critical to generate our main

economic insights. Finally, since we present the bulk of our results in the absence of transfers,

the works of Li, Matouschek, and Powell (2017) and Mitchell (2020) are also related although

their problems concern pure moral hazard.

While otherwise very different, the reputational incentives (and the fact that they can dis-

tort behavior) in our setting are similar in spirit to those in models where experts with private

types choose actions in an attempt to demonstrate competence (Prendergast and Stole (1996),

Morris (2001), Ottaviani and Sørensen (2006)). More recently, Backus and Little (2018) con-

sider a single period, extensive-form game of expert advise where they derive conditions un-

der which an expert can admit uncertainty. Our setting shares an essential modeling feature

that good types may not be able to provide the principal with positive utility in all periods.

Finally, our paper is related to a few papers in the literature on dynamic mechanism design

which analyze outcomes both with and without commitment. Guo (2016) studies a dynamic

setting without transfers where an agent is privately informed about the quality of a risky

arm and he prefers greater experimentation than the principal (both prefer the risky arm only

when it is good). While our setting differs substantially in terms of the payoff structure (and,

hence the application to which we speak), another critical difference is that the agent in our

environment strategically acts in response to additional private information she receives over

time. Aghion and Jackson (2016) consider a political economy setting where voters (princi-

pal) must incentivize a politician (agent). Formally, they consider a setting without transfers
8
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where a principal is trying to determine the type of a long-lived agent. While some features

of our game are similar (the agent’s payoff and the fact that she receives private information

in each period), the main driving forces in their model are different. Specifically, signaling is

not a source of inefficiency in their setting; instead, the principal wants to the agent to take

“risky” actions that are potentially damaging to the latter’s reputation. Deb, Pai, and Said

(2018) study a pure adverse selection dynamic environment without transfers where a princi-

pal is trying to determine whether a strategic political forecaster has accurate information by

comparing the dynamics of his predictions leading up to an election with the eventual win-

ner. Once again, there are some superficial similarities in the payoff structure but the games

are otherwise quite different.

1. THE MODEL

We study a discrete time, infinite horizon repeated game of imperfect public monitoring

between a principal and an agent. We denote time by t ∈ {1, . . . , ∞}; the principal and agent

discount the future with discount factors δ, β ∈ (0, 1) respectively.

Agent’s Initial Type: The agent starts the game with a privately known type θ which can either

be good (θg) or bad (θb). The agent is the good type θg with commonly known prior probabil-

ity 0 < p0 < 1. This initial type determines the rate at which the agent can generate positive

payoffs for the principal.

We begin by describing the stage game (summarized in Figure 1) after which we define

strategies and Nash equilibrium.

1.1. The Stage Game

At each period t, the principal and agent play the following extensive-form stage game

where the order of our description matches the timing of moves.

Principal’s Action: The principal begins the stage game by choosing whether or not to experi-

ment xt ∈ {0, 1}, where xt = 1 corresponds to experimenting. The cost of action xt is cxt with

c > 0 so experimentation is costly.

If the principal chooses not to experiment, the stage game ends. When she experiments,

the stage game proceeds as follows.
9
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Agent’s Information: In each period, the agent receive a project idea it. These can either be bad

(it = ib), risky (it = ir) or good (it = ig). it is drawn independently in each period from a

distribution that depends on the the agent’s type θ.

The bad type only receives bad project ideas: that is, if θ = θb, then it = ib with probability

1.

The good type additionally receives risky and good project ideas stochastically. That is,

if θ = θg, the agent gets good (it = ig), risky (it = ir) and bad (it = ib) project ideas with

probabilities λg, λr and 1− (λg + λr) respectively where λg + λr =: λ ∈ (0, 1).

Agent’s Action: After receiving the project idea, the agent decides whether or not to costlessly

implement the project. Formally, he picks a public action at ∈ {0, 1} where at = 1(0) denotes

whether (or not) the project was run.

Public Outcomes: If the principal experiments (xt = 1) and the agent acts (at = 1), a public

outcome ot ∈ {o, o} is realized from a distribution µ given by

µ(o | it) =


1 if it = ig,

qr if it = ir,

0 if it = ib,

where o is realized with the complementary probability.

A success (o) can only be generated by the good type and the likelihood of a success is

determined by the project quality: a good (risky) project always (sometimes) generates a suc-

cess. The tension in the model arises from the fact that the good type may want to implement

risky projects in an effort to signal his type. Since this can generate failures (o), the bad type

may also act in an attempt to pool even though he only ever receives bad project ideas.

This “good news” assumption (common in bandit models) implies that successes perfectly

reveal that the agent is the good type. As we will discuss below, this assumption is deliber-

ately stark (we do not require it for our main insights). It is intended to highlight that rela-

tionship breakdown can arise even though the good type can separate perfectly at histories

where he receives good project ideas and, hence, one might expect screening to be possible.

If either the principal does not experiment (xt = 0) or the agent does not act (at = 0),

the stage game ends with the agent generating neither a success nor failure. We denote this

outcome by ot = oϕ. Note that the extensive form implies that the agent does not receive
10
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project ideas or get to move if the principal does not experiment; to simplify notation, we

define at = 0 and it = ib when xt = 0.

We use the shorthand notation ht = (xt, at, ot), ht ∈ {��h, hϕ, h, h} to describe the (public)

outcome of the stage game. Here,

��h := (x = 0, a = 0, o = oϕ), hϕ := (x = 1, a = 0, o = oϕ),

h := (x = 1, a = 1, o = o), h := (x = 1, a = 1, o = o).

In words, ��h denotes the case where principal chooses not to experiment, the remaining three

correspond to the separate outcomes that can occur after the principal experiments. hϕ de-

notes the case where the agent does not act, and h, h denote the cases where the agent acts

and a success, failure respectively are observed.

We use time superscripts to denote vectors. Thus, ht = (h1, . . . , ht) and it = (i1, . . . , it).

Additionally, ht′ht (and analogously for other vectors) denotes the t′ + t length vector where

the first t′ elements are given by ht′ and the t′ + 1st to t′ + tth elements are given by ht.

Stage Game Payoffs: The agent wants to maximize the duration of experimentation. Formally,

his normalized payoff is

u(xt) = xt,

so he receives a unit payoff whenever the principal experiments.

The principal wants to maximize (minimize) the number of successes (failures). Her payoff

v is given by

v(ht) =



1− c if ht = h,

−κ − c if ht = h,

−c if ht = hϕ,

0 if ht = ��h.

In words, gross of cost, the principal realizes a normalized payoff of 1 for every success, a loss

of κ > 0 for every failure and 0 otherwise.

Payoff Assumptions: We assume that risky projects yield a net loss for the principal:

qr < (1− qr)κ.
11
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This assumption creates one of the key tradeoffs in the model: absent signaling value, the

principal wants to prevent the agent from running risky projects.

Additionally, we assume that the cost of experimentation is sufficiently low to make the

model nontrivial, that is, c < λg. If this assumption is not satisfied, the principal has no

incentive to experiment even if the agent is known to be the good type.

1.2. The Repeated Game

Histories: ht−1 ∈ {��h, hϕ, h, h}t−1 denotes the public history (henceforth, referred to simply as

a history) at the beginning of period t. This contains all the previous actions of and outcomes

observed by both players. The good type agent’s private history additionally contains all

previous project ideas it−1 and the period-t project idea it when he is deciding whether or not

to act (the bad type only receives bad project ideas and therefore has no additional private

history). We use the convention that h0 = ϕ denotes the start of the game. We use H and

H g to respectively denote the set of histories and the set of the good type agent’s private

histories.3

Agent’s Strategy: We denote the agent’s strategy by ãθ . When the agent is the bad type,

ãθb(h
t−1) ∈ [0, 1] specifies the probability with which the agent acts at each period t as a

function of the history ht−1 ∈ H . When the agent is the good type, ãθg(h
t−1, it) ∈ [0, 1] spec-

ifies the probability with which he acts at each period t as a function of his private history

(ht−1, it) ∈ H g. Since the agent can only act when xt = 1, this is implicitly assumed in the

notation and we do not add this as an explicit argument of ãθ for brevity.

Principal’s Strategy: The principal’s strategy x̃(ht−1) ∈ [0, 1] specifies the probability of exper-

imenting in each period t as a function of the history.

On- and off-path Histories: Given strategies x̃ and ãθ , a history ht−1 ∈ H is said to be on path

(off path) if it can (cannot) be reached with positive probability for either (both) of the agent’s

possible types θ ∈ {θg, θb}. Similarly, a private history (ht−1, it) ∈ H g is said to be on path

(off path) if it can (cannot) be reached with positive probability when θ = θg.

3Note that H g only contains histories where the outcomes for the stage game are compatible with the project
ideas received by the good type; recall that successes cannot arise when the good type implements bad projects.
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Beliefs: A belief p̃ is associated with a pair of strategies x̃, ãθ (we suppress explicit dependence

on the strategies for notational convenience). p̃(ht−1) is principal’s belief that the agent is

the good type at history ht−1. If this history is on-path, p̃(ht−1) is derived from the agent’s

strategy ãθ by Bayes’ rule. In the entirety of what follows, we impose no restriction on how

off-path beliefs are formed.

Expected Payoffs: We use Uθg(h
t−1, it−1, x̃, ãθg), Uθb(h

t−1, x̃, ãθb), V(ht−1, x̃, ãθ) to denote the ex-

pected payoff of the good, bad type agent and principal respectively at histories ht−1 ∈ H ,

(ht−1, it−1) ∈ H g given strategies x̃, ãθ . Note that the principal’s payoff implicitly depends

on her belief p̃(ht−1) at this history.

Nash Equilibrium: A Nash equilibrium (henceforth referred to as NE) consists of a pair of

strategies x̃, ãθ such that they are mutual best responses. Formally, this implies that Uθg(h
0, i0, x̃, ãθg) ≥

Uθg(h
0, i0, x̃, ã′θg

), Uθb(h
0, x̃, ãθb) ≥ Uθb(h

0, x̃, ã′θb
) and V(h0, x̃, ãθ) ≥ V(h0, x̃′, ãθ) for any other

strategies x̃′, ã′θ .

Nontrivial NE: A NE is nontrivial if there is an on-path history (ht) where the principal experi-

ments with positive probability (x̃(ht) > 0).

We similarly will also use the phrase “nontrivial” to describe strategies and equilibria (with

our refinement in place). It always refers to the fact that the principal experiments on path.

Figure 1 below summarizes the actions and the order of play in the repeated game.

Before beginning the analysis, it is worth discussing the main assumptions of the model:

(i) the monitoring structure mapping project type to outcomes, (ii) the lack of transfers, (iii)

actions being costless and (iv) ideas arriving for free. The first is probably the least controver-

sial because it is extremely common in bandit models to assume a “good news” information

structure. As mentioned above, successes in our model perfectly reveal that the agent is the

good type. As we will discuss below, this assumption is deliberately stark. It is intended to

highlight that relationship breakdown can arise even though the good type can separate per-

fectly at histories where he receives good project ideas and, hence, one might expect screening

to be possible.
13
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Agent
privately

learns
θ0 ∈

{
θg, θb

}

Principal
picks

xt ∈ {0, 1}

Agent
privately

learns
it ∈ {ih, il , iϕ}

Agent
publicly acts

at ∈ {0, 1}

Public
outcome

ot ∈ {o, o}
observed

Public
outcome
ot = oϕ

observed

Payoffs
Realized

Principal
picks

xt+1 ∈ {0, 1}

xt = 0

xt = 1

at =
0

at = 1

FIGURE 1. Flow chart describing the repeated game; the rectangle contains the
stage game.

We show in Section 6 that our main insight is unaffected if we dispense with assumptions

(ii), (iii) or (iv). The bulk of the paper deliberately focuses on the above simple version of the

model to reduce notation and make the results transparent.

2. TWO BENCHMARKS AND THE EQUILIBRIUM REFINEMENT

We begin by considering two simple benchmarks which provide context for our main re-

sult. Section 2.1 considers a setting where there is no incomplete information. This motivates

the refinement that we define in Section 2.2. Finally, we consider a “static” benchmark in

Section 2.3 that provides a foundation for the key parameter values that we focus on.

2.1. The First-Best Complete Information Benchmark

The purpose of this section is to show that the key friction in the model is the principal’s

need to screen the good from the bad type. To do so, we consider a benchmark in which the

agent’s type is publicly known; formally, this corresponds to the case where the prior belief

p0 ∈ {0, 1}. The theorem below characterizes the “first-best” NE under complete information.

As we often do in the paper, formal statements are presented in words sans notation to make

them easier to read. Where we feel it is helpful to the reader, we additionally describe the
14
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strategies using the notation in footnotes (and these mathematical statements also appear in

the appendices).

THEOREM 1. If the agent is known to be the bad type, there is a unique NE in which the principal

never experiments.4

Conversely, suppose the agent is known to be the good type. Then, there is a unique Pareto-optimal

NE outcome in which the principal always experiments and the agent only implements good projects.5

This result is obvious so the following discussion serves as the proof. The principal never

experiments when the agent is known to be the bad type since experimentation is costly and

this type cannot generate any successes which are the only outcomes that yield a positive

payoff to the principal. Conversely, if the agent is known to be the good type, there are no

frictions. As long as the agent only runs good projects, it is always profitable for the principal

to experiment. Since actions are costless, the agent is indifferent between all strategies and

so, in particular, always choosing the principal optimal action is a best response. In what

follows, whenever we describe the behavior of either player as efficient, we are referring to the

strategies described in Theorem 1 above. We use

Π :=
λg − c
1− δ

> 0

to denote the first-best payoff that the principal obtains from the good type. This is clearly an

upper bound for the payoff that the principal can achieve in any NE for p0 ∈ [0, 1].

2.2. The Equilibrium Refinement

Despite the lack of frictions when the agent is known to be the good type, there exist other,

inefficient Nash equilibria where the principal does not always experiment because the agent

acts inefficiently at certain histories. Indeed, complete relationship breakdown is also a NE:

the principal never experiments and, in response, the agent never acts—these strategies are

mutual best responses. As our main insight is the importance of such on-path maximal inef-

ficiency for relationship functioning, we will show that the market can breakdown when we

impose the following refinement that rules out these (and only these) strategies on path.

4Formally, the principal’s unique NE strategy when p0 = 0 is x̃(ht−1) = 0 for all ht−1 ∈H . The agent’s strategies
can be picked arbitrarily.
5Formally, the Pareto-optimal NE strategies when p0 = 1 are x̃(ht−1) = 1, ãθb

(ht−1) = 0 for all ht−1 ∈ H and
ãθg (h

t−1, it−1it) = 1(0) for all (ht−1, it−1it) ∈H g where it = ( 6=)ig.
15
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Equilibrium Refinement: An equilibrium (with no additional qualifier) is a NE in which, at all

on-path histories where the principal’s belief (first) jumps to one, the continuation play is

nontrivial.

Formally, NE strategies x̃, ãθ are an equilibrium if, at all on-path histories ht−1ht ∈H such

that p̃(ht−1) < 1 and p̃(ht−1ht) = 1, there exists an on-path continuation history ht−1htht′ ∈

H such that x̃(ht−1htht′) > 0.

Some readers might view this refinement as natural because it can be thought of as an

extremely weak form of renegotiation proofness. While we are not aware of other papers

that employ this exact refinement, more restrictive versions exist in the literature. Another

natural but stronger alternative would require continuation play to be nontrivial at all on-path

histories ht−1 ∈ H where the belief is p̃(ht−1) = 1. An even stronger refinement would be

to impose efficient continuation play (in the sense of Theorem 1) once uncertainty is resolved.

This refinement is employed by EV in whose model similar multiplicity arises; they explicitly

refer to it as renegotiation-proofness.6

Finally, note that the above refinement is, in an informal sense, weaker than standard re-

finements such as Markov perfection. This is, once again, because the refinement only has

bite the first time the principal’s belief jumps to 1 on path, whereas Markov perfection re-

stricts on-path behavior to always be measurable with respect to beliefs. That said, observe

that Markov strategies are not a subset of our refinement. In particular, Markovian strategies

allow for breakdown at all belief 1 histories.7

With this refinement in place, any loss of surplus is not a consequence of the players choos-

ing maximally inefficient strategies under complete information; instead, inefficiency arises

exclusively from frictions created by the principal’s need to screen.

6To the best of our knowledge, there is no single, accepted renegotiation-proofness refinement in repeated games
with uncertainty. Our refinement (imposed after the agent’s type uncertainty is resolved) is substantially weaker
than what is implied by many renegotiation-proofness refinements in the literature for complete information
games. For instance, the consistency requirements in Farrell and Maskin (1989), Abreu and Stacchetti (1993) and,
most recently, the sustainability requirement (without renegotiation frictions) of Safronov and Strulovici (2017)
would yield the efficient outcome when the agent’s type is initially known to be good. All three are defined for
complete information repeated games with normal form stage games but can be applied to our extensive-form
stage game as well.
7That said, the only Markov equilibria that are ruled out by our refinement are uninteresting equilibria where
there is only one success on path following which the game ends.
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2.3. The “Static” Benchmark and the Need for Quality Control

The goal of this section is to present, and provide a foundation for, the main parameter

values that we focus on. Essentially, we are interested in parameter values where there is a

tradeoff between the agent’s short term need to establish reputation and the principal’s value

from experimentation. To do so, we examine a “static” benchmark where the agent only has

a single period to prove himself to be the good type. When parameter values are such that

the payoff in this benchmark is negative, experimentation is only worthwhile to the principal

if she can provide dynamic incentives to prevent the agent from always implementing risky

projects.

Specifically, consider the following strategies:

Principal: Experiment in period one. If no success is generated, stop experimenting.

If a success is generated, always experiment at all future histories.

Good-type agent: Only implement good and risky projects in period one. If a success is

generated, follow the efficient strategy. If no success is generated, stop

acting.

Bad-type agent: Act with positive probability in period one and then stops acting.

Formally, these “static” strategies are given by

x̃(h0) = 1 and x̃(h1ht−1) =

 1 if h1 = h,

0 if h1 6= h,
for all h1ht−1 ∈H , t ≥ 1,

ãθg(h
0, i1) =

 1 if i1 ∈ {ig, ir},

0 if i1 = ib,

ãθg(h1ht−1, itit+1) =

 1 if h1 = h and it+1 = ig,

0 otherwise,
for all (h1ht−1, itit+1) ∈H g, t ≥ 1.

ãθb(h
0) > 0 and ãθb(h

t) = 0, for all ht ∈H , t ≥ 1.

(1)

To summarize, these strategies correspond to the principal experimenting for a single pe-

riod in the hope that the agent produces a success. A success is followed by the first-best

continuation payoff. If no success is generated, the principal stops experimenting and the

game effectively ends. Faced with this strategy, it is a strict best response for the good type
17
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to implement both good and risky projects because only successes generate positive contin-

uation payoffs. The bad type is indifferent between implementing a bad project or not (as is

the good type), so acting with positive probability is, in particular, a best response. We term

these strategies as static (despite the game continuing after a success) because screening only

occurs for one period.

An upper bound for the principal’s payoff from these strategies is given by

Π(p0) := p0(λg + λrqr)(1 + δΠ)− p0λr(1− qr)κ − c.

This is the expected payoff that the principal receives from the actions of the good type; it is

an upper bound because it does not account for the losses from failures generated by the bad

type. The first term corresponds to the payoff after a success (the principal gets a payoff of 1

in period one and the first-best continuation payoff Π) and the second term is the loss from

a failure. It is straightforward to observe that a necessary and sufficient condition for these

strategies to constitute an equilibrium is that this bound is positive.

THEOREM 2. There exists an equilibrium in static strategies (given by (1)) iff Π(p0) > 0.

When Π(p0) > 0, there is always a low enough positive probability ε > 0 of action by the

bad type (ãθb(h
0) = ε) such that the principal’s payoff from experimentation is positive. Note

that, as long as the bad type sometimes, but not always, acts (ãθb(h
0) ∈ (0, 1)), the principal’s

belief following both non-success outcomes is interior (since p̃(h), p̃(hϕ) < 1) and thus the

continuation play as prescribed by the above stragies (1) is allowed by the refinement since it

has no bite at these histories.

Conversely, when Π(p0) ≤ 0, it is a strict best response for the principal to not experiment

in period one. This is because her payoff is strictly lower than this upper bound since the bad

type acts with positive probability. Note that there cannot be an equilibrium where the bad

type does not act (ãθb(h
0) = 0). Suppose to the contrary that there was such an equilibrium.

In this putative equilibrium, only the good type acts and so, irrespective of outcome, the

principal’s posterior belief must go to one after an action (p̃(h1) = 1 for h1 ∈ {h, h}). Our

refinement implies that this will result in positive continuation value for the agent. As a result

acting (ãθb(h
0) = 1) will be a strict best response for the bad type, which is a contradiction.

18
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When Π(p0) ≤ 0, we say quality control is necessary for experimentation to generate a pos-

itive expected payoff. In this case, the principal must use the dynamics of her relationship

with the agent in order to provide the good type with the necessary incentives to implement

risky projects sufficiently infrequently. Note that the monitoring structure we have chosen

in our model is intentionally stark. By assuming successes are perfectly revealing, it should

be easier for the good type to establish reputation compared to a setting where bad projects

could also generate a success with positive probability. In other words, one might think that

screening would be relatively easier for the principal compared to the case where bad types

too could sometimes produce successes. We argue that reputational forces can be destructive

despite this stark good news monitoring structure.

3. RELATIONSHIP BREAKDOWN

Our main insight is the minimal efficiency requirement imposed by the refinement can

cause market breakdown.

THEOREM 3. Suppose p0 ∈ (0, 1). Then:

(1) In every nontrivial equilibrium, the good type agent implements risky projects and the bad type

implements bad projects (with positive probability) on path.

Formally, in every nontrivial equilibrium, there exist on-path histories ht ∈H and (ht′ , it′ ir) ∈

H g such that ãθb(h
t) > 0 and ãθg(h

t′ , it′ ir) = 1.

(2) If quality control is necessary (Π(p0) ≤ 0), the unique equilibrium outcome is that the prin-

cipal never experiments.

Taken together, these results have stark economic implications. The first statement of The-

orem 3 implies that a principal who is willing to experiment will necessarily face inefficient

actions. The second statement of Theorem 3 argues that the payoff implications of this in-

efficiency can be large. Specifically, the agent’s reputational incentives prevent any quality

control whenever it is necessary for experimentation and hence, the principal can never inter-

nalize the long run benefits of experimentation.

A first consequence of this result is that there are two separate discontinuities that arise in

the equilibrium payoff set. First observe that there are parameter values such that Π(1) ≤ 0;

for instance, this can arise when experimentation is costly (high c), failures yield large losses

(high κ) or when risky projects are very unlikely to generate successes (low qr). In this case,
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Π(p0) ≤ 0 for all p0 ∈ (0, 1) and so the principal will never experiment. Thus, both players’

payoffs discontinuously fall from the first-best when p0 = 1 to zero when p0 < 1.

Similarly, if we fix the prior p0 but instead alter the parameter values so that the payoff

upper bound from the static benchmark Π(p0) ↓ 0, the agent’s payoff set once again discon-

tinuously shrinks to zero. As long as Π(p0) > 0, there always exists at least one nontrivial

equilibrium (described in Section 2.3) where the principal experiments in period one and the

good type can attain the first best continuation payoff with probability λg + λrqr.

We end this section by providing some intuition for Theorem 3. The discussion also high-

lights our key theoretical contribution which establishes a bad reputation result with two

long-lived players and intermediate discounting by combining two key ideas from separate

strands of the reputation literature.

We first observe that there is a positive belief below which the principal does not experi-

ment in any NE. Since experimentation is costly, there is a belief below which experimentation

is not worth it even if uncertainty about the agent’s type could somehow surely resolve itself

with one period of experimentation (and be followed by the first-best continuation equilib-

rium).

Now suppose the principal were myopic (δ = 0) so her payoff in every period of the game

must be non-negative. Then, at any history, the principal would only indulge in costly exper-

imentation if the agent generated a success with at least probability c. As a result, the prin-

cipal’s posterior belief following one of the two non-success outcomes—failure or inaction—

must not only fall (because beliefs follow a martingale) but must fall at a minimal rate. It is

then possible to show that every nontrivial equilibrium must eventually have a “last” on-path

history at which the principal’s belief p is less than p0 and at which the agent must generate a

success or otherwise the principal stops experimenting (because her belief will fall below the

above mentioned cutoff). But note that both types of agent’s incentives at such a last history

are identical to their incentives in the static benchmark. Here, it will be a best response for the

good type to run risky projects and for the bad type to act. To see the latter, note that if the bad

type did not act, then acting alone will take the principal’s posterior belief to one. Under our

refinement, the agent is then guaranteed a positive continuation value, and hence, not acting

cannot be a best response. Since Π(p0) ≤ 0 implies Π(p) ≤ 0 for all p ≤ p0 and δ, it therefore

cannot be a best response for the principal to experiment at such a history contradicting the

existence of a nontrivial equilibrium.
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This is essentially the insightful inductive argument developed by EV adapted to our

model. Note that this argument cannot be employed when the principal is forward look-

ing (δ > 0). Simply, this is because the principal is willing to bear periodic losses in order

to generate a positive average payoff. A forward looking principal can slow down the rate

of learning by experimenting even when the agent is generating successes with low proba-

bilities. In particular, she could continue to experiment along a path where beliefs drop but

asymptote to a level that is not low enough to generate breakdown. If so, there would be no

last on-path history and the above inductive cannot be applied.

We argue in the proof that this cannot happen. We derive an upper bound for the princi-

pal’s payoff that captures the fact that, were beliefs to asymptote, there must be an on-path

history where the principal’s payoff from successes drops below the cost of experimentation.

This argument, that links the uninformed player’s continuation payoffs to her learning, bears

some resemblance to a fundamental insight from the reputation literature with two long-

lived players. For instance, Schmidt (1993) studies games of “conflicting interests” where the

commitment optimal action of the player trying to establish reputation holds his uninformed

opponent down to her minimax value. Intuitively, the informed player can guarantee himself

the commitment payoff when patient because there cannot be another equilibrium where the

uninformed player attempts to learn by playing an action that is not a best response to the

commitment action in any period. Because best-responding to the commitment action yields

the minimax value to the uninformed player, she will never choose an action in response that

makes her worse off or, in other words, learning is too costly in these games. Similarly, in our

setting, the principal wants to avoid last histories by prolonging experimentation (to learn the

agent’s type) but cannot do so because it eventually becomes exceeding costly.

4. CORRECTING (BAD) REPUTATIONAL INCENTIVES

In this section, we demonstrate how maximally inefficient behavior on path can help rela-

tionship functioning. At the most basic level, this can easily be seen from strategies that ig-

nore outcomes and therefore, in particular, do not condition on (type-revealing) successes. The

principal experiments for the first T periods and the agent acts efficiently. At all subsequent
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periods, the principal never experiments (irrespective of outcomes in the first T periods) and

the agent never acts.8

It is easy to see that there exists a T ≥ 1 such that these strategies constitute a NE whenever

p0λg > c. This is possible even when quality control is necessary because failures never

arise on path. As the outcomes in the first T periods have no effect on continuation play

from period T + 1 onwards, both types of the agent are indifferent between all strategies

(irrespective of project ideas) and so acting efficiently is, in particular, a best response. The

principal on the other hand has an incentive to experiment for the first T periods as long as

her belief p̃(ht−1) never satisfies λg p̃(ht−1) < c for any on-path history ht−1 ∈ H , 1 ≤ t ≤ T

(by assumption, at least T = 1 satisfies this).

However such Nash equilibria have the feature that both players’ average payoff, while pos-

itive, might be very small. This is because, for any prior p0, there is a maximal T for which the

above strategies can be a NE because the principal’s belief falls if the agent does not generate

a success. Therefore, the average payoff for the agent approaches 0 as he becomes arbitrarily

patient (β→ 1). EV show that, in their model, the agent’s average payoff vanishes in this way

in every NE. A natural question in our setting is whether there exist Nash equilibria such that

quality control is necessary but both players nonetheless get positive average payoffs even as

they become patient?

In the remainder of this section, we construct a simple NE and identify parameter values

for which the answer to the above question is in the affirmative. Unlike the NE described at

the beginning of this section, the following strategies have the feature that both players move

to the efficient continuation equilibrium following successes at some histories. We describe

strategies informally below in Figure 2 and in words; the formal definitions are in Appen-

dix D.

The principal’s strategy is the following:

8Formally, x̃, ã are defined as follows. For all 0 ≤ t ≤ T − 1, ht ∈H , (ht, itit+1) ∈H g, strategies are

x̃(ht) = 1, ãθg (h
t, itit+1) =

{
1 if it+1 = ig,
0 otherwise, and ãθb

(ht) = 0.

When t ≥ T, strategies are

x̃(ht) = ãθg (h
t, it+1) = ãθb

(ht) = 0 for all ht ∈H , (ht, it+1) ∈H g.
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Principal experiments,
good type acts on ig,
bad type does not act

Principal experiments,
good type acts on

ig, ir, bad type does
not act

Principal experiments,
good type acts on ig,
bad type does not act

Principal stops
experimenting, agent

never acts

Principal always
experiments, good

type only acts on ig,
bad type never acts

Period t = 1 Period t = 2 Period t = 3 Continuation play

Success

o1 = o

Success

o2 = o

Failure

o1 = o

No action

o1 = oϕ

No success

o2 ∈ {o, oϕ}

All outcomes

o3 ∈ {o, o, oϕ}

FIGURE 2. A NE with two screening periods when Π(p0) ≤ 0.

• Experiment in period one and experiment forever (stop experimenting) if a success

(failure) is observed.

• If the agent does not act in period one, experiment in period two. If a success is ob-

served, experiment at all subsequent periods.

• If the agent does not act in period one and no success is observed in period two, ex-

periment in period three. Stop experimenting from period four onward.

In response, the good type agent acts as follows.

• Only run good projects in period one. If a success is generated, follow the efficient

strategy. If a failure is generated (off path), stop acting.

• If no project was run in period one, implement both good and risky projects in period

two. If a success is generated, follow the efficient strategy.

• If no project was run in period one and no success is observed in period two, only

implement good projects in period three. Stops acting thereafter regardless of the

period three outcome.

Finally, the bad type never acts.

The key feature of the above strategies is that both players move to efficient continuation

play after successes in periods one or two, and (the grace) period three is used to provide
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incentives for both players. When the conditions

qr ≤ λg + λrqr, (C1)

(λg + λrqr)

(
1 +

δ

1− δ
(λg − c)

)
− λr(1− qr)κ = 0 and (C2)

δ(1− (λg + qrλr))(λg − c) > c (C3)

hold, we can find a high enough initial belief p0 such that quality control remains necessary

and, nonetheless, these strategies are a NE. In Appendix D, we argue that these conditions

are not vacuous. Indeed, we show that the set of parameters for which there exists such an

equilibrium are not non-generic.

Before discussing the implications of the example, we briefly argue why the above condi-

tions ensure that the strategies are mutual best responses. First, note that the bad type never

has an incentive to act since he can never generate a success and this is the only way to get

the principal to experiment after period three. The first inequality guarantees that the good

type’s strategy is also a best response. Observe that the good type is indifferent between act-

ing or not in period three and strictly prefers to run both good and risky projects in period

two (while being indifferent about whether or not to implement a bad project). Condition

(C1) ensures that the good type always (at least weakly) prefers to not run a risky project in

period one; clearly, he strictly prefers to not run a bad project. This is because the condition

ensures that the option value of waiting till period two is better than implementing a risky

project and potentially ending the relationship if a failure arises. Importantly, observe that, as

long as the parameters satisfy condition (C1), the agent’s strategy is a best response irrespective

of his discount factor β.

The second condition (C2) implies that quality control is necessary irrespective of the initial

belief p0. This is because

Π(p0) = p0(λg + λrqr)(1 + δΠ)− p0λr(1− qr)κ − c = −c < 0.

We now argue that third condition (C3) combined with a sufficiently high initial belief p0

implies that the principal’s strategy is a best response. Clearly, her continuation strategy is a

best response to a success being observed in either periods one or two and to a failure being

observed in period one. It remains to be shown that experimenting is a best response in each
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of the remaining histories in periods one to three. First observe that because λg > c, the

principal’s payoff

p̃(hϕhϕ)λg − c =
p0(1− λg)(1− λ)

p0(1− λg)(1− λ) + (1− p0)
λg − c > 0,

when the agent does not take an action in the first two periods is positive in period three

when p0 is sufficiently high. Of course, if the agent generates a failure in period two, then the

principal’s belief jumps to 1 and her payoff is λg − c > 0.

The principal’s expected payoff in period two is positive when

Π( p̃(hϕ)) + δ p̃(hϕ)(1− (λg + qrλr))(λg − c)− δ(1− p̃(hϕ))c > 0,

⇐⇒ δ p̃(hϕ)(1− (λg + qrλr))(λg − c) > c + δ(1− p̃(hϕ))c,

which, in turn, holds when p0 is sufficiently high because of condition (C3). To see this, note

that the principal’s belief that the agent is the good type in period two when no action is taken

in period one is

p̃(hϕ) =
p0(1− λg)

p0(1− λg) + (1− p0)
,

which is increasing in p0 and is 1 when p0 = 1.

Finally, the principal’s expected payoff in period one is clearly positive since her period one

stage game payoff is positive. To see this, observe that the prior belief p0 > p̃(hϕhϕ) and the

latter was assumed above to be sufficiently high to make the period three stage game payoff

positive.

The example shows that, despite quality control being necessary, both players can get a

fraction of the first best surplus because continuation play is efficient after successes in period

one and two and no failures arise on path in period one. Importantly, conditions (C1)–(C3)

can be satisfied for all values of δ, β.

A few further comments about this construction are worth making. First, it is possible

to construct an even simpler NE in which the agent gets a positive fraction of the first-best

payoff: simply remove the first period and consider the strategies from period two onwards.

The reason we add the first period is to guarantee a lower bound for the principal’s average

payoff as well. The lack of an on-path failure in period one guarantees the principal a minimal
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fraction (p0λg) of the first-best payoff Π for all parameter values that satisfy conditions (C1)–

(C3); if we only considered the NE that started at period two, there would be parameter values

that satisfy these conditions but would yield the principal a vanishing small fraction of the

first best.9

Second, note that these strategies obviously do not describe the principal-optimal NE.

While it is prohibitively hard to derive the principal-optimal NE in such a general environ-

ment, we feel that this example suffices to make our main economic point about the usefulness

of maximally inefficient coordination.

Taken together, Theorem 3 and the example in this section provide the cleanest comparison

of our results with those of EV. They consider a model in which a principal faces an agent

whom they want to induce to take an action that matches an underlying stochastic state.

The good-type agent observes the state and his payoff function is identical to that of the

principal’s; conversely, the bad type does not receive any information and, irrespective of

the state, strictly prefers to take one of the two actions. In order for experimentation to be

profitable for the principal, the good type must always do the “right thing” with a sufficiently

high probability: thus their payoff structure inherently captures the parameter restrictions

that we explicitly impose via the quality control condition. Importantly the principal can only

observe the agent’s past actions but neither the realizations of the state nor the past payoffs.

EV show that, when the agent in their setting gets arbitrarily patient, either (i) the agent’s

average payoff goes to 0 in every NE when the principal is completely myopic or (ii) first-best

payoffs (their folk theorem) can be attained when the principal is also arbitrarily patient.

By contrast, we simultaneously demonstrate the destructive strength of reputational incen-

tives and identify a necessary condition that NE strategies must satisfy if the relationship is

to function. We feel that our environment allows us to speak to numerous applications that

cannot be modeled by standard reputation theorems that require either myopic or fully pa-

tient players or both and a monitoring structure that prevents players from observing their

payoffs. The next section demonstrates this by developing three very different applications

where the forces of our model arise.

9For instance take δ→ 1 and simultaneously make κ larger so that (C2) continues to hold. Intuitively, if we did not
have the first period, then the principal is only getting one period of positive payoff (period three) since quality
control is necessary and the agent runs risky projects in period two. Note that making the principal more patient
only slackens the constraint (C3).
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Specifically, our insights require that the principal is long lived but impatient and cannot be

obtained if the principal was either myopic or fully patient. First note that quality control

being necessary (Π(p0) ≤ 0) implies an upper bound on the principal’s level of patience

(when all other parameters are fixed). Then observe that, if the principal were myopic (δ = 0),

the strategies constructed in this section would not be a NE (because her period two payoff

would be negative). Moreover, it is easy to show that, if the principal is myopic, an analogue

of EV’s main bad reputation result (Theorem 1 in their paper) also arises in our model.10

Conversely, we too get a folk theorem if the principal becomes patient.11 Finally, unlike EV,

the agent’s discount factor β does not play an important role in our setting.

There are a number of key modeling differences that drive these distinct implications.

Our agent only cares about extending the relationship (and not about the outcomes from the

projects) but this assumption alone would not generate our results in EV’s model. It would be

impossible to screen such an agent (even with a patient principal) in their setting since their

monitoring structure is such that the principal would never learn anything. Conversely, al-

tering their monitoring structure so the principal could observe her past payoffs would make

their bad reputation result disappear. This is because rewarding the agent when her action

matches the state ensures that “doing the right thing” is a best response for the good type and

is a strategy that cannot be mimicked by the bad type (since he receives no information).

Instead, our good type has the ability to produce one additional outcome that cannot be

mimicked by the bad type but projects that can generate this outcome only arrive stochasti-

cally. It is this modeling choice combined with the agent’s payoff that generates our novel

insights.

5. IMPLICATIONS

The purpose of this section is to show that the main forces in our model are present in a

variety of seemingly unconnected economic environments.

10Specifically, Theorem 7 in Appendix D shows that if the principal is myopic and the bad type agent is a commit-
ment type that never acts, quality control being necessary implies that the good type’s average payoff converges
to 0 as he becomes arbitrarily patient (β→ 1).
11Theorem 8 in Appendix D shows that the principal can get an average payoff of p0(λg − c) when δ→ 1.
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5.1. Subscriptions for Online Content

In this first application, we use the model to argue that subscription-based payment (as op-

posed to advertising-driven revenue) can incentivize higher quality journalism by weakening

the need to constantly generate clicks. We begin by reminding the reader how the model maps

to this application. Consider a consumer of online content (the principal) deciding whether

to visit the website of a content provider (the agent) whose journalistic quality is privately

known. Visiting the website is costly (either cognitively or in terms of time) for the consumer.

If the content provider is high quality, he periodically receives news stories (projects in the

model) that vary in the quality of reporting; low quality providers cannot produce novel con-

tent. The provider decides whether or not to publish content knowing that the veracity of the

story will be revealed once it is cross checked by other news outlets. The consumer wants

to maximize (minimize) the amount of true/breaking (false/reprinted) content she consumes

and the provider wants to maximize the number of clicks. Our refinement seems quite natural

for this application as there is no obvious reason for, or interpretation of, maximal inefficiency

in this market.

When the consumer demands a minimal quality of reporting (that is, she wants the provider

to not always publish poorly vetted content), Theorem 3 demonstrates that the need to gen-

erate clicks can make the market function extremely poorly. An alternate payment model

for online content is subscriptions. A natural way to capture a T period subscription in our

model is via partial commitment: whenever the principal decides to experiment, she commits

to experimenting for T > 1 periods and sinks the T period discounted cost of experimentation
1−δT

1−δ c up front. Thus the stage game now consists of the principal’s experimentation decision

followed by the agent receiving project ideas and acting for T periods. Note that our refine-

ment applies verbatim since the only restriction on the principal’s strategy is to force her to

experiment at histories where she might otherwise not.

So consider the following strategies. The Principal’s strategy can be described as:

• Commits to experimenting for the first T periods.

• If a failure is ever observed, or the agent never acts in the first T periods, she never

experiments after T (even if a success is additionally observed).

• Otherwise, i.e. if success(es) but no failure(s) are observed in these T periods, she

experiments forever after T.
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The strategy for the good-type agent is:

• Only runs good projects in the first T − 1 periods. If a success is generated, he only

runs good projects thereafter. If a failure arrives, he stops acting.

• Implements both good and risky projects in period T. If a success is generated, he only

runs good projects thereafter.

• Does not act at all other histories.

The bad-type agent acts with small probability at period T, and does not act at all other his-

tories.

In Appendix E, these strategies are formally defined and we provide parameter values for

which they constitute an equilibrium despite quality control being necessary. In short, the

bad type is clearly best responding since he is indifferent between all strategies.12 Finally, the

good type’s strategy is a best response if he does not have an incentive to run risky projects

at any period prior to T. A sufficient condition for this is condition (C1) from the previous

section since the likelihood of getting a good project in the next period makes the option value

of waiting more attractive than the lottery of generating a success today with probability qr.

For the principal, partial commitment to T periods of experimentation implies that the

good type does not need to always run risky projects and this in turn can generate a positive

average profit for the principal. Indeed, when Π(p0) is negative but small, there are param-

eter values such that the principal receives a positive expected payoff from experimentation

in every period (not just a positive total payoff) gross of the sunk cost. This latter observation

is important because otherwise the principal could choose to “ignore” the agent’s action in

period T (that is, not visit the website despite having paid for the subscription).

To summarize, having been paid a subscription fee, a provider can be more judicious about

his choice of content as he does not need to incentivize each additional click. Indeed, a recent

article (“We Launched a Paywall. It Worked! Mostly.” by Nicholas Thompson on May 3, 2019)

from the editor-in-chief of technology publication Wired highlights exactly this mechanism

in work after they instituted their paywall. One of the lessons they learned was that the

content that drove subscriptions (“long-form reporting, Ideas essays, and issue guides”) was

12Note that the bad type has no incentive to act prior to T (even though the good type acts with positive proba-
bility) because failures between periods 1 and T − 1 are off path and are punished by the principal.
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typically harder and more time consuming to produce (akin to good projects in our model).

Importantly, Thompson observes that when

“your business depends on subscriptions, your economic success depends on

publishing stuff your readers love—not just stuff they click. It’s good to align

one’s economic and editorial imperatives! And by so doing, we knew we’d

be guaranteeing writers, editors, and designers that no one would be asked to

create clickbait crap of the kind all digital reporters dread.”

More broadly, the recent financial resurgence of the New York Times due to its paying sub-

scribers appears to be shifting the journalism industry towards a subscription-based model.

Invariably such a change in business model is justified by, among other factors, the fact that

it will allow a focus on high-quality journalism and away from articles aimed primarily at

generating clicks.

5.2. Term Limits for Politicians

In this section, we describe a slight variant of our model to argue that term limits can im-

prove policy making by reelection seeking politicians.13 A representative voter (the principal)

needs a politician (the agent) to represent her in each period. In each period t, experimenta-

tion for the voter is compulsory and costless (c = 0), she simply decides whether or not to

retain the politician (xt = 1) or to irreversibly replace him (xt = 0) with another ex-ante iden-

tical candidate (who is the good type with probability p0).14 A good type elected politician

stochastically receives policy ideas that can either be good or risky; a bad type politician can

only enact policies that result in failures. Payoffs to both players are as in our model and have

obvious interpretations in this context. The refinement applies almost verbatim: a politician

who reveals himself to be the good type cannot be replaced for sure in the next period.

The necessity of quality control in this application implies that the voter will get a negative

utility if the politician always enacts risky policies.15 Consider symmetric equilibria in which

every politician follows the same strategy once elected. An implication of our main result is

13We are grateful to Navin Kartik for pointing out this application of our result.
14As previously mentioned, our results are not affected by assuming the irreversibility of stopping experimenta-
tion.
15Formally, p0(λg + λrqr)

(
1 + δ

1−δ λg

)
− p0λr(1− qr)κ ≤ 0.
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that, if quality control is necessary, every elected politician never implements any projects in

the voter-optimal symmetric equilibrium.16

This result is easy to see. As far as an individual politician is concerned, the reputational

incentives are identical to the original model. So suppose, to the converse, that there was a

symmetric equilibrium where the voter received a positive payoff. Then, the ex ante expected

value of electing each politician must be positive. This introduces an implicit opportunity cost

in retaining a current politician as the voter could always get positive utility by replacing him.

This opportunity cost would then play an identical role to the cost of experimentation (c > 0)

in our model and we would then get the same contradiction as that driving Theorem 3.

The above argument demonstrates that reelection incentives can have an extremely per-

verse effect on policy choices. As we have already argued, reputational incentives can be

weakened by strategies that feature maximally inefficient play on path. In this context, such

strategies can be interpreted as term limits; the politician is replaced even though he has

proven himself to be good. Indeed, our analysis is instructive precisely because this is al-

most always presented as an argument against imposing term limits.17 The voter’s strategy

can easily incorporate such term limits: every politician is always replaced after a fixed num-

ber T of periods but can additionally be replaced before. The argument at the beginning of

Section 4 implies that, despite quality control being necessary, the voter can get a positive

payoff from higher quality policy making if she follows such a strategy.

5.3. Relational Contracting in Firms

Our results have numerous implications for relational contracting in organizations. Con-

sider the hiring of experts. When failure is very costly, for instance for failed drug trials in

the biotech sector, firms may benefit from hiring in house researchers as opposed to biotech

consultants (for the same reasons that subscriptions were effective in Section 5.1). This is

because the latter typically have shorter contracts and have stronger incentives to prove ex-

pertise to extend employment duration. Additionally, our model provides one rationale for

hiring brand name experts who may have higher outside options. The model can easily be

generalized to give the agent an outside option 0 ≤ u ≤ 1/(1− δ) and give him the ability

16Since there must be an elected representative even if they generate a negative voter payoff, there will be other
equilibria in this model.
17One (of many) recent such instances is the fourth of “Five reasons to oppose congressional term limits” by Casey
Burgat published in Brookings Blog on January 18, 2018.
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to unilaterally resign at the beginning of any period. A higher outside option can ensure that

the agent would rather resign than enter a continuation equilibrium where the likelihood of

termination is high. Since our refinement does not force the principal to permanently hire the

agent even after she knows the agent is the good type for sure, fixed term contracts can arise

as equilibrium outcomes when u > 0 but not when u = 0 since in the former case the agent is

happy to leave once the likelihood of being retained is sufficiently low. Note that in this case,

the agent not the principal ends the relationship.

Our model also speaks to how experts should be compensated; the extension which accom-

modates transfers can be found in Section 6.1. We show (in Theorem 4) that bonuses alone

cannot correct bad reputation forces. Instead, it might be more effective to link the compen-

sation of experts directly to firm performance—importantly, they need to be exposed to both

the upside and downside—via stock options as this will make it failures costly to the agent. It

should be pointed out that there are many papers that describe a variety of different benefits

of giving agents “skin in the game;” our dynamic model highlights the trade-offs inherent in

determining the optimal vesting period for stock options. If the vesting period is too long,

this may create perverse incentives for the agent to prove his worth and extend the duration

of his employment at the expense of the firm. Conversely, a short vesting period may end up

giving away a share of the firm to an unqualified expert.

The maximal inefficiency we highlight also arises in many employment relationships. Note

that our model allows for different types of firm-worker separations. Firing after a failure

disincentivizes the agent from implementing risky or bad projects. Such separations can be

interpreted as firing “with cause.” Even in the absence of failures, information is acquired

about the quality of the firm-worker match as the relationship matures and the firm’s belief

that the worker is the good type may drop over time. This may lead to separation of the sort

common in the labor literature that incorporates learning about match value (an early work

is Jovanovic (1979)). Such a “without cause” separation often legally requires a notice period;

this appears in the form of the third period employment in the example of Section 4. Indeed,

such grace periods are a feature of academic contracts in which professors who are denied

tenure are typically given an additional year of employment. Importantly, in the academic

context, separation is typically irreversible and the professor’s performance in the grace year

does not lead to reversals of tenure decisions.
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6. DISCUSSION

To facilitate, presentation, we have deliberately analyzed the simplest instance of the model

in the previous sections and we now demonstrate that the main economic insights are not

fragile. Specifically, we show that we can incorporate one-sided transfers, costly actions and

costly information acquisition. We also show that the principal can strictly benefit from the

ability to commit. The reader who is uninterested in the specific details can jump ahead to

the concluding remarks.

6.1. Allowing Transfers

For some applications, it is unrealistic to rule out transfers. For instance, in addition to a

fixed wage, firms can choose to pay contingent bonuses to experts they employ. We introduce

transfers by altering the stage game to allow the principal to make payments to the agent

after the public outcome is observed. We assume that the principal can only make transfers in

periods where she experiments. This assumption is not required for our result (Theorem 4);

instead, we impose it because we feel it is realistic for our applications—it would be highly

unusual for a firm to be making bonus payments to an expert not in their employ—and it

shortens the proof. Formally, we denote the transfer in period t by τt ≥ 0. These transfers

are observed by both players and so become part of the public history. For easy reference,

Figure 3 below describes how this alters the stage game. The formal description of histories

and strategies can be found in the appendix.

The equilibrium refinement applies verbatim. Importantly, note that the refinement ap-

plied to this version of the game does not restrict transfers in any way.

THEOREM 4. Suppose p0 ∈ (0, 1). Then:

(1) In every nontrivial equilibrium of the game with transfers, the good type agent (surely) imple-

ments risky projects and the bad type implements bad projects (with positive probability) on

path.

(2) If quality control is necessary (Π(p0) ≤ 0), the unique equilibrium outcome of the game with

transfers is that the principal never experiments.
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FIGURE 3. Flow chart describing the repeated game with transfers (the rectan-
gle contains the stage game)

Transfers do not help the principal avoid inefficient actions or the resulting relationship

breakdown caused by the agent’s reputational incentives. In a nutshell, inefficiency is the re-

sult of the agent’s desire to generate successes and one-sided transfers from the principal can

only further reward successes instead of punishing failures. To see this, first note that, once

again, every nontrivial equilibrium must have a last on-path history at which the principal

experiments (for similar reasons to the case without transfers). Transfers do not help prevent

the agent from running risky projects at this last history. Any payment after a success only

exacerbates the problem. Moreover, the principal can never credibly promise payments after

a failure since she stops experimenting and thus her continuation payoff is 0 which, in turn,

implies that she has no reason to honor the promise. Thus, Π(p0) remains an upper bound

for the principal’s payoff at such last period histories since one-sided transfers can only lower

her continuation utility.

We end this subsection by observing that inefficiency can trivially be eliminated by allow-

ing two-sided transfers. This essentially allows the agent to buy the experimentation technol-

ogy from the principal. As is the case in many contracting problems, this complete removes

any frictions because only the good type will be willing to pay a sufficiently high amount.
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6.2. Costly Actions

The careful reader would have noticed that Theorem 3 leveraged the fact that actions were

assumed to be costless for the agent. This assumption is not required for our main insight:

namely, reputational forces are destructive unless both players coordinate on extremely in-

efficient strategies despite uncertainty being resolved. The reason for this is also the same:

if the cost of acting is small, the agent still has an incentive to generate successes via risky

projects before experimentation stops and this causes unraveling. The argument however is

more involved and we hence relegate it to the online appendix.

Suppose now that the agent has to pay a cost C > 0 to implement a project irrespective of

quality. Costly actions introduce two additional complications to the model. First, the mere

fact that the agent was willing to bear the cost of implementing a project is an additional

signaling device. Second, even when uncertainty is resolved, incentives are no longer aligned

because there is an additional moral hazard problem and the agent needs to be incentivized

to act. Nonetheless, we argue that our main theoretical insight (Theorem 3) is not knife-edged

and continues to hold if the agent bears a small cost of acting.

As should be unsurprising, we need to impose a stronger version of our refinement. Recall

that Theorem 3 leveraged the observation that, if the principal stops experimenting following

inaction, the agent would always act if doing so resulted in a nontrivial continuation play

(irrespective of magnitude of the continuation payoff). Of course, when actions are costly,

this will only happen if, at the very least, the continuation payoff from the latter compensates

the agent for the cost of the action.

We now define the stronger version of the refinement. For any u ∈
(

0, 1
1−β

)
, a u-equilibrium

is a NE in which, at all on-path histories where the principal’s belief (first) jumps to one, the

continuation payoff for the good type is at least u.

Formally, NE strategies x̃, ãθ (of the game with costly actions) are a u-equilibrium if, at all

on-path histories ht−1ht ∈ H , (ht−1ht, it) ∈ H g such that p̃(ht−1) < 1 and p̃(ht−1ht) = 1, the

good type’s continuation payoff satisfies Uθg(h
t−1ht, it, x̃, ãθg) ≥ u.

Note that this refinement is still significantly weaker than the renegotiation-proofness re-

finement employed by EV which, as mentioned earlier, requires efficient play after uncer-

tainty is resolved. When u is small, it is strictly less than the good type’s payoff in any NE
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(when p0 = 1) which yields payoffs that lie on the Pareto frontier. This is because the prin-

cipal will always experiment in the first period of a Pareto-efficient nontrivial NE and so the

agent’s payoff is bounded below by one.18

Finally, with costly actions, we say that quality control is necessary when

ΠC(p0) := p0(λg + λrqr)(1 + δΠC)− p0λr(1− qr)κ − c ≤ 0,

where ΠC ≤ Π is the highest NE payoff that the principal can obtain when the agent is known

to be the good type (p0 = 1). Note that this is a weaker condition because the principal cannot

achieve payoff Π even when uncertainty is resolved because of the moral hazard problem.

The following theorem shows that our main result is unaffected when costs are small.

THEOREM 5. For any u ∈
(

0, 1
1−β

)
, there exists a cost C > 0 such that, when the cost of actions C ∈(

0, C
)

is lower, the unique u-equilibrium outcome is that the principal never experiments whenever

quality control is necessary (for all p0 ∈ (0, 1) such that ΠC(p0) ≤ 0).

6.3. Costly Information Acquisition

Our main insights will continue to hold if, instead of costly actions, the good type needs to

pay a small cost to draw good, risky ideas (with the same probabilities λg, λr respectively).

Similar to the previous section, we will need to strengthen the refinement but we can nonethe-

less conclude that, for any u ∈ (0, 1), relationship breakdown is the unique u-equilibrium out-

come for sufficiently small costs of information acquisition. As in the case with costly actions,

the good type will need to be incentivized to acquire information even when uncertainty is

resolved.

6.4. Full Commitment

Since we are working within the generality of Nash equilibria, it is natural to ask whether

commitment power helps the principal in this setting. For instance, in dynamic pricing prob-

lems, the Coase conjecture disappears in the space of Nash equilibria and the principal can

18There is no benefit to either party in delaying experimentation so the principal must experiment with positive
probability in the first period. If the principal mixes in the first period, it is easy to construct a Pareto improving
equilibrium where the principal experiments with probability one.
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achieve static monopoly profits. There are numerous other dynamic mechanism design prob-

lems (for instance, Guo (2016) and Deb, Pai, and Said (2018)) where commitment is not re-

quired to maximize profits. More generally, Ben-Porath, Dekel, and Lipman (2018) have

shown that, for a large class of static mechanism design problems with “evidence,” the com-

mitment optimal can be achieved even without commitment (they have ongoing work which

shows that similar insights also apply to certain dynamic environments).

We now allow the principal to announce her strategy x̃ in advance and commit to it. In

response, the agent’s strategy ãθ is the best response to x̃ that maximizes the principal’s payoff

(an assumption that is always made in mechanism design).

THEOREM 6. There are parameter values for which full commitment to x̃ allows the principal to attain

a strictly higher payoff than the principal-optimal NE.

In Appendix C, we state the result more formally by providing sufficient conditions under

which commitment makes the principal strictly better off. A NE strategy does not rule out

that the principal terminates the relationship even if her belief is 1, however, it is not sequen-

tially rational for her to experiment on path if her belief is sufficiently low. Full commitment

additionally allows the principal to commit to continue experimenting even if her expected

continuation value is negative. This allows her to provide the agent continuation value even

if her belief is low. Theorem 6 shows that this is a more profitable way of screening the agent

as opposed to foregoing surplus when the agent is known to be the good type. In a nutshell,

the principal can avoid excessive failures from risky projects by committing to continuation

value after inaction by the agent.

We end this section by noting that commitment to a strategy x̃ is not the same as com-

mitment to a direct revelation mechanism. This is because our model is a setting with both

adverse selection and strategic actions. A direct mechanism should solicit the agent’s type

at the beginning of the game and should provide (possibly mixed) action recommendations

after the agent reports his period-t project idea. These are both features that are absent from

the principal’s strategy x̃ in the repeated game. A full characterization of the optimal mech-

anism is hard and we have only been able to derive it in special cases. This difficulty is to

be expected. In order to solve for the optimal mechanism, we have to first derive the most

profitable way to implement a given incentive compatible action strategy for the agent and

then optimize over all such possible action strategies. Even the first of these two steps is hard
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as mechanism design problems without transfers can be complex even in static pure adverse

selection environments without strategic actions.19

7. CONCLUDING REMARKS

We analyzed a novel repeated game where a principal interacts with an agent who, in

addition to having a private type, has periodic private information and can act strategically.

Our main insight is that, despite both players being long-lived and impatient, reputational

forces can be destructive. We identify the role of maximally inefficient play on sustaining the

relationship. We demonstrate that the main economic forces we model are present in several

disparate applications and discuss the unique implications of our findings in each.

In our model, bad types can only generate failures and thus good types can perfectly out

themselves by producing a success. As we have argued, this good news assumption makes

our results more stark because one might expect that the ability of the good type to perfectly

separate facilitates screening. That said, a natural alternative to this assumption is to allow

bad types to also generate successes with a (small) positive probability by implementing bad

projects. Note that in this case, our refinement would have no bite since there need not be

on-path histories where the principal’s belief jumps to one. That said, it is possible to analyze

this case by using a stronger variant of our refinement: when the principal belief first jumps

above a threshold, the continuation play must be nontrivial. Our main insight extends to this

monitoring structure.

We end with two natural avenues for future research. There are applications where our

assumption of imperfect public monitoring may be inappropriate. Instead, in such environ-

ments, the principal could privately observe the outcome which is an imperfect signal (à la

Compte (1998)) of the project quality. Here, the principal can communicate with the agent

by sending him cheap talk messages. An example of such a setting is a firm hiring a consul-

tant to provide advice whose outcome is privately observed by the firm which then provides

feedback.

19A related model in which the optimal contract can be solved for is Varas (2018). A key distinction is that
the structure of that model allows the author to a priori identify the optimal action strategy for the agent. The
mechanism design problem can therefore be reduced to finding the optimal incentive scheme that implements
that action strategy.
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Another direction to generalize our analysis is to incorporate multiple agents, each of

whom is trying to entice the principal to experiment with him (Board (2011) is an instance of

such a relational contracting problem). This is particularly relevant in online markets where

multiple content providers often compete for a consumer’s limited attention (Fainmesser and

Galeotti (2019) study a static model of competition by influencers with known quality). These

and numerous other variants of our model are not mere extensions as they involve different

technical challenges and speak to distinct real-world problems. We hope to address at least

some of these questions in future work.
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APPENDIX A. PROOFS OF THEOREM 3 AND THEOREM 4

We will prove Theorem 4 for the game with transfers and then argue that it implies Theo-

rem 3. Before we proceed with the proofs, we want to formally define histories and strategies

for the game with transfers which we chose to omit from Section 6.1.

Transfers: After the public outcome is realized in period t, the principal makes a one-sided

transfer τt ∈ R+ to the agent.

Histories: A (public) history (h1 . . . ht−1, τ1 . . . τt−1) at the beginning of period t ≥ 2 satisfies

h1 . . . ht−1 ∈ H and τt′ ≥ (=)0 when ht′ 6= (=)��h for all 1 ≤ t′ ≤ t. In addition to the

previous actions and outcomes, it also contains the previous transfers (that are zero whenever

the principal does not experiment). (h0, τ0) denotes the beginning of the game. We denote

the set of histories using T .

As before, the good type agent’s period-t private history (ht−1, τt−1, it) additionally con-

tains the current and previous project ideas it. We use T g to denote the set of the good type

agent’s private histories.

We use T̃ t where t ≥ 1 to denote the set of on-path histories at the beginning of period

t + 1. Here, the notation reflects the fact that this set depends on the (equilibrium) strategies

(x̃, τ̃, ãθ).

Agent’s Strategy: The bad type’s strategy ãθb(h
t−1, τt−1) ∈ [0, 1] specifies the probability of

acting at each period t public history (ht−1, τt−1) ∈ T . Similarly, ãθg(h
t−1, τt−1, it) ∈ [0, 1] for

each private history (ht−1, τt−1, it) ∈ T g.

Principal’s Strategy: The principal’s strategy consists of two functions: an experimentation de-

cision x̃(ht−1, τt−1) ∈ [0, 1] and a transfer strategy τ̃(ht−1ht, τt−1) ∈ ∆(R+) which specifies the

distribution over transfers for each (ht−1, τt−1) ∈ T , ht ∈ {h, h, hϕ}. Note that, by definition,

τ̃(ht−1ht, τt−1) is the Dirac measure at 0 when ht = ��h.

Beliefs: Finally, the principal’s beliefs p̃(ht−1, τt−1), p̃(ht−1ht, τt−1) at the moment she makes

her experimentation and transfer decision respectively also depend on the past history of

transfers. Once again, these beliefs are derived by Bayes’ rule on path and are not restricted

off path.
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Expected Payoffs: Expected payoffs now additionally also have as an argument the history

of transfers and are denoted by Uθg(h
t−1, τt−1, it), Uθb(h

t−1, τt−1), V(ht−1, τt−1) to denote the

expected payoff of the good, bad type agent and principal respectively. We sometimes also

refer to the agent’s expected payoff Uθg(h
t, τt−1, it), Uθb(h

t, τt−1) after the outcome but be-

fore the principal’s transfer in period-t is realized. Note that, for brevity, we are suppressing

dependence on strategies.

We now define “last histories.” The necessity of such histories arising on-path will be

crucial for our arguments.

Last History: A last history is an on-path history at which the principal experiments such

that, if no success is generated, the principal stops experimenting (almost surely) at all fu-

ture histories. Formally, a last history is an on-path (ht, τt) ∈ T̃ t such that x̃(ht, τt) > 0,

p̃(ht, τt) < 1 and Uθb(h
tht+1, τt) = 0 for all on-path ht+1 ∈ {h, hϕ}. Note that this also implies

Uθg(h
tht+1, τt, it+1) = 0 for ht+1 ∈ {h, hϕ}.

Note that we define a last history in terms of the agent’s payoff (as opposed to the princi-

pal’s experimentation decision) so that we can avoid qualifiers about the principal’s actions at

on-path continuation histories that are reached with probability 0 (after the principal’s trans-

fer is realized via her mixed strategy). Also observe that Uθb(h
tht+1, τtτt+1) = 0 implies that

τt+1 = 0 since it cannot be a best response for the principal to make a positive transfer to the

agent in period t + 1 when her continuation value is 0.

We now argue that every nontrivial NE must have such a last history.

LEMMA 1. Suppose p0 ∈ (0, 1). Every nontrivial NE (x̃, τ̃, ãθ) of the game with transfers must have

a last history.

PROOF. We first define,

p = inf
{

p̃
(

ĥt′ , τ̂t′
) ∣∣∣∣ (ĥt′ , τ̂t′) ∈ T̃ t′ , t′ ≥ 0

}
< 1,

to denote the infimum of the beliefs at on-path histories. We will now assume to the converse

that there is no last history. With this assumption in place, the following steps yield the

requisite contradiction.
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Step 1: Experimentation at low beliefs. For all ε > 0, there exists an on-path history (ht′ , τt′) ∈

T̃ t′ such that the principal experiments x̃(ht′ , τt′) > 0 and the belief is close to the infimum

p̃(ht′ , τt′) < 1, p̃(ht′ , τt′)− p < ε.

By definition, there exists a history (ĥt, τ̂t) ∈ T̃ t such that the belief satisfies p̃(ĥt, τ̂t) < 1

and p̃(ĥt, τ̂t)− p < ε. It remains to be shown that there is such a history at which the principal

experiments. We consider the case where x̃(ĥt, τ̂t) = 0 as otherwise (ht′ , τt′) = (ĥt, τ̂t) would

be the required history.

If Uθb(ĥ
t, τ̂t) > 0, then this implies that there is an on-path continuation history (ĥtĥs, τ̂tτ̂s) ∈

T , ĥs = (��h, . . . , ��h), τ̂s = (0, . . . , 0), s ≥ 1 where the principal eventually experiments x̃(ĥtĥs, τ̂tτ̂s) >

0; this is because the principal is not allowed to make transfers unless she experiments first.

But since the belief does not change without experimentation, this implies that p̃(ĥtĥs, τ̂tτ̂s) =

p̃(ĥt, τ̂t) and thus (ht′ , τt′) = (ĥtĥs, τ̂tτ̂s) is the requisite history.

So suppose instead that Uθb(ĥ
t, τ̂t) = 0. Let 0 < s + 1 ≤ t be the last period in the

history (ĥt, τ̂t) at which the principal experiments. Formally, x̃(ĥs, τ̂s) > 0 and (ĥt, τ̂t) =

(ĥshs+1ĥt−s−1, τ̂sτ̂t−s) where ĥt−s−1 = (��h, . . . , ��h) when s < t− 1 and τ̂t−s = (0, . . . , 0). Such a

history (ĥs, τ̂s) must exist because the NE is nontrivial. If principal’s realized choice was not

to experiment at period s + 1, then we have hs+1 = ��h. Since the principal’s belief could not

have changed without experimentation being realized, this implies p̃(ĥs, τ̂s) = p̃(ĥt, τ̂t) and

(ht′ , τt′) = (ĥs, τ̂s) is the requisite history.

So finally suppose that the realized action of the principal was to experiment at s + 1.

Then we must have ĥs+1 ∈ {h, hϕ} (note that if ĥs+1 = h, this would imply p̃(ĥt, τ̂t) = 1

which is a contradiction). If Uθb(ĥ
sĥs+1, τ̂s) > 0, this would imply the existence of a first

continuation history (ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) ∈ T̃ s+s′+1 such that x̃(ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) > 0 and

p̃(ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) = p̃(ĥsĥs+1, τ̂s) = p̃(ĥt, τ̂t) and so (ht′ , τt′) = (ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) would

be the requisite history.

Therefore the only remaining case to analyze is when Uθb(ĥ
sĥs+1, τ̂s) = 0. Since we have

assumed that there is no last history, it must be the case that the principal experiments after

the other non-success outcome or that Uθb(ĥ
sh̆s+1, τ̂s) > 0 for h̆s+1 ∈ {h, ĥϕ}, h̆s+1 6= ĥs+1. But

then it cannot be a best response for type θb to reach history (ĥsĥs+1, τ̂s) since he can always

reach history (ĥsh̆s+1, τ̂s) costlessly with probability 1. This implies that p̃(ĥsĥs+1, τ̂s) = 1
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(since this history is on path) which once again yields the contradiction p̃(ĥt, τ̂t) = 1. Thus

ĥs+1 ∈ {h, hϕ} is not possible and the proof of this step is complete.

Step 2: Upper bound for the principal’s payoff. Fix an ε > 0 and a history (ht, τt) ∈ T̃ t such that

the principal experiments x̃(ht, τt) > 0 and the belief satisfies p̃(ht, τt) < 1, p̃(ht, τt)− p < ε.

For any integer s ≥ 1,
ε

1− p
s− c + δs Π ≥ V(ht, τt) (2)

is an upper bound for the principal’s payoff at history (ht, τt).

For the remainder of this step, we assume that the principal’s realized action choice is to

experiment at (ht, τt). Since x̃(ht, τt) > 0, experimenting at (ht, τt) must be a (weak) best

response and so it suffices to compute an upper bound for the principal’s payoff assuming

she experiments for sure at (ht, τt).

We use q to denote the probability that at least one success arrives in the periods between

t + 1 and t + s. Now consider the principal’s beliefs at on-path histories (hths, τtτs) ∈ T̃ t+s.

Since the beliefs follow a martingale, they must average to the belief p̃(ht, τt). This immedi-

ately yields an upper bound for q since

q + (1− q)p ≤ p̃(ht, τt) =⇒ q ≤
p̃(ht, τt)− p

1− p
≤ ε

1− p
.

Since the belief jumps to 1 after a success, the maximal probability of observing a success (sub-

ject to Bayes’ consistency) can be obtained by assuming that the belief is the lowest possible

(p) when a success does not arrive (which happens with probability 1− q).

We can write the principal’s payoff V(ht, τt) by summing three separate terms: (i) the ex-

pected payoff from the outcomes in the s periods following t, (ii) the expected cost of experi-

mentation and transfers in the s periods and (iii) the expected continuation value at t + s + 1.

To derive the upper bound for the principal’s payoff from (2), we label each of the terms of

ε

1− p
s︸ ︷︷ ︸

(i)

− c︸︷︷︸
(ii)

+ δs Π︸︷︷︸
(iii)

,

so that they individually correspond to a bound for each component (i)-(iii) of the payoffs.

(i) qs is an upper bound for the expected payoff that the principal can receive from out-

comes in the s periods following history (ht, τt). This corresponds to getting a success
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in every one of the s periods (with no loss from discounting) whenever at least one

success arrives (which occurs with probability q ≤ ε/(1− p)) and no losses from fail-

ures.

(ii) Since the principal experiments for sure at (ht, τt) her expected cost of experimentation

must be greater than c. Additionally, her cost from transfers must be at weakly greater

than 0.

(iii) The principal’s expected continuation value must be less than Π since this is the first-

best payoff corresponding to the case where the agent is known to be the good type

for sure.

Step 3: Final contradiction. By simultaneously taking s large and εs small, we can find a history

(ht, τt) ∈ T̃ t where the principal experiments x̃(ht, τt) > 0 but the maximal payoff she can

get (given by the bound (2)) is negative.

Since this cannot be true in any NE, this contradicts the assumption that there is no last

history and completes the proof of the lemma. �

We are now in a position to prove Theorem 4.

THEOREM 4. Suppose p0 ∈ (0, 1). Then:

(1) In every nontrivial equilibrium of the game with transfers, the good type agent (surely) imple-

ments risky projects and the bad type implements bad projects (with positive probability) on

path.

(2) If quality control is necessary (Π(p0) ≤ 0), the unique equilibrium outcome of the game with

transfers is that the principal never experiments.

PROOF. We prove each part in turn.

Part (1). Suppose (x̃, τ̃, ãθ) is a nontrivial equilibrium. Then Lemma 1 shows that there must

be a last history. At this history, implementing risky projects ãθg(h
t, τt, itir) = 1 is a strict best

response for type θg since our refinement implies that

qrUθg(h
th, τt) + (1− qr)Uθg(h

th, τt) ≥ qrUθg(h
th, τt) > 0 = Uθg(h

thϕ, τt).
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This additionally implies that failure at this history (hth, τt) must be on path. A final con-

sequence is that we must have ãθb(h
t, τt) > 0 as otherwise p̃(hth, τt) = 1 which, due to the

refinement, would contradict the fact that (ht, τt) is a last history. This proves the first part of

the theorem.

Part (2). Suppose (x̃, τ̃, ãθ) is a nontrivial equilibrium. Then Lemma 1 implies that there must

be a last history. Since the principal’s expected payoff at any on-path history must be non-

negative, this implies that her beliefs at all last histories must be strictly greater than p0 (since

Π(p0) ≤ 0). We will show this is not possible via the following sequence of steps.

We first define π̃(T |ht, τt) which denotes the probability of reaching the set of histories

T ⊂ T starting at history (ht, τt) ∈ T via equilibrium strategies (x̃, τ̃, ãθ).

Step 1: Partitioning the histories. We can partition the set of on-path period-t + 1 histories T̃ t

into three mutually disjoint sets:

(1) The set L̃ t ⊂ T̃ t of all histories that follow from a last history: this consists of all

histories (hsht−s, τsτt−s) ∈ T̃ t such that (hs, τs) is a last history for some 1 ≤ s ≤ t.

(2) The set S̃ t ⊂ T̃ t of all histories that follow from a success being generated in a non-

last history: this consists of all histories (ht, τt) ∈ T̃ t such that hs = h for some 1 ≤

s ≤ t, hs′ 6= h for all 1 ≤ s′ < s and (hs−1, τs−1) /∈ L̃ s−1 is not a last history.

(3) All other remaining histories R̃t = T̃ t\
(
S̃ t ∪ L̃ t). Note that for all (ht, τt) ∈ R̃t, we

must have hs 6= h for all 1 ≤ s ≤ t.

Step 2: The lowest belief amongst histories in the set R̃t is less than p0. Formally, for all t, R̃t is

nonempty and there is a history (ht, τt) ∈ R̃t such that p̃(ht, τt) ≤ p0.

Since beliefs follow a martingale, the expected value of the beliefs at the beginning of period

t + 1 must equal the prior at the beginning of the game or

p0 = E[ p̃(ht, τt)].

Note that the expectation above and those that follow in the proof of this step are taken with

respect to the distribution π̃(·|h0, τ0) over period t + 1 histories induced by the equilibrium
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strategies. We can rewrite this expression as

p0 =π̃(S̃ t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ S̃ t] + π̃(L̃ t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ L̃ t]

+ π̃(R̃t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ R̃t].

Since p̃(ht, τt) = 1 for all (ht, τt) ∈ S̃ t, the above equation becomes

p0 =π̃(S̃ t|h0, τ0) + π̃(L̃ t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ L̃ t]

+ π̃(R̃t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ R̃t].
(3)

Now recall that the beliefs at all last histories must be strictly greater than p0. This implies

that E[ p̃(ht, τt) | (ht, τt) ∈ L̃ t] > p0 whenever π̃(L̃ t|h0, τ0) > 0 since these are the histories

that follow last histories and beliefs follow a martingale. Of course, this in turn implies that

π̃(R̃t|h0, τ0) > 0 and that E[ p̃(ht, τt) | (ht, τt) ∈ R̃t] ≤ p0, which shows that R̃t is nonempty

and that there must be a history (ht, τt) ∈ R̃t such that p̃(ht, τt) ≤ p0.

Step 3: The principal experiments following a history in R̃t where the belief is low. Formally, for all

t and ε > 0, there is a history (ht, τt) ∈ R̃t such that

p̃(ht, τt) ≤ inf
(ĥt,τ̂t)∈R̃t

p̃(ĥt, τ̂t) + ε, p̃(ht, τt) ≤ p0 and x̃(htht′ , τtτt′) > 0,

for some (htht′ , τtτt′) ∈ T̃ t+t′ , t′ ≥ 0.

First suppose inf(ĥt,τ̂t)∈R̃t p̃(ĥt, τ̂t) = p0. Then, for all histories (ĥs, τ̂s) ∈ T s, 0 ≤ s ≤ t, we

must have p̃(ĥs, τ̂s) = p0 which implies (ĥs, τ̂s) ∈ R̃s. Suppose this were not true. Take an

earliest history (ĥsĥs+1, τ̂sτ̂s+1) ∈ T s+1 (with the smallest s < t) such that p̃(ĥsĥs+1, τ̂sτ̂s+1) 6=

p0. Then, by definition, we must have p̃(ĥs, τ̂s) = p0 and (ĥs, τ̂s) ∈ R̃s since (ĥs, τ̂s) /∈ L̃ s

because the beliefs at all last histories are strictly greater than p0. Then, by Bayes’ consistency,

there must be a continuation history (ĥsh̆s+1, τ̂sτ̆s+1) ∈ R̃s+1 such that p̃(ĥsh̆s+1, τ̂sτ̆s+1) <

p0,20 which would be a contradiction.

Now note that, if the principal does not experiment at any continuation history following

(ĥt, τ̂t) ∈ R̃t = T̃ t, it cannot be a best response for her to experiment at any history before

period t + 1 either because no successes are ever generated on path. This contradicts the fact

that the equilibrium is nontrivial.

20Clearly, if p̃(ĥs ĥs+1, τ̂sτ̂s+1) < p0, then (ĥs h̆s+1, τ̂sτ̆s+1) = (ĥs ĥs+1, τ̂sτ̂s+1) is such a history.
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Next suppose inf(ĥt,τ̂t)∈R̃t p̃(ĥt, τ̂t) < p0. We define

s = max

s ≤ t
∣∣∣∣ (h̆s−1h̆sh̆t−s, τ̆t) ∈ R̃t, h̆s ∈ {h, hϕ}, p̃(h̆s−1h̆sh̆t−s, τ̆t) ≤ p0 and

p̃(h̆s−1h̆sh̆t−s, τ̆t) ≤ inf(ĥt,τ̂t)∈R̃t p̃(ĥt, τ̂t) + ε

 ,

to be the last period amongst the low belief histories where the principal observes a non-

success outcome after experimenting. Let the set of period-t + 1 histories that yield the above

maximum be Rt
s. Note that, by definition, h̆t−s = (��h, . . . , ��h) for all (h̆sh̆t−s, τ̆t) ∈ Rt

s. Observe

that the maximum is well defined because R̃t is nonempty (from Step 2) and the principal

experiments before t (otherwise the infimum of the beliefs cannot be strictly lower than p0).

We now show that, for any history (h̆t, τ̆t) ∈ Rt
s, we must have x̃(h̆sĥs−s, τ̆s−1τ̂s−s+1) = 0

for all s ≤ s < t, (h̆sĥs−s, τ̆s−1τ̂s−s+1) ∈ T̃ s. In words, this says that the principal does not ex-

periment between periods s+ 1 and t at any on-path continuation history following (h̆s, τ̆s−1).

A consequence of this statement is that the principal’s belief does not change until period t+ 1

and, since the beliefs at all last histories are strictly greater than p0, (h̆sĥt−s, τ̆s−1τ̂t−s+1) ∈ T̃ t

implies (h̆sĥt−s, τ̆s−1τ̂t−s+1) ∈ Rt
s.

Suppose this were not the case, and consider the smallest s ≤ s < t such that there is an on-

path history (h̆sĥs−s, τ̆s−1τ̂s−s+1) ∈ T̃ s where the principal experiments x̃(h̆sĥs−s, τ̆s−1τ̂s−s+1) >

0. Then, there must be an on-path continuation history (h̆sĥs−s+1, τ̆s−1τ̂s−s+2) ∈ T̃ s+1, ĥs−s+1 ∈

{h, hϕ} such that

p̃(h̆sĥs−s+1, τ̆s−1τ̂s−s+2) ≤ p̃(h̆sĥs−s, τ̆s−1τ̂s−s+1) = p̃(h̆s, τ̆s−1τ̂s) = p̃(h̆s, τ̆s) ≤ p0.

The first inequality follows from Bayes’ consistency and the equalities follow from the facts

that there is no experimentation from periods s + 1 to s and the transfer in period s does

not change the belief at period s + 1. This combined with the fact that (h̆s−1, τ̆s−1) ∈ R̃s−1,

implies that (h̆sĥs−s+1, τ̆s−1τ̂s−s+2) ∈ R̃s+1 since the beliefs at all last histories are strictly

greater than p0. But then, we can once again use the argument in Step 2 starting at the

history (h̆sĥs−s+1, τ̆s−1τ̂s−s+2) with associated belief p̃(h̆sĥs−s+1, τ̆s−1τ̂s−s+2) (instead of the

beginning of the game (h0, τ0) and belief p0) to conclude that there must be a period-t + 1

history (h̆sĥt−s, τ̆s−1τ̂t−s+1) ∈ R̃t satisfying

p̃(h̆sĥt−s, τ̆s−1τ̂t−s+1) ≤ p̃(h̆sĥs−s+1, τ̆s−1τ̂s−s+2)

which would contradict the maximality of s.
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So finally suppose, to the converse, that the principal stopped experimenting after all his-

tories (h̆t, τ̆t) ∈ Rt
s. An implication is that

Uθb(h̆
s, τ̆s−1) = 0.

The equality follows from the above argument which shows that the principal does not ex-

periment between periods s + 1 and t after history (h̆s, τ̆s−1) and that the transfer in period s

must be 0 since the principal’s continuation value after this history is 0. Then it must be the

case that the history corresponding to the other period s non-success outcome (h̆s−1ĥs, τ̆s),

ĥs ∈ {h, hϕ}, ĥs 6= h̆s must either be off-path or we must have Uθb(h̆
s−1ĥs, τ̆s−1) = 0. To see

this, note that if this was not the case, then it is a strict best response for the bad type to cost-

lessly reach history (h̆s−1ĥs, τ̆s−1) which is not possible since this would imply p̃(h̆s, τ̆s) = 1.

But then x̃(h̆s−1, τ̆s−1) > 0 is not possible as otherwise we would get the contradiction that

(h̆s−1, τ̆s−1) ∈ L̃ s−1 is a last history. Thus, the principal must experiment after at least one

history (h̆t, τ̆t) ∈ Rt
s and the proof of this step is complete.

Step 4: Final contradiction. We define

pR = inf
{

p̃(ht, τt) | (ht, τt) ∈ R̃t, t ≥ 0
}
≤ p0,

to be the lowest belief that can arise at a history that does not follow a last history. For ε > 0,

we pick an (ht, τt) ∈ R̃t such that

p̃(ht, τt) ≤ pR + ε and x̃(ht, τt) > 0,

and we will argue that the principal’s payoff must be negative at such a history if ε is small

enough.

First observe that a consequence of Step 3 is that such a history must exist. We now define

a few additional terms for any arbitrary s ≥ 1:

qS := π̃(S̃ t+s|ht, τt), qL := π̃(L̃ t+s|ht, τt) and pL := E[ p̃(htĥs, τtτ̂s) | (htĥs, τtτ̂s) ∈ L̃ t+s].

The first two terms are the probabilities that, after s periods, the players reach a history that

follows from a success being generated in a non-last history or a history that follows a last

history respectively. The third term is the expected belief at the latter set of histories where

the expectation is taken with respect to the distribution π̃(·|ht, τt).
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The martingale property of beliefs implies

p̃(ht, τt) = qS + qL pL + (1− qS − qL )E[ p̃(htĥs, τtτ̂s) | (htĥs, τtτ̂s) ∈ R̃t+s]

≥ qS + qL pL + (1− qS − qL )pR ,

where, once again, the expectation is taken with respect to the distribution π̃(·|ht, τt). This

implies that

qS ≤ ε

1− pR
and qL pL ≤ p̃(ht, τt), (4)

where the first inequality follows from the fact that either qL pL = 0 or pL > p0 ≥ pR

(because beliefs follow a martingale and the beliefs at all last histories are strictly greater than

p0) and p̃(ht, τt)− pR < ε.

Now note that at any last history (ht′ , τt′), we must have Π( p̃(ht′ , τt′)) ≥ 0 (because other-

wise x̃(ht′ , τt′) > 0 cannot be an equilibrium action by the principal) and

Π( p̃(ht′ , τt′)) = Π
(

E
[

p̃(ht′ ĥs′−t′ , τt′ τ̂s′−t′) | (ht′ ĥs′−t′ , τt′ τ̂s′−t′) ∈ L̃ s′
])

= E
[
Π
(

p̃(ht′ ĥs′−t′ , τt′ τ̂s′−t′)
)
| (ht′ ĥs′−t′ , τt′ τ̂s′−t′) ∈ L̃ s′

]
,

(5)

where the expectation is taken with respect to π̃(·|ht′ , τt′). The first equality is a consequence

of the martingale property of beliefs and the second follows from the fact that Π(·) is a linear

function.

We can write the principal’s payoff at (ht, τt), for a s ≥ 1 when her realized action choice

is to experiment by summing four separate terms: (i) the expected continuation value af-

ter a success arrives from a non-last history in these s periods, (ii) the expected continua-

tion value at last histories, (iii) the cost of experimentation, transfers and failures at histories

(hths′ , τtτs′) ∈ R̃t+s′ , 0 ≤ s′ ≤ s− 1 and (iv) the expected continuation value at all remaining

period-t + s + 1 histories (hths, τtτs) ∈ R̃t+s.

We can now derive a simple upper bound

qS (1 + δΠ)︸ ︷︷ ︸
(i)

+ δqL E
[
Π
(

p̃(htĥs, τtτ̂s)
)
| (htĥs, τtτ̂s) ∈ L̃ t+s

]
︸ ︷︷ ︸

(ii)

− c︸︷︷︸
(iii)

+ δsΠ︸︷︷︸
(iv)

,

for the principal’s payoff when she experiments at (ht, τt) and each term is labeled to individ-

ually correspond to a bound for each above mentioned component (i)-(iv) of the principal’s

payoff. The expectation is taken with respect to the distribution π̃(·|ht, τt).
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(i) This term is an upper bound because it assumes that the successes from non-last his-

tories that arrive between periods t + 1 and t + s arrive immediately.

(ii) This term upper bounds the the sum of payoffs at last histories by assuming that these

payoffs are not discounted beyond period t + 1. Consider a last history (hths′ , τtτs′),

1 ≤ s′ ≤ s. From the perspective of period t + 1, the payoff from this history is

bounded above by

0 ≤δs′ π̃(hths′ , τtτs′ |ht, τt)Π
(

p̃(hths′ , τtτs′)
)

=δs′ π̃(hths′ , τtτs′ |ht, τt)Π
(

E
[

p̃(hths′hs−s′ , τtτs′τs−s′) | (hths′hs−s′ , τtτs′τs−s′) ∈ L̃ t+s
])

≤δπ̃(hths′ , τtτs′ |ht, τt)E
[
Π
(

p̃(hths′hs−s′ , τtτs′τs−s′)
)
| (hths′hs−s′ , τtτs′τs−s′) ∈ L̃ t+s

]
,

where the expectations are taken with respect to π̃(·|hths′ , τtτs′). Summing the last

term over all last histories and using the law of iterated expectations gives us the

required bound.

(iii) This term only accounts for the cost of experimentation at (ht, τt) but no subsequent

costs of experimentation, transfers or losses due to failures.

(iv) This term is trivially an upper bound for the continuation payoff as it assumes that the

principal gets the first best payoff at period t + s + 1 for sure.

Now observe that

qS (1 + δΠ) + δqL E
[
Π
(

p̃(htĥs, τtτ̂s)
)
| (htĥs, τtτ̂s) ∈ L̃ t+s

]
− c + δsΠ

=qS (1 + δΠ) + δqL Π(pL )− c + δsΠ

=qS (1 + δΠ) + δΠ(qL pL ) + δ(1− qL )c− c + δsΠ

≤ ε

1− pR
(1 + δΠ)− (1− δ(1− qL ))c + δsΠ,

where the inequality follows from (4) and the fact that qL pL ≤ p̃(ht, τt) ≤ p0, Π(p0) ≤ 0.

This last term is negative is we take ε sufficiently small and s sufficiently large. This shows

that there must exist an on-path history (ĥt′ , τ̂t′) ∈ R̃t′ where x̃(ĥt′ , τ̂t′) > 0 and the principal’s

payoff is less than 0 which contradicts the existence of a nontrivial equilibrium and completes

the proof. �

We now show that Theorem 4 implies Theorem 3.
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THEOREM 3. Suppose p0 ∈ (0, 1). Then:

(1) In every nontrivial equilibrium, the good type agent implements risky projects and the bad type

implements bad projects (with positive probability) on path.

Formally, in every nontrivial equilibrium, there exist on-path histories ht ∈H and (ht′ , it′ ir) ∈

H g such that ãθb(h
t) > 0 and ãθg(h

t′ , it′ ir) = 1.

(2) If quality control is necessary (Π(p0) ≤ 0), the unique equilibrium outcome is that the prin-

cipal never experiments.

PROOF. Take a NE (x̃, ãθ) of the original game and consider the following strategies (x̃′, τ̃′, ã′θ)

in the game with transfers:

x̃′(ht, τt) =

 x̃(ht, τt) if ht ∈ H̃ t and τt = (0, . . . , 0),

0 otherwise,

τ̃′(ht+1, τt) = 0 (the Dirac measure at 0),

ã′θb
(ht, τt) =

 ãθb(h
t, τt) if ht ∈ H̃ t and τt = (0, . . . , 0),

0 otherwise,

ã′θg
(ht, τt, it) =

 ãθg(h
t, τt, it) if ht ∈ H̃ t and τt = (0, . . . , 0),

0 otherwise,

where H̃ t is the set of period-t + 1 histories that are on path when players use strategies

(x̃, ãθ) in the game without transfers. In words, these strategies are identical to (x̃, ãθ) at

histories where the principal has not made a transfer in the past. Hence, the only on-path

histories T̃ t when players use strategies (x̃′, τ̃′, ã′θ) in the game with transfers will be those

where the principal never makes a transfer. Note that (x̃′, τ̃′, ã′θ) will be a NE because, if either

player deviates off path, they are receive a payoff of 0 since the principal stops experimenting

and the agent stops acting.

Finally, note that every equilibrium outcome of the original game is also an equilibrium of

the game with transfers; indeed we can use the identical construction above. This is because

the refinement does not restrict transfers after a success is generated. Thus, Theorem 3 is an

immediate consequence of Theorem 4. �
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ONLINE APPENDIX

APPENDIX B. PROOF OF THEOREM 5

While the basic intuition of this result is similar to our main result (Theorem 3), the proof is

subtly different. Before we proceed to the formal proof, we orient the reader with a high-level

overview of the proof strategy.

To contrast, recall that the proof-idea in the absence of costs was to show that any nontrivial

equilibrium must have a “last history” at which the principal experiments but then never

experiments again unless a success is generated. Further, there must be a last history at which

the principal’s belief was than the initial prior. Since acting was without cost, the good type

strictly preferred to run both good and risky projects, while the bad type was indifferent

between acting and not. The former fact ensured that the value from experimentation is

negative (because Π ≤ p0), while the latter ensures that our refinement has no bite in case

a failure is generated (as the bad type randomized). However, if acting is costly, this proof

strategy does not immediately work because the bad type would no longer be indifferent

between acting and not. Therefore we need to take a slightly different approach.

First we prove a couple of “bookkeeping” lemmata. Lemma 2 shows that, when the cost

of acting is less than the agent’s discount factor, there is always a NE when p0 = 1 in which

the good type’s payoff is at least 1. Therefore the notion of u-equilibrium does not become

vacuous when costs are small because the highest NE payoff when uncertainty is resolved

does not shrink to zero. Then, Lemma 3 derives upper-bounds for the payoffs of the good

type and principal as a function of the bad type’s payoff. The argument accommodates the

fact that the principal and agent discount at different rates.

The proof of the theorem then follows from the following strategy. Assume for the sake

of contradiction that there is a nontrivial u-equilibrium for some small cost C > 0 of acting.

First, we show that the u-equilibrium cannot have a last history. Pick a history at which

the principal experiments and her belief is close to the lowest among histories at which she

experiments. We argue that among these histories, there must be one in which there is an

outcome (inaction or failure) such that the principal’s belief drops below this infimum and

so she subsequently stops experimenting. Since there cannot be a last history, the principal

must experiment again after other non-success outcome which we argue is a failure. Next,

roughly, we show that at such a history, the good type must strictly prefer to implement
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both good and risky projects. Further, the bad type must be indifferent between acting and

not, and be randomizing: otherwise, the principal’s belief upon observing a failure would

either be 1 (impossible in a u-equilibrium) or 0 (contradicting nontrivial continuation play

after failure). This implies that the continuation value of the bad type subsequent to acting

must be exactly C/β. We then argue that the good type has a strict incentive to implement

bad projects. Finally, the small continuation payoff of the bad type implies that the principal’s

payoff subsequent to failure must also be small (Lemma 3) and, hence, her net payoff at the

history must be negative, concluding the contradiction.

We now begin by arguing that, for sufficiently low cost of actions, there is always a NE

when p0 = 1 such that the good type’s payoff is 1.

LEMMA 2. Suppose p0 = 1. For any C ∈ (0, β), there exist NE strategies x̃, ãθ such that Uθg(h
0, i0, x̃, ãθg) ≥

1.

PROOF. We prove this lemma constructively by describing NE strategies that yield the good

type a payoff greater than 1. Consider the following principal’s strategy:

x̃(h0) = 1,

x̃(ht) =


C

β(1+λgC) if ht = (h, . . . , h),

0 otherwise.

In words, the principal experiments in the first period and continues to experiment with pos-

itive probability as long as successes have been generated. As soon as the good type does

not generate a success or the principal does not experiment, she stops experimenting in the

future.

In response, the good type plays the following strategy:

ãθg(h
0, i1) =

 1 if i1 = ig,

0 if i1 ∈ {ir, ib},

ãθg(h
t, it+1) =


c

λg
if ht = (h, . . . , h) and it+1 = (ig, . . . , ig),

0 otherwise.

In words, the good type only implements good projects in the first period and, at all subse-

quent histories where he has generated successes in the past, he continues to only implement
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good projects. At all other histories, he does not act. Since p0 = 1, we can pick the bad type’s

strategy arbitrarily because every strategy is a best response.

We now argue that these strategies are mutual best responses. First observe that the good

type is indifferent between running good projects and not acting at every history where the

principal experiments. This is because, at any history where the principal experiments, the

continuation payoff Ûθg for the good type after generating a success satisfies

Ûθg =
C

β(1 + λgC)

(
1 + βλgÛθg

)
=⇒ Ûθg =

C
β

.

Therefore, he is indifferent between implementing good projects and not acting. Addition-

ally, he strictly prefers not to run risky and bad projects since they are costly and the former

generates a success with probability strictly less than 1.

Finally observe that the principal’s payoff is V(h0, x̃, ãθ) = λh− c since the good type imple-

ments only good projects in period 1 and does so with probability 1. The stage game payoff to

the principal at any subsequent history where she experiments is λg
c

λg
− c = 0 and therefore

the principal is indifferent between experimenting or not at all histories where successes have

been generated in every prior period. �

The purpose of Lemma 2 is to show that as the cost C becomes small, the highest NE payoff

for the good type once uncertainty is resolved does not shrink to 0. In other words, for low

costs, the u-equilibrium refinement does not become vacuous. We do not explicitly invoke

this lemma below but its implication is implicit whenever we take the cost of action C to be

small.

The next lemma establishes a relationship between the equilibrium payoff of the bad type

to the good type and the principal. Specifically, it derives upper bounds for the payoffs of the

latter two as a function of the payoff of the bad type.

LEMMA 3. Let x̃, ãθ be a NE and consider an on-path history ht ∈ H̃ t, x̃(ht) ∈ (0, 1) where

Uθb(h
t, x̃, ãθ) > 0. Then,

Uθg(h
t, it, x̃, ãθ) ≤

(
Uθb(h

t, x̃, ãθ) +
C

1− β

)
1

1− β

V(ht, x̃, ãθ) ≤ max

{
Uθb(h

t, x̃, ãθ) +
C

1− β
,

δbt̂c

1− δ

}
(1 + δΠ)
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where t̂ =
log
[
(1− β)Uθb(h

t, x̃, ãθ) +
C

1−β

]
log β

,

are upper bounds for the payoffs of the good type and the principal respectively.

PROOF. We introduce the following two pieces of new notation just for the proof of this

lemma. Cθb(h
t, x̃, ãθ) denotes the expected discounted sum of the cost of acting that the

bad type pays moving forward from history ht. Xθb(h
t, x̃, ãθ) = Uθb(h

t, x̃, ãθ) + Cθb(h
t, x̃, ãθ) is

the expected discounted total duration of experimentation by the principal when the agent is

the bad type.

Observe that Cθb(h
t, x̃, ãθ) ≤ C

1−β because the right side is the highest possible value com-

puted by adding the cost of acting at every period. Therefore

Xθb(h
t, x̃, ãθ) ≤ Uθb(h

t, x̃, ãθ) +
C

1− β
.

We derive the upper bound for the principal’s and the good type’s payoff by assuming

that, whenever the principal experiments for the first time, the highest possible payoff arises.

Further, we derive an upper bound for

x̃(ht) + δ(1− x̃(ht))x̃(ht
��h) + δ2(1− x̃(ht

��h))(1− x̃(ht))x̃(ht
��h��h) + · · · , (6)

the discounted probability that the principal experiments for the first time.

We shorten notation to y0 = x̃(ht), y1 = (1− x̃(ht))x̃(ht
��h), y2 = (1− x̃(ht

��h))(1− x̃(ht))x̃(ht
��h��h)

and so on. The solution to the following problem

Y = max
y0,y1,...

{
y0 + δy1 + δ2y2 + · · ·

}
,

subject to

y0 + βy1 + β2y2 + · · · ≤ Xθb(h
t, x̃, ãθ),

yt′ ∈ [0, 1] for all t′ ≥ 0.

is an upper bound for (6) because the second set of constraints relaxes the relation between

the y variables.

Observe first that when δ ≤ β, it must be that Y ≤ Xθb(h
t, x̃, ãθ) where the right side would

be the solution to the maximization problem ignoring the second set of constraints.
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When δ > β, the solution to the problem is to find the smallest t′ such that βt′

1−β ≤ Xθb(h
t, x̃, ãθ)

and set yt′ = 1(0) for all s > (<)t′. Solving the equality, we get

βt̂

1− β
= Xθb(h

t, x̃, ãθ)

=⇒ t̂ =
log[(1− β)Xθb(h

t, x̃, ãθ)]

log β
,

which implies Y ≤ δbt̂c

1−δ .

The upper bound for the good type immediately follows because he discounts the future at

the same rate as the bad type and so Uθg(h
t, it) ≤ Xθb(h

t, x̃, ãθ)
1

1−β . To see this, note that 1
1−β

is the highest possible total utility for either type.

The upper bound for the principal’s payoff follows by multiplying (1 + δΠ) to the above

computed bounds for Y. This payoff corresponds to observing a success with probability

1 followed by the highest possible continuation payoff whenever the principal first experi-

ments. �

Before we proceed to the proof of the theorem, we define one additional piece of notation.

For a given NE x̃, ãθ , let V̂(p) be the supremum of payoffs the principal receives in this equi-

librium at on-path histories ht that satisfy p̃(ht) ≤ p. The dependence on the strategies is left

implicit. Formally,

V̂(p) = sup{V(ht, x̃, ãθ) : ht ∈ H̃ t, p̃(ht) ≤ p},

where recall that H̃ t is the set of on path histories in period t + 1.

We are now ready to prove the theorem.

THEOREM 5. For any u ∈
(

0, 1
1−β

)
, there exists a cost C > 0 such that, when the cost of actions C ∈(

0, C
)

is lower, the unique u-equilibrium outcome is that the principal never experiments whenever

quality control is necessary (for all p0 ∈ (0, 1) such that ΠC(p0) ≤ 0).

PROOF. Given a nontrivial u-equilibrium x̃, ãθ , we define

pC = inf
{

p̃
(

ĥt′
) ∣∣∣∣ ĥt′ ∈ H̃ t′ , t′ ≥ 0, x̃

(
ĥt′
)
> 0

}
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to denote the infimum of the beliefs at on-path histories at which the principal experiments.

The notation suppresses dependence on the strategies, this should cause no confusion below.

Observe that pC ∈ (0, p0]. Clearly pC must be bounded above by p0 since the u-equilibrium

is nontrivial and beliefs do not change until the principal experiments. Additionally, pC can-

not be 0 since there is a minimal positive belief below which the principal would never exper-

iment even if she could choose the agent’s strategy.

The proof now proceeds in four steps. The first three steps establish general properties of

nontrivial u-equilibria and the final step provides the requisite contradiction.

Step 1: Suppose C < βqru and let x̃, ãθ be a nontrivial u-equilibrium. Then, there is no last

history.21

Suppose, for contradiction, that there is a last history ht. Then the good type would strictly

prefer to run risky projects (ãθg(h
t, itir) = 1) because the continuation payoff from inaction

and failure is 0 and the expected payoff from the risky project is bounded below by βqru−C >

0 because the continuation payoff after a success must be at least u.

Therefore failure is on path (hth ∈ H̃ t+1) which in turn implies that we must have p̃(hth) <

1. The latter follows from the fact that, if p̃(hth) = 1, the refinement implies that continuation

play must be nontrivial which contradicts ht being a last history. But p̃(hth) < 1 implies that

the bad type acts with positive probability (ãθb(h
t) > 0) which is impossible since it is not

a best response to pay the cost C of implementing the bad project for 0 continuation payoff.

This completes the proof of this step.

Step 2: Let x̃, ãθ be a nontrivial u-equilibrium. For any ε ∈
(

0, 1− pC
)

, there is an on-path

history ht ∈ H̃ t such that p̃
(
ht) − pC < ε, x̃

(
ht) > 0 and there is an on path outcome

ht+1 ∈ {hϕ, h} at which the belief p̃
(
htht+1

)
< pC .

In words, there is an on-path history where the belief is arbitrarily close to pC such that

there is an on-path continuation history where the belief falls below pC and so the principal

stops experimenting.

Suppose as a contradiction that for some ε, there is no such history. Formally, there is

ε ∈
(

0, 1− pC
)

such that for any ht ∈ H̃ t for which, p̃(ht) − pC < ε and x̃(ht) > 0, the

continuation histories satisfy p̃(htht+1) ≥ pC for all htht+1 ∈ H̃ t+1.

21Recall that a last history ht ∈ H̃ t is such that x̃(ht) > 0, p̃(ht) < 1 and Uθb
(htht+1, x̃, ãθ) = 0 for ht+1 ∈ {h, hϕ}.
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Now consider a history ht ∈ H̃ t such that such that p̃
(
ht) − pC < ε

ns , x̃
(
ht) > 0 where

n, s > 1 are both positive integers. Let q̂ be the probability that, upon experimenting, the

principal expects to reach an on-path continuation history htht+1 ∈ H̃ t+1 at which the belief

p̃
(
htht+1

)
≥ pC + ε

ns−1 . Since the beliefs follow a martingale, they must average to p̃(ht). This

immediately yields an upper bound for q̂ since

q̂
(

pC +
ε

ns−1

)
+ (1− q̂)pC ≤ p̃(ht) =⇒ q̂ ≤

p̃(ht)− pC
ε

ns−1

≤ 1
n

.

The first inequality follows from the fact that the highest value of q̂ can be derived by taking

the lowest possible values for the beliefs that multiply q̂ and 1− q̂ on the left side of the first

inequality.

By definition, an upper bound for the principal’s payoff V(ht, x̃, ãθ) is V̂
(

pC + ε
ns

)
. Now

take an arbitrary ρ > 0. Observe that if V̂
(

pC + ε
ns

)
> V(ht, x̃, ãθ), then there must be must

be an on-path history ht′ ∈ H̃ t′ such that V(ht′ , x̃, ãθ) ≥ V̂
(

pC + ε
ns

)
− ρ, V(ht′ , x̃, ãθ) ≥

V(ht, x̃, ãθ), x̃(ht′) > 0 and p̃(ht′) ≤ pC + ε
ns . Conversely, if V̂

(
pC + ε

ns

)
= V(ht, x̃, ãθ), then

ht′ = ht is such a history.

This in turn implies

V(ht, x̃, ãθ) ≤ V̂
(

pC +
ε

ns

)
≤ V(ht′ , x̃, ãθ) + ρ

≤ 1
n
(1 + δV̂(1))− c + δV̂

(
pC +

ε

ns−1

)
+ ρ.

The third inequality can be understood as follows. Since x̃(ht′) > 0, the principal’s payoff

can be calculated by assuming she experiments at ht′ for sure. This accounts for the cost

c of experimentation. q̂ is the highest likelihood that the belief in an on-path continuation

history is above pC + ε
ns−1 . The first term is then an upper bound for the principal’s payoff

in this case because it assumes that q̂ takes its highest value, the agent generates a success

immediately and the principal gets the highest possible continuation value. Finally, the last

term is an upper bound for the principal’s continuation payoff from on-path continuation

histories at which the belief is below pC + ε
ns−1 . This is because this term assumes that the

principal reaches these histories with probability 1 and V̂ is increasing

We can now recursively repeat this argument to get

V̂
(

pC +
ε

ns

)
≤ 1

n
(1 + δV̂(1))− c + δV̂

(
pC +

ε

ns−1

)
+ ρ
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≤
(

1
n
+

δ

n

)
(1 + δV̂(1))− (1 + δ) c + δ2V̂

(
pC +

ε

ns−2

)
+ (1 + δ) ρ

≤ 2
n
(1 + δV̂(1))− c + δ2V̂

(
pC +

ε

ns−2

)
+ 2ρ

≤ s
n
(1 + δV̂(1))− c + δsV̂

(
pC + ε

)
+ sρ.

The proof of step then follows by contradiction as taking s, n large, ρ small such that s
n and

sρ are small implies V(ht, x̃, ãθ) ≤ V̂
(

pC + ε
ns

)
< 0.

Step 3: There exists a Ĉ > 0 such that, for every C ≤ Ĉ and every nontrivial u-equilibrium x̃,

ãθ the following is true: at any on-path history ht ∈ H̃ t such that x̃(ht) > 0 and the bad type’s

payoff is 0 prior to acting (so Uθb(h
thϕ, x̃, ãθ) = 0 and Uθb(h

th, x̃, ãθ) ≤ C/β), implementing

good and risky projects (ãθg(h
t, itig) = ãθg(h

t, itir) = 1) is a strict best response for the good

type.

Fix such a history ht. Because the principal experiments, there must be nontrivial continu-

ation play after inaction or failure because, by Step 1, there are no last histories.

Since Uθb(h
thϕ, x̃, ãθ) = 0, it must be the case that the principal stops experimenting after

inaction. Therefore, there must be nontrivial continuation play after failure.

Next observe that for C small enough, it must be the case that hth ∈ H̃ t+1 or that successes

are on path. Suppose not. Then, an upper bound for the principal’s at ht is

V(ht, x̃, ãθ) ≤ −c + δV(hth, x̃, ãθ).

The first term is just the cost of experimentation at ht and the second term is an upper bound

for the principal’s continuation utility since V(hthϕ, x̃, ãθ) = 0. Since the bad type’s contin-

uation utility satisfies Uθb(h
th, x̃, ãθ) ≤ C

β , by Lemma 3, when we take C small enough, the

principal’s payoff becomes V(hth, x̃, ãθ) <
c
δ which provides the requisite contradiction.

Finally, when C is sufficiently small, the good type will have a strict incentive to implement

both good and risky projects. This is because qru− C > 0 where the right side is continuation

payoff from not acting.

Step 4: Suppose, for contradiction, that for every C > 0, there is a C ∈
(
0, C
)

and p0 ∈ (0, 1)

such that quality control is necessary (ΠC(p0) ≤ 0) but there is nonetheless a nontrivial u-

equilibrium.
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We will argue that this cannot happen for sufficiently small C.

Let x̃, ãθ be such a nontrivial u-equilibrium. From Step 2, there is an on-path history ht ∈

H̃ t such that p̃
(
ht)− pC < ε, x̃

(
ht) > 0 and there is an on path outcome ht+1 ∈ {hϕ, h} at

which the belief p̃
(
htht+1

)
< pC . This implies that ht+1 = hϕ since the bad type would not pay

the cost of action to get continuation utility Uθb(h
tht+1, x̃, ãθ) = 0. Additionally, this implies

that Uθb(h
th, x̃, ãθ) ≤ C

β . Hence, for small C, Step 3 implies that the good type will implement

good and risky projects (ãθg(h
t, itig) = ãθg(h

t, itir) = 1) and so, in particular, failures will be

on path.

We now argue that the good type will also have a strict incentive to run bad projects

(ãθg(h
t, itib) = 1) for small C. First observe that it must be the case that the belief p̃(hth) < 1

which in turn implies Uθb(h
th, x̃, ãθ) =

C
β . Otherwise, the refinement would imply Uθg(h

th, itib, x̃, ãθ) ≥

u which, from Lemma 3, cannot happen for sufficiently small C (since Uθb(h
th, x̃, ãθ) ≤ C

β ). By

repeating Steps 2 and 3, for the continuation game beginning at history hth, we can find a

continuation history where the good type once again has a strict incentive to run good and

risky projects and so Uθg(h
th, itib, x̃, ãθ) > Uθb(h

th, x̃, ãθ) =
C
β .

This means that an upper bound of the principal’s payoff from experimenting at history ht

is

V(ht, x̃, ãθ) ≤ ΠC( p̃
(
ht))− p̃

(
ht) (1− λ)κ + δV(hth, x̃, ãθ).

Since ΠC(p0) ≤ 0, ΠC is continuous and p̃
(
ht) < p0 + ε, we can pick ε, C small enough so that

the right side is strictly negative. To see this, note that Uθb(h
th, x̃, ãθ) = C

β and so Lemma 3

implies that V(hth, x̃, ãθ) becomes arbitrarily small as C shrinks.

This provides the final contradiction and the theorem follows. �

APPENDIX C. PROOF OF THEOREM 6

We begin by defining an optimal mechanism x̃∗ as

x̃∗ ∈ argmax
x̃

V(h0, x̃, ãθ),

such that ãθ is a best response to x̃.

Since the principle can commit, note that the above implies that x̃∗ does not have to be se-

quentially rational at all on-path histories.
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We now define κ as the solution to the equation

λg − c + max
{

λr(qr − (1− qr)κ), −(1− λg − λr)κ
}
+ δΠ = 0, (7)

This value of κ is high enough that a single inefficient action by an agent (who otherwise acts

efficiently) makes the principal’s payoff negative even when the belief assigns probability one

to the good type. Note that clearly this also implies that the principal’s payoff is not positive

at any history (where the belief is less than one) where the good type implements either risky

or bad projects with probability one.

Recall that we had defined a last on-path history ht ∈ H to be a history where the prin-

cipal experiments (x̃(ht) > 0, p̃(ht) < 1) such that she stops experimenting if no success is

generated (x̃(htht+1ht′) = 0 for all ht+1 ∈ {h, hϕ} and htht+1ht′ ∈ H ). Also note that, while

Lemma 1 was for the game with transfers, it also applies to the baseline game defined in Sec-

tion 1. This is because the outcome of every NE of the game without transfers can also be

achieved in NE when transfers are allowed (since when transfers are off-path, they can be

punished).

We now restate Theorem 6 more precisely.

THEOREM (Formal Restatement of Theorem 6). Suppose the prior belief p0 satisfies p0λg − c > 0

and that both players have the same discount factor δ = β. Then, for all κ > κ and every optimal

mechanism x̃∗ with associated agent best response ãθ , there exists an on-path history ht ∈ H such

that V(ht, x̃∗, ãθ) < 0.

This theorem implies that whenever p0λg− c > 0 and κ > κ, the principal optimal NE gen-

erates a strictly lower payoff for the principal than an optimal mechanism since V(ht, x̃∗, ãθ) <

0 is not possible at any on-path history in any NE. The condition on the belief p0 is sufficient

to ensure that all optimal mechanisms are nontrivial.

PROOF. We begin by arguing that it is without loss to restrict attention to pure strategy best

responses. Formally, consider the pure strategy ãp
θ constructed from ãθ as follows: at any

on-path history where the agent mixes, ãp
θ chooses the action that benefits the principal. The

agent never acts in ãp
θ at any off-path history.

Note that, under ãp
θ , the set of on-path histories is a subset of those under ãθ . Moreover, for

any on-path history ht under ãp
θ , we must have V(ht, x̃∗, ãp

θ ) = V(ht, x̃∗, ãθ); we cannot have
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V(ht, x̃∗, ãp
θ ) > V(ht, x̃∗, ãθ) as this would imply V(h0, x̃∗, ãp

θ ) > V(h0, x̃∗, ãθ) contradicting the

optimality of the latter.

We now assume to the converse that there is an optimal mechanism x̃∗ with associated pure

strategy best response ãp
θ such that V(ht, x̃∗, ãp

θ ) ≥ 0 for all on-path histories ht ∈ H̃ t. We will

now show that this is not possible which, in turn, proves the theorem because of the above

argument.

Step 1: The good type never implements risky or bad projects. Formally, ãp
θg
(ht′ , it′ it′+1) = 0 for all

on-path (ht′ , it′ it′+1) ∈H g with it+1 ∈ {ir, ib}.

Suppose he did. Then, we would immediately have the contradiction V(ht′ , x̃∗, ãθ) < 0

since we have assumed that κ > κ which implies that the principal’s continuation value is

negative whenever the good type runs a risky or bad project.

Step 2: The principal does not experiment at any on-path history where a failure has been generated in

the past. Formally, x̃∗(ht) = 0 at every on-path ht = (h1, . . . , ht) ∈ H̃ t, t ≥ 1 such that ht′ = h

for some 1 ≤ t′ ≤ t. Consequently, it is without loss to consider ãθb(h
t) = 0 for all ht ∈ H̃ t.

From Step 1, at any such on-path history ht, the principal’s belief must assign probability

one to the bad type p̃(ht) = 0. If the principal experimented at such a history, it would imply

that V(ht, x̃∗, ãp
θ ) < 0 which is a contradiction. This immediately implies that ãp

θb
(ht) = 0 for

all ht ∈ H̃ t is a best response to the optimal mechanism x̃∗ since experimentation stops after

failure.

Following Steps 1 and 2, it is without loss to consider the following best responses for the

agent

ãp
θb
(ht) = 0 and ãp

θg
(ht, it, it+1) =

 1 if it+1 = ig,

0 otherwise,

for all (and not just on-path) histories ht ∈H .

Step 3: There must be a last history.

Suppose not. Then, from the proof of Lemma 1 (which allows for the case where the princi-

pal never makes transfers), there must exist an on-path history ht ∈ H̃ t such that x̃∗(ht) > 0

and V(ht, x̃∗, ãp
θ ) < 0 which is a contradiction.
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Step 4: At every last history, the principal stops experimenting even after a success. Formally, follow-

ing every last history ht ∈ H̃ t, it must be the case that x̃∗(hthht′) = 0 for all hthht′ ∈ H̃ t+t′+1,

t′ ≥ 0.

First observe that p̃(ht) > 0 as otherwise x̃∗(ht) > 0 implies the contradiction that V(ht, x̃∗, ãp
θ ) <

0. Now suppose to the converse that the principal experimented following a success at some

last history ht. Then, ãp
θg
(ht, itir) = 1 is a strict best response which contradicts Step 1.

Step 5: Final contradiction. The principal’s payoff can be strictly raised by altering the mecha-

nism at any last history ht.

We now define an alternate mechanism x̃ and show that it can strictly raise the principal’s

payoff. We begin by taking x̃ = x̃∗ and then alter x̃ in what follows; at any history where x̃

has not been explicitly altered, it is the same as x̃∗.

We first change the optimal mechanism x̃∗ by reducing the amount of experimentation at

ht but increasing the experimentation in the continuation mechanism (so ht is no longer a last

history).

We define

x̃(ht) = x̃∗(ht)− ε, x̃(hth) = γ and x̃(hthϕ) = qrγ,

where ε, γ > 0 are chosen to satisfy

(x̃∗(ht)− ε)(1 + (λg + (1− λg)qr)δγ) = x̃∗(ht). (8)

As should be clear from the equation above, the good type’s payoff when the principal de-

cides to experiment at ht is the same under x̃ (the left side) as it is under x̃∗ (the right side).

We will now alter the continuation mechanism when the principal’s realized choice at ht is

not to experiment. The aim is to ensure that the payoff of the good type at ht is the same in x̃

and x̃∗. Note that this is necessary because under mechanism x̃ there is an ε greater likelihood

that the continuation history ht
��h is reached.22

We first use ��ht′ = (��h, . . . , ��h) to denote length t′ ≥ 1 vector where each element corresponds

to the principal not experimenting; ��ht′ = ϕ by convention when t′ = 0. We now recursively

22If we had assumed that there was a public randomization device, this could have been done in a very straight-
forward way: with probability ε at history ht, the principal could stop experimenting forever and with probability
1− x̃∗(ht) the principal’s continuation strategy at histories ht

�hht′ ∈ H is given by x̃(ht
�hht′ ) = x̃∗(ht

�hht′ ). We
instead replicate the above described mechanism without resorting to a public randomization device as follows.
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define x̃ for all t′ ≥ 1, ht
��ht′ ∈H as

x̃(ht
��ht′)

t′−1

∏
s=0

(1− x̃(ht
��hs)) = x̃∗(ht

��ht′)
t′−1

∏
s=0

(1− x̃∗(ht
��hs)). (9)

These terms capture the probability that the principal experiments at period t + t′ + 1 but

does not experiment between periods t + 1 and t + t′ in mechanisms x̃ and x̃∗ respectively.

Note that, conditional on experimenting at any period t + 2 onwards, mechanisms x̃ and x̃∗

are identical.

We now argue that ãp
θ is also a best response to x̃. First observe, that x̃ has not been altered

at any history where a failure has occurred in the past. Thus, like x̃∗, the principal stops ex-

perimenting in x̃ whenever a failure is observed (Step 2) and thus ãp
θb

remains a best response.

We finally argue that ãp
θg

is a best response to x̃. First observe that the agent is indifferent

between acting or not on low-quality information at ht. Then observe that the good type’s

payoff at ht (before the principal’s experimentation decision is realized) is given by

Uθg(h
t, it, x̃, ãp

θg
)

= x̃(ht)
[
1 + (λg + (1− λg)qr)δγ

]
+

∞

∑
t′=1

δt′
(

t′−1

∏
s=0

(1− x̃(ht
��hs))

)
x̃(ht

��ht′)
[
1 + λgδUθg(h

t
��ht′h, it+t′ ig, x̃, ãp

θg
) + λrδUθg(h

t
��ht′hϕ, it+t′ ir, x̃, ãp

θg
)

+ (1− λg − λr)δUθg(h
t
��ht′hϕ, it+t′ ib, x̃, ãp

θg
)
]

= x̃∗(ht)

+
∞

∑
t′=1

δt′
(

t′−1

∏
s=0

(1− x̃∗(ht
��hs))

)
x̃∗(ht

��ht′)
[
1 + λgδUθg(h

t
��ht′h, it+t′ ig, x̃∗, ãp

θg
) + λrδUθg(h

t
��ht′hϕ, it+t′ ir, x̃∗, ãp

θg
)

+ (1− λg − λr)δUθg(h
t
��ht′hϕ, it+t′ ib, x̃∗, ãp

θg
)
]

=Uθg(h
t, it, x̃∗, ãp

θg
),

where the equalities follow from (8), (9) and the fact that x̃ and x̃∗ are identical at histories

ht
��ht′ht+t′+1 for ht+t′+1 ∈ {h, hϕ}. Hence, the incentive at any history prior to period t remains

unaffected. Also, note that at any history after period t + 1 where the good type can act, his

incentives are identical under x̃ and x̃∗ and so ãp
θg

is also a best response to x̃.

We end the proof by showing that the principal’s payoff from x̃ is strictly higher than x̃∗.

In the algebra that follows we use the shorthand notation η = λg − c and p = p̃(ht). Now the
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principal’s payoff from x̃∗ at history ht is:

V(ht, x̃∗, ãp
θ ) = x̃∗(ht)

(
pλg − c

)
+ (1− x̃∗(ht))V(ht

��h, x̃∗, ãp
θ ). (10)

The principal’s payoff from the altered mechanism x̃ is:

V(ht, x̃, ãp
θ ) =(x̃∗(ht)− ε)

[
pλg(1 + δγ(λg − c)) + p(1− λg)(δqrγ(λg − c))− (1− p)δqrγc− c

]
+ (1− x̃(ht))V(ht

��h, x̃, ãp
θ )

=(x̃∗(ht)− ε)
[
pλg(1 + δγ(λg − c)) + p(1− λg)(δqrγ(λg − c))− (1− p)δqrγc− c

]
+ (1− x̃∗(ht))V(ht

��h, x̃∗, ãp
θ ) (11)

We finally show that the perturbed mechanism gives the principal a strictly higher continua-

tion utility. To see this, take the difference between (11) and (10) to get

V(ht, x̃, ãp
θ )−V(ht, x̃∗, ãp

θ ) =(x̃∗(ht)− ε)(pηδγ(λg + (1− λg)qr)− c(1− p)δqrγ)− ε(pλg − c)

=(x̃∗(ht)− ε)(pηδγ(λg + (1− λg)qr)− c(1− p)δqrγ)− εpη + ε(1− p)c.

Substituing in (8), we get

V(ht, x̃, ãp
θ )−V(ht, x̃∗, ãp

θ ) =− (x̃∗(ht)− ε)c(1− p)δqrγ + ε(1− p)c

=(1− p)c(ε− (x̃∗(ht)− ε)δqrγ)

>0.

To see the last inequality observe that we can rewrite (8) as

(x̃∗(ht)− ε)(δ(λg + (1− λg)qr)γ) = ε

=⇒ (x̃∗(ht)− ε)(δ(λg(1− qr) + qr)γ) = ε

=⇒ (x̃∗(ht)− ε)δqrγ < ε.

�
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APPENDIX D. OMITTED MATERIAL FROM SECTION 4

D.1. Details for the Example

In this subsection, we formally define the strategies corresponding to the NE example in

Section 4 and argue that conditions (C1)–(C3) are not vacuous.

The principal follows the following strategy.

• Experiment in period one and experiment forever (stop experimenting) if a success

(failure) is observed. Formally,

x̃(h0) = 1, x̃(hht) = 1 and x̃(hht) = 0 for all ht ∈H .

• If the agent does not act in period one, experiment in period two. If a success is ob-

served, experiment at all subsequent periods. Formally,

x̃(hϕ) = 1, and x̃(hϕhht) = 1 for all ht ∈H .

• If the agent does not act in period one and no success is observed in period two, ex-

periment in period three. Stop experimenting from period four onward. Formally,

x̃(hϕh2) = 1, x̃(hϕh2ht) = 0 for h2 ∈ {hϕ, h} and for all ht ∈H , t ≥ 1.

In response, the good type’s strategy is the following.

• Only run good projects in period one. If a success is generated, follow the efficient

strategy. If a failure is generated (off-path), stop acting. Formally,

ãθg(h
0, i1) =

 1 if i1 = ig,

0 if i1 ∈ {ir, ib},

ãθg(hht−1, itit+1) =

 1 if it+1 = ig,

0 otherwise,
for all (hht−1, itit+1) ∈H g,

ãθg(hht−1, it+1) = 0 for all (hht−1, it+1) ∈H g.
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• If no project was run in period one, implement both good and risky projects in period

two. If a success is generated, follow the efficient strategy. Formally,

ãθg(hϕh2, i1i2) =

 1 if i2 ∈ {ig, ir},

0 if i2 = ib,

ãθg(hϕhht−2, i1i2it−2it+1) =

 1 if it+1 = ig,

0 otherwise,
for all (hϕhht−2, i1i2it−2it+1) ∈H g.

• If no project was run in period one and no success is observed in period two, only

implement good projects in period three. Stops acting thereafter regardless of the

period three outcome. Formally,

ãθg(hϕh2, i2i3) =

 1 if i3 = ig,

0 otherwise,
for all h2 ∈ {h, hϕ} and (hϕh2, i2i3) ∈H g,

ãθg(hϕh2ht, it+3) = 0 for all h2 ∈ {h, hϕ} and (hϕh2ht, it+3) ∈H g, t ≥ 1.

Finally, the bad type never acts or, formally, that

ãθb(h
t) = 0 for all ht ∈H .

We now argue that there are parameter values that satisfy conditions (C1)–(C3); conse-

quently, for these parameter values the above strategies constitute a NE. First note that the

initial belief p0 does not appear in these conditions so, obviously, choosing a sufficiently high

p0 will not violate them. Then, observe that there are enough free parameters to satisfy these

conditions. Conditions (C1), (C3) are satisfied by sufficiently small qr, c respectively for any

values of the other parameters. Finally, one can always pick a κ to satisfy equation (C2) since

it does not appear in the other two equations.23

D.2. Omitted Results Referred to in Section 4

In this section, we formally state and prove results that we referred to in Section 4. The first

theorem shows that EV’s main result (Theorem 1 in their paper) also obtains in our model

23Indeed it is easy to show that the set of parameters for which this form of NE exists is not a non-generic set as
equation (C2) does not need to equal 0 but being close to 0 suffices.
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when the principal is myopic. Let Uθg(p, β) denote the highest average NE payoff that the

good-type agent can obtain when the principal’s belief at the beginning of the game is p.24

THEOREM 7. Suppose the bad-type is a commitment type that never acts, the principal is myopic

(δ = 0) and (strict) quality control is necessary (Π(p0) < 0).25 Then,

lim
β→1
Uθg(p, β) = 0 for all p ≤ p0.

PROOF. First observe that because the principal is myopic, the agent must generate successes

with sufficiently high probability in every period. That is, if the principal’s belief is p, the good

type must generate a success with at least probability c/p in order for the myopic principal

to pay the cost of experimentation.

Note that this also implies that for p sufficiently low, the principal will stop experimenting

because the maximal probability with which the good type can generate a success is bounded

above by λg + qrλr. We use pb to denote the belief at which

c
pb

= λg + qrλr.

Clearly, the principal will never experiment for any belief p < pb.

Now observe that, for any belief p ≥ pb at the start of the game, the belief following inaction

must drop sufficiently low. Let poϕ(p) := p̃(hϕ) be shorthand notation for the continuation

beliefs generated after updating belief p from period-1 outcome oϕ. Since the bad type never

acts, the posterior belief following either a success or failure must jump to 1.

We now use the martingale property of beliefs to derive an upper bound for poϕ(p). Ob-

serve that

Prob of success× 1 + Prob of failure× 1 + Prob of inaction× poϕ(p) = p

=⇒ (Prob of failure + Prob of inaction)poϕ(p) ≤ p− Prob of success

=⇒ poϕ(p) ≤ p− Prob of success
1− Prob of success

≤ p− c
1− c

,

24Given strategies x̃ and ãθg , the average payoff of the good type at history (ht−1, it−1) is defined to be (1 −
β)Uθg (h

t−1, it−1, x̃, ãθg ).
25We need this inequality to be strict because the bad type is assumed to never act.
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where the last inequality follows from the fact that

Prob of success ≥ c
p
≥ c.

Inverting this mapping this implies that we can divide the space of beliefs as follows

p1 = pb, pn+1 = pn(1− c) + c, for all n ≥ 1

and observe that

pn+1 > pn and lim
n→∞

pn = 1.

Note that the above argument implies that, for all beliefs p ∈ (pn, pn+1], we have poϕ(p) ≤ pn.

We now prove our result by induction. The base case holds trivially as there is a unique

NE with no experimentation when p ≤ pb.

Induction hypothesis: limβ→1 Uθg(p, β) = 0 for p ≤ pn where n is such that pn < p0.

Induction Step: We will argue that

lim
β→1
Uθg(p, β) = 0 for pn < p ≤ min{p0, pn+1}.

So consider the NE that assigns the good type the highest payoff Uθg(p, β) and let the pay-

offs from the continuation NE that supports this be Ûθg(h1, β) where h1 ∈ {��h, hϕ, h, h}. First

suppose Uθg(p, β) = 0. Then the only on path period-2 history is h1 = ��h. It is then without

loss to set the off-path continuation payoffs to their lowest values Ûθg(hϕ, β) = Ûθg(h, β) =

Ûθg(h, β) = 0.

Now consider the less trivial case where Uθg(p, β) > 0. First observe that the principal

must immediately experiment (or x̃(h0) = 1) in the agent optimal NE since delaying reveals

no information and only lowers the good type’s payoffs. Also note that the period-2 history

hϕ is on path because the bad type never acts.

We first argue that

Ûθg(h, β) ≤ Ûθg(hϕ, β) ≤ Ûθg(h, β).

To see this, first note that Ûθg(h, β) ≥ Ûθg(hϕ, β) because otherwise the good type would never

implement good projects which would contradict the optimality of the principal’s experimen-

tation decision (x̃(h0) = 1).
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Now note that, since Π(p) < 0, the good type cannot have a strict incentive to run risky

projects because then it would not be optimal for the principal to experiment. In other words,

Ûθg(hϕ, β) ≥ qrÛθg(h, β) + (1− qr)Ûθg(h, β).

Since Ûθg(h, β) ≥ Ûθg(hϕ, β), the above condition immediately implies that Ûθg(hϕ, β) ≥

Ûθg(h, β) and Ûθg(h, β) ≥ 0 implies

Ûθg(h, β) ≤
Ûθg(hϕ, β)

qr

We complete the proof by observing that

Uθg(p, β) ≤ (1− β) + β Ûθg(h, β) ≤ (1− β) + β
Ûθg(hϕ, β)

qr

which in turn implies

lim
β→1
Uθg(p, β) ≤ lim

β→1

[
(1− β) + β

Ûθg(hϕ, β)

qr

]
= 0

because poϕ(p) ≤ pn (irrespective of β) and so we can invoke the induction hypothesis to

conclude limβ→1 Ûθg(hϕ, β) = 0. �

The second result is the analogue of EV’s folk theorem (Theorem 4 in their paper) which

also obtains in our model when the principal becomes patient.

THEOREM 8. For any value of the agent’s discount factor β, there is a sequence of equilibria such that

the principal’s average NE payoff converges to the full information payoff p0(λg − c) as she becomes

arbitrarily patient (δ→ 1).

PROOF. We will explicitly construct a sequence of such equilibria. Consider the following

strategies that depend on the principal’s discount factor δ.

Principal:

• Experiment for T(δ) periods (irrespective of outcomes).

• If a success arrives, experiment forever.

• If no success arrives for T(δ) periods, stop experimenting.
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Formally, for all h1 . . . ht ∈H ,

x̃(h1 . . . ht) =

 1 if t ≤ T(δ) or ht′ = h for some t′ ≤ T(δ),

0 otherwise.

Good type:

• Implement both good and risky projects for the first T(δ) periods unless a success

arrives.

• If a success arrives in the first T(δ) periods, continue to only implement good projects.

• If no success arrives for T(δ) periods, stop acting.

Formally, for all (h1 . . . ht, itit+1) ∈H g,

ãθg(h1 . . . ht, itit+1) =


1 if t ≤ T(δ), ht′ 6= h for any t′ ≤ t, and it+1 ∈ {ig, ir},

1 if it+1 = ig and ht′ = h for some t′ ≤ T(δ),

0 otherwise.

Bad type:

• Never acts.

Formally, for all ht ∈H ,

ãθb(h
t) = 0.

Consider the belief p f (δ) that satisfies

Π(p f (δ)) = 0,

i.e. p f (δ)
(
(λg + qrλr)[(1− δ) + δ(λg − c)]− (1− qr)λrκ(1− δ)

)
− (1− δ)c = 0,

i.e., p f (δ) =
(1− δ)c

(λg + qrλr)[(1− δ) + δ(λg − c)]− (1− qr)λrκ(1− δ)
.

This the lowest belief at which the principal finds it worthwhile to experiment for one period

when she gets the first-best continuation value after a success (and stops experimenting if no

success arrives), the good type implements both good and risky projects and the bad type

does not act. Clearly,

p f (δ)→ 0 as δ→ 1.
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Given the agent’s strategy, the principal’s belief when no project has been run for T periods is

p̃(hT
ϕ) =

p0(1− λ)T

p0(1− λ)T + 1− p0

where hT
ϕ = (hϕ, . . . , hϕ) is the shorthand notation for this history. Set T(δ) be solve p̃(hT

ϕ) =

p f (δ) and observe that T(δ) → ∞ as δ → 1. In words, as the principal becomes patient, it is

sequentially rational for her to experiment for arbitrarily long in search of a success when the

agent follows the above strategy.

We now argue that there are constants ρ1 < 0, ρ2 ∈ R and δ+ such that for all δ > δ+, we

have

T(δ) ≥ ρ1 log(1− δ) + ρ2.

This follows from

p0(1− λ)T(δ)

p0(1− λg)T(δ) + 1− p0
=

(1− δ)c
(λg + qrλr)[(1− δ) + δ(λg − c)]− (1− qr)λrκ(1− δ)

.

=⇒ 1 +
1− p0

p0
(1− λ)−T(δ) =

λg + λr(qr − (1− qr)κ)

c
+

δ(λg + qrλr)

1− δ

λg − c
c

=⇒ 1− p0

p0
(1− λ)−T(δ) =

λg + λr(qr − (1− qr)κ)− c
c

+
δ(λg + qrλr)

1− δ

λg − c
c

=
λg − c

c
+

δ(λg + qrλr)

1− δ

λg − c
c

+
λr(qr − (1− qr)κ)− c

c

=
λg − c

c

(
1 +

δ(λg + qrλr)

1− δ

)
+

λr(qr − (1− qr)κ)− c
c

≥
λg − c

c

(
λg + qrλr

1− δ

)
+

λr(qr − (1− qr)κ)− c
c

=⇒ ln
1− p0

p0
− T(δ) log(1− λ) ≥ − log(1− δ) + log

(
(λg + qrλr)(λg − c)

c
+

λr(qr − (1− qr)κ)− c
c

(1− δ)

)
≥ − log(1− δ) + log

(
(λg + qrλr)(λg − c)

c
+

λr(qr − (1− qr)κ)− c
c

(1− δ+)

)
The last inequality follows since λr(qr− (1− qr)κ)− c < 0 and δ+ can be chosen large enough

to make the overall term in the logarithm positive. The constants ρ1 and ρ2 can be found by

matching terms, note that ρ1 is negative as desired.

So consider strategies in which the duration of experimentation (without a success) is

T(δ) =
ρ3

(log δ)1/3 + ρ4 + ρ5(δ),
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where ρ3 < 0, ρ4 ∈ R and the final term ρ5(δ) ∈ (−1, 0) ensures that T(δ) is rounded down

to the closest positive integer.

Now note that there are parameter values ρ3–ρ5 and a discount factor δ < 1, δ > δ+.,such

that

0 ≤ T(δ) ≤ ρ1 log(1− δ) + ρ2 ≤ T(δ) for all δ ≥ δ.

To see this, first observe that, for high enough δ, ρ1 log(1− δ) + ρ2 > 0 and indeed can be

made arbitrarily large. Then, we can find a high enough δ and pick ρ3–ρ5 so that: 26

0 ≤ T(δ) ≤ ρ1 log(1− δ) + ρ2, and,

d
dδ

(
ρ3

(log δ)1/3

)
= −1

3
ρ3

δ(log δ)4/3 ≤ −
ρ1

1− δ
=

d
dδ

(ρ1 log(1− δ)) for δ ≥ δ.

To see that we can find a sufficiently high δ to satisfy the second inequality, observe that

this inequality is equivalent to 1
3

ρ3
ρ1

1−δ
δ ≥ (log δ)4/3 and that the left side decreases faster (the

derivative satisfies − 1
3

ρ3
ρ1

1
δ2 → − 1

3
ρ3
ρ1

as δ → 1) than the right side (the derivative satisfies
4
3
(log δ)1/3

δ → 0 as δ→ 1) for sufficiently high δ.

Taken together, these imply that T(δ) ≤ ρ1 log(1− δ) + ρ2 for all δ ≤ δ < 1 or, in other

words, that the strategies corresponding to this choice of T(δ) constitute a NE.

This particular T(δ) was chosen to ensure that limδ→1 δT(δ) = 1. To see this, observe that

lim
δ→1

δT(δ) = lim
δ→1

δ
ρ3

(log δ)1/3 δρ4 δρ5(δ) = lim
δ→1

δ
ρ3

(log δ)1/3 = 1,

where the second equality follows from the fact that ρ5(δ) is bounded. We end the proof by

writing the expression for principal’s average payoff V(δ) which is given by

V(δ) = p0
(
(λg + qrλr)[(1− δ) + δ(λg − c)]− (1− qr)λrκ(1− δ)− (1− δ)c

) 1− (δ(1− (λg + qrλr)))T(δ)

1− δ(1− (λg + qrλr))

− (1− p0)
(

1− δT(δ)
)

c

and therefore

lim
δ→1
V(δ) = p0(λg − c). �

26Pick a ρ3 to satisfy the second inequality and then a ρ4 to satisfy the first.
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APPENDIX E. OMITTED MATERIAL FROM SECTION 5.1

In this section, we present the strategies that we described informally in Section 5.1. For-

mally, we are restricting the principal’s strategy to be of the form

x̂(h1 . . . ht) ∈

 [0, 1] if ht−T+2 = · · · = ht = ��h,

{1} otherwise.

In words, the probability of experimentation must be one if she has experimented in any of

the past T − 1 periods. Here we use the convention that ht′ = ��h if t′ ≤ 0. A different way

of interpreting this particular form of partial commitment is that when a principal decides to

experiment, she sinks the T period discounted cost of experimentation 1−δT

1−δ c up front.

Now consider the following strategies. The principal commits to experimenting for the

first T periods

x̂(ht−1) = 1 for all t ≤ T, ht−1 ∈H .

If a failure or no success arrives over these T periods, the principal stops experimenting. If

the agent generates at least one success (and no failures) over the first T periods, the principal

experiments forever. Formally, for t ≥ T + 1 and h1 . . . ht−1 ∈H ,

x̂(h1 . . . ht−1) =

 1 if ht′ 6= h for all 1 ≤ t′ ≤ T and ht′′ = h for some 1 ≤ t′′ ≤ T,

0 otherwise.

In response, the good type agent only acts on high-quality information for 1 ≤ t ≤ T − 1

periods

ãθg(h
t−1, it−1it) =

 1 if it = ig,

0 otherwise,
for all (ht−1, it−1it) ∈H g

and, additionally, on low-quality information at period T if no success has arrived,

ãθg(h
T−1, i1 . . . iT) =


1 if iT = ig,

1 if iT = ir and it′ 6= ig for all 1 ≤ t′ ≤ T − 1,

0 otherwise,

74



REPUTATION IN RELATIONAL CONTRACTING

for all (hT−1, iT−1iT) ∈ H g. If a success arrives in the first T periods, he acts efficiently

thereafter. Formally, for t ≥ T + 1 and (h1 . . . ht−1, it−1it) ∈H g,

ãθg(h1 . . . ht−1, it−1it) =

 1 if it = ig, ht′ 6= h for all 1 ≤ t′ ≤ T and ht′′ = h for some 1 ≤ t′′ ≤ T,

0 otherwise.

Finally, the bad type only acts with positive probability ε ∈ (0, 1) in period T so

ãθb(h
T−1) = ε for all hT−1 ∈H and ãθb(h

t−1) = 0 for all t 6= T, ht−1 ∈H .

We now argue that there are parameter values such that the above strategies constitute an

equilibrium even when quality control is necessary. First note that experimentation can be

profitable. For instance, if p0λg > c, then the principal’s payoff taking T → ∞ converges to
p0λg−c

1−δ > 0 so experimentation is also profitable for some finite T irrespective of the value of

Π(p0) (the optimal such T is finite).

Clearly, the bad type is best responding since he is indifferent between all strategies.27 Fi-

nally, the good type’s strategy is a best response if he does not have an incentive to act on

low-quality information at any period prior to T. A sufficient condition for this is λg ≥ qr

since the likelihood of getting high quality information (and thereby a sure success) in the

next period makes the option value of waiting more attractive than the lottery of generating

a success today with probability qr.

27Note that the bad type has no incentive to act prior to T (even though the good type acts with positive proba-
bility) because failures between periods 1 and T − 1 are off path and are punished by the principal.
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