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Abstract
The fear of contracting a serious illness caused by a contagious disease limits economic
activity even after reopening. Widespread testing alone will not alleviate this problem.
We argue that targeted testing in concertwith targeted transfers is essential.Wepropose
a model with these features to determine where agents should be tested and how they
should be incentivized. Agents with a low wage, a high risk of infection, and who bear
a large cost of falling ill should be tested at work. When testing is very costly, agents
with high wages and low expected costs associated with falling ill should be tested at
home.
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1 Introduction

It is a truth universally acknowledged that an economy needing to recover from a
pandemic-induced coma must be in need of inexpensive and widespread testing.

We argue that this by itself is insufficient. Suppose that to reduce the spread of the
virus, we must ensure that the fraction of infected individuals who are out and about
is below some threshold. With unlimited testing, we could test each and every person,
but what will they do with the information gleaned? Why should we expect someone
who has tested positive for the virus to stay home and someonewho has tested negative
to go to work? If the first receives no compensation for staying home, she may choose
to leave for work. The second, anticipating that infected individuals will show up for
work, may choose to stay home.1 As a result, the fraction of the population out and
about will have an infection rate exceeding that in the population at large. Even if the
prevalence of the infection is low, most agents may choose to stay home.

This paper makes two points. First, in the absence of a cure or effective vaccine,
any plan to restart the economy must combine testing with incentives. It is not enough
to reward individuals for getting tested, as proposed by Levitt et al. (2020). One
must shape behavior: compensate the infected for staying home and incentivize the
uninfected to go out. Testing allows us to identify who should be the beneficiary of
these transfers. Combining targeted testing with well-designed incentives results in
better outcomes than either by themselves. Our second point is that where one tests
also matters. There is a crucial difference between testing at work and testing ‘at
home’. Testing at home should be interpreted as a way to test an individual without
increasing exposure to others. An infected person who leaves home to be tested at
work poses an infection risk to others who choose to go outside.2 The precise mix of
home and work testing depends, as we argue, on the level of infection risk agents are
prepared to accept. The more willing agents are to go out, the more one should focus
on random testing at home. If the reverse, one should focus on testing at work. If there
were no delay between test and result, the distinction between home and work testing
would be meaningless. One could ask an agent to test at home and report to work if
they receive a negative result. The distinction matters as long as there is a substantial
delay between taking the test and receiving a result (which is often the case in reality).
With regards to COVID-19, not only do PCR test results arrive after a 2–5 day delay
but there is an incubation period for the virus: a positive test result may not show up
until 5-8 days after infection has occurred.

Our claims are based on a simplemodel where individuals choosewhether to stay in
or go out and work. They decide given their subjective evaluation of costs and benefits.
A planner has access to costly testing and can influence incentives by selecting rates
of testing of those who stay at home and those who work, and contingent transfers to
agents based on their choice and their test outcomes. We consider two scenarios:

1 A June 17th, 2020, survey conducted by the consulting firm Korn Ferry of 1,044 American professional
workers found that half were reluctant to go back to the office citing health concerns.
2 More generally, the reader might imagine a testing authority who monitors those activities that create
transmission opportunities and conducts tests with a likelihood that depends on activity levels.
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1. A random subset of those who have elected to stay home are tested. If they test
positive or are untested, they receive a subsidy to remain at home. If they test
negative, they receive no subsidy.

2. A random subset of those who have elected to go out are tested. Those who are
untested or test negative receive their wage and possibly a premium. Those who
test positive receive no wage.

Our main finding is that when fear of infection is high, agents who are engaged in
low-wage work with a high expected cost of falling ill should be tested at work only.
On the other hand, those with high wages, low risk of being infected, and low cost of
falling ill should generally be tested at home.

The intuition is as follows. The optimal test-at-home policy involves a wage pre-
mium to those that work and a transfer to those who test positive at home. If the wage is
small relative to the cost associated with becoming sick, those likely to be uninfected
have a strong incentive to stay home. To incentivize the healthier individuals to work,
a test-at-home policy would require a substantial wage premium that would encour-
age all types, including those likely to be infected, to work. An attractive transfer
contingent on staying home would then be needed to dissuade these types.

On the other hand, the optimal test-at-work policy involves a transfer to those
at work who test negative and a transfer to those staying at home that is inversely
proportional to the probability of being tested at work. The presence of a conditional
transfer at work deters those likely to be infected, as they would receive nothing if
the test result were positive. As a consequence, the home transfer can be lowered.
When the wage is relatively high, and the cost of infection is low, testing at work is a
deterrent if one can test at a high rate. When testing is sufficiently costly, such a test
rate is infeasible, so testing at home is cheaper.

The idea is straightforward. In the absence of widespread testing to distinguish
between the infected and those who are not, we must rely on individuals to sort them-
selves. They are in the best position to determine the likelihood they are infected (e.g.
based on private information about exposures, how rigorously they have been distanc-
ing etc.). Properly tailored transfers give them the incentive to do so. By tailoring the
transfers and the testing policy to individual circumstances, one achieves the same
goal at an even lower cost.

The next section summarizes related literature. Section 3 describes the model and
Sect. 4 contains the main findings. We reserve the discussion of our assumptions, as
well as how the scheme of targeted testing and transfers might be implemented, to
Sect. 5.

2 Related literature

Our paper adds to the rapidly growing literature on the economic aspects of pandemics
inspired by COVID-19.3 The issues considered are not specific to COVID-19 but any

3 There is a new journal dedicated to economic analysis related to COVID-19: https://cepr.org/content/
covid-economics-vetted-and-real-time-papers-0.
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contagious pandemic that is severe enough to cause agents to dramatically reduce
economic activity, either individually or in concert (i.e. lockdowns).

Much of the burgeoning literature centers on examining disease spread and effec-
tiveness of lockdowns via an SIRmodel (Atkenson 2020; Acemoglu et al. 2020; Engle
et al. 2021). These papers modify and calibrate SIR models to account for heteroge-
neous populations, targeted lockdowns, and social distancing measures. Other papers
examine the effectiveness of physical distancing and containment policies in reduc-
ing contagion, for example, Akbarpour et al. (2020); Alvarez et al. (2020); Bueno
de Mesquita and Shadmehr (2020) and Kruse and Strack (2020). A related stream
of papers assesses the macroeconomic impact of infection and containment policies
(Eichenbaum et al. 2020; Favero et al. 2020; Glover et al. 2020). Three recent the-
oretical papers (McAdams 2020; Dasaratha 2020; Carnehl et al. 2021) incorporate
behavioral responses but not private information into the SIR model; all agents share
the same common knowledge belief about the chance they are infected. These papers
do not address the issue of how to encourage economic activity under the threat of
infection.

Beginning with Dorfman (1943) and continuing with Du and Hwang (1992), there
is an extensive literature on how to use limited or costly testing to extract as much
information as possible. The use of suchmethods in the context of COVID-19 has been
discussed by Gollier (2020), Gollier and Gossner (2020), Lipnowski et al. (2021), Ely
et al. (2021), and Bobkova et al. (2021). This stream of work is not focused on how
the information gleaned from testing is best used.

The literature that explores how testing will be used views it as a device to decide
which agents should be quarantined to reduce transmission rates. Quarantining those
who test positive for infection counters the externality imposed by the infected. The
focus is on how to trade-off the amount of testing and quarantining with the level
of economic activity. Examples are Alvarez et al. (2020), Eichenbaum et al. (2020),
and Farboodi et al. (2020). They differ in whether agents know their health status, the
dynamics of infection (e.g. are those who recover immune or are they still susceptible),
and the planner’s objective function (aggregate output, labor supply or consumption).
However, it is assumed that an agent released from quarantine will choose to go to
work. This paper is concerned with providing the incentives for such a selection. On a
related front, there is a large literaturemotivated by earlier pandemics on the allocation
of scarce resources to control spread, to test, or to meet patient demand (Preciado et al.
2014; Armbruster and Brandeau 2007; Bienstock and Zenteno 2015).

Lastly, there is an extensive theoretical literature on mechanism design with verifi-
cation (Ben-Porath et al. 2014; Li 2020). Thesemodels do not incorporate externalities
nor distinguish between types of testing and verification.

None of the prior work we are aware of examines the use of targeted testing and tar-
geted transfers to compensate for limited testing, segment the population, and induce
a specific infection rate in the workforce. The Safra Center’s pandemic report recom-
mends support for those who test positive and are placed in isolation. 4 However, this
is in the context of a regime with large scale testing. We point out that if testing is

4 https://ethics.harvard.edu/files/center-for-ethics/files/roadmaptopandemicresilience_updated_4.20.20_
0.pdf.
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limited, one should be prepared to support some who have not been tested. We also
propose incentives to encourage people to go to work.

3 Model

Assume a unit mass of agents of which a fractionπI can transmit the virus. For brevity,
call this group infected. Conditional on being infected, the probability of displaying
symptoms is πS . Therefore, we allow for the possibility that some agents may be
asymptomatic carriers.

We assume each agent has a belief about the likelihood that they carry the virus
and that the belief is calibrated (i.e. among all the agents who believe they are infected
with probability b, a fraction b are actually infected). They form this belief based on
prior activities, whom they have come into contact with, and what symptoms they may
have. Every symptomatic agent understands that they are infected. Beliefs are drawn
from a distribution G over [0, 1] that satisfies the following two conditions:

∫ 1

0
b dG(b) = πI ,

G(1) − lim
b↑1 G(b) = 1 − lim

b↑1 G(b) = πSπI .

The former condition requires that the average belief in the population is correct—this
is implied by our assumption that beliefs are calibrated. The latter condition asserts
that the mass of agents who display symptoms correctly believe that they are infected:
there is an atom at 1, and it is comprised of the symptomatic agents. Note that an
individual with belief b < 1 is either not infected or infected with no symptoms.

The decision that each individual with belief b ∈ [0, 1] must make is whether to
stay indoors or go outside. When outdoors, an individual works and engages in other
activities that generate economic benefits, such as going to bars or the cinema. Our
focus is not on how they choose to allocate their time between these activities, only
on whether they decide to go outdoors or not. What an agent chooses depends on the
chance they are infected and the chance of being infected if they go outside.

Denote by l(b) ∈ [0, 1] the probability that an agent with belief b chooses to go
out. Thus, the fraction of agents out of their homes is

∫ 1
0 l(b) dG(b), and the fraction

of infected agents among those outside their homes is

z =
∫ 1
0 bl(b) dG(b)∫ 1
0 l(b) dG(b)

. (1)

If z is the initial proportion of infected individuals outside, the probability an indi-
vidual without the virus becomes infected (over some relevant period) is f (z), where
f is a continuous function. The function f does not depend on the size of the popu-
lation that goes out to work, and in Sect. 5, we show that this is without loss for the
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social planner.5 The expected personal cost conditional on being infected is c > 0.
Included in c is the probability πS of becoming symptomatic. In Sect. 5.2, we discuss
the consequences of allowing heterogeneous costs. Lastly, each agent has a common
wage w. For our purposes, this is also without loss.6

The task of the social planner is to choose carrots, sticks, and a testing policy to
achieve a given response among the population. For the first part of this paper, we
focus on the following goal for the planner: achieve a target rate of infection among
the working population of z∗ < πI ,7 where the agents who go out are those with
beliefs b ≤ b∗ (i.e. l(b) = 1 if b ≤ b∗, l(b) = 0 otherwise).8 The question we study
is what is the minimum cost way of inducing this? In Sect. 5.1 we study a general
planner’s problem and show that it reduces to the problem of selecting this target
infection rate z∗, or equivalently, the interval of agents with belief in [0, b∗] to go out.

At its disposal, the planner has the following instruments available:

1. Let rH and rW ∈ [0, 1] be the probabilities of testing an individual conditional on
whether she is inside (H ) or outside (W ). We will often call the first ‘staying home’
and the second ‘work’.9

2. The planner can levy transfers tod contingent on an agent’s in/out decision d ∈
{H ,W } and test outcome o ∈ {¬,−,+} (respectively, not tested, tested negative
and tested positive).

For the transfers to be politically palatable, we assume two restrictions. Firstly, we
assume that all transfers are non-negative—this captures the usual limited liability
constraint. Secondly, agents who go towork and are either not tested or test negative
receive, at minimum, their wage. Formally:

tod ≥ 0, t¬W , t−W ≥ w. (2)

By only requiring that t+W ≥ 0, we assume that agents who test positive can, for
example, be furloughed without a wage.

The difference between testing at home and work is not cosmetic. Infected agents
who stay in their homes and are tested there do not pose an infection risk to those who
choose to go outside. Testing at home should be interpreted to cover all methods to
test an individual without increasing exposure to others. Conversely, an infected agent
who chooses to go outside raises the risk of infection to others outside, regardless of
whether she will subsequently be tested ‘at work’. Even if agents are sent home after

5 This is not without loss for an individual because the interaction rate with others could vary by their
choice of activity. It suggests that transfers should depend on industries.
6 Wages are observable to the planner, and so policies can be conditioned on agents’ wages.
7 One could just as well look at z∗ > πI , which would involve incentivizing the healthy to stay home. Our
analysis would apply with the appropriate inequalities flipped— we focus on the case of z∗ < πI because
the social planner objective of incentivizing the healthy to work and the sick to stay home is subjectively
more natural. However, a policy designed to keep the healthy at home would be natural when it is likely
that most of the population is already infected.
8 Therefore, b∗ and z∗ are linked by (1).
9 Testing at home is already feasible given current technology. For example, we have access to phone
applications that verify the results of self-administered tests.
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having tested positive, they have raised the risk of infection to others because they
engaged in activities like going to a restaurant or using mass transit.

To summarize, the timing of the model is as follows:

1. The planner decides on testing probabilities and transfers.
2. Each individual forms a belief about their infection status and decides whether to

stay home or go to work.
3. Tests are conducted, and transfers are awarded. Some of the healthy individuals

who go out are infected.
4. Payoffs are realized.

Given any policy P = (rd , tod : d ∈ {H ,W }, o ∈ {+,−,¬}), let V (b, l, z, P)

denote the value to an agent with belief b who works with probability l. Note that:

V (b, 0, z, P) = rH (bt+H + (1 − b)t−H ) + (1 − rH )t¬H
V (b, 1, z, P) = rW (bt+W + (1 − b)t−W ) + (1 − rW )t¬W − (1 − b)c f (z)

V (b, l, z, P) = V (b, 0, z, P) + l(V (b, 1, z, P) − V (b, 0, z, P)).

In words, given a policy P , an agent who stays at home (goes to work) expects to be
tested with probability rH (rW ) and receive transfers based on whether they got tested
and the outcome of the test. Their expected value of this depends on their belief b that
they are infected. Regardless of whether they go to work or stay at home, an agent may
develop symptoms and suffer the cost of infection. Additionally, an agent who goes
to work faces the risk of getting infected at work—this depends also on the fraction of
agents at work who are infected. Under policy P , an agent with belief b that expects
the infection rate among those outside to be z will go outside if the value fromworking
is greater than from staying at home. The agent will stay at home otherwise.

Definition 3.1 Policy P is consistent with and induces infection rate z if there exists
a corresponding “going-out” function l(·) such that:

1. l(b) > 0 �⇒ V (b, 1, z, P) − V (b, 0, z, P) ≥ 0,
2. l(b) < 1 �⇒ V (b, 1, z, P) − V (b, 0, z, P) ≤ 0,

3. and z =
∫ 1
0 bl(b)dG(b)∫ 1
0 l(b)dG(b)

.

The expression V (b, 1, z, P)−V (b, 0, z, P) is linear in b. If the partial derivative of
V (b, 1, z, P)−V (b, 0, z, P)with respect to b is strictly positive, the set of agents who
go to work will be agents with beliefs in some set [b∗, 1]. Thus, for the target infection
rate z∗ to be less than πI , it must be that ∂V (b,1,z∗,P)−V (b,0,z∗,P)

∂b is non-positive:

c f (z∗) + rH (t−H − t+H ) + rW (t+W − t−W ) ≤ 0. (3)

As we said earlier, we focus on policies such that the set of agents that are out is the
subset with beliefs in [0, b∗] for some b∗. Consistency of the policy P with infection
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rate z∗ therefore reduces to
∫ b∗
0 b dG(b) = G(b∗)z∗. Further, b∗ must be such that

V (b∗, 1, z∗, P) − V (b∗, 0, z∗, P) = 0 or equivalently that

b∗ = c f (z∗) + (1 − rH )t¬H − (1 − rW )t¬W − rW t−W + rH t
−
H

c f (z∗) + rH (t−H − t+H ) + rW (t+W − t−W )
. (4)

The cost of such a policy, net of wages, is

M
(
(1 − G(b∗))rH + G(b∗)rW

)
+ rH

[
(πI − z∗G(b∗))(t+H − t−H ) + (1 − G(b∗))t−H

]

+ rW
[
z∗G(b∗)(t+W − t−W ) + G(b∗)t−W − (1 − z∗)G(b∗)w

]

+ (t¬W − w)(1 − rW )G(b∗) + t¬H (1 − rH )(1 − G(b∗)).

Here, M : [0, 1] → R+ is an increasing, convex function that captures the cost of
testing a given fraction of the population.

In what follows, we focus on comparing two different environments: testing only
at home and testing only at work. Therefore, the problem for a planner considering
testing only at home (rW = 0) is:

inf
P

{
M

(
(1 − G(b∗))rH

) + rH
[
(πI − z∗G(b∗)(t+H − t−H ) + (1 − G(b∗))t−H

]

+ (t¬W − w)G(b∗) + t¬H (1 − rH )(1 − G(b∗))
}
,

s.t. (2), (3), (4).

Similarly, the problem for a planner considering testing only at work (rH = 0) is:

inf
P

{
M

(
G(b∗)rW

)
+ rW

[
z∗G(b∗)(t+W − t−W ) + G(b∗)t−W − (1 − z∗)G(b∗)w

]

+ (t¬W − w)(1 − rW )G(b∗) + t¬H (1 − G(b∗))
}
,

s.t. (2), (3), (4).

We write an infimum instead of a minimum because the optimal policy may not be
(and in some cases is not) well defined— it may involve unbounded payments with
infinitesimal testing probabilities. Since the cost function is non-negative, the infimum
will exist. Thus, standard arguments tell us that there are well defined policies that get
arbitrarily close to the infimum.10

10 Note that we do not explicitly impose a “budget balance” constraint because the planner could simply
cover the costs via a lump-sum tax on all individuals.
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4 Incentivizing a target infection rate

4.1 Testing with no transfers

To understand the value of transfers in this setting, consider first a benchmark in which
only testing is available but no additional transfers are permitted (agents who go to
work receive their wage, while agents who stay home receive nothing). We observe
below that it is impossible to induce an infection rate in the working population below
the infection rate in the overall population.

Observation 4.1 If there are no transfers, i.e. t+H = t−H = t¬H = 0 and t+W = t−W =
t¬W = w, it is impossible to induce an infection rate of z∗ < πI in the working
population.

To see this, observe that in the absence of transfers, inequality (3) reduces to
c f (z∗) < 0, which cannot be as the expected cost of infection is positive. Intuitively,
without transfers, it is impossible to deter the individuals likely to be infected from
going towork. Therefore, we cannot induce an infection rate in theworking population
that is lower than the base rate without subsidies or penalties. Hence, testing alone,
even if plentiful, is insufficient. 11

4.2 Work testing only

Consider a policy of only testing at work, so rH = 0. We think of this as the employer
testing their employees with probability rW . In this case, (3,4) simplify to

c f (z∗) + rW (t+W − t−W ) ≤ 0,

b∗ = c f (z∗) + t¬H − (1 − rW )t¬W − rW t−W
cf (z∗) + rW (t+W − t−W )

.

A simple argument delivers that in any minimum-cost policy, any agent testing
positive is furloughed—intuitively, this optimally disincentivizes agents who believe
they are likely to be sick from going to work.

Lemma 4.2 In any minimum-cost policy, we must have that t+W = 0.

This simplifies the constraints (3), (4) further to

c f (z∗) − rW t−W ≤ 0,

b∗ = c f (z∗) + t¬H − (1 − rW )t¬W − rW t−W
cf (z∗) − rW t−W

.

11 Proposition 13B.2 in Mas-Colell et al. (1995) tells us that levying transfers in the absence of testing
information is also unhelpful. They consider an adverse selection model of hiring. A planner with no access
to information is limited to using lump-sum transfers and cannot implement the full information Pareto
optimal outcome.
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Fixing the testing probability rW , we have twopossible regimes to consider. Thefirst
case, c f (z∗) − rWw < 0, corresponds to a setting where at an expected infection rate
of z∗, the wage is sufficiently large so that with no additional incentives beyond wage
deduction, too many individuals likely to be infected will choose to work. This will
crowd out those with a low likelihood of infection. The second case is c f (z∗)−rWw >

0, which corresponds to the opposite setting: too few people choose to go out.

Proposition 4.3 Suppose testing is only conducted at work (rH = 0). Conditional on
the testing probability rW , the minimum-cost transfers are as follows:

1. If c f (z∗) − rWw < 0, the optimal transfer policy has t¬H > 0, t−W = w, and
t¬W = w: a transfer to those that stay home, and no transfers in excess of the wage
to those that go to work and either test negative or are untested.

2. If c f (z∗) − rWw > 0, the optimal transfer policy has t¬H > 0, t−W > w, and
t¬W = w: a transfer to those that stay home, and a transfer in excess of the wage to
those that work and test negative. Those untested at work receive only their wage.

The value of the minimum-cost policy as a function of the test-at-work probability,
rW , is continuous in rW . Finding the optimal rW amounts to optimizing a continuous
function over a compact set. Therefore, when constrained to testing at work, an optimal
testing probability exists. Moreover, it can be easily derived if we impose sufficient
structure on the cost of testing M and the belief distribution G.

4.3 Home testing only

Now suppose there is no testing at work (so rW = 0) but testing is instead conducted
at home. The expression for b∗ in (4) simplifies to:

b∗ = c f (z∗) + (1 − rH )t¬H − t¬W + rH t
−
H

c f (z∗) + rH (t−H − t+H )
.

An analogous argument to the previous section shows that there will be no transfers
to agents who stay at home and test negative. This is summarized in the following
lemma.

Lemma 4.4 In any minimum-cost policy, we must have that t−H = 0.

Once again, this simplifies the constraints faced by the principal and (3,4) become:

c f (z∗) − rH t
+
H ≤ 0,

b∗ = c f (z∗) + (1 − rH )t¬H − t¬W
cf (z∗) − rH t

+
H

.

Proposition 4.5 Suppose testing is only conducted at home (rW = 0). Conditional on
the testing probability rH , the minimum-cost transfers are as follows:
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1. If c f (z∗) − w > 0, the optimal transfer policy has t¬H = 0, t+H > 0, and t¬W > w:
a transfer to those who stay home and test positive as well as a transfer in excess
of the wage to those who go to work.

2. If c f (z∗) − w < 0, the optimal transfer policy has t¬H > 0, t+H > 0, and t¬W = w:
a transfer to those that stay home and either test positive or do not get tested, and
no transfer in excess of the wage to those who go to work.

While the details of the scheme are computed in Appendix A.1, two elements of
the optimal test-at-home policy are important to highlight:

1. Work transfers in excess of thewage are independent of the test-at-home probability
rH .

2. In either scenario, the transfer to those that stay at home and test positive is equal
to c f (z∗)

rH
. The magnitude of the transfer conditional on testing positive is inversely

proportional to the testing probability.

Given this policy structure, the test-at-home probability only affects the at-home
transfers. However, because the at-home transfers scale with 1

rH
, our proof shows that

the total cost of the transfers (total cost less the cost of testing) is independent of the
test-at-home probability rH . Thus:

Proposition 4.6 The value of the minimum cost test-at-home policy as a function of
rH declines as rH → 0. However, the stay-at-home transfer conditional on testing
positive scales with 1

rH
, that is, t+H = c f (z∗)

rH
.

Hence, in the absence of an upper bound on transfers, a minimum cost test-at-home
policy does not exist. The infimum can be computed by taking the limit as rH → 0,
see Appendix A.1 for details. In reality, transfers would be bounded, so rH would be
lowered to the point where the stay-at-home transfer meets that bound.

4.4 Home testing vs. work testing

When is testing at work more cost-efficient than testing at home? This is an especially
important question when people are fearful of returning to work. In the context of our
model, this is when c f (z∗) − w > 0, i.e., the cost of getting infected exceeds the
worker’s wage. In this case, workers that believe they are uninfected will not want
to go to work. Such was the case in, for example, Texas and Georgia in 2020: even
though COVID-19 lockdowns had been lifted, people were still fearful of infection
and refused to go out.12

Proposition 4.7 Suppose c f (z∗) − w > 0:

1. If πI ≥ w
c f (z∗) , then the minimum-cost test-at-work policy that induces infection

rate z∗ is less costly than any test-at-home policy that induces infection rate z∗.
2. If πI < w

c f (z∗) and testing is sufficiently costly, there is a test-at-home policy that
induces infection rate z∗ and is less costly than the minimum-cost test-at-work
policy that induces infection rate z∗.

12 https://www.nbcnews.com/news/us-news/some-texas-cities-nervous-governor-reopens-state-everybody
-scared-n1198691.
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If the wage is small relative to the cost of being ill
(

w
c f (z∗) < πI

)
, it is more cost-

effective to use a test-at-work policy. To see why, notice that in this setting, those
likely to be uninfected have a strong incentive to stay home. To incentivize healthier
individuals to work, a test-at-home policy would require a substantial wage premium.
Such a premium would encourage all types, including those likely to be infected, to
work. Hence, an attractive transfer on testing positive is needed to keep these types
indoors. However, a test-at-work policy deters those likely to be infected, as they
receive nothing if their test result is positive. Thus, for jobs where the wage is low, and
there is high interaction amongst individuals, testing should be conducted at work. In
these industries, workers who test negative will be subsidized. Individuals remaining
at home will also receive a payment.

Analogously, if the wage is large relative to the cost of being ill
(

w
c f (z∗) > πI

)
,

those likely to be uninfected have a strong incentive to stay home. When the wage is
relatively high, and the cost of infection is low, testing at work serves as a deterrent if
one can test at a high rate. Thus, when testing is sufficiently costly, such a test rate is
infeasible, and so a test-at-home policy should be used.

In this analysis, we compared two policies: only testing at home versus only testing
at work. It may be more cost-effective to deploy a mixture. It is possible to derive such
a general characterization when more structure is imposed on the functions M and G
in the planner’s objective. We feel that the particular form of this mixed testing policy
(which will depend finely on the details of the environment) is orthogonal to our main
point, so we omit it for brevity.

5 Discussion and conclusion

Testing is important insofar as it provides an accurate estimate of the infection rate in
the population. However, test results alone do not give people the incentive to engage
in economic activity. A perceived high risk of infectionwill dampen economic activity.

In this paper, we propose that a policy of targeted testing in combination with
targeted transfers is necessary to control the infection rate in the workforce and thus
incentivize the “right” people to go to work. This paper provides a baseline model
for thinking through the trade-offs involved. Whom should we target for testing, and
where should we test? Our model highlights that the answers to this question depend
on the wage earned and the expected cost borne of being infected.

Throughout the paper, we have deliberately chosen stark/ simple assumptions so as
to cleanly describe the tradeoffs involved. In what follows, we discuss these in slightly
more detail. Section 5.1 revisits the supposition that the planner only wishes to control
the infection rate among the working population and shows it as a consequence of a
general social planner’s problem. Section 5.2 discusses some of the other assumptions
made in the paper. Section 5.3 discusses the logistics of implementing such policies.
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5.1 Microfoundation

Here we state and formulate a general social planner’s problem and show why its
solution reduces to a choice of infection rate among the working population.

Suppose society enjoys benefit φ(·) as a function of the fraction of agents whowork
and suffers a cost κ(·, ·) as a function of the infection rate in the working population
and the size of the workforce. Recall that, given a function l(b), which expresses the
probability that an agent with belief b chooses to go out, the proportion of infected

individuals outside is z =
∫ 1
0 bl(b)dG(b)∫ 1
0 l(b)dG(b)

. With a slight abuse of notation, the probabil-

ity an individual without the virus becomes infected conditional on going outside is

f
(
z,

∫ 1
0 l(b) dG(b)

)
, where f is a continuous function increasing in each argument.

Notice that f depends both on the fraction of infected individuals as well as the size
of the population that is outside. We allow for this generality as the likelihood of being
infected depends not only on the infection rate but also on the likelihood of coming
into contact with another person (which increases in the number of people outside).
We make no other assumptions on f . As before, the expected cost associated with
becoming infected is c > 0.

Total societal value can thus be expressed as

S(z, l) = φ

(∫ 1

0
l(b) dG(b)

)
− κ

(
z,

∫ 1

0
l(b) dG(b)

)

−c
∫ 1

0
(1 − b)l(b) f

(
z,

∫ 1

0
l(b) dG(b)

)
dG(b).

Therefore, to maximize social value, a social planner would choose a going out rule
l and an infection rate among the working population to solve:

max
z,l

S(z, l) (SP)

s.t. z = 1∫ 1
0 l(b) dG(b)

∫ 1

0
bl(b) dG(b).

We now demonstrate that one can suppress the dependence of f (·, ·) on the mass of
agents working. This allows us to reduce the social planner’s problem to selecting an
infection rate z in theworkingpopulation. Proposition 5.1 below shows that conditional
on the optimal z∗, the set of individuals that work is uniquely pinned down. As a result,
it is not necessary to explicitly express the dependence of the probability of infection
on the size of the workforce.

Proposition 5.1 Suppose (z∗, l∗) is the solution to (SP). Then:

1. z∗ ≤ πI �⇒ l∗(b) =
{
1 if b ≤ b∗
0, if b > b∗, where z∗ = 1

G(b)

∫ b∗
0 b dG(b).

In words, when z∗ ≤ πI , it is optimal to only allow types [0, b∗] to go out.

123



R. Deb et al.

2. z∗ > πI �⇒ l∗(b) =
{
0 if b < b∗
1, if b ≥ b∗, where z∗ = 1

1−G(b)

∫ 1
b∗ b dG(b).

In words, when z∗ > πI , it is optimal to only allow types [b∗, 1] to go out.

Proposition 5.1 demonstrates that if z∗ is the infection rate given by the solution to
(SP), then, at that infection rate it is optimal to induce the maximum feasible subset
of the population to go out. To provide intuition, suppose a policy P induces a target
infection rate z∗, but the corresponding “going-out” function l(·) has fewer people
going out than the maximum possible. This is suboptimal as there would be a different
policy P ′ that is consistent with and induces a lower target infection rate z′ < z∗ while
also having a total of

∫ 1
0 l(b)dG(b) workers going out.

An immediate consequence of Proposition 5.1 is the following corollary.

Corollary 5.2 Given any z∗, define l∗(·, z∗) according to Proposition 5.1. Consider the
function Y (z∗) = S(z∗, l(·, z∗)). That is, Y (z∗) is the welfare when the planner selects
a target infection rate z∗ and maximizes the mass of workers going out consistent with
that z∗. Then,

max
z∗

Y (z∗) = max
z,l

S(z, l).

It follows that the social planner’s problem can be reduced to choosing the optimal
infection rate.

5.2 Model assumptions

Our conclusions about whom to test and provide transfers rely on an individual’s belief
about the likelihood of infection being calibrated. Relaxing this assumption will not
change the qualitative conclusion that one must deploy both carrots and sticks to align
incentives.

We assume that testing is perfect because it makes our point about the need for
individuals to sort themselves even stronger. Sorting is even more important when
testing is imperfect. It allows one to focus on subgroups who are more likely to be
infected so as to reduce the false-positive rate. Section 5.3 explains how to adjust the
transfers when testing is imperfect.

Our model incorporates an implicit correlation between expected infection cost and
belief (if one has the virus, there is no cost to going outside), but the cost conditional
on infection is constant. What if costs are not constant? Individuals who bear a high
cost associated with infection are naturally deterred from going out. If one believes
that the portion of the population with costs less than the mean is large, the additional
transfers needed would be small. However, if the portion of the working population
with costs in excess of the mean is large, additional transfers are unavoidable.

If we assume agents are risk-averse rather than risk-neutral, this will have two
effects. First, the transfers needed to induce agents to work or stay home will be
larger than otherwise. Second, a risk-averse agent may be more reluctant to acquire
information about their infection states. Hence, it may no longer be optimal to simply
furlough workers if they test positive.
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5.3 Implementation

In this section, we briefly discuss the question of implementation feasibility. First,
testing at work in a pandemic will not be a one-time affair but conducted at regular
intervals. This means the wages and transfers need to scale with the interval between
tests. The frequency of testing need not be uniform across individuals in the same
workplace nor across workplaces. For example, in a university setting, students with
roommates living in high-density dorms would be tested at greater frequency than fac-
ulty who are on campus only intermittently. Indeed, many universities tested students
frequently throughout the year. Regarding testing at home, some cities have either
piloted or implemented door-step testing for the virus. It can also be interpreted as
drive-through testing at hospitals or parking lots.Moreover, the results of the test could
be shared with employers. What might the cost of such testing be? Levitt et al. (2020)
estimate the cost of frequent testing for everyone along with monetary incentives to
encourage individuals to get tested at around 80 billion dollars.13 Augenblick et al.
(2020) also illustrate how frequent testing can be done in a cost-effective manner.
Thus, implementing our suggested incentive scheme repeatedly over time is not as
costly as one might have thought.14

To make our point, we assumed that testing was perfect, but our model easily
accommodates imperfect testing. It would change the magnitude of the transfers.
False positives, for example, would require one to raise t+W . Furthermore, transfers
can be implemented as direct payments to agents or as subsidies to employers to keep
infected agents asked to stay home on the payroll.

In a dynamic setting, the beliefs of agents about their chance of being infected will
change over time. The beliefs of agents who stay home will decline over time. Either
they do not fall ill, fall ill and recover, or exit the model due to death. The beliefs of
agents who are out may shift upwards over time. The net effect of these two changes
will depend on which one is larger. If the second effect is larger, one may wish to
pursue a more ‘aggressive’ policy in the present (i.e. choose a value of z in the present
that is lower than what a single period efficiency calculation might dictate). Hence,
a dynamic policy could be aggressive initially, becoming more permissive over time,
or the reverse. Furthermore, a moral hazard issue can arise in the dynamic setting.
If agents recognize that such a scheme of targeted testing and incentives is to be
implemented, their behavior will change. For example, when transfers to stay at home
are large, it could create a perverse incentive for individuals to intentionally expose
themselves in an earlier period in hopes of becoming infected.

13 https://www.usatoday.com/story/opinion/2020/04/30/coronavirus-tests-quarantines-incentives-can-
make-it-work-column/3048508001/.
14 Especially when compared to the counterfactual of a lockdown with little economic activity.
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A Appendix

A.1 Proofs of main propositions

Lemma 4.2 In any minimum-cost policy, we must have that t+W = 0.

Proof Recall that:

c f (z∗) + rW (t+W − t−W ) ≤ 0,

b∗ = c f (z∗) + t¬H − (1 − rW )t¬W − rW t−W
cf (z∗) + rW (t+W − t−W )

.

Suppose otherwise and so t+W > 0. If t¬H > 0, we can decrease both while main-
taining the same b∗, thereby reducing the cost of the policy to the planner. If instead
t¬H = 0, such a policy incentivizes everyone to go out to work, which contradicts our
supposition that z∗ < πI . ��

Proposition 4.3 Suppose testing is only conducted at work (rH = 0). Conditional on
the testing probability rW , the minimum-cost transfers are as follows:

1. If c f (z∗) − rWw < 0, the optimal transfer policy has t¬H > 0, t−W = w, and
t¬W = w: a transfer to those that stay home, and no transfers in excess of the wage
to those that go to work and either test negative or are untested.

2. If c f (z∗) − rWw > 0, the optimal transfer policy has t¬H > 0, t−W > w, and
t¬W = w: a transfer to those that stay home, and a transfer in excess of the wage to
those that work and test negative. Those untested at work receive only their wage.

Proof Case 1: c f (z∗) − rWw < 0
As we are looking for the minimum cost way of implementing an infection rate z∗, it
must be the case that t−W = w and t¬W = w. Therefore,

b∗ = c f (z∗) + t¬H − w

c f (z∗) − rWw
,

�⇒ t¬H = (1 − b∗rW )w − (1 − b∗)c f (z∗) ≥ 0.

Hence, we must pay those who choose to stay home. The total cost net of wages is

M(rWG(b∗)) + (1 − G(b∗))
[
(1 − b∗rW )w − (1 − b∗)c f (z∗)

]
.

Case 2: c f (z∗) − rWw > 0

In this case, we require t−W > w. In words, we must pay a premium above the wage to

those who choose to go out. In the limit, the solution is: t−W = c f (z∗)
rW

> w, t¬W = w,
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and t¬H = (1 − rW )w. The total cost net of wages is:

M(rWG(b∗)) + (1 − rW )(1 − G(b∗))w + G(b∗)(1 − z∗)rW
(c f (z∗)

rW
− w

)
,

= M(rWG(b∗)) + ((1 − rW )(1 − G(b∗)) − G(b∗)(1 − z)rW )w

+ G(b∗)(1 − z∗)c f (z∗),
= M(rWG(b∗)) + (1 − rW + G(b∗)z∗rW )w − G(b∗)w + G(b∗)(1 − z∗)c f (z∗).

��
Lemma 4.4 In any minimum-cost policy, we must have that t−H = 0.

Proof Recall that the policy must satisfy

c f (z∗) + rH (t−H − t+H ) ≤ 0,

b∗ = c f (z∗) + (1 − rH )t¬H − t¬W + rH t
−
H

c f (z∗) + rH (t−H − t+H )
.

Suppose for the sake of contradiction that t−H > 0. If t¬H > 0, we can decrease both,
reducing the cost of the policy, while maintaining the same b∗. Suppose instead that
t¬H = 0. Then a policy that satisfies the inequalities above must be such that no one
goes to work, which is a contradiction. ��
Proposition 4.5 Suppose testing is only conducted at home (rW = 0). Conditional on
the testing probability rH , the minimum-cost transfers are as follows:

1. If c f (z∗) − w > 0, the optimal transfer policy has t¬H = 0, t+H > 0, and t¬W > w:
a transfer to those who stay home and test positive as well as a transfer in excess
of the wage to those who go to work.

2. If c f (z∗) − w < 0, the optimal transfer policy has t¬H > 0, t+H > 0, and t¬W = w:
a transfer to those that stay home and either test positive or do not get tested, and
no transfer in excess of the wage to those who go to work.

Proof As before, we have two cases to consider.

Case 1: c f (z∗) − w > 0

Clearly, in an optimal policy we must have t¬H = 0. Thus, t¬W = c f (z∗) and t+H =
c f (z∗)
rH

. Total cost net of wages will be

M
(
rH (1 − G(b∗))

)
+ G(b∗)(c f (z∗) − w) + rH (

∫
b(1 − l(b)) dG(b))

c f (z∗)
rH

= M
(
rH (1 − G(b∗))

)
+ G(b∗)(c f (z∗) − w) + (πI − G(b∗)z)c f (z∗)

= M
(
rH (1 − G(b∗))

)
+ G(b∗)(1 − z)c f (z∗) − G(b∗)w + πI c f (z

∗).
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Notice that the home testing probability does not affect the total cost of the transfers
net of wages.

Case 2: c f (z∗) − w < 0

It must be the case that t−H = 0 and t¬W = w. Therefore,

b∗ = c f (z∗) + (1 − rH )t¬H − w

f (z∗)c − rH t
+
H

.

Suppose we fix t+H > 0 and t¬H ≥ 0 such that the above expression holds. Consider
the costs associated with the “stay at home” transfers:

(1 − rH )t¬H (1 − G(b∗)) + rH t
+
H

∫ 1

b∗
bdG(b)

As the expression for b∗ must hold, we can see that

∂(1 − rH )t¬H
∂rH t

+
H

= −b∗.

Thus, the optimal policy has t+H = c f (z∗)
rH

and t¬H = w−c f (z∗)
1−rH

. Total cost is:

M
(
rH (1 − G(b∗))

)
+ (w − c f (z∗))(1 − G(b∗)) + c f (z∗)

∫ 1

b∗
bdG(b)

= M
(
rH (1 − G(b∗))

)
+ (w − c f (z∗))(1 − G(b∗)) + c f (z∗)(πI − z∗G(b∗)),

= M
(
rH (1 − G(b∗))

)
+ c f (z∗)(w − c f (z∗))(1 − G(b∗)) + c f (z∗)(πI − z∗G(b∗)),

= M
(
rH (1 − G(b∗))

)
+ G(b∗)(1 − z∗)c f (z∗) − G(b∗)w + πI c f (z

∗) + w − c f (z∗).

��
Proposition 4.6 The value of the minimum cost test-at-home policy as a function of
rH declines as rH → 0. However, the stay-at-home transfer conditional on testing
positive scales with 1

rH
, that is, t+H = c f (z∗)

rH
.

Proof From the proof of Proposition 4.5, the term rH is only present in the cost of
testing (as an input into the function M). The total cost of transfers net of wages is
independent of rH . Hence, the minimum cost is achieved by setting rH = 0. ��
Proposition 4.7 Suppose c f (z∗) − w > 0:

1. If πI ≥ w
c f (z∗) , then the minimum-cost test-at-work policy that induces infection

rate z∗ is less costly than any test-at-home policy that induces infection rate z∗.
2. If πI < w

c f (z∗) and testing is sufficiently costly, there is a test-at-home policy that
induces infection rate z∗ and is less costly than the minimum-cost test-at-work
policy that induces infection rate z∗.
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Proof LetCW (r) denote the cost of the testing at work policy when tests are conducted
with probability r . The minimum cost policy has cost C∗

W , which is achieved at r∗.
When testing at home only, the minimum cost is:

CH = πI c f (z
∗) + G(b∗)(1 − z∗)c f (z∗) − wG(b∗).

If w
c f (z∗) ≤ πI �⇒ (1 − G(b∗))w ≤ −G(b∗)w + πI c f (z∗)

�⇒ CW (0) ≤ CH

Since C∗
W ≤ CW (0), the first part of the proposition follows.

For the second part of the proposition, we compare CH and C∗
W directly:

CH ≤ C∗
W ⇐⇒ πI ≤ M(r∗G(b∗))

c f (z∗)
+ (1 − r∗

W + G(b∗)z∗r∗
W )

w

c f (z∗)
.

If πI < w
c f (z∗) , then there exists k ∈ (0, 1) such that πI = k · w

c f (z∗) . It follows then

that a sufficient condition for CH ≤ C∗
W is r∗

W < 1−k
1−G(b∗)z∗ . This occurs when testing

is sufficiently costly:

M ′( (1 − k)G(b∗)
1 − G(b∗)z∗

)
≥ (1 − G(b∗)z∗)w

G(b∗)
.

��
Remark Note that when testing is costless, r∗

W = 1 and M(·) = 0, which implies:

CH ≤ C∗
W ⇐⇒ πI ≤ G(b∗)z w

c f (z∗)
.

A.2 Social planner problem: microfoundation

Lemma A.1 Fix z∗. If z∗ ≤ πI , define l∗(b, z∗) =
{
0 b > b∗,
1 b ≤ b∗ where b∗ =

∫ b∗
0 b dG(b)
G(b∗) = z∗. If z∗ > πI , define l∗(b, z∗) =

{
1 b ≥ b∗,
0 b < b∗ where b∗ =

∫ 1
b∗ b dG(b)
1−G(b∗) =

z∗.
The function l∗ solves:

max
l(·)∈[0,1]

∫ 1

0
l(b) dG(b),

s.t.

∫ 1
0 bl(b) dG(b)∫ 1
0 l(b) dG(b)

≤ z∗.
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Proof Observe that the constraint can be rewritten as a linear constraint by moving
the denominator to the right-hand side and rearranging. The observation now follows
from a straightforward Lagrangean relaxation. ��

The function l∗(·, z∗) describes themaximal number of people that can go out under
a consistent policy that induces infection rate z∗.

Proposition 5.1 Suppose (z∗, l∗) is the solution to (SP). Then:

1. z∗ ≤ πI �⇒ l∗(b) =
{
1 if b ≤ b∗
0, if b > b∗, where z∗ = 1

G(b)

∫ b∗
0 b dG(b).

In words, when z∗ ≤ πI , it is optimal to only allow types [0, b∗] to go out.

2. z∗ > πI �⇒ l∗(b) =
{
0 if b < b∗
1, if b ≥ b∗, where z∗ = 1

1−G(b)

∫ 1
b∗ b dG(b).

In words, when z∗ > πI , it is optimal to only allow types [b∗, 1] to go out.

Proof We start by proving the first statement. Suppose a policy P induces a tar-
get infection rate z∗ and the planner selects a corresponding going-out function
l̂(·), where ∫ 1

0 l̂(b)dG(b) <
∫ 1
0 l∗(b, z∗)dG(b). Since

∫ 1
0 l∗(b, z∗)dG(b) is mono-

tonically decreasing in z∗ and limz∗→0
∫ 1
0 l∗(b, z∗)dG(b) = 0, there exists z′ < z∗

such that
∫ 1
0 l∗(b, z′)dG(b) = ∫ 1

0 l̂(b)dG(b). However, this means that S(z∗, l̂(·)) <

S(z′, l∗(·, z′)). Thus, a target infection rate of z∗ with going-out function l̂(·) can not
be optimal.

The second statement follows from combining the first with Lemma A.1. ��
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